WorldWideScience

Sample records for winter-grown canola brassica

  1. Digestibility and intestinal fermentability of canola meal from Brassica juncea and Brassica napus fed to ileal-cannulated grower pigs

    NARCIS (Netherlands)

    Le, M.H.A.; Buchet, A.D.G.; Beltranena, E.; Gerrits, W.J.J.; Zijlstra, R.T.

    2017-01-01

    Yellow-seeded Brassica (B.) juncea is a novel canola species. Therefore, its meal co-product requires feed quality evaluation and comparison to conventional, dark-seeded B. napus canola meal for pigs. The B. juncea canola meal contains less fibre than B. napus canola meal (190 vs. 260 g NDF/kg, as

  2. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop.

    Science.gov (United States)

    Hwang, Sheau-Fang; Strelkov, Stephen E; Feng, Jie; Gossen, Bruce D; Howard, Ron J

    2012-02-01

    Plasmodiophora brassicae causes clubroot disease in cruciferous plants, and is an emerging threat to Canadian canola (Brassica napus) production. This review focuses on recent studies into the pathogenic diversity of P. brassicae populations, mechanisms of pathogenesis and resistance, and the development of diagnostic tests for pathogen detection and quantification. Plasmodiophora brassicae is a soil-borne, obligate parasite within the class Phytomyxea (plasmodiophorids) of the protist supergroup Rhizaria. Clubroot development is characterized by the formation of club-shaped galls on the roots of affected plants. Above-ground symptoms include wilting, stunting, yellowing and premature senescence. DISEASE CYCLE: Plasmodiophora brassicae first infects the root hairs, producing motile zoospores that invade the cortical tissue. Secondary plasmodia form within the root cortex and, by triggering the expression of genes involved in the production of auxins, cytokinins and other plant growth regulators, divert a substantial proportion of plant resources into hypertrophic growth of the root tissues, resulting in the formation of galls. The secondary plasmodia are cleaved into millions of resting spores and the root galls quickly disintegrate, releasing long-lived resting spores into the soil. A serine protease, PRO1, has been shown to trigger resting spore germination. PHYSIOLOGICAL SPECIALIZATION: Physiological specialization occurs in populations of P. brassicae, and various host differential sets, consisting of different collections of Brassica genotypes, are used to distinguish among pathotypes of the parasite. DETECTION AND QUANTIFICATION: As P. brassicae cannot be cultured, bioassays with bait plants were traditionally used to detect the pathogen in the soil. More recent innovations for the detection and quantification of P. brassicae include the use of antibodies, quantitative polymerase chain reaction (qPCR) and qPCR in conjunction with signature fatty acid analysis

  3. Feed preference of weaned pigs fed diets containing soybean meal, Brassica napus canola meal, or Brassica juncea canola meal.

    Science.gov (United States)

    Landero, Jose L; Wang, Li Fang; Beltranena, Eduardo; Bench, Clover J; Zijlstra, Ruurd T

    2018-03-06

    Brassica napus and Brassica juncea canola meal (CM) may replace soybean meal (SBM) in pig diets, but differ in fiber, glucosinolates content and profile. Preference of weaned pigs provided double-choice selections to diets containing 20% SBM, B. napus CM, or B. juncea CM was evaluated in two studies. In experiment 1, 216 pigs (9.4 ± 1.6 kg initial BW) were housed in 27 pens of 8 pigs (four gilts and four barrows). In experiment 2, 144 pigs (8.9 ± 1.1 kg) were housed in 36 pens of 4 pigs (two gilts and two barrows). Pigs were offered three dietary choices: B. napus CM with SBM as reference (B. napus CM [SBM]), B. juncea CM with SBM as reference (B. juncea CM [SBM]), and B. juncea CM with B. napus CM as reference (B. juncea CM [B. napus CM]) in a replicated 3 × 3 Latin square. Diets were formulated to provide 2.4 Mcal NE/kg and 4.5 g standardized ileal digestible Lys/Mcal NE and were balanced using canola oil and crystalline AA. Each pair of diets was offered in two self-feeders per pen as mash (experiment 1) or pellets (experiment 2) during three test-periods of 4-d, followed by a 3-d non-test period when a common diet was offered in both feeders. Feeders with different diets were rotated daily among pens during preference periods for both experiments, and feeder positions (right or left) were switched daily in experiment 2. Prior to the study and between periods, pigs were fed non-test diets containing SBM (experiment 1) or without test feedstuffs (experiment 2). Overall in both experiments, pigs preferred (P 0.05) growth performance in both experiments, except for greater G:F (P < 0.05) for pigs fed the B. juncea CM [B. napus CM] diets than pigs fed the B. napus CM [SBM] or B. juncea CM [SBM] diets in experiment 1. In conclusion, weaned pigs preferred SBM over CM diets when given a choice, and preferred B. napus over the B. juncea diet that contained more total glucosinolates especially gluconapin. Weaned pigs fed the B. juncea CM [B. napus CM] diets in the

  4. Optimization of Brassica napus (canola) explant regeneration for genetic transformation.

    Science.gov (United States)

    Maheshwari, Priti; Selvaraj, Gopalan; Kovalchuk, Igor

    2011-12-15

    Brassica napus (canola) is the second largest oilseed crop in the world. It is among the first crops to be genetically transformed, and genetically modified cultivars are in commercial production at very significant levels. Despite the early lead with respect to transgenesis, there remain cultivars that are recalcitrant to transformation. To address this, we have conducted an elaborate investigation of the conditions for regenerating shoots from hypocotyl explants from four genetic lines: Invigor 5020, Westar and Topas as well as a microspore culture derived line of Topas (Line 4079). We analyzed the effect of hormonal combinations in regeneration medium, donor plant age and explant type on the regeneration capacity of these plants. The analysis showed that hypocotyls of eight-day-old seedlings grown on media supplemented with 1mg/L dinitrophenylhydrazine (2,4-D) produced the most shoots. Globular somatic embryos emerged following two weeks of 2,4-D treatment. When transferred to the medium containing 5mg/L benzyladenine (BA), approximately 82% of embryos produced shoots within six weeks. Invigor plants were shown to regenerate more efficiently than Topas; the number of plantlets regenerated from Invigor was approximately 40-50% more as compared to Topas or Line 4079. When hypocotyl explants were co-cultivated with the Agrobacterium strain GV3101 harboring a binary vector carrying a firefly luciferase reporter gene (LUC), significant numbers of plantlets were LUC-positive in a luciferase assay. Frequency of such plants were: Invigor 5020 (54.2 ± 2.5%), Westar (53.7 ± 5.3), Topas (16.0 ± 0.24) and Line 4079 (13.4 ± 4). Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters.

    Science.gov (United States)

    Omidi, Heshmat; Tahmasebi, Zeinaldin; Naghdi Badi, Hassan Ali; Torabi, Hossein; Miransari, Mohammad

    2010-03-01

    Vegetable oils with a high relative amount of unsaturated fatty acids are of great significance for human health. There is not any data on the effects of tillage practices on fatty acid composition of canola (Brassica napus L.). Hence, in a 2-year split plot experiment, the effects of different tillage systems (no (NT), minimum (MT) and conventional tillage (CT)), canola genotypes (Hyola 401 (V1) and PF (V2)) and sowing dates (including Sep. 8, 23 and Oct. 7) on the fatty acid composition of canola were evaluated. Tillage practices and the combination of canola genotypes and sowing dates were randomized to the main and sub-plots, respectively. The highest oleic acid content was the result of combining NT, V1 and Sep. 23, and the lowest was related to the combination of CT, V2 and Oct. 7. While the combination of NT, V1 and D1 resulted in the highest amount of unsaturated fatty acids, this amount was the lowest for the combination of CT, V2 and Sep. 23. For the selection of an appropriate canola producing strategy, all these parameters must be taken into account. The combination of NT, V1 and Sep. 23 may be the most favorable cropping strategy for canola production under a Mediterranean climate. Copyright 2009 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    International Nuclear Information System (INIS)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G.

    2004-01-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels

  7. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  8. Yield and yield components of six canola ( Brassica napus L ...

    African Journals Online (AJOL)

    The experiments were conducted in randomized complete block design arrangement in split factorial with four replications The results demonstrated that late planting date and interrupting of irrigation at flowering stage significantly decreased growth, yield and yield components the of canola cultivars. In addition, oil yield ...

  9. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil.

    Science.gov (United States)

    Ma, Jin-Kui; Zhang, Han; Tsuchiya, Tomohiro; Akiyama, Yoshinobu; Chen, Jie-Yu

    2015-04-01

    This study was carried out to investigate the frying performance of Kizakinonatane (Brassica napus) oil during deep-fat frying of frozen French fries with/without replenishment. Commercial regular canola oil was used for comparison. The frying oils were used during intermittent frying of frozen French fries at 180, 200, and 220 ℃ for 7 h daily over four consecutive days. The Kizakinonatane oil exhibited lower levels of total polar compounds, carbonyl value, and viscosity as well as comparable color (optical density) values to that of the canola oil. The monounsaturated fatty acid/polyunsaturated fatty acid ratios were lower than that of canola oil, whereas the polyunsaturated fatty acid/saturated fatty acid ratios are higher than that of canola oil after heating. Results showed that fresh Kizakinonatane oil contains higher levels of acid value, viscosity, optical density values, tocopherols, and total phenolics contents than that of canola oil. Replenishment with fresh oil had significant effects on all chemical and physical parameters, except the acid value of the Kizakinonatane oil during frying processes. Based on the results, the Kizakinonatane oil is inherently suitable for preparing deep-fried foods at high temperatures. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Akram, Nudrat Aisha; Ashraf, Muhammad

    2012-05-16

    Expression analysis of crop plants has improved our knowledge about the veiled underlying mechanisms for salt tolerance. In order to observe the time course effects of salinity stress on gene expression for enzymes regulating proline metabolism, we comparatively analyzed the expression of specific genes for proline metabolism in root and shoot tissues of salt-tolerant (cv. Dunkled) and salt-sensitive (cv. Cyclone) canola (Brassica napus L.) cultivars through reverse-transcriptase polymerase chain reaction (RT-PCR); following the NaCl treatment for various durations. Both lines showed an increase in ∆¹-pyrroline-5-carboxylate synthase1 (P5CS1) gene expression after induction of salt stress with enhanced expression in the root tissue of the tolerant line, while maximum expression was noted in the shoot tissues of the sensitive line. We observed a much reduced proline dehydrogenase (PDH) expression in both the root and shoot tissues of both canola lines, with more marked reduction of PDH expression in the shoot tissues than that in the root ones. To confirm the increase in P5CS1 gene expression, total proline content was also measured in the root and shoot tissues of both the canola lines. The root tissues of canola sensitive line showed a gradually increasing proline concentration pattern with regular increase in salinity treatment, while an increase in proline concentration in the tolerant line was noted at 24 h post salinity treatment after a sudden decrease at 6 h and 12 h of salt treatment. A gradually increasing concentration of free proline content was found in shoot tissues of the tolerant canola line though a remarkable increase in proline concentration was noted in the sensitive canola line at 24 h post salinity treatment, indicating the initiation of proline biosynthesis process in that tissue of sensitive canola.

  11. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.).

    Science.gov (United States)

    Zhang, Hanfeng; Yang, Bo; Liu, Wu-Zhen; Li, Hongwei; Wang, Lei; Wang, Boya; Deng, Min; Liang, Wanwan; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-01-07

    Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. Our findings indicate that CBL and CIPK family members may

  12. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars.

    Science.gov (United States)

    Ashraf, Muhammad Yasin; Azhar, Nazila; Ashraf, Muhammad; Hussain, Mumtaz; Arshad, Muhammad

    2011-09-01

    Canola (Brassica napus L.) is commonly used as a hyper-accumulator for phytoextraction of heavy metals from soil and water. Like many other heavy metals, lead (Pb) contaminates soil, water and air and thus it is a great problem. This study was conducted to investigate toxic effects of Pb on growth and nutrient uptake in four canola cultivars. Each of four cultivars of canola (Con-II, Con-III, Legend and Shiralee) was subjected to four levels of Pb (0, 30, 60 and 90 mg Pb kg(-1) of soil) from lead chloride [PbCl2]. Due to Pb toxicity, plant growth was adversely affected and relatively a severe reduction in root biomass (45.7%) was recorded. The Pb accumulation increased both in shoot and root, the highest being in root. The uptake of different nutrients, i.e., N, P, K, Ca, Mg, Zn, Cu and Mn was reduced (38.4, 32.8, 33.1, 49.6, 7.78, 52.0, 42.6 and 45.9%, respectively) in the shoots and that of N, Fe, Zn, and Cu in the roots (48.5, 33.2, 24.3 and 44.8%, respectively) of all canola cultivars. The root K, P, Zn and Mn and shoot P, Mg and Fe contents were less affected, the concentration of Pb, Ca and Mg in roots of all cultivars. Among canola cultivars Con-II and Con-III performed better than Legend and Shiralee in terms of growth (26.03%) and nutrient accumulation. Overall, plant growth and nutrient accumulation in the canola cultivars was hampered due to the presence of Pb.

  13. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.).

    Science.gov (United States)

    Liang, Wanwan; Yang, Bo; Yu, Bao-Jun; Zhou, Zili; Li, Cui; Jia, Ming; Sun, Yun; Zhang, Yue; Wu, Feifei; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2013-06-11

    Eukaryotic mitogen-activated protein kinase (MAPK/MPK) signaling cascades transduce and amplify environmental signals via three types of reversibly phosphorylated kinases to activate defense gene expression. Canola (oilseed rape, Brassica napus) is a major crop in temperate regions. Identification and characterization of MAPK and MAPK kinases (MAPKK/MKK) of canola will help to elucidate their role in responses to abiotic and biotic stresses. We describe the identification and analysis of seven MKK (BnaMKK) and 12 MPK (BnaMPK) members from canola. Sequence alignments and phylogenetic analyses of the predicted amino acid sequences of BnaMKKs and BnaMPKs classified them into four different groups. We also examined the subcellular localization of four and two members of BnaMKK and BnaMPK gene families, respectively, using green fluorescent protein (GFP) and, found GFP signals in both nuclei and cytoplasm. Furthermore, we identified several interesting interaction pairs through yeast two-hybrid (Y2H) analysis of interactions between BnaMKKs and BnaMPKs, as well as BnaMPK and BnaWRKYs. We defined contiguous signaling modules including BnaMKK9-BnaMPK1/2-BnaWRKY53, BnaMKK2/4/5-BnaMPK3/6-BnaWRKY20/26 and BnaMKK9-BnaMPK5/9/19/20. Of these, several interactions had not been previously described in any species. Selected interactions were validated in vivo by a bimolecular fluorescence complementation (BiFC) assay. Transcriptional responses of a subset of canola MKK and MPK genes to stimuli including fungal pathogens, hormones and abiotic stress treatments were analyzed through real-time RT-PCR and we identified a few of BnaMKKs and BnaMPKs responding to salicylic acid (SA), oxalic acid (OA), Sclerotinia sclerotiorum or other stress conditions. Comparisons of expression patterns of putative orthologs in canola and Arabidopsis showed that transcript expression patterns were generally conserved, with some differences suggestive of sub-functionalization. We identified seven MKK

  14. Genomic Prediction of Testcross Performance in Canola (Brassica napus).

    Science.gov (United States)

    Jan, Habib U; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A; Snowdon, Rod J

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  15. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    Science.gov (United States)

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  16. Genomic Prediction of Testcross Performance in Canola (Brassica napus.

    Directory of Open Access Journals (Sweden)

    Habib U Jan

    Full Text Available Genomic selection (GS is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81 followed by oil yield (0.75 and lowest for seedling emergence (0.29. For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF, prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows

  17. Digestibility energy and amino acids of canola meal from two species (Brassica juncea and Brassica napus) fed to distal ileum cannulated grower pigs

    NARCIS (Netherlands)

    Le, M.H.A.; Buchet, A.D.G.; Beltranena, E.; Gerrits, W.J.J.; Zijlstra, R.T.

    2012-01-01

    Yellow-seeded Brassica juncea is a novel canola species targeted to grow in the southern Canadian prairies where thermotolerance, disease resistance, and adaptation to dry agronomic conditions are required. The support of its cultivation needs nutritional evaluation of its coproduct. The B. juncea

  18. Determination of the net energy content of canola meal from Brassica napus yellow and Brassica juncea yellow fed to growing pigs using indirect calorimetry.

    Science.gov (United States)

    Heo, Jung Min; Adewole, Deborah; Nyachoti, Martin

    2014-07-01

    The net energy (NE) content of canola meals (CM; i.e. Brassica napus yellow and Brassica juncea yellow) in growing pigs was determined using an indirect calorimetry chamber or published prediction equations. The study was conducted as a completely randomized design (n=6), with (i) a basal diet and (ii) 2 diets containing 700 g/kg of the basal diet and 300 g/kg of either of the two varieties of CM. A total of 18 growing barrows were housed in metabolism crates for the determination of digestible (DE) and metabolizable (ME) energy. Thereafter, pigs were transferred to the indirect calorimetry chamber to determine heat production (HP). The NE contents of diets containing Brassica napus yellow and Brassica juncea yellow determined with the direct determination technique and prediction equations were 9.8 versus 10.3 MJ/kg dry matter (DM) and 10.2 versus 10.4 MJ/kg DM, respectively. Retained energy (RE) and fasting heat production (FHP) of diets containing Brassica napus yellow and Brassica juncea yellow were 5.5 versus 5.7 MJ/kg and 4.3 versus 4.5 MJ/kg, respectively, when measured with the direct determination technique and prediction equations. The NE contents of Brassica napus yellow and Brassica juncea yellow were determined to be 8.8 and 9.8 MJ/kg DM, respectively, using the direct determination technique. © 2014 Japanese Society of Animal Science.

  19. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy: Comparison of yellow ( Brassica rapa) and Brown ( Brassica napus) canola seed tissues

    Science.gov (United States)

    Yu, Peiqiang

    2008-05-01

    The objective of this study was to use synchrotron light sourced FTIR microspectroscopy as a novel approach to characterize protein molecular structure of plant tissue: compared yellow and brown Brassica canola seed within cellular dimensions. Differences in the molecular chemistry and the structural-chemical characteristics were identified between two type of plant tissues. The yellow canola seeds contained a relatively lower (P < 0.05) percentage of model-fitted α-helices (33 vs. 37), a higher (P < 0.05) relative percentage of model-fitted β-sheets (27 vs. 21) and a lower (P < 0.05) ratio of α-helices to β-sheets (1.3 vs. 1.9) than the brown seeds. These results may indicate that the protein value of the yellow canola seeds as food or feed was different from that of the brown canola seeds. The cluster analysis and principal component analysis did not show clear differences between the yellow and brown canola seed tissues in terms of protein amide I structures, indicating they are related to each other. Both yellow and brown canola seeds contain the same proteins but in different ratios.

  20. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop

    International Nuclear Information System (INIS)

    Ahmad, S.; Duar, I.; Solaimani, S.G.A.; Mahmood, S.

    2016-01-01

    This study investigated eco-friendly approach of utilizing plant growth promoting rhizobacteria (PGPR) and humic acid (HA) as bio-stimulants to improve the growth, yield and nutrition of canola (Brassica napus L.). In this study, we isolated 20 indigenous rhizobacterial strains that were subsequently screened and characterized for their plant growth promoting traits. After that one promising PGPR strain identified as Acinetobacter pittii by 16S rRNA gene sequencing was selected for field trial. The field experiment was conducted using RCB design with split-plot arrangement that was replicated four times. Three levels of humic acid (0, 10 and 20 kg ha-1) as main plot factor and two treatments of PGPR (with and without PGPR) as sub-plot factor were used. Data was recorded on plant height (cm), root dry matter plant-1, number of lateral root plant-1, number of pods plant-1, number of seeds pod-1, 1000 seed weight (g), seed yield(kg ha-1), oil content (%), nitrogen (N), phosphorus (P) and potassium (K) contents and uptake. For most of the above mentioned parameters, significant enhancement was observed with the increment of humic acid, and also PGPR treatments were better than their respective control treatments. Maximum values of these parameters were recorded for the interaction of 20 kg HA ha-1 with the PGPR strain. It can be concluded that integrated application of HA and PGPR is a better strategy to improve nutrition and yield of canola. (author)

  1. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.

    Science.gov (United States)

    Pallai, Rajash; Hynes, Russell K; Verma, Brij; Nelson, Louise M

    2012-02-01

    Pseudomonas fluorescens 6-8, a rhizosphere isolate previously shown to enhance root elongation of canola ( Brassica napus L.), was characterized for its ability to produce indole-3-acetic acid and cytokinins in pure culture and in the rhizosphere of canola under gnotobiotic conditions in comparison with the cytokinin-producing strain P. fluorescens G20-18 and its mutant CNT2. Strain 6-8 produced isopentenyl adenosine, zeatin riboside, and dihydroxyzeatin riboside at levels similar to those of G20-18, but only very low concentrations of indole-3-acetic acid. In a gnotobiotic assay canola inoculated with 6-8 and G20-18 had higher concentrations of isopentenyl adenosine and zeatin riboside in the rhizosphere and greater root length than the noninoculated control. The ability of strain 6-8 to colonize canola roots was assessed following transformation with the green fluorescent protein and inoculation onto canola seed in a gnotobiotic assay. Higher populations of strain 6-8 were observed on the proximal region of the root closest to the seed than on the mid and distal portions 9 days after seed inoculation. The ability of P. fluorescens 6-8 to produce cytokinins, colonize the roots of canola seedlings, and enhance root elongation may contribute to its ability to survive in the rhizosphere and may benefit seedling growth.

  2. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage.

    Science.gov (United States)

    Long, Weihua; Zou, Xiling; Zhang, Xuekun

    2015-01-01

    Canola (Brassica napus) is one of the most important oil crops in the world. However, its yield has been constrained by salt stress. In this study, transcriptome profiles were explored using Digital Gene Expression (DGE) at 0, 3, 12 and 24 hours after H2O (control) and NaCl treatments on B. napus roots at the germination stage. Comparisons of gene-expression between the control and the treatment were conducted after tag-mapping to the sequenced Brassica rapa genome. The differentially expressed genes during the time course of salt stress were focused on, and 163 genes were identified to be differentially expressed at all the time points. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of the genes were involved in proline metabolism, inositol metabolism, carbohydrate metabolic processes and oxidation-reduction processes and may play vital roles in the salt-stress response at the germination stage. Thus, this study provides new candidate salt stress responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance.

  3. Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate.

    Science.gov (United States)

    Nandula, Vijay K; Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Poston, Daniel H

    2007-05-02

    Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury

  4. Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from Brassica napus black and Brassica juncea yellow.

    Science.gov (United States)

    Sanjayan, N; Heo, J M; Nyachoti, C M

    2014-09-01

    Nutrient digestibility and the effect of high dietary inclusion of canola meals from Brassica napus black (BNB) and Brassica juncea yellow (BJY) on growing and weaned pigs performance were determined. In Exp.1, 6 ileal cannulated barrows (initial BW = 20.7 ± 1.5 kg) were used to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA in BNB and BJY. Pigs were allotted to diets containing either BNB or BJY as the sole source of protein in a crossover design to give 6 replicates per diet. The SID of all AA in BNB and BJY were similar. In Exp. 2, 168 weaned pigs (initial BW = 7.61 ± 0.76 kg) were assigned in a randomized complete block design to 7 diets (n = 24) consisting of a wheat-soybean meal-based control diet and 6 diets containing 5, 10 or 15% of canola meal derived from either BNB or BJY to determine the effect of different dietary inclusion on growth performance over a 28-d period postweaning. Diets were formulated to contain similar NE and SID of Lys. There were no differences in growth performance among treatments. In Exp. 3, 162 weaned pigs (initial BW = 7.26 ± 0.70 kg) were used to determine the effect of high BNB and BJY inclusion level without or with multicarbohydrase supplementation on growth performance and apparent total tract digestibility (ATTD) of CP, DM, and GE. A wheat-soybean meal-based control diet and 8 diets containing 20 and 25% of either BNB or BJY without or with added multi-carbohydrase were formulated (n = 18) to contain comparable NE and similar SID of Lys contents. Feeding the diets containing 25% of BNB or BJY supported similar growth performance as those containing 20%. The multi-carbohydrase had no effect on growth performance but improved (P canola meal type. Diets containing 25% canola meal had lower (P canola meal type compared with the 20% canola meal diets. There was an interaction (P canola meal type and inclusion level on ATTD of DM in which ATTD of DM decreased with increasing

  5. Digestibility energy and amino acids of canola meal from two species (Brassica juncea and Brassica napus) fed to distal ileum cannulated grower pigs.

    Science.gov (United States)

    Le, M H A; Buchet, A D G; Beltranena, E; Gerrits, W J J; Zijlstra, R T

    2012-12-01

    Yellow-seeded Brassica juncea is a novel canola species targeted to grow in the southern Canadian prairies where thermotolerance, disease resistance, and adaptation to dry agronomic conditions are required. The support of its cultivation needs nutritional evaluation of its coproduct. The B. juncea canola meal (CM) contains less fiber than conventional, dark-seeded Brassica napus CM but also slightly less Lys. In a 6 × 6 Latin square, 6 distal ileum cannulated pigs (47 kg BW) were fed 6 diets to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA, AID and apparent total tract digestibility (ATTD) of energy, and VFA content in digesta and feces. Pigs were fed 6 diets: basal [46% wheat (Triticum aestivum) and corn (Zea mays) starch], 4 diets with 46% wheat and either B. juncea or B. napus CM at 25 or 50%, and a N-free diet based on corn starch. The B. juncea CM had higher (P canola species grown in Canadian prairie land, will increase flexibility in swine feed formulation.

  6. Ileal amino acid digestibility in canola meals from yellow- and black-seeded Brassica napus and Brassica juncea fed to growing pigs.

    Science.gov (United States)

    Trindade Neto, M A; Opepaju, F O; Slominski, B A; Nyachoti, C M

    2012-10-01

    Twelve ileal cannulated pigs (30.9 ± 2.7 kg) were used to determine the apparent (AID) and standardized (SID) ileal digestibility of protein and AA in canola meals (CM) derived from black- (BNB) and yellow-seeded (BNY) Brassica napus canola and yellow-seeded Brassica juncea (BJY). The meals were produced using either the conventional pre-press solvent extraction process (regular meal) or a new, vacuum-assisted cold process of meal de-solventization (white flakes) to provide 6 different meals. Six cornstarch-based diets containing 35% canola meal as the sole source of protein in a 3 (variety) × 2 (processing) factorial arrangement were randomly allotted to pigs in a 6 × 7 incomplete Latin square design to have 6 replicates per diet. A 5% casein diet was fed to estimate endogenous AA losses. Canola variety and processing method interacted for the AID of DM (P = 0.048), N (P = 0.010), and all AA (P Canola variety affected or tended to affect the AID of most AA but had no effect on the AID of Lys, Met, Val, Cys, and Pro, whereas processing method had an effect on only Lys and Asp and tended to affect the AID of Thr, Gly and Ser. The effects of canola variety, processing method, and their interaction on the SID values for N and AA followed a similar pattern as for AID values. For the white flakes, SID of N in BJY (74.2%) was lower than in BNY and BNB, whose values averaged 78.5%; however, among the regular meals, BJY had a greater SID value for N than BNY and BNB (variety × processing, P = 0.015). For the white flakes, the SID of Ile (86.4%), Leu (87.6%), Lys (88.9%), Thr (87.6%) and Val (84.2%) in BNB were greater than BNY and BJY. Opposite results were observed for the regular processing, with SID of Lys (84.1%), Met (89.5%), Thr (84.1%), and Val (83.6%) being greater in BJY, followed by BNB and BNY(variety × processing, P canola variety and the processing method used. Overall, the SID values for Ile, Leu, Lys, Met, Thr, and Val averaged across CM types and

  7. Variations in chromium tolerance and accumulation among canola (Brassica napus L.) cultivars.

    Science.gov (United States)

    Terzi, Hakan; Yıldız, Mustafa

    2014-07-01

    Phytoremediation is a green technology for the remediation of contaminated ecosystems by using plants. In the present study, a hydroponic experiment was conducted to investigate the phytoremediation potential of eight canola (Brassica napus L.) cultivars for hexavalent chromium [Cr(VI)]. Chromium significantly affected dry weight, lipid peroxidation, chlorophylls, non-protein thiol and antioxidant enzymes. Based on the dry weight, the tolerance index was found maximum in cultivar (cv.) NK Petrol and minimum in cv. Sary. The cv. Sary accumulated the maximum amount of Cr (705.8 μg g(-1) DW), which was correlated with the lowest levels of chlorophyll content and highest levels of lipid peroxidation. However, Cr accumulation was lowest (255.0 μg g(-1) DW) in NK Petrol. Although cv. NK Petrol may be a Cr(VI) excluder relative to cv. Sary, it may have the potential for the phytoremediation of Cr-contaminated sites as it possesses higher resistance to Cr(VI) by producing higher biomasses.

  8. Ameliorating influence of sulfur on germination attributes of canola (brassica napus l.) under chromium stress

    International Nuclear Information System (INIS)

    Jahan, S.; Iqbal, S.; Jabeen, K.; Sadaf, S.

    2015-01-01

    An experiment was performed to evaluate the role of sulfur to induce tolerance in Brassica napus L. against chromium stress by estimating the changes in germination parameters. Petriplates were assembled in Randomized Complete Block Design. A total 9 sets of treatments viz., control, chromium treated (40 and 160ppm), sulfur treated (50 and 150ppm) and sulfur (50 and 150ppm) combined with chromium (40 and 160ppm) with three replicates was used. Chromium under both concentrations was responsible for significant decline in germination parameters i.e. germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings. Sulfur application under chromium stress resulted in improvement of germination parameters such as germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings in contrast to chromium treatment. So, it can be concluded that sulfur in appropriate dose can be used to ameliorate the negative effects of chromium by increasing the germination potential of canola. (author)

  9. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.).

    Science.gov (United States)

    Zhang, Hanfeng; Liu, Wu-Zhen; Zhang, Yupeng; Deng, Min; Niu, Fangfang; Yang, Bo; Wang, Xiaoling; Wang, Boya; Liang, Wanwan; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-03-19

    Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of signal transduction in plants.

  10. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress.

    Science.gov (United States)

    Akram, Nudrat Aisha; Iqbal, Majid; Muhammad, Atta; Ashraf, Muhammad; Al-Qurainy, Fahad; Shafiq, Sidra

    2018-01-01

    To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H 2 O 2 ) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.

  11. Quantifying seed production by volunteer canola (Brassica napus and Sinapis arvensis Quantificar a produção de sementes de canola voluntária (Brassica napus e Sinapis arvensis

    Directory of Open Access Journals (Sweden)

    E Soltani

    2011-09-01

    Full Text Available Volunteer canola (Brassica napus and Sinapis arvensis are well identified weeds of different cropping systems. Quantitative information on regarding seed production by them is limited. Such information is necessary to model dynamics of soil seed banks. The aim of this work was to quantify seed production as a function of the size of those weeds. A wide range of plant size was produced by using a fan seeding system performed at two sowing dates (environments. Plant size varied from 3 to 167 g per plant for canola and from 6 to 104 g per plant for S. arvensis. Seed production ranged from 543 to14,773 seeds per plant for canola, and from 264 to 10,336 seeds per plant for S. arvensis. There was a close relationship between seed production per plant and plant size which was well-described by a power function (y = 130.6x0.94; R² = 0.93 for canola and y = 28x1.27; R² = 0.95 for S. arvensis. There was also strong relationships among the number of pods produced in individual plants and the quantity of seeds produced (g per plant with the size of the plant. The relationships found in this study can be used in dynamic seed bank models of volunteer canola and S. arvensis.Voluntários de canola (Brassica napuse Sinapis arvensis são conhecidas como plantas daninhas na produção agrícola. A informação quantitativa sobre a produção de sementes de ervas daninhas por estas é limitada. A informação é necessária para a dinâmica do modelo de bancos de sementes do solo. O objetivo deste trabalho foi quantificar a produção de sementes em função do tamanho destas plantas daninhas. Uma grande variedade de tamanho das plantas foi produzido usando-se um sistema de semeadura em leque, realizado em duas épocas de semeadura (ambientes. O tamanho da planta variou entre 3 e 167 g por planta para a canola e entre 6 e 104 g por planta para S. arvensis. A produção de sementes variou entre 543 e 14.773 sementes por planta de canola e entre 264 e 10.336 de

  12. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species.

    Science.gov (United States)

    Lowe, Rohan G T; Cassin, Andrew; Grandaubert, Jonathan; Clark, Bethany L; Van de Wouw, Angela P; Rouxel, Thierry; Howlett, Barbara J

    2014-01-01

    Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus), causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys) and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  13. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  14. Effect of Different Salinity levels on some Photosynthetic Characters of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    F Tahmasbi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important factors limiting crop production in arid and semiarid regions of the world that affects crop yield. Salt tolerance of Brassica species are very complex due to genetic relationships. Because of low erucic acid (less than 2% of total fatty acids and glucosinolates contents (less than 3 µmol g-1, oil of Canola has many consumers around the world. Because Canola have tolerance potential against toxicity of salinity and its minerals, its growth can be successful in saline condition. According to the recent ongoing drought and the need to use low quality irrigation water for crops such as Canola, aim of this experiment was to evaluate the effect of salinity on changes in carbon fixation process and photosynthetic pigments of three Canola genotypes under salinity as well as determine most salt tolerant genotype for use in saline regions. Materials and Methods An experiment was conducted in the greenhouse of Shahid Chamran University during 2007-2008 growing season in factorial test based on a completely randomized design with four replications. The first factor (genotype included Hayola 401, RGS0003 and Shiraly and the second factor (salinity levels had four levels of salinity (50, 100 and 150 mM NaCl as well as distilled water as a control. Sources of salinity were NaCl and CaCl2 with equal ratio as most resembles to lower water quality resources in the region. Date and time of stress were considered four weeks after planting (four-leaf stage. A Stepped irrigation method using saline water was done every 12 days over three steps period. To perform this study 10 liters volume pots were used. Three pots per each treatment, and totally 144 pots were used. SAS (version 9.1, Excel and MSTAT-C software's was used for statistical analysis. The comparison of means was done by Duncan method. Results and Discussion The results showed that content of chlorophyll a, b and carotenoids in all three genotypes

  15. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).

    Science.gov (United States)

    Sun, Xin-E; Feng, Xin-Xin; Li, Cui; Zhang, Zhi-Ping; Wang, Liang-Ju

    2015-06-01

    5-Aminolevulinic acid (5-ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5-ALA, to study salt stress responses. In a long-term pot experiment, the transgenic plants produced higher yield under 200 mmol L(-1) NaCl treatment than the wild type (WT). In a short-term experiment, the YHem1 transformation accelerated endogenous 5-ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2 ·(-) and malondialdehyde were lower than the latter. Additionally, the Na(+) content was higher in the transgenic leaves than that in the WT under salinity, but K(+) and Cl(-) were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT. © 2014 Scandinavian Plant Physiology Society.

  16. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    Science.gov (United States)

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  17. A comparison of flux chambers and ambient air sampling to measure gamma-hexachlorocyclohexane volatilisation from canola (Brassica napus) fields.

    Science.gov (United States)

    Waite, D T; Cabalo, E; Chau, D; Sproull, J F

    2007-06-01

    The insecticide gamma-hexachlorocyclohexane (gamma-HCH) is primarily used in Canada in treatments of canola (Brassica napus) seed. It has been shown that gamma-HCH so applied will volatilise with 12-30% entering the atmosphere within 6 wk after the seed is planted. Both flux chambers and high-volume air samplers were used to measure gamma-HCH volatilisation from a canola field and the results from each method compared. Daily samples were collected from three flux chambers located on the field. gamma-HCH was found in the air of the chambers on the first day after planting. Volatilisation rates were low for the first 7d (40.0 mg ha(-1) wk(-1)) but increased during the second week (143.8 mg ha(-1) wk(-1)). This was consistent with previous studies. Weekly composite air samples, from three heights above the canola field, were used to calculate volatilisation rates from the field. These were 190 mg ha(-1) wk(-1) (week 1) and 420 mg ha(-1) wk(-1) (week 2). Soil temperatures in the open field were warmer than those under the flux chambers and this may have contributed to the higher ambient air measurements.

  18. Preference and Performance of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) on Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae (Hemiptera: Aphididae) from Winter-Adapted Canola.

    Science.gov (United States)

    Jessie, W P; Giles, K L; Rebek, E J; Payton, M E; Jessie, C N; McCornack, B P

    2015-06-01

    In the southern plains of the United States, winter-adapted canola (Brassica napus L.) is a recently introduced annual oilseed crop that has rapidly increased in hectares during the past 10 yr. Winter canola fields are infested annually with populations of Brevicoryne brassicae (L.) and Lipaphis erysimi (Kaltenbach), and these Brassica specialists are known to sequester plant volatiles from host plants, producing a chemical defense system against predators. Myzus persicae (Sulzer) is also common in winter canola fields, but as a generalist herbivore, does not sequester plant compounds. These three aphid species are expected to affect predator survival and development in very different ways. We conducted laboratory studies to 1) determine whether Hippodamia convergens (Guérin-Méneville) and Chrysoperla carnea (Stephens) larvae demonstrate feeding preferences among winter canola aphids and 2) describe the suitability of these prey species. Predators demonstrated no significant preference among prey, and each aphid species was suitable for predator survival to the adult stage. However, prey species significantly affected development times and adult weights of each predator species. Overall, predator development was delayed and surviving adults weighed less when provided with L. erysimi or B. brassicae, which sequestered high levels of indole glucosinolates from their host plants. Our results indicate that although common winter canola aphids were suitable prey for H. convergens and C. carnea, qualitative differences in nutritional suitability exist between Brassica-specialist aphids and the generalist M. persicae. These differences appear to be influenced by levels of sequestered plant compounds that are toxic to aphid predators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    Science.gov (United States)

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.

  20. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  1. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  2. Conjugated linoleic acid content in milk of Chilean Black Friesian cows under pasture conditions and supplemented with canola seed (Brassica napus concentrate

    Directory of Open Access Journals (Sweden)

    J. P. Avilez Ruiz

    2012-12-01

    Full Text Available At present, there is limited and contradictory information about the effects of the use of canola (Brassica napus seed as supplement on the contents of conjugated linoleic acid (CLA in milk of grazing cows. The objective of this study was to evaluate the effect of a dietary supplement with canola seed on the production and composition of milk, and CLA concentration in Chilean Black Friesian cows under pasture conditions. Three experiments were done. Experiment 1: control group was fed 5 kg d-1 of commercial concentrate without canola (0-TC1 and treatment group that was fed 3.75 kg of commercial concentrate plus 1.16 kg of whole canola seed (1.16-TC1. Experiment 2: Control group was fed 8 kg d-1 commercial concentrate without canola (0-TC2 and treatment group that was fed 6.2 kg of commercial concentrate plus 1.2 kg of ground canola seed (1.2-TC2. Experiment 3: control group was fed 6 kg d-1 commercial concentrate without canola (0-TC3 and treatment group was fed 6 kg of commercial concentrate with 20% of whole canola seed (1.2 kg d-1, 1.2-TC3. The duration of each experiment was 60 days. No differences in milk production and quality were observed among the experimental groups in every assay. The CLA isomers trans-10, cis-12 and cis-10, cis-12 were higher than those normally found in the scientific literature. There was no effect of the inclusion of canola seed on total CLA content or the content of cis-9, trans-11, trans-10, cis-12 and cis-10, cis-12 isomers.

  3. Flowering Without Vernalization in Winter Canola (Brassica napus: use of Virus-Induced Gene Silencing (VIGS to accelerate genetic gain

    Directory of Open Access Journals (Sweden)

    Raúl Álvarez-Venegas

    2010-01-01

    Full Text Available Ciclos de reproducción cortos y la oportunidad de incrementar la ganancia genética, junto con el estudio de las bases moleculares de la vernalización, son áreas esenciales de investigación dentro de la biología de plantas. Varios métodos se han empleado para lograr el silenciamiento génico en plantas, pero ninguno reportado a la fecha para canola (Brassica napus, y en particular para inducir la floración sin vernalización en líneas de invierno a través del uso de secuencias sentido de DNA en vectores diseñados para el silenciamiento génico inducido por virus (VIGS. La presente investigación provee los métodos para transitoriamente regular a la baja, por medio de VIGS, genes de la vernalización en plantas anuales de invierno, específicamente la familia de genes de Flowering Locus C (FLC en canola de invierno (BnFLC1 a BnFLC5. La regulación a la baja de estos genes permite a las plantas anuales de invierno florecer sin vernalización y, consecuentemente, provee los medios para acelerar la ganancia genética. El sistema de silenciamiento propuesto puede ser utilizado para regular a la baja familias de genes, para determinar la función génica, y para inducir la floración sin la vernalización en líneas de invierno tanto del género Brassica como de muchos cultivos importantes de invierno.

  4. True and standardized total tract phosphorus digestibility in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs.

    Science.gov (United States)

    Adhikari, P A; Heo, J M; Nyachoti, C M

    2015-01-01

    The aim was to determine the true total tract digestibility (TTTD) and standardized total tract digestibility (STTD) of P in canola meals from Brassica napus black (BNB) and Brassica juncea yellow (BJY) fed to growing pigs. Fifty-four barrows with an initial BW of 19.9 ± 0.22 kg (mean ± SEM) were allocated in 3 consecutive blocks to 1 of 9 dietary treatments in a randomized complete block design to give 6 replicate pigs per diet. Dietary treatments were cornstarch based with increasing concentrations of P, that is, 0.8, 1.6, 2.4, and 3.3 g/kg (as-fed basis) from either BNB or BJY as the sole source of P and a gelatin-based P-free diet. Limestone was added to maintain a Ca:total P ratio of 1.2:1 in all diets. All diets contained titanium dioxide (3 g/kg) as an indigestible marker. Daily feed allowance was calculated to supply 2.6 times the maintenance energy requirement based on the BW at the beginning of each period and offered in 2 equal portions at 0800 and 1600 h as a dry mash. Pigs were individually housed in metabolism crates and fed experimental diets for 16 d, including 9 d for adaptation to feed and 5 d for total but separate collection of feces and urine. The apparent total tract digestibility values of P increased from 19.0 to 30.0% for BNB and from 17.3 to 28.3% for BJY as the dietary P content increased from 0.8 to 3.3 g/kg DM. The TTTD of P was determined using the regression analysis as dietary P content increased from 0.8 to 3.3 g/kg whereas the STTD of P was calculated for the diet with the highest P content (i.e., 3.3 g/kg, as-fed basis) using the P-free diet to estimate endogenous P losses (EPL). The total and basal EPL estimates obtained with regression analysis and the P-free diet were 665 ± 0.03 and 209 ± 96 mg/kg DMI, respectively. The TTTD of P was 33.3 and 32.0% in BNB and BJY, respectively. Respective STTD values were 31.0 and 28.3%. The results indicated that the TTTD and STTD of P were comparable in the 2 canola meals from BNB and BJY

  5. Feeding by flea beetles (Coleoptera: Chrysomelidae; Phyllotreta spp.) is decreased on canola (Brassica napus) seedlings with increased trichome density.

    Science.gov (United States)

    Soroka, Juliana J; Holowachuk, Jennifer M; Gruber, Margaret Y; Grenkow, Larry F

    2011-02-01

    Laboratory and field studies were undertaken to determine the effects of increased numbers of trichomes on seedling stems, petioles, and first true leaves of Brassica napus L., canola, on the feeding and behavior of the crucifer flea beetle Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Seedlings of 'Westar' canola with genes inserted from Arabidopsis thaliana L. for increased trichome production, called Hairyl, were tested against Westar seedlings in no-choice and choice laboratory tests, and against parental plants and other cultivars grown from seed with and without insecticide in field trials at Saskatoon and Lethbridge, Canada. Analyses ofprefeeding and feeding behavior in no-choice tests of first true leaves found that flea beetles interacted with their host while off Hairyl leaves more so than beetles presented with leaves of Westar. Beetles required twice as much time to reach satiation when feeding on leaves with increased pubescence than on Westar leaves. In laboratory choice tests, flea beetles fed more on cotyledons and second true leaves of Westar than on comparable tissues of the transgenic line. In field trials, variations in feeding patterns were seen over time on cotyledons of the line with elevated trichomes. However, all four young true leaves of Hairyl seedlings were fed upon less than were the parental lines. Feeding on Hairyl plants frequently occurred at levels equal to or less than on cultivars grown from insecticide-treated seed. This study highlights the first host plant resistance trait developed in canola, dense pubescence, with a strong potential to deter feeding by crucifer flea beetles.

  6. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.

    Science.gov (United States)

    Joshi, Raj Kumar; Megha, Swati; Rahman, Muhammad Hafizur; Basu, Urmila; Kav, Nat N V

    2016-09-15

    The necrotrophic phytopathogen, Sclerotinia sclerotiorum, causes Sclerotinia stem rot, which is a serious constraint to canola (Brassica napus L.) production worldwide. To understand the detailed molecular mechanisms underlying host response to Sclerotinia infection, we analyzed the transcript level changes in canola post-infection with S. sclerotiorum in a time course of a compatible interaction using strand specific whole transcriptome sequencing. Following infection, 161 and 52 genes (P≤0.001) were induced while 24 and 23 genes were repressed at 24h post-inoculation (hpi) and 48hpi, respectively. This suggests that, a gradual increase in host cell lyses and increase virulence of the pathogen led to the expression of only a fewer host specific genes at the later stage of infection. We observed rapid induction of key pathogen responsive genes, including glucanases, chitinases, peroxidases and WRKY Transcription factors (TFs) within 24hpi, indicating early detection of the pathogen by the host. Only 16 genes were significantly induced at both the time points suggesting a coordinated suppression of host responses by the pathogen. In addition to genes involved in plant-pathogen interactions, many novel disease responsive genes, including various TF sand those associated with jasmonate (JA) and ethylene (ET) signalling were identified. This suggests that canola adopts multiple strategies in mediating plant responses to the pathogen attack. Quantitative real time PCR (qRT-PCR) validation of a selected set of genes demonstrated a similar trend as observed by RNA-Seq analysis and highlighted the potential involvement of these genes by the host to defend itself from pathogen attack. Overall, this work presents an in-depth analysis of the interaction between host susceptibility and pathogen virulence in the agriculturally important B. napus-S. sclerotiorum pathosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Protein pattern of canola (Brassica napus L. changes in response to salt and salicylic acid in vitro

    Directory of Open Access Journals (Sweden)

    Razavizadeh Roya

    2015-12-01

    Full Text Available The effect of salicylic acid (SA on the salt (NaCl tolerance mechanism was studied in canola plants (oilseed rape, Brassica napus L. by molecular and physiological experiments in plant tissue culture. Seeds of B. napus ‘Ocapy’ were germinated at 0, 50, and 100 mM NaCl on Murashige and Skoog (MS medium containing different levels (0, 2, and 5 μM of SA for 4 weeks. Total chlorophyll, carotenoid, and flavonoid content increased in response to interactive effects of SA and NaCl treatments at some concentrations. Proline content was increased under salt and SA treatments in shoot and root tissues. Salt alone and in combination with SA increased the total soluble protein content of shoots only, while the different concentrations of SA in the culture media affected variously the total soluble protein content. Protein patterns of shoots and roots showed some remarkable differences, based on gel electrophoresis and the consequent analysis of bands by ImageJ program. The relative expression of 15 and 12 protein bands in shoots and roots, respectively, differed under the applied treatments. In addition, the protein profile indicated that salinity and SA regulate the expression of salt-stress-inducible proteins as well as induced de novo synthesis of specific polypeptides. The findings may help to explain the salt tolerance mechanisms and to produce salt-tolerant canola plants.

  8. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.).

    Science.gov (United States)

    Raman, Rosy; Taylor, Belinda; Marcroft, Steve; Stiller, Jiri; Eckermann, Paul; Coombes, Neil; Rehman, Ata; Lindbeck, Kurt; Luckett, David; Wratten, Neil; Batley, Jacqueline; Edwards, David; Wang, Xiaowu; Raman, Harsh

    2012-07-01

    Blackleg, caused by Leptosphaeria maculans, is one of the most important diseases of oilseed and vegetable crucifiers worldwide. The present study describes (1) the construction of a genetic linkage map, comprising 255 markers, based upon simple sequence repeats (SSR), sequence-related amplified polymorphism, sequence tagged sites, and EST-SSRs and (2) the localization of qualitative (race-specific) and quantitative (race non-specific) trait loci controlling blackleg resistance in a doubled-haploid population derived from the Australian canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum using the whole-genome average interval mapping approach. Marker regression analyses revealed that at least 14 genomic regions with LOD ≥ 2.0 were associated with qualitative and quantitative blackleg resistance, explaining 4.6-88.9 % of genotypic variation. A major qualitative locus, designated RlmSkipton (Rlm4), was mapped on chromosome A7, within 0.8 cM of the SSR marker Xbrms075. Alignment of the molecular markers underlying this QTL region with the genome sequence data of B. rapa L. suggests that RlmSkipton is located approximately 80 kb from the Xbrms075 locus. Molecular marker-RlmSkipton linkage was further validated in an F(2) population from Skipton/Ag-Spectrum. Our results show that SSR markers linked to consistent genomic regions are suitable for enrichment of favourable alleles for blackleg resistance in canola breeding programs.

  9. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.

    Science.gov (United States)

    Yıldız, Mustafa; Akçalı, Nermin; Terzi, Hakan

    2015-05-01

    To evaluate the mitigating effects of exogenous lipoic acid (LA) on NaCl toxicity, proteomic, biochemical and physiological changes were investigated in the leaves of canola (Brassica napus L.) seedlings. Salinity stress decreased the growth parameters and contents of ascorbate (AsA) and glutathione (GSH), and increased the contents of malondialdehyde (MDA), proline, cysteine and the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). The foliar application of LA alleviated the toxic effects of salinity stress on canola seedlings and notably decreased MDA content and increased growth parameters, cysteine content, and activities of CAT and POD. In the proteomic analyses, total proteins from the leaves of control, LA, NaCl and NaCl+LA treated-seedlings were separated using two-dimensional gel electrophoresis (2-DE). A total of 28 proteins were differentially expressed. Of these, 21 proteins were successfully identified by MALDI-TOF/TOF MS. These proteins had functions related to photosynthesis, stress defense, energy metabolism, signal transduction, protein folding and stabilization indicating that LA might play important roles in salinity through the regulation of photosynthesis, stress defense and signal transduction related proteins. The proteomic findings have provided new insight to reveal the effect of LA on salinity stress for the first time. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. A mutant Brassica napus (canola) population for the identification of new genetic diversity via TILLING and next generation sequencing.

    Science.gov (United States)

    Gilchrist, Erin J; Sidebottom, Christine H D; Koh, Chu Shin; Macinnes, Tanya; Sharpe, Andrew G; Haughn, George W

    2013-01-01

    We have generated a Brassica napus (canola) population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075). This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus) with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.

  11. A mutant Brassica napus (canola population for the identification of new genetic diversity via TILLING and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Erin J Gilchrist

    Full Text Available We have generated a Brassica napus (canola population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075. This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.

  12. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  13. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants.

    Science.gov (United States)

    Gao, Limin; Liu, Mei; Wang, Min; Shen, Qirong; Guo, Shiwei

    2016-11-01

    To analyze the effect of nitrogen form on salt stress, we studied the response of two different plant species, canola (Brassica napus L.), a dicotyledon which prefers NO 3 - nutrition, and rice (Oryza sativa L.), a monocotyledon which prefers NH 4 + nutrition, to salt stress under NO 3 - (NN) and NH 4 + (AN) nutrition. Salt stress was simulated by the addition of 150 and 100 mM NaCl to NN (NNS) and AN (ANS) in canola and rice seedlings, respectively. Salt stress induced reductions of shoot and root biomass that were more drastic under ANS. A higher Na + content was obtained in NNS than in ANS. The impact of Na + on the reduction of biomass (Δbiomass/Na + ) was 162, 181, 230 and 245% higher in canola root, canola shoot, rice root and rice shoot in ANS than in NNS, respectively. In both canola and rice seedlings, the ratio of leaf Na + content in apoplasts to symplasts ([Na + ] apo /[Na + ] sym ) was higher in NNS than in ANS. Also, in canola seedlings, the ratio of apoplast Na + in the leaf edge to the leaf center ([Na + ] LE /[Na + ] LC ) was 18 times higher in NNS than in ANS. Our results illustrate that the confinement of Na + in the canola leaf edge, as well as the restriction of Na + in leaf apoplasts of canola and rice seedlings, protect cells from suffering Na + stress and contribute to the higher tolerance of NO 3 - -fed plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Effect of Super Absorbent Application on Antioxidant Enzyme Activities in Canola (Brassica napus L.) Cultivars under Water Stress Conditions

    OpenAIRE

    H. R. Tohidi-Moghadam; A. H. Shirani-Rad; G. Nour-Mohammadi; D. Habibi; M. Mashhadi-Akbar-Boojar

    2009-01-01

    Problem statement: Drought stress significantly limits Canola (Brassica napus L.) growth and crop productivity. Hence, efficient management of soil moisture and study metabolic changes which occur in response to drought is important for agricultural production of this Crop. Approach: For a better understanding of drought tolerance mechanisms and improving soil water content management strategies, an experiment was laid out in a randomized complete block des...

  15. Effects of Water Deficit Stress on Several Quantitative and Qualitative Characteristics of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Mohammad HOSSEINI

    2011-08-01

    Full Text Available Water deficit stress considered as one of the most important limiting factors for oil seed canola (Brassica napus L. growth and productivity in Iran. To evaluate the effects of water deficit stress on some qualitative and quantitative characteristics of canola cultivars, this experiment in a greenhouse trial carried out as factorial based on completely randomized design with three replications in Shahid Chamran University of Ahwaz (Iran. Canola cultivars, including ‘Hyola 308’, ‘Hyola 401’ and ‘RGS 003’ as first factor, and the second one was three levels of water deficit stress, including stress at early stem elongation stage to early flowering (D1, early flowering stage to early emergence of sacs (D2, beginning of stem elongation stage to early emergence of sacs (D3 and normal irrigation (C, as check. Results showed that the interaction between water deficit stress and cultivars affected biological yield, seed oil yields and harvest index (p≤0.01, dry matter and economic yield (p≤0.05. Water deficit stress reduced grain oil yields. ‘Hyola 308’ under stress at beginning stem elongation stage to early flowering had the lowest oil yields (1.1 g plants-1 and ‘Hyola 401’ under non-stress conditions showed highest oil yields (4.3 g plants-1. The decrease of oil yields at the flowering stage to stem elongation stage was more than the other stages. In addition, water deficit stress reduced harvest index in the three stress levels due to reduced economic yield and reduced biological yield. Stress susceptibility index for ‘Hyola 401’ at the beginning of stem elongation stage to early emergence of sacs was 0.914 and the ‘Hyola 308’ showed 1.12 at the beginning of stem elongation stage to early emergence of sacs respectively, which it can implies that ‘Hyola 308’ is more sensitive than ‘Hyola 401’ to water deficit stress.

  16. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus).

    Science.gov (United States)

    Verma, Shiv S; Yajima, William R; Rahman, Muhammad H; Shah, Saleh; Liu, Jun-Jun; Ekramoddoullah, Abul K M; Kav, Nat N V

    2012-05-01

    Canola (Brassica napus), an agriculturally important oilseed crop, can be significantly affected by diseases such as sclerotinia stem rot, blackleg, and alternaria black spot resulting in significant loss of crop productivity and quality. Cysteine-rich antimicrobial peptides isolated from plants have emerged as a potential resource for protection of plants against phytopathogens. Here we report the significance of an antimicrobial peptide, PmAMP1, isolated from western white pine (Pinus monticola), in providing canola with resistance against multiple phytopathogenic fungi. The cDNA encoding PmAMP1 was successfully incorporated into the genome of B. napus, and it's in planta expression conferred greater protection against Alternaria brassicae, Leptosphaeria maculans and Sclerotinia sclerotiorum. In vitro experiments with proteins extracted from transgenic canola expressing Pm-AMP1 demonstrated its inhibitory activity by reducing growth of fungal hyphae. In addition, the in vitro synthesized peptide also inhibited the growth of the fungi. These results demonstrate that generating transgenic crops expressing PmAMP1 may be an effective and versatile method to protect susceptible crops against multiple phytopathogens.

  17. Effects of Agricultural Management on Nitrogen Nutrition and Yield of Canola (Brassica napus L. in Gorgan

    Directory of Open Access Journals (Sweden)

    A. Behdadian

    2012-08-01

    Full Text Available To assess the effects of management factors on nitrogen nutrition and seed yield of rapeseed farms in Gorgan areas, an experiment was conducted as a nested model arranged in a randomized complete block design (RCBD with three replications in 2010. Fifteen canola fields were classified at three levels of management (optimum, medium, minimum studied at four growth stages. Questionnaires were filled out by farmers for the quantification of agricultural management levels during the experiment. The results showed that levels of management for nitrogen nutrition index, plant density, dry matter yield, seed yield and harvest index were different significantly (p

  18. Study Effect of NaCl Salinity and Nitrogen Form on Composition of Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2009-12-01

    Full Text Available The effect of two N forms ( NH+4 and NO-3 and NaCl on accumulation of some essential mineral nutrients was examined in canola (Brassica napus L. cv. ‘SLM046’. Eight-day- ld plants of were subjected for 21 day to Hoagland’s nutrient solution containing 10 mM NH+4 and NO-3 and salinized with 0, 50, 100 and 150 mm NaCl. N form and addition of NaCl to the growth had no significant effect on total N. However, root N of NH+4 supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3- supplied plants remained unaffected. Salinity of the rooting also did not show any significant effect on Na+ concentration of leaves or roots of plants subjected to two different forms of nitrogen. NH+4 treated plants generally had greater concentration of Cl- in leaves and roots and lower K+ content in leaves than NO3- supplied plants. Ca2+ concentration of leaves and roots concentration of leaves decreased in NH+4- supplied plants due to NaCl, but they remained unaffected in NO3- treated plants.

  19. Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology.

    Science.gov (United States)

    de Campos, Samanta B; Youn, Jung-Won; Farina, Roberto; Jaenicke, Sebastian; Jünemann, Sebastian; Szczepanowski, Rafael; Beneduzi, Anelise; Vargas, Luciano K; Goesmann, Alexander; Wendisch, Volker F; Passaglia, Luciane M P

    2013-04-01

    Crop production may benefit from plant growth-promoting bacteria. The knowledge on bacterial communities is indispensable in agricultural systems that intend to apply beneficial bacteria to improve plant health and production of crops such as canola. In this work, the diversity of root bacterial communities associated to two different developmental phases of canola (Brassica napus L.) plants was assessed through the application of new generation sequencing technology. Total bacterial DNA was extracted from root samples from two different growth states of canola (rosette and flowering). It could be shown how bacterial communities inside the roots changed with the growing stage of the canola plants. There were differences in the abundance of the genera, family, and even the phyla identified for each sample. While in both root samples Proteobacteria was the most common phylum, at the rosette stage, the most common bacteria belonged to the family Pseudomonadaceae and the genus Pseudomonas, and in the flowering stage, the Xanthomonadaceae family and the genus Xanthomonas dominated the community. This implies in a switch in the predominant bacteria in the different developmental stages of the plant, suggesting that the plant itself interferes with the associated microbial community.

  20. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death.

    Science.gov (United States)

    Wang, Boya; Guo, Xiaohua; Wang, Chen; Ma, Jieyu; Niu, Fangfang; Zhang, Hanfeng; Yang, Bo; Liang, Wanwan; Han, Feng; Jiang, Yuan-Qing

    2015-03-01

    NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.

  1. Investigation of growth indices and yield of canola (Brassica napus L. in competition with wild mustard (Sinapis arvensis L. as influenced by different amount of nitrogen application

    Directory of Open Access Journals (Sweden)

    F. Soleymani

    2016-04-01

    Full Text Available To evaluate the effect of different levels of nitrogen fertilizer on growth indices and competitive ability of canola (Brassica napus L. against wild mustard (Sinapis arvensis L., a split plot trial based on a randomized complete block design with three replications, was carried out at Agricultural Faculty of Bu-Ali Sina University, during 2008-2009. Experimental factors were amounts of nitrogen fertilizer of urea at four levels (100, 150, 200 and 250 kgN.ha-1 and five wild mustard plant densities (0, 4, 8, 16 and 32 plants.m-2. The results showed that wild mustard interference led to reduction of leaf area index (LAI, dry matter accumulation, crop growth rate (CGR, leaf area index duration (LAID, dry matter duration (BMD and seed yield of canola, while these characteristics were increased with more nitrogen fertilizer application. The maximum indices were obtained at 250 kg N.ha-1 and weed-free condition, but generally, the least reduction in maximum LAI, CGR, LAID and BMD of canola affected by wild mustard competition occurred at 200 kg N.ha-1. In conclusion, the results showed that optimum level of fertilizer 200 kg N.ha-1, increased competitive ability of canola against wild mustard and improved yield and growth indices.

  2. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  3. Ethylene involvement in silique and seed development of canola, Brassica napus L.

    Science.gov (United States)

    Walton, Linda J; Kurepin, Leonid V; Yeung, Edward C; Shah, Saleh; Emery, R J Neil; Reid, David M; Pharis, Richard P

    2012-09-01

    A wide range of plant hormones, including gibberellins (GAs) and auxins are known to be involved in regulating seed and fruit growth and development. Changes in ethylene biosynthesis are also associated with seed and fruit development, but ethylene's role in these processes is poorly understood, as is its possible interaction with the other plant hormones. A major complication of investigating ethylene-induced regulation of developmental processes is ethylene's biphasic mode of action. To investigate ethylene's actions and interactions we used a 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase transgenic canola line. This line evolves significantly less ethylene from its siliques and seeds, relative to plants from a wild type (WT) background. Plants of the transgenic line also had smaller siliques which were associated with reductions in both seed size and seed number. Application of ethephon, a compound that produces ethylene, to plants of the transgenic line restored the WT phenotype for both siliques and seeds. Application of the same dose of ethephon to WT plants diminished both silique and seed development, showing ethylene's biphasic effect and effectively producing the ACC deaminase transgenic phenotype. There were significant decreases in endogenous concentrations of GA(1) and GA(4) and also of indole-3-acetic acid (IAA), between WT seeds and seedless siliques and seeds and siliques from the transgenic line plants. These differences were emphasized during early stages (10-20 days after pollination) of seed and silique development. The above results strongly suggest that ethylene interacts with other endogenous plant hormones in regulating silique and seed development and growth in WT lines of canola. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Growth performance and preference studies to evaluate solvent-extracted Brassica napus or Brassica juncea canola meal fed to weaned pigs.

    Science.gov (United States)

    Landero, J L; Beltranena, E; Zijlstra, R T

    2012-12-01

    Inclusion of conventional dark-seeded (Brassica napus) and novel yellow-seeded (Brassica juncea) canola meal (CM) can potentially replace soybean (Glycine max) meal (SBM) in pig diets. Our objective was to examine the preference of weaned pigs fed diets containing SBM or B. napus or B. juncea CM and to compare it against previously reported growth performance data (Exp. 1 and 2). In Exp. 1 and 2, growth performance was evaluated using 220 and 240 weaned pigs, respectively, by replacing dietary SBM with up to 20% B. napus (Exp. 1) or 24% B. juncea CM (Exp. 2). Feeding up to 20% B. napus CM to pigs did not affect growth performance, but increasing inclusion of B. juncea CM linearly reduced (P < 0.001) ADFI, ADG, and G:F most likely due to the higher content of glucosinolates, particularly gluconapin in B. juncea CM as confirmed by principle component analysis. In Exp. 3 and 4, SBM and B. napus and B. juncea CM fed at 20% dietary inclusion were evaluated in 2 preference studies using 216 and 144 pigs of 35 d of age, respectively. Pens equipped with 2 feeders housed 8 or 4 pigs per pen, in Exp. 3 and 4, respectively. Diets formulated to equal NE and standardized ileal digestible AA were offered in a paired choice as mash (Exp. 3) or pellets (Exp. 4) for 3 consecutive 7-d periods (3 d nontest and 4 d preference test). The 3 treatments offered were (i) SBM vs. B. napus CM, (ii) SBM vs. B. juncea CM, and (iii) B. napus vs. B. juncea CM. Pigs preferred SBM (P < 0.001) over B. napus and B. juncea CM diets, and pigs preferred B. napus (P < 0.001) over B. juncea CM diet. High content of the glucosinolate gluconapin likely reduced feed preference in B. juncea more than in B. napus CM. In conclusion, the contrast between preference and performance studies feeding CM to pigs indicates that preference studies should be interpreted cautiously until validated by growth performance data.

  5. Evaluation of Radiation Absorption and Use Efficiency in Row Intercropping of Wheat (Triticum aestivum L. and Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2014-03-01

    Full Text Available In order to evaluate radiation absorption and use efficiency in row intercropping for wheat and canola, a field experiment was conducted based on a randomized block design with three replications at Agricultural Research Station of Ferdowsi University of Mashhad during two growing seasons of 2008-2009 and 2009-2010. Treatments included four combinations of row intercropping of wheat and canola (one row of wheat + one row of canola (1:1, two rows of wheat + two rows of canola (2:2, three rows of wheat + three rows of canola (3:3 and four rows of wheat + four rows of canola (4:4 and their monoculture. Results indicated that the effect of row intercropping was significant on radiation use efficiency of wheat and canola. The highest radiation use efficiency based on biological yield of wheat and canola were observed in monoculture (with 1.6 and 1.04 g.MJ-1 and three rows wheat+ three rows canola (with 1.4 and 0.57 g.MJ-1, respectively. The maximum radiation use efficiency based on economical yield of wheat and canola were obtained in monoculture (with 0.52 and 0.3 g.MJ-1 and three rows wheat+ three rows canola (0.49 and 0.23 g.MJ-1, respectively. The range of land equivalent ratio for radiation absorption efficiency in different row intercroppings of wheat and canola was 1.31-1.61. In general, row intercropping of wheat with canola increased radiation use efficiency and combination of three rows of wheat + three rows of canola was the most promising one.

  6. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available Cultivars �Okapi�, �SLM046�, �Elite�, �Fornax� and �Licord� Brassica napus were tested for yield and component characters under different levels of salinity. The variations due to salinity levels, cultivars and cultivarxsalinity (interaction were significant for different characters. The variable degrees of increase and decrease of regression coefficient estimate mates (curve estimation showed the performance as influenced by different salinity levels. The performance of Brassica napus variety in plant height and days to first flowering was the best for �SLM046�, �Okapi� �SLM046� and �Okapi� cultivars. �SLM046� showed the best performance in days to maturity, followed by �Licord� and �Elite�. �Okapi� performed better than others regarding the increased number of seeds per plant and seed yield per plant, followed by �Fornax�. Considering all characters, the most tolerance ability was found in �SLM046� and �Okapi�, against different levels of salinity.

  7. Effects of the nitrogen and zinc fertilizers and salinity irrigation on yield, quality traits and nutrient uptake of canola (Brassica napus L. cv. Okapi

    Directory of Open Access Journals (Sweden)

    Elnaz Ebrahimian

    2016-05-01

    Full Text Available Soil or water salinity is one of the major problems of agriculture in the arid and semiarid regions of the world, especially in Iran. Beside the Salinity, reasonable canola production depends on nutrient supply so that increase in quantitative and qualitative yield is highly correlated with nutrients availability, especially nitrogen and Zinc. In order to investigate the effects of the nitrogen, zinc fertilizer and irrigation salinity on yield quality characteristic and nutrient uptake of canola (Brassica napus L. cv. Okapi, a field experiment was conducted in Agriculture Research Centre of East Azarbaijan, Iran in 2009-2010. The experiment was arranged by using a completely randomized block design based on factorial fashion with three replications. The experimental treatments included the nitrogen levels (0, 50 and 100 kg. ha-1, different zinc levels (0, 5 and 10 kg. ha-1 and irrigation salinity levels (8 and 16 dS.m-1. Based on results, nitrogen and zinc application had a significant effect of increasing plant height, number of pod per plant and grain yield of canola. However, mentioned traits of canola were decreased as result to increasing irrigation salinity levels (from 8 to 16 dS. m-1. Irrigation salinity at rate of 16 dS. m-1 had a significant effect on increasing glucosinolate percentage in seed. In addition, effect of irrigation salinity levels on decreasing the N, P, Ka and Ca uptake and increasing the Na and Cl accumulation in seed canola were significant. In sum, it seems that nutrient supply, especially nitrogen, can be considered as effective solution to diminish negative effects of salinity.

  8. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Science.gov (United States)

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  9. Effects of Salinity and NO3:NH4 Ratio on Yield and Quality in Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2009-12-01

    Full Text Available The effect of salinity and NO3: NH4 ratio (0:100, 75: 25, 50:50, and 25:75 in the nutrient solution on growth, yield quality and N metabolism in hydroponically grow canola (Brassica napus L. was evaluation. Both fresh and dry weights of leaves were significantly lower when a high concentration of either NO3 (100% or NH4 (75% was the sole N source in the nutrient solution. In nonsaline condition, increasing of both NH4 and NO3 ratio in the nutrient solution reduced photosynthetic (pn rate, however in salinity condition the reduction of pn became more pronounced at a higher ratio of NH4 in the nutrient solution. The yield in terms of fresh and dry weight of seed per plant was significantly increased at the 75:25 (NO3: NH4 treatments. Total fat in nonsaline condition was increased with increasing NH4 ratio in the nutrient solution, however in saline condition it was reduced, at high NH4 ratio in the nutrient solution. The increase of tissue N concentration was nearly proportional to the NH4 concentration in the nutrient solution.The activity of nitrate reductase (NR was increased by increasing NH4 form 0 to 50% and then reduced at a higher ratio of NH4 in the solution. Salinity increased NH4 concentration so that the saline condition had nearly twice high NH4 concentration in the leaves. The increase of NH4 concentration induced by salinity could be parially the reduction of NH4 assimilate because of the shortage of carbohydrate.

  10. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    Science.gov (United States)

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    Science.gov (United States)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  12. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought

    Energy Technology Data Exchange (ETDEWEB)

    Qaderi, M.M.; Kurepin, L.V.; Reid, D.M. [Univ. of Calgary, Dept. of Biological Sciences, Calgary, Alberta (Canada)

    2006-12-15

    Elevated CO{sub 2} appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO{sub 2}, temperature and drought on plant growth and physiology. We grew canola (Brassica napus cv. 45H72) plants under lower (22/18 deg. C) and higher (28/24 deg. C) temperature regimes in controlled-environment chambers at ambient (370 {mu}mol mol-1) and elevated (740 {mu}mol mol-1) CO{sub 2} levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO{sub 2} had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO{sub 2} assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO{sub 2} generally had the opposite effect. and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO{sub 2} partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought. (au)

  13. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  14. Evaluation of Radiation Absorption and Use Efficiency in Row Intercropping of Wheat (Triticum aestivum L.) and Canola (Brassica napus L.)

    OpenAIRE

    A Koocheki; S Khorramdel; F Fallahpour; F Melati

    2014-01-01

    In order to evaluate radiation absorption and use efficiency in row intercropping for wheat and canola, a field experiment was conducted based on a randomized block design with three replications at Agricultural Research Station of Ferdowsi University of Mashhad during two growing seasons of 2008-2009 and 2009-2010. Treatments included four combinations of row intercropping of wheat and canola (one row of wheat + one row of canola (1:1), two rows of wheat + two rows of canola (2:2), three row...

  15. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Ziaei, Mahboobeh; Motallebi, Mostafa; Zamani, Mohammad Reza; Panjeh, Nasim Zarin

    2016-06-01

    Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation. Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants. Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.

  16. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    Science.gov (United States)

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  17. Responses of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), to seed treatments of canola (Brassica napus L.) with the neonicotinoid compounds clothianidin and imidacloprid.

    Science.gov (United States)

    Dosdall, Lloyd M

    2009-12-01

    The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new-generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. Mean numbers of second- and third-instar larvae were significantly higher in plants seed-treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new-generation adults was reduced by 52 and 39% for plants seed-treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. (c) 2009 Society of Chemical Industry.

  18. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  19. Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa.

    Science.gov (United States)

    Londo, Jason P; Bollman, Michael A; Sagers, Cynthia L; Lee, E Henry; Watrud, Lidia S

    2011-08-01

    • Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow. No claim to original US government works. New Phytologist © 2011 New Phytologist Trust.

  20. Nutrient digestibility of solvent-extracted Brassica napus and Brassica juncea canola meals and their air-classified fractions fed to ileal-cannulated grower pigs.

    Science.gov (United States)

    Zhou, X; Zijlstra, R T; Beltranena, E

    2015-01-01

    Energy and nutrient digestibility of solvent-extracted canola meal (CM) is limited in pigs by its relatively high fiber content. The seed hull, which greatly contributes to the fiber content of CM, is denser than the oil-free cotyledon. By utilizing streams of air, air classification partially separates these seed components on the basis of their different sizes and densities to produce a low-fiber, light-particle fraction and a high-fiber, heavy-particle fraction. Compared with parent CM, ADF and NDF were reduced by 31.9% and 29.5% in the light-particle fraction and were enriched by 16.5% and 9.0% in the heavy-particle fraction (DM basis), respectively. Particle size was 638, 18.9, and 76.1 µm for the parent CM and light- and heavy-particle fractions, respectively. To determine the nutrient digestibility of CM and their air-classified fractions, Brassica napus and B. juncea CM and their 2 air-classified fractions were evaluated in a 2 × 3 factorial arrangement together with a basal diet and an N-free diet. The experiment was conducted as an 8 × 8 Latin square in which diets contained 40% B. napus or B. juncea CM or their air-classified fractions and 60% basal diet. Digesta data from pigs fed the N-free diet served to subtract basal endogenous AA losses. Eight ileal-cannulated barrows (32 kg initial BW) were fed the 8 diets at 2.7 times maintenance DE for eight 11-d periods. At the end of each period, feces were collected for 48 h, and ileal digesta were collected for two 12-h periods. The DE and calculated NE values and the apparent total tract digestibility (ATTD) of GE were 6.3%, 10.0%, and 7.8% greater (P < 0.001) for B. juncea CM than for B. napus CM; 6.1%, 10.8%, and 5.3% greater (P < 0.001) for the light-particle fraction than for parent CM; and 5.4%, 7.2%, and 3.8% lower (P < 0.001) for the heavy-particle fraction than for parent CM, respectively. The standardized ileal digestibilities (SID) of His, Ile, Val, Asp, and Tyr were greater (P < 0.05) for B

  1. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  2. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris).

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-09-01

    The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.

  3. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  4. Synchrotron-based microspectroscopic study on the effects of heat treatments on cotyledon tissues in yellow-type canola (Brassica) seeds.

    Science.gov (United States)

    Yu, Peiqiang; Theodoridou, Katerina; Xin, Hangshu; Huang, Pei-Yu; Lee, Yao-Chang; Wood, Bayden R

    2013-07-31

    Synchrotron-based infrared (IR) microspectroscopy is able to reveal structural features of biomaterials within intact tissue at both cellular and molecular levels. Heat-related treatments have been used to improve nutrient availability of canola seeds and meal. However, hitherto, there has been no study on the sensitivity and response of each layer in canola seeds to heat-related treatments. It is not known which layer (epiderm/mucllage, spermoderm, endosperm, or cotyledon) is the most sensitive to heat when heat treatment is applied to the seeds. Traditional wet chemical analysis is unable to answer such questions. The objective of this study is to use synchrotron IR microspectroscopy with multivariate molecular spectral analyses as a research tool to study heat treatment effects in a fast way on the structural changes in cotyledon tissues of yellow-type canola (Brassica) seeds among raw (treatment code "A"), wet heating (autoclaving at 121 °C for 60 min, treatment code "B"), and dry heating (dry roasting at 120 °C for 60 min, treatment code "C"). The hypothesis of this study was that different heat treatments have different heat penetration abilities on cotyledon tissues in yellow-type canola seeds. The multivariate analytical tools principal component analysis (PCA) and agglomerative hierarchal cluster analysis (AHCA) were applied to investigate variance and groupings within the spectral data set [whole spectral range of ca. 4000-650 cm(-1), spectral range of ca. 1300-900 cm(-1) (cellulose or saccarides), spectral range of ca. 1800-1500 cm(-1) (secondary structures of protein) and spectral range of ca. 1500-1300 cm(-1) (bending motion of methylene and methyl group; this change is consistent with the change in the range of ca. 3000-2800 cm(-1))]. The results showed that there were no clear cluster and groups formed in the cotyledon tissues among the three treatments (A, B, and C). There were no clear distinguished responses of the cotyledon tissues to different

  5. Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Science.gov (United States)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  6. Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein and yield over nitrogen and sulfur

    Science.gov (United States)

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of N and S fertilizer rate, soil water, and atmospheric temperature on canola fatty acid (FA), total oil, protein and grain yield. Nitrogen and S were assessed in...

  7. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of Canola (Brassica napus L.).

    Science.gov (United States)

    Ismaili, Ahmad; Salavati, Afshin; Mohammadi, Payam Pour

    2014-01-01

    High temperature stress, especially on the early season of plant growth stages, is an agricultural problem in many areas in the world. A temporary or continually high temperature leads to a set of morphological, biochemical and physiological changes in plants, which consequently reduces the plant growth and development and finally may cause a severe reduction in economic yield. The main goal of this study was to assess plant response to high temperature stress (HTS) in early seedling of canola. This study is the first experiment on the effect of heat stress on proteome of canola. In the present research, a proteomics approach was used to evaluate the effects of high temperature stress, including 45 °C day/34 °C night for 2, 6 and 12 hour, on early seedling stage (2-day old) of canola. Proteins were isolated from hypocotyl and separated by two-dimensional polyacrylamide gel electrophoresis. Out of 381 protein spots, 28 and 34 proteins were significantly down- and up-regulated, respectively. The trend of mRNA expression for sucrose binding protein, a scorbate peroxidase and triosephosphateisomerase, was in accordance with their trend at translation level. Results of this study suggest that the up-regulation of proteins involved in cellular traffic, energy and metabolism, and down-regulation of some proteins involved in disease and defense, protein synthesis and signal transduction could be the main reason of physiological and morphological responses to high temperature stress. The observed increases in the level of ascorbate peroxidase protein and mRNA expression in canola hypocotyl in response to HTS suggests that ascorbate peroxidase is a short term high temperature stress response protein and is thus a candidate for gene modification strategies aimed at producing high temperature canola varieties. These results also suggest that the up regulation of protein involved in energy and metabolism in response to the heat stress can use most of nutritive reserves in

  8. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.

    Science.gov (United States)

    Yıldız, Mustafa; Terzi, Hakan

    2016-02-01

    Sulfur (S) is an essential macronutrient for plant growth and development, and it plays an essential role in response to environmental stresses. Plants suffer with combined stress of S deficiency and hexavalent chromium [Cr(VI)] in the rhizosphere. Little is known about the impact of S deficiency on leaf metabolism of canola (Brassica napus L.) under Cr(VI) stress. Therefore, this study is the first to examine the effects of Cr(VI) stress and S deficiency in canola at a molecular level. A comparative proteomic approach was used to investigate the differences in protein abundance between Cr-tolerant NK Petrol and Cr-sensitive Sary cultivars. The germinated seeds were grown hydroponically in S-sufficient (+S) nutrient solution for 7 days and then subjected to S-deficiency (-S) for 7 days. S-deficient and +S seedlings were then exposed to 100μM Cr(VI) for 3 days. Protein patterns analyzed by two-dimensional electrophoresis (2-DE) revealed that 58 protein spots were differentially regulated by Cr(VI) stress (+S/+Cr), S-deficiency (-S/-Cr) and combined stress (-S/+Cr). Of these, 39 protein spots were identified by MALDI-TOF/TOF mass spectrometry. Differentially regulated proteins predominantly had functions not only in photosynthesis, but also in energy metabolism, stress defense, protein folding and stabilization, signal transduction, redox regulation and sulfur metabolism. Six stress defense related proteins including 2-Cys peroxiredoxin BAS1, glutathione S-transferase, ferritin-1, l-ascorbate peroxidase, thiazole biosynthetic enzyme and myrosinase-binding protein-like At3g16470 exhibited a greater increase in NK Petrol. The stress-related proteins play an important role in the detoxification of Cr(VI) and maintaining cellular homeostasis under variable S nutrition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of Different Levels of Sulphur Bentonite on Yield and Yield Components of Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    B Rahimi

    2013-04-01

    Full Text Available In order to determine the effect of different levels of sulfur bentonite on yield and yield components of canola a factorial experiment was conducted on the basis of randomized complete block design with three replications in Mashhad in 2009-2010 growing season. Factors included four levels of sulfur bentonite (0, 300, 400 and 500 kg.h-1 and two varieties of canola (Modena and Zarfam. The result showed that the increase in sulfur increased some vegetative traits such as leaf area index and plant height. Using sulfur caused increased pod number, seed weight, in addition of oil and protein content and seed yield. Grain yield increase was due to seed weight and LAI. Two varieties were different to responses the sulfur. While in no sulfur application there was no significant difference in seed yield, in 500 Kg sulfur application yield of Zarfam compared to Modena increased about 29.63. According to the results there are significant differences between cultivars in terms of response to the sulfur fertilizer. Therefore it is necessary to evaluate effect of sulfur application of canola productivity in different climate conditions of Iran.

  10. Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature

    Science.gov (United States)

    Perera, Suneru P.; McIntosh, Tara C.; Wanasundara, Janitha P. D.

    2016-01-01

    The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0) and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary. PMID:27618118

  11. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants.

    Science.gov (United States)

    Niu, Fangfang; Wang, Boya; Wu, Feifei; Yan, Jingli; Li, Liang; Wang, Chen; Wang, Yiqiao; Yang, Bo; Jiang, Yuan-Qing

    2014-11-07

    NAC transcription factors are plant-specific and play important roles in many processes including plant development, response to biotic and abiotic stresses and hormone signaling. So far, only a few NAC genes have been identified to mediate cell death. In this study, we identified a novel NAC gene from canola (Brassica napus L.), BnaNAC103 which induces reactive oxygen species (ROS) accumulation and cell death in Nicotianabenthamiana leaves. We found that BnaNAC103 responded to multiple signalings, including cold, salicylic acid (SA) and a fungal pathogen Sclerotinia sclerotiorum. BnaNAC103 is located in the nucleus. Expression of full-length BnaNAC103, but not either the N-terminal NAC domain or C-terminal regulatory domain, was identified to induce hypersensitive response (HR)-like cell death when expressed in N. benthamiana. The cell death triggered by BnaNAC103 is preceded by accumulation of ROS, with diaminobenzidine (DAB) staining supporting this. Moreover, quantification of ion leakage and malondialdehyde (MDA) of leaf discs indicates significant cell membrane breakage and lipid peroxidation induced by BnaNAC103 expression. Taken together, our work has identified a novel NAC transcription factor gene modulating ROS level and cell death in plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Diversity of insect pollinators with reference to their impact on yield production of canola (Brassica napus L. in Ismailia, Egypt

    Directory of Open Access Journals (Sweden)

    Soliman M. Kamel

    2015-09-01

    Full Text Available A study of insect pollinators and their impact on canola yield was conducted during the 2013/2014 and 2014/2015 growing seasons. The study was carried out at an experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia. The results revealed that 21 species of insect pollinators belonging to 14 families under four orders visited canola flowers. The abundance of Hymenoptera insects reached the maximum of 67.90%, followed by Diptera 14.97%, Coleoptera 13.61%, then Lepidoptera 2.26% as average of both seasons. In open pollination, Colletes lacunatus had the maximum percent abundance in the two seasons (30.45 and 29.34%, respectively followed by Apis mellifera (12.34 and 17.73%, respectively, compared to other bees and different pollinators. Peaks of foraging activity of both C. lacunatus and A. mellifera were mainly observed from 1:00 to 3:00 pm and they corresponded to the number of flowering plants. Open pollination increased the number of pods per plant, seeds per pod, weight of 1000 seeds, yield per plant, yield per feddan (1 fed = 0.42 ha and seed germination, compared to non-open pollination.

  13. A micromolar concentration of lipo-chitooligosaccharide (Nod Bj V [C18:1, MeFuc]) regulates the emergence and seed productivity of rapid cycling canola (Brassica napus [L.]) plants.

    Science.gov (United States)

    Schwinghamer, Timothy; Souleimanov, Alfred; Dutilleul, Pierre; Smith, Donald L

    2016-11-01

    The objective of this experiment was to assess whether or not the application of lipo-chitooligosaccharide (Nod Bj V [C18:1, MeFuc]) (LCO) would increase yield factors under conditions that would inhibit canola (Brassica napus L.) productivity. The seed application reduced the percentage of plants that were unproductive by 15.10% compared to plants grown from untreated seeds. Based on the 95% confidence interval for the difference, untreated plants would produce 38 to 3% fewer seeds than plants grown from LCO treated seeds. The experimental conditions were artificial, but further experimentation, with agricultural cultivars grown in greenhouses where natural conditions were simulated, confirmed that LCO treatment can contribute to canola yield.

  14. Floral Initiation in Response to Planting Date Reveals the Key Role of Floral Meristem Differentiation Prior to Budding in Canola (Brassica napus L.)

    Science.gov (United States)

    Zhang, Yaofeng; Zhang, Dongqing; Yu, Huasheng; Lin, Baogang; Fu, Ying; Hua, Shuijin

    2016-01-01

    In Brassica napus, floral development is a decisive factor in silique formation, and it is influenced by many cultivation practices including planting date. However, the effect of planting date on floral initiation in canola is poorly understood at present. A field experiment was conducted using a split plot design, in which three planting dates (early, 15 September, middle, 1 October, and late, 15 October) served as main plot and five varieties differing in maturity (1358, J22, Zhongshuang 11, Zheshuang 8, and Zheyou 50) employed as subplot. The purpose of this study was to shed light on the process of floral meristem (FM) differentiation, the influence of planting date on growth period (GP) and floral initiation, and silique formation. The main stages of FM developments can be divided into four stages: first, the transition from shoot apical meristem to FM; second, flower initiation; third, gynoecium and androecium differentiation; and fourth, bud formation. Our results showed that all genotypes had increased GPs from sowing to FM differentiation as planting date was delayed while the GPs from FM differentiation to budding varied year by year except the very early variety, 1358. Based on the number of flowers present at the different reproductive stages, the flowers produced from FM differentiation to budding closely approximated the final silique even though the FM differentiated continuously after budding and peaked generally at the middle flowering stage. The ratio of siliques to maximum flower number ranged from 48 to 80%. These results suggest that (1) the period from FM differentiation to budding is vital for effective flower and silique formation although there was no significant correlation between the length of the period and effective flowers and siliques, and (2) the increased number of flowers from budding were generally ineffective. Therefore, maximizing flower numbers prior to budding will improve silique numbers, and reducing FM degeneration should

  15. The propensity of different larval stages of lacewing Chrysoperla carnea (Stephens (Neuroptera: Chrysopidae to control aphid Myzus persicae (Sulzer (Homoptera: Aphididae evaluated on Canola Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Muhammad Sarwar

    2014-04-01

    Full Text Available Green lacewings (Neuroptera: Chrysopidae are considered among the most effective generalist predators of aphids. In the present experimentation, the use of 1st, 2nd and 3rd instars of the chrysopid Chrysoperla carnea (Stephens larvae against aphids pest was investigated under field conditions in Brassica napus L. Four releases of predator’s 1st, 2nd and 3rd instar larvae were made from the time of aphid’s appearance on canola crop till its maturity at fortnightly intervals. The influences on aphids due to the larvae of C. carnea predator were assessed by examining pest incidence and abundance of the natural enemies at plant growth stage, and seed yield recorded at crop harvest in the test field. Results indicated that predators, irrespective of their developmental stage, reacted very positively to their preys’ reduction except in untreated control. Of the different larval stages tested, the applications of 1st instar followed by 2nd and 3rd instar larvae were most effective in reducing aphids’ population compared with untreated control. In the similar fashion, the releases of 1st and 2nd instar larvae of C. carnea were more effective in increasing crop yields compared with check treatment. Obviously, the applications of 1st and 2nd instar larvae of C. carnea involved efficiently in prey location and consumption, and performed predation activity for longer period (2-3 weeks. On the other hand, the release of 3rd instar larvae was too late to play a direct beneficial role in crop protection suggesting that they may have less time (1 week to remain involved in efficient prey consumption. Further, 1st or 2nd instar larvae may be much hungrier and eaten more pests in study areas without resting or moving to new location and thus can potentially be used to enhance biological control of aphids.

  16. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death.

    Science.gov (United States)

    Chen, Bisi; Niu, Fangfang; Liu, Wu-Zhen; Yang, Bo; Zhang, Jingxiao; Ma, Jieyu; Cheng, Hao; Han, Feng; Jiang, Yuan-Qing

    2016-04-01

    The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    Science.gov (United States)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  18. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography.

    Science.gov (United States)

    Flakelar, Clare L; Prenzler, Paul D; Luckett, David J; Howitt, Julia A; Doran, Gregory

    2017-01-01

    A normal phase high performance liquid chromatography (HPLC) method was developed to simultaneously quantify several prominent bioactive compounds in canola oil vis. α-tocopherol, γ-tocopherol, δ-tocopherol, β-carotene, lutein, β-sitosterol, campesterol and brassicasterol. The use of sequential diode array detection (DAD) and tandem mass spectrometry (MS/MS) allowed direct injection of oils, diluted in hexane without derivatisation or saponification, greatly reducing sample preparation time, and permitting the quantification of both free sterols and intact sterol esters. Further advantages over existing methods included increased analytical selectivity, and a chromatographic run time substantially less than other reported normal phase methods. The HPLC-DAD-MS/MS method was applied to freshly extracted canola oil samples as well as commercially available canola, palm fruit, sunflower and olive oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Surya Kant

    Full Text Available Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  20. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.).

    Science.gov (United States)

    Kant, Surya; Burch, David; Badenhorst, Pieter; Palanisamy, Rajasekaran; Mason, John; Spangenberg, German

    2015-01-01

    Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  1. Weed Dynamics in Wheat-Canola Intercropping Systems Dinámica de Malezas en Sistemas de Intercultivo Trigo-Canola

    OpenAIRE

    Muhammad Naeem; Zahid Ata Cheema; Azraf-ul-Haq Ahmad; Abdul Wahid; Muhammad Kamaran; Muhammad Arif

    2012-01-01

    Weeds cause huge losses due to their competition with crops. Intercropping of wheat (Triticum aestivum L.) with canola (Brassica napus L.) under different spatial arrangements was evaluated for their effects on weeds and interaction between the crops at the Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan, during 2009-2010. The treatments included wheat (line sowing), canola (line sowing), wheat (broadcast method), one row of wheat + one row of canola (30 cm apart), tw...

  2. Interactive effects of sulfur and chromium on antioxidative defense systems and BnMP1 gene expression in canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.

    Science.gov (United States)

    Terzi, Hakan; Yıldız, Mustafa

    2015-07-01

    Plants suffer with combined stress of sulfur (S) deficiency and hexavalent chromium [Cr(VI)] in soils. There are a few reports on the interactive effects of S-deficiency and Cr(VI) stress. Therefore, the interactions between S nutrition and Cr(VI) stress were investigated in hydroponically grown canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. The relatively Cr(VI)-tolerant (NK Petrol) and Cr(VI)-susceptible (Sary) cultivars were grown in S-sufficient nutrient solution and then exposed to variable S concentrations [deficient (0 mM S, -S) and sufficient (1 mM S, +S)]. The seedlings were then exposed to 100 μM Cr(VI) for 3 days. S-deficiency (-S/-Cr) and combined stress (-S/+Cr) caused a significant decrease in growth parameters of Sary than NK Petrol (P < 0.05). In -S/+Cr treatment, Cr accumulation in Sary was significantly higher than NK Petrol. The higher level of Cr in Sary increased lipid peroxidation and decreased chlorophyll content. The activities of antioxidant enzymes and cysteine content were significantly higher in NK Petrol than in Sary under combined stress. The levels of ascorbate (AsA) and glutathione (GSH) were significantly decreased by S deficiency. The expression level of metallothionein gene (BnMP1) in the tolerant NK Petrol was increased by -S/+Cr treatment. However, expression level of BnMP1 gene in the susceptible Sary was enhanced by +S/+Cr treatment. This result suggests metallothionein (MT) may be involved in Cr(VI) tolerance under S-deficient condition. In conclusion, S nutrition influenced Cr accumulation and enhanced tolerance caused by a positive effect on defense systems and gene expression.

  3. The effect of biological fertilizers on yield, yield components and seed oil contents of three cultivars of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    Full Text Available Introduction Canola is the world third oil crop with 25 to 55 percent oil content (Hezbavi & Minaei, 2008. In recent years, tendency towards expansion of the acreage of canola in Iran has been increasing and for the years 2010-2011 an area of 93000 ha with a total production of 190000 tons has been reported (Ministry of Jihad of Agriculture, 2013. Application of biological fertilizers which are environmentally friendly agents have been reported to enhance yield and quality of different crops (Shoghi Kalkhoran et al., 2012; Afrasiabi et al., 2011. The purpose of the present study was to investigate the effects of biological fertilizers on quantitative and quality criteria of canola. Material and methods For this study, a factorial arrangement based on randomized complete block design and three replicates was used. The experimental treatments were three canola cultivars namely Okapi, Zarfam and Modena which was combined with four levels of biological fertilizers: Nitroxin, Phosphat solubilizing bacteria (PSB, Nitroxin+PSB and a control. Seeds were planted in plots of 2×3 m2. All field managements were carried out based on conventional practices. The measured criteria were plant height, number of pods per plant, 1000- seed weight, biomass yield, harvest index, oil content and yield. Results and discussion The results showed that in all studied criteria except 1000- seed weight there were significant differences between cultivars. Different fertilizer treatments had a significant effect on all criteria except 1000- seed weight and HI. Modena cultivar had the highest oil yield and quantitative characteristics. Composition of phosphate solubilizing bacteria+nitroxin also had the highest oil yield and quantitative characteristics. The interactions between biofertilizer treatments and cultivars in all criteria were not significant. The result of this experiment indicated the effectiveness of use of biofertilizers. References Afrasiabi, M., Amini

  4. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    .... Definitions Canola. A crop of the genus Brassica as defined in accordance with the Official United States... adjustment in accordance with section 12 of these crop provisions. Rapeseed. A crop of the genus Brassica... the Food and Drug Administration or other public health organizations of the United States as being...

  5. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  6. Weed Dynamics in Wheat-Canola Intercropping Systems Dinámica de Malezas en Sistemas de Intercultivo Trigo-Canola

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem

    2012-09-01

    Full Text Available Weeds cause huge losses due to their competition with crops. Intercropping of wheat (Triticum aestivum L. with canola (Brassica napus L. under different spatial arrangements was evaluated for their effects on weeds and interaction between the crops at the Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan, during 2009-2010. The treatments included wheat (line sowing, canola (line sowing, wheat (broadcast method, one row of wheat + one row of canola (30 cm apart, two rows of wheat + two rows of canola (45 cm apart, four rows of wheat + four rows of canola (75 cm apart and mixed cropping of wheat + canola (broadcast method. The results revealed that all intercropping treatments significantly affected weed density and dry weight over component sole crop of wheat. Mixed cropping of wheat + canola suppressed dry weight of Phalaris minor Retz., Chenopodium album L., Rumex dentatus L., and Coronopus didymus L. by 94, 77.2, 77.4, and 92%, respectively, over sole crop of wheat. The other intercropping treatments like one row of wheat + one row of canola, two rows of wheat + two rows of canola, and four rows of wheat + four rows of canola generally suppressed total dry weight of weeds by 81, 74, and 76%, respectively. Four rows of wheat + four rows of canola gave the highest land-equivalent ratios 1.37 and net benefit Rs 93 543 followed by two rows of wheat + two rows of canola. It is suggested that wheat-canola intercropping system in agro ecological conditions of Faisalabad could enhance land-equivalent ratio > 1 (over-yielding by suppressing weeds.Las malezas causan grandes pérdidas debidas a competencia con los cultivos. El intercultivo de trigo (Triticum aestivum L. con canola (Brassica napus L. bajo diferentes arreglos espaciales se evaluó por sus efectos en malezas e interacción entre los cultivos en el Area de Investigación Agronómica, Universidad de Agricultura, Faisalabad, Paquistán, durante 2009-2010. Los

  7. Gene transformation potential of commercial canola ( Brassica ...

    African Journals Online (AJOL)

    of efficient transformation methods in commercial varieties. In this research transformation potential of 8 commercial cultivars; Licord, SLM046, RGS003, Zarfam, Okapi, Sarigol, Modena and Opera adapted to different regions of Iran was studied using cotyledon and hypocotyl explants. Agrobacterium tumifaciens strain AGL0 ...

  8. POTENTIAL OF CANOLA IN MICHIGAN

    OpenAIRE

    Adhikari, Bishwa B.

    1996-01-01

    This study consists of four different aspects of canola in Michigan with special emphasis on northern Michigan. The economic feasibility of canola as an alternative cash crop, potential canola growing area, feasibility of establishing canola processing plant(s) in northern Michigan and the canola marketing situation in Michigan were appraised. Secondary data, previous research results, key informant interviews, informal visits, expert opinions and survey data were used to study these aspects ...

  9. Productivity and nutritive quality of three brassica varieties for use in pasture-based systems

    Science.gov (United States)

    Brassicas are gaining popularity among pasture-based livestock producers to extend grazing during the ‘summer slump’ and throughout the fall. A 2-yr study was conducted to compare biomass production and nutrient composition of ‘Barisca’ rapeseed (RAP; Brassica napus L.), ‘Inspiration’ canola (CAN; B...

  10. Field and semifield evaluation of impacts of transgenic canola pollen on survival and development of worker honey bees.

    Science.gov (United States)

    Huang, Zachary Y; Hanley, Anne V; Pett, Walter L; Langenberger, Michael; Duan, Jian J

    2004-10-01

    A 2-yr field trial (2001 and 2002) and 1-yr semifield trial (2002) were conducted to evaluate the effect of transgenic herbicide (glyphosate) -tolerant canola Brassica napus L. pollen on larval and adult honey bee, Apis mellifera L., workers. In the field trial, colonies of honey bees were moved to transgenic or nontransgenic canola fields (each at least 40 hectares) during bloom and then sampled for larval survival and adult recovery, pupal weight, and hemolymph protein concentrations. No differences in larval survival, adult recovery, and pupal weight were detected between colonies placed in nontransgenic canola fields and those in transgenic canola fields. Colonies placed in the transgenic canola fields in the 2002 field experiment showed significantly higher hemolymph protein in newly emerged bees compared with those placed in nontransgenic canola field; however, this difference was not detected in the 2001 field experiment. In the semifield trial, bee larvae were artificially fed with bee-collected transgenic and nontransgenic canola pollen and returned to their original colonies. Larval survival, pupal survival, pupal weight, and hemolymph protein concentration of newly emerged adults were measured. There were no significant differences in any of the parameters measured between larvae that were fed transgenic canola pollen and those fed nontransgenic corn pollen. Results from this study suggest that transgenic canola pollen does not have adverse effects on honey bee development and that the use of transgenic canola dose not pose any threat to honey bees.

  11. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Classification of temperature response in germination of Brassicas

    Science.gov (United States)

    Since soil temperature affects germination and emergence of canola (Brassica napus L.), mustard [B. juncea (L.) Czerniak. and Sinapsis alba L.], and camelina [Camelina sativa (L.) Crantz.], planting dates have to be adjusted to prevent crop failures. These crops can be used as biofuel feedstocks, a...

  13. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  14. Benefits of Transgenic Insect Resistance in Brassica Hybrids under Selection

    Directory of Open Access Journals (Sweden)

    Cynthia L. Sagers

    2015-01-01

    Full Text Available Field trials of transgenic crops may result in unintentional transgene flow to compatible crop, native, and weedy species. Hybridization outside crop fields may create novel forms with potential negative outcomes for wild and weedy plant populations. We report here the outcome of large outdoor mesocosm studies with canola (Brassica napus, transgenic canola, a sexually compatible weed B. rapa, and their hybrids. Brassica rapa was hybridized with canola and canola carrying a transgene for herbivore resistance (Bt Cry1Ac and grown in outdoor mesocosms under varying conditions of competition and insect herbivory. Treatment effects differed significantly among genotypes. Hybrids were larger than all other genotypes, and produced more seeds than the B. rapa parent. Under conditions of heavy herbivory, plants carrying the transgenic resistance were larger and produced more seeds than non-transgenic plants. Pollen derived gene flow from transgenic canola to B. rapa varied between years (5%–22% and was not significantly impacted by herbivory. These results confirm that canola-weed hybrids benefit from transgenic resistance and are aggressive competitors with congeneric crops and ruderals. Because some crop and crop-weed hybrids may be competitively superior, escapees may alter the composition and ecological functions of plant communities near transgenic crop fields.

  15. Optimal Cross Hedging Winter Canola

    OpenAIRE

    Kim, Seon-Woong; Brorsen, B. Wade; Yoon, Byung-Sam

    2014-01-01

    Winter canola in the southern Great Plains has shown large price fluctuations and there have been questions about which futures market could be used to reduce price risk. Our results indicate that the optimal futures contract to cross hedge winter canola is soybean oil futures.

  16. Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Reilly, Kim; Valverde, Juan; Finn, Leo; Rai, Dilip K; Brunton, Nigel; Sorensen, Jens C; Sorensen, Hilmer; Gaffney, Michael

    2014-01-30

    Variety and crop management strategies affect the content of bioactive compounds (phenolics, flavonoids and glucosinolates) in green broccoli (calabrese) types, which are cultivated during summer and autumn in temperate European climates. Sprouting broccoli types are morphologically distinct and are grown over the winter season and harvested until early spring. Thus they show considerable potential for development as an import substitution crop for growers and consumers during the 'hungry gap' of early spring. The present study investigated the effect of variety and management practices on phytochemical content in a range of sprouting broccoli varieties. Yields were significantly higher in white sprouting broccoli varieties. Levels of phenolics and flavonoids were in the range 81.64-297.65 and 16.95-104.80 mg 100 g⁻¹ fresh weight, respectively, depending on year and cultivar, and were highest in variety 'TZ 5052' in both years. In-row spacing did not affect flavonoid content. Phenolic and flavonoid content generally increased with increasing floret maturity and levels were high in edible portions of the crop. Crop wastes (leaf and flower) contained 145.9-239.3 and 21.5-116.6 mg 100 g⁻¹ fresh weight total phenolics and flavonoids, respectively, depending on cultivar, tissue and year. Climatic factors had a significant effect on phenolic and flavonoid content. Levels of total and some individual glucosinolates were higher in sprouting broccoli than in the green broccoli variety 'Ironman'. Levels of total phenolics, flavonoids and glucosinolates are higher in sprouting than green broccoli types. Sprouting broccoli represents an excellent source of dietary bioactive compounds. © 2013 Society of Chemical Industry.

  17. Modeling the yield potential of dryland canola under current and future climates in California

    Science.gov (United States)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better

  18. Effect of different levels of water deficit on rapeseed (Brassica napus L. crop Efeito de diferentes níveis de déficit hídrico na cultura da canola

    Directory of Open Access Journals (Sweden)

    Carolina Bilibio

    2011-08-01

    Full Text Available Effects of different levels of water deficit applied during rapeseed crop development were assessed in a trial with metallic pots in greenhouse at the Department of Agricultural Engineering of Kassel University, Witzenhausen, Germany. A randomized block design was used with one cultivar (Ability Summer Rape and three levels of water deficit (0, 30, and 60% of evapotranspiration in three treatments and 20 replicates. Irrigation management was carried out through daily water balance, where ET = I - D; ET: evapotranspiration; I: irrigation; and D: drainage. The following evaluations were carried out weekly: stem diameter (mm; plant height (cm; number of leaves; number of branches and number of pods. At the end of the experiment, assessed total green matter (g plant-1, total dry matter (g plant-1, grain yield (g plant-1, grain protein content (% and grain oil content (% were also assessed. Data were submitted to variance analysis and the effect of the treatments was assessed by regression analysis. Results showed significant differences between the treatments in all analysed variables except for plant height and grain protein content, by test F at 5% probability. Factor of response ky, indicator of crop sensitivity to water deficit, was lower than one for all assessed variables. Grain yield showed the highest sensitivity to water deficit.Os efeitos de diferentes níveis de déficit hídrico, aplicados durante o desenvolvimento da canola, foram avaliados por meio de um experimento conduzido em vasos de metal no interior de uma casa de vegetação, no Departamento de Engenharia Agrícola, da Universidade de Kassel, Alemanha. Foi utilizado um delineamento inteiramente casualizado, com a cultivar Ability (Summer Rape, e três níveis de déficit de água, 0%, 30%, 60% da evapotranspiração da cultura, totalizando três tratamentos com 20 repetições. O manejo da irrigação foi realizado por meio do balanço hídrico diário, em que ET = I - D, onde

  19. Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola.

    Directory of Open Access Journals (Sweden)

    Joshua C O Koh

    Full Text Available Two stilbenes, resveratrol and pterostilbene, exhibit antifungal activity against Leptosphaeria maculans, the fungal pathogen responsible for blackleg (stem canker in canola (Brassica napus. In vitro studies on the effect of these stilbenes on L. maculans mycelial growth and conidia germination showed that pterostilbene is a potent fungicide and sporicide, but resveratrol only exerted minor inhibition on L. maculans. Cell viability of hyphae cultures was markedly reduced by pterostilbene and SYTOX green staining showed that cell membrane integrity was compromised. We demonstrate that pterostilbene exerts fungicidal activity across 10 different L. maculans isolates and the compound confers protection to the blackleg-susceptible canola cv. Westar seedlings. The potential of pterostilbene as a control agent against blackleg in canola is discussed.

  20. Bee genera, diversity and abundance in genetically modified canola fields.

    Science.gov (United States)

    O'Brien, Colton; Arathi, H S

    2018-03-12

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  1. Effects of Intercropping (Canola-Faba Bean on Density and Diversity of Weeds

    Directory of Open Access Journals (Sweden)

    Mohamad Hossain GHARINEH

    2010-03-01

    Full Text Available In order to evaluate the biological effect and interference of crop and weed in canola-faba bean intercropping in comparison with mono culture, an experiment was conducted in randomize completely blocks design with three replication at Ramin Agriculture and Natural Resources, University. In this experiment treatments were different compositions of canola (Brassica napus L. var. haylo and faba bean (local cultivar. Plant densities (0, 20 and 40 plants per m2 for canola and four levels include (0, 20, 40 and 60 plants per m2 for faba bean in accordance with additive form mixed culture system respectively. Weed dry weight was affected by culture system and different levels of plant densities in mixed culture and there were significant difference 1%. Lowest weed dry weight was obtained in 20-60 and 40-60 plants m-2 canola-bean intercropping. In the intercropping parts only two species was observed while in the sole culture more than three species were exist. Results showed that with increasing in bean diversity, weed dry weight declines. According to our results, it is possible to control weed effectively by using intercropping system, but more studied is required. Diversity of weeds had been clearly affected. Results showed that only Beta and Malva species were existed in intercropping comparing to sole cultures that Brassica, Beta, Rumex and Malva were existed.

  2. Estresses abióticos em híbridos de canola: Efeito do alagamento e de baixas temperaturas

    OpenAIRE

    PERBONI, Anelise Tessari

    2011-01-01

    A canola (Brassica napus L.) pertence à família das Brassicaceae e constitui-se na terceira oleaginosa mais produzida no mundo, superada apenas pela soja e pela palma. O alagamento do solo e as baixas temperaturas podem promover alterações no metabolismo celular e prejudicar o crescimento das plantas, gerando uma condição de estresse. Foram desenvolvidos dois experimentos utilizando os híbridos de canola Hyola 43, Hyola 401, Hyola 420 e Hyola 432. O primeiro foi conduzido em ...

  3. Soil amendments with Brassica cover crops for management of Phytophthora blight on squash.

    Science.gov (United States)

    Ji, Pingsheng; Koné, Daouda; Yin, Jingfang; Jackson, Kimberly L; Csinos, Alexander S

    2012-04-01

    Phytophthora blight induced by Phytophthora capsici is responsible for serious yield loss in vegetable production in the United States and other countries. This study was conducted to evaluate the efficacy of Brassica cover crops used as soil amendments for managing Phytophthora blight of squash. In greenhouse studies, disease incidence on squash plants was significantly reduced by soil amendment with mustard shoots or roots used at 1 and 2.5% (plant tissue/soil, w/w). The shoots of canola used at 1 or 2.5% also suppressed disease, while the roots of canola or other crops did not reduce disease significantly. In field studies, soil amendments with mustard and canola provided the greatest disease reduction and increased squash yield significantly compared with the non-treated control. Mustard and canola did not appear to be susceptible to P. capsici. The results indicated that some Brassica crops, particularly mustard and canola, had the potential to significantly reduce Phytophthora blight on squash when used as soil amendments. As P. capsici has a remarkable ability to develop resistance to chemical fungicides, use of effective Brassica cover crops could be a biorational alternative to fungicides and a valuable component in developing integrated disease management programs. Copyright © 2011 Society of Chemical Industry.

  4. Stingless Bees as Alternative Pollinators of Canola.

    Science.gov (United States)

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture

    Science.gov (United States)

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  6. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    Science.gov (United States)

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  7. Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm

    NARCIS (Netherlands)

    Rensen, van J.J.S.; Vredenberg, W.J.

    2011-01-01

    Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated

  8. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Science.gov (United States)

    Raman, Harsh; Raman, Rosy; Coombes, Neil; Song, Jie; Diffey, Simon; Kilian, Andrzej; Lindbeck, Kurt; Barbulescu, Denise M.; Batley, Jacqueline; Edwards, David; Salisbury, Phil A.; Marcroft, Steve

    2016-01-01

    Key message “We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola.” Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in

  9. Effects of Source and Rate of Nitrogen Fertilizer on Yield, Yield Components and Quality of Winter Rapeseed (Brassica napus L. Efecto de la Fuente y Dosis de Fertilizantes Nitrogenados en el Rendimiento, Componentes de Rendimiento y Calidad de Semilla de Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Özden Öztürk

    2010-03-01

    Full Text Available Winter rapeseed (Brassica napus L. has potential to become an alternate oilseed crop both for edible oil production and energy agriculture (biofuel production for Turkey. This study was conducted to determine the effect of year, N sources and doses on the yield and quality traits of winter rapeseed in a cereal system in calcareous soils over two seasons, 2000-2001 and 2001-2002, in Central Anatolia. Three N sources, ammonium sulfate, ammonium nitrate and urea, were applied as hand broadcast on the soil surface at five doses (0, 50, 100, 150, and 200 kg N ha-1. The traits investigated were plant height, number of branches and pods per plant, number of seed per pod, thousand seed weight, seed yield, oil and protein content. There were significantly effects on seed yield, oil and protein content, and other yield components due to N sources and rates. In general, ammonium sulfate and urea gave higher seed yield than ammonium nitrate. Mean values of both seasons indicated that 100 and 150 kg N ha-1 rate increased significantly yield and quality traits with regard to other N treatments. The present results highlight the practical importance of adequate N fertilization and true N source in seed yield in winter rapeseed and suggest that ammonium sulfate at 150 kg N ha-1 will be about adequate to meet crop N requirements.El raps (Brassica napus L. tiene potencial para convertirse en un cultivo oleaginoso alternativo para producción de aceite comestible y agricultura energética (producción de biodiesel en Turquía. Este estudio fue conducido para determinar el efecto del año, fuente y dosis de N en las características de rendimiento y calidad de raps en un sistema cerealero en suelos calcáreos en dos temporadas, 2000-2001 y 2001-2002, en Anatolia Central. Se aplicaron al voleo tres fuentes de N (sulfato de amonio, nitrato de amonio y urea en cinco dosis (0, 50, 100, 150 y 200 kg N ha-1. Las características investigadas fueron altura de planta, n

  10. Seed viability, germination and seedling growth of canola (Brassica ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... investigated. The effect of mutagen dosage on seed viability was also assessed using the tetrazolium staining test. Results revealed the significant effects of mutagen dosages and treatment periods on seed viability and seed germination as well as on seedling characteristics for all the mutagens tested.

  11. Response study of canola (Brassica napus L.) cultivars to multi ...

    African Journals Online (AJOL)

    Administrator

    2011-09-14

    Sep 14, 2011 ... genotype-environment interaction in forest tree breeding. Silvae. Genetica, 26, 168- 176. Butron A, Velasco P, Ordás A, Malvar RA (2004). Yield evaluation of maize cultivars across environments with different levels of pink stem borer infestation. Crop Sci. 44:741-747. Crossa J, Cornelius S, Yan W (2002).

  12. Seed viability, germination and seedling growth of canola ( Brassica ...

    African Journals Online (AJOL)

    Mutation induction is considered as an effective way to enrich plant genetic variation, particularly for traits with a very low level of genetic variation. The objectives of this study were to evaluate the effect of different dosages of chemical mutagens on seed germination, seed viability and seedling growth characteristics and to ...

  13. Gene transformation potential of commercial canola (Brassica napus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... De Block et al., 1989 Dunwell, 1981; Stewart et al., 1996;. Yang et al., 1991), pedancle segments (Eapen and. George, 1997), epithermal and subepidermal thin layer cells (Klimaszewska and Keller, 1985), roots (Sharma and Thorpe, 1989; Chi et al., 1990) and protoplast (Hu et al., 1999), have been used ...

  14. Sensitivity of Canola Seeds Associated Fungi to Gamma Rays During Storage

    International Nuclear Information System (INIS)

    Botros, H.W.

    2011-01-01

    The present study was carried out to investigate the possibility of using the gamma radiation to elongate the storage periods of canola seeds (Brassica naps L.). In this respect, canola seeds were irradiated at doses of 0.5, 1.5, 2.5, 3.5, 5.0 and 7.5 kGy gamma rays and stored at room temperature for periods 0, 3, 6, 9 and 12 months. The isolated fungi from non-irradiated post-harvest canola seeds included different species identified as Aspergillus flavus, A. niger, A. condidus, A. fumigatus, A. ochraceus, A. parasiticus, Fusarium oxysporium, F. moniliforme, Penicillium expansum, P. crysogenum, Alternaria brassicae, A. raphani and Trichoderma spp. It was noticed that the predominant species were A. ochraceus, A. flavus, A. niger and F. oxysporium at percentages 16.18, 14.73, 11.00 and 10.53%, respectively. The effective gamma irradiation on the predominant fungi (the sub-lethal dose) was 3.5 kGy for A. ochraceus and 5.0 kGy for F. oxysporium and F. moniliforme. Increasing the irradiated dose up to 7.5 kGy decreased significantly the growth of most isolated fungi. The data also showed that there was a decrease in the total fungal count in stored seeds under the effect of gamma rays for 12 months storage. Also, mycotoxins at the stored seeds were not detected after 12 months storage

  15. The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola.

    Science.gov (United States)

    Strange, Alison; Park, Julian; Bennett, Richard; Phipps, Richard

    2008-05-01

    Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.

  16. Screening different Brassica spp. germplasm for resistance to Rhizoctonia solani AG-2-1 and AG-8

    Science.gov (United States)

    Poor stands of canola seedlings in Pacific Northwest (PNW) have been associated with Rhizoctonia solani AG-2-1 and AG-8. A total of eighty five genotypes of Brassica napus, B. rapa, B. carinata, B. juncea and Sinapsis alba were evaluated in the growth chamber for their resistance to both R. solani A...

  17. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D

    2007-06-01

    We conducted a long-term investigation to ascertain effects on honey bee, Apis mellifera L., colonies during and after exposure to flowering canola, Brassica napus variety Hyola 420, grown from clothianidin-treated seed. Colonies were placed in the middle of 1-ha clothianidin seed-treated or control canola fields for 3 wk during bloom, and thereafter they were moved to a fall apiary. There were four treated and four control fields, and four colonies per field, giving 32 colonies total. Bee mortality, worker longevity, and brood development were regularly assessed in each colony for 130 d from initial exposure to canola. Samples of honey, beeswax, pollen, and nectar were regularly collected for 130 d, and the samples were analyzed for clothianidin residues by using high-performance liquid chromatography with tandem mass spectrometry detection. Overall, no differences in bee mortality, worker longevity, or brood development occurred between control and treatment groups throughout the study. Weight gains of and honey yields from colonies in treated fields were not significantly different from those in control fields. Although clothianidin residues were detected in honey, nectar, and pollen from colonies in clothianidin-treated fields, maximum concentrations detected were 8- to 22-fold below the reported no observable adverse effects concentration. Clothianidin residues were not detected in any beeswax sample. Assessment of overwintered colonies in spring found no differences in those originally exposed to treated or control canola. The results show that honey bee colonies will, in the long-term, be unaffected by exposure to clothianidin seed-treated canola.

  18. Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.

    Science.gov (United States)

    Renkema, Heidi; Koopmans, Amy; Hale, Beverley; Berkelaar, Edward

    2015-02-01

    Thallium (Tl) is very toxic to mammals but little is known about its accumulation by plants, and it would be useful if prediction of Tl accumulation could be done using potassium (K) accumulation models. The objectives of this study were to compare the uptake kinetics of Tl(+) and K(+), and to determine how readily K(+) can inhibit Tl(+) uptake. Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were grown hydroponically and exposed to 0-75 μM Tl or 0-250 μM K for up to 150 min (kinetics experiment), or to 0.1 or 10 μM Tl with Tl to K ratios of 1:1 to 1:10,000 for up to 300 min (competition experiment). The rate of uptake of Tl(+) by canola was about three to five times faster than by wheat, while the rate of Tl(+) uptake in wheat was the same as the rate of K(+) uptake by either species. Uptake of Tl(+) was more readily suppressed by K(+) in wheat than in canola. When exposed to 0.1 uM Tl for 300 min with 100 or 1,000 uM K(+), Tl(+) uptake by wheat was reduced by 20 % and 50 %, respectively, while Tl(+) uptake by canola was not reduced. Our results suggest that predicting Tl accumulation using a K accumulation model with a correction factor may be possible for canola, but would be much more difficult for wheat, since uptake of Tl(+) is very sensitive to levels of K(.)

  19. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  20. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    Science.gov (United States)

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  1. Effects of fall and spring seeding date and other agronomic factors on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola.

    Science.gov (United States)

    Dosdall, L M; Clayton, G W; Harker, K N; O'Donovan, J T; Stevenson, F C

    2006-10-01

    Several agronomic benefits can result from fall seeding of canola (Brassica spp.), but extensive research data are lacking on the potential impact of this practice on infestations of root maggots (Delia spp.) (Diptera: Anthomyiidae), which are major pests of the crop in western Canada. Field experiments making up 13 location by year combinations were conducted in central Alberta, Canada, from 1998 to 2001 to determine the effect of fall versus spring seeding of canola on root maggot damage. Depending on the experiment, interactions with seeding rate, seed treatment, timing of weed removal, and canola species (cultivar) also were investigated. Root maggot damage declined with an increase in seeding rate for plots seeded in May but not in fall or April. Susceptibility to infestation was greater for plants of Brassica rapa L. than Brassica napus L., but seed treatment had no effect on damage by these pests. Combined analysis using data from all experiment by location by year combinations indicated that seeding date had no significant effect on root maggot damage. The extended emergence of Delia spp. adults, which spans the appearance of crop stages vulnerable to oviposition regardless of seeding date, prevented reduced root maggot attack. Covariance analysis demonstrated the importance of increasing seeding rate for reducing root maggot infestations, a practice that can be especially beneficial for May-seeded canola when growing conditions limit the ability of plants to compensate for root maggot damage. Results determined with the small plot studies described here should be validated in larger plots or on a commercial field scale, but both the combined and covariance analyses indicate that seeding canola in fall does not predispose plants to greater damage by larval root maggots than seeding in spring.

  2. Will Genetically Modified Canola be Adopted in WA?

    OpenAIRE

    Crowe, Bronwyn; Pluske, Johanna M.

    2006-01-01

    Despite approval being given by the Gene Technology Regulator to plant genetically modified (GM) canola varieties in Australia, the question as to whether farmers would be prepared to grow GM canola is still being explored. The purpose of this paper is to establish not only if producers would grow GM canola in south Western Australia but how they make this decision. Results from a survey aimed at canola producers found that adoption of GM canola will ultimately depend upon price premiums for ...

  3. Damage potential of grasshoppers (Orthoptera: Acrididae) on early growth stages of small-grains and canola under subarctic conditions.

    Science.gov (United States)

    Begna, Sultan H; Fielding, Dennis J

    2003-08-01

    We characterized the type and extent of grasshopper injury to above- and below-ground plant parts for four crops [barley (Hordeum vulgare L.), oats (Avena sativa L.), wheat (Triticum aestivum L.), and canola (Brassica campestris L.)] commonly grown, or with potential to grow, in central Alaska. Cages were placed on 48 pots containing plants in second to third leaf stages and stocked with 0, 2, 4, and 6 first-instar Melanoplus sanguinipes F. pot(-1). Plants were harvested 22 d after planting. Stem growth of barley and oats was not affected except at the highest grasshopper treatment. In canola, stem biomass was reduced at the medium and high grasshopper treatments, when most of the leaves had been consumed. The highest grasshopper treatment reduced leaf area in barley and oats by approximately 55%, and caused a significant reduction in dry weight of leaves, stems, and roots (41-72%). Wheat and canola plants were smaller than barley and oats across all treatments and, at the highest grasshopper density, above-ground portions of wheat and canola were completely destroyed. Length and surface area of roots of barley and oats were reduced by 20-28% again at the highest grasshopper density, whereas the reduction for wheat and canola ranged from 50 to 90%. There was little or no difference among all grasshopper densities for C-N ratio in leaf and stem tissues of all crops. The results suggest that wheat and canola are more susceptible than barley and oats and that densities > or = 2 pot(-1) (approximately > or = 50 m(-2)) of even very small grasshoppers could cause significant damage in small-grain and oilseed crop production.

  4. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola.

    Science.gov (United States)

    Knodel, Janet J; Olson, Denise L; Hanson, Bryan K; Henson, Robert A

    2008-06-01

    Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.

  5. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    Science.gov (United States)

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  6. The bee community and its relationship to canola productivity in homogenous agricultural areas

    Directory of Open Access Journals (Sweden)

    Sidia Witter

    2014-02-01

    Full Text Available Canola crop productivity is benefited by bee pollination and it has been shown that bee communities can be affected by landscape composition. The aim of this study was to analyse the bee community and its relationship to canola seed production in agricultural areas. The density, abundance and richness of floral visitors of Brassica napus cultivar Hyola 61 in six commercial fields in southern Brazil were studied, and their relationships with seed production and the ratio of semi-natural, forested and agricultural areas surrounding the crops were examined. It was observed that canola fields of southern Brazil are surrounded by a homogeneous landscape dominated by agricultural areas. The survey of bees detected a low abundance and richness of native bees in contrast to the high abundance of Apis mellifera. Except for a negative correlation between the abundance of honey bees and the proportion of forested areas within a 2000 m radius from the field (R = -0.90; P = 0.012, no other correlations were found among bee abundance and richness and landscape composition. Although there was not a relationship between A. mellifera and seed set, there was a positive correlation between insect density and seed weight per plant (R = 0.87; P = 0.024. As honey bees were the most captured insect (79%, much of the pollination in this system was probably achieved by honey bees.

  7. Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae resistance conferred by the gene Rcr1 in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Tao Song

    2016-07-01

    Full Text Available Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of B. rapa carrying and not carrying the CR gene Rcr1 upon P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs were identified between the resistant and susceptible samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses is triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome related to abiotic stresses, especially the cold-stress tolerance. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism were observed in plants carrying Rcr1, and these functions may all contribute to the clubroot resistance mediated by this CR gene. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and clubroot resistance at large, and identified candidate metabolites or pathways for further confirmation of specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of clubroot resistance.

  8. Role of natural enemies, climatic factors and performance genotypes on regulating pests and establishment of canola in Egypt

    Directory of Open Access Journals (Sweden)

    Atef Mahmoud Mohamed Sayed

    2013-01-01

    Full Text Available Screening twenty available advance lines of canola plant based on population density of the recorded pests throughout 2011 and 2012 seasons at Ismailia Agricultural Research Station Farm, Egypt was studied. The cabbage aphids; Brevicoryne brassicae, thrips; Thrips tabaci, diamondback moth; Plutella xylostella, leafminer; Liriomyza sp., whitefly; Bemisia tabaci and two-spotted spider mite; Tetranychus urticae were surveyed pests in canola. Six predacious species related pests; Coccinella septempunctata, Coccinella undecimpunctata, Stethorus gilvifrons, Chrysoperla carnea, Syrphus corollae and Orius spp. Diaretiella rapae, Cotesia plutellae and Diadegma inslare were the most common parasitoids emerging from the collected samples. The analysis of variance revealed significant variation among dates of observations, lines and in their interaction for all surveyed pests and their natural enemies. The percentage of explained variance of abiotic factors (minimum–maximum temperatures and relative humidity and biotic factors (predators and parasitism percentages altogether in the population densities of B. brassica, T. tabaci, P. xylostella, Liriomyza sp., B. tabaci and T. urticae in the second season were the greater percentage values as 87.0%, 94.7%, 88.9%, 70.1%, 63.2%, and 68.3%, respectively, compared to the first season (60.4%, 89.6%, 47.7%, 31.1%, 45.5% and 69.8% respectively. Mean performance of agronomic characters, phenotype’s coefficient of variation (PCV, genotype’s coefficient of variation (GCV, environmental coefficient of variation (ECV, heritability (Hb and genetic advance (GS% for yield and its attributes in canola genotypes were also studied. These results could be involved in breeding programme cultivated to improve future integrated pest management programme of canola in Egypt.

  9. Evaluation of Growth Indices and Estimation Seed Yield Loss Threshold of Canola in Response to Various Densities of Crop and Wild Mustard

    Directory of Open Access Journals (Sweden)

    Z Anafjeh

    2012-02-01

    Full Text Available ABSTRACT In order to study the effect of various densities of wild mustard (Sinapis arvensis L. on growth indices of Canola (Brassica napus L. in climate of Molathani, Ahvaz, an experiment was conducted in the experimental field of Ramin Agricultural and Natural Resources University, in 2006-2007. The split-plot set of treatments was arranged within randomized complete block design with four replications. Treatments included of wild mustard at five levels (0, 7, 14, 21 and 35 plants m2 and Canola at three densities (60, 80 and 100 plants m2. The results showed that the increase in mustard density rates lead to decreasing total dry matter, leaf area index, crop growth rate, relative growth rate and mean pod dry matter in three canola densities (60, 80 and 100 plants m2. Somewhat the lowest growth indices was obtained in 35 plants mustard (that is the highest mustard density. In addition damage rate of mustard decreased canola seed yield for 7, 14, 21 and 35 plants mustard up to 61, 71, 76 and 91%, respectively. Keywords: Plant density, Competition, Yield loss threshold, Growth indices, Canola, Mustard

  10. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    International Nuclear Information System (INIS)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas; Lazarus, William

    2011-01-01

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L -1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L -1 and SVO from 0.64 to 0.83 L -1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L -1 and from 0.14 to 0.33 L -1 , respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L -1 for soybean and 0.44 L -1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L -1 . (author)

  11. Recent advances in canola meal utilization in swine nutrition

    OpenAIRE

    Mejicanos, G.; Sanjayan, N.; Kim, I. H.; Nyachoti, C. M.

    2016-01-01

    Abstract Canola meal is derived from the crushing of canola seed for oil extraction. Although it has been used in swine diets for a long time, its inclusion levels have been limited due to concerns regarding its nutritive value primarily arising from results of early studies showing negative effects of dietary canola meal inclusion in swine diets. Such effects were attributable to the presence of anti-nutritional factors (ANF; notably glucosinolates) in canola meal. However, due to advances i...

  12. 7 CFR 810.301 - Definition of canola.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of canola. 810.301 Section 810.301 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... GRAIN United States Standards for Canola-Terms Defined § 810.301 Definition of canola. Seeds of the...

  13. Canola meal on starting pigs feeding

    Directory of Open Access Journals (Sweden)

    Lina Maria Peñuela-Sierra

    2015-12-01

    Full Text Available Three experiments were carried out to determine the nutritional values and evaluate the performance of piglets fed on canola meal. In experiment I, a digestibility assay was conducted using fourteen barrow pigs, with an initial body weight of 20.62±3.30 kg. The evaluated feedstuff was canola meal, with a level of 250 g/kg in the basal diet (corn + soybean meal-based. The experimental unit consisted of one pig, with a total of seven experimental units per diet. The values as (fed basis of digestible (DE and metabolizable (ME energy of canola meal were 2,995 kcal/kg and 2,796 kcal/kg, respectively. In experiment II, ileal digestibility assays were carried out to determine the apparent and true ileal digestibility coefficient and digestible amino acids. Three crossbred pigs were used, with a BW of 38.6±1.98 kg. The treatments consisted of two diets, with a single source of protein (canola meal and one protein-free diet (OFD. The values of digestible amino acids in canola meal were as follows: lysine: 11.8 g/kg; methionine+cystine: 9.1 g/kg; threonine: 7.9 g/kg; tryptophan: 2.4 g/kg; leucine: 15.7 g/kg; and isoleucine: 8.7 g/kg. In experiment III, 60 piglets (BW= 15.08±0.72 kg to 30.26±2.78 kg were allotted in a completely randomized design. The treatments consisted of four diets with increasing levels of canola meal (50, 100, 150 and 200 g/kg, six replicates and experimental unit consisted of two pigs. Additionally, a control diet was formulated containing 0.0 g/kg CM. Regression analysis indicates that there was no effect (P?0.05 of the level of canola meal inclusion on pigs performance. The performance results suggest that it is feasible to use up to 200 g/kg of canola meal in starting pigs diet, without impairing performance and the feeding cost.

  14. Blackleg (Leptosphaeria maculans Severity and Yield Loss in Canola in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Hwang

    2016-07-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L. in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields.

  15. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  16. Metabolomics differentiation of canola genotypes: towards an understanding of canola allelochemicals

    Directory of Open Access Journals (Sweden)

    Md eAsaduzzaman

    2015-01-01

    Full Text Available Allelopathy is one crop attribute that could be incorporated in an integrated weed management system as a supplement to synthetic herbicides. However, the underlying principles of crop allelopathy and secondary metabolite production are still poorly understood including in canola. In this study, an allelopathic bioassay and a metabolomic analysis were conducted to compare three non-allelopathic and three allelopathic canola genotypes. Results from the laboratory bioassay showed that there were significant differences among canola genotypes in their ability to inhibit root and shoot growth of the receiver annual ryegrass; impacts ranged from 14% (cv. Atr-409 to 76% (cv. Pak85388-502 and 0% (cv. Atr-409 to 45% (cv. Pak85388-502 inhibition respectively. The root length of canola also differed significantly between genotypes, there being a non-significant negative interaction (r = -0.71; y=0.303x+21.33 between the root length of donor canola and of receiver annual ryegrass. Variation in chemical composition was detected between organs (root extracts, shoot extracts and root exudates and also between canola genotypes. Root extracts contained more secondary metabolites than shoot extracts while fewer compounds were recorded in the root exudates. Individual compound assessments identified a total of 14 secondary metabolites which were identified from the six tested genotypes. However, only Pak85388-502 and Av-opal exuded sinapyl alcohol, p-hydroxybenzoic acid and 3,5,6,7,8-pentahydroxy flavones in agar growth medium, suggesting that the synergistic effect of these compounds playing a role for canola allelopathy against annual ryegrass in vitro.

  17. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress.

    Science.gov (United States)

    Metwally, Ashraf M; Radi, Abeer A; El-Shazoly, Rasha M; Hamada, Afaf M

    2018-01-22

    Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil -1 ). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.

  18. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  19. Comparative environmental impact assessment of herbicides used on genetically modified and non-genetically modified herbicide-tolerant canola crops using two risk indicators.

    Science.gov (United States)

    Oliver, Danielle P; Kookana, Rai S; Miller, Rosalind B; Correll, Raymond L

    2016-07-01

    Canola (Brassica napus L.) is the third largest field crop in Australia by area sown. Genetically modified (GM) and non-GM canola varieties released or being developed in Australia include Clearfield® (imidazolinone tolerant), TT (triazine tolerant), InVigor® (glufosinate-ammonium tolerant), Roundup Ready® - RR® (glyphosate tolerant) and Hyola® RT® (tolerant to both glyphosate and triazine). We used two risk assessment approaches - the Environmental Impact Quotient (EIQ) and the Pesticide Impact Rating Index (PIRI) - to compare the environmental risks associated with herbicides used in the canola varieties (GM and non-GM) that are currently grown or may be grown in the future. Risk assessments found that from an environmental impact viewpoint a number of herbicides used in the production of TT canola showed high relative risk in terms of mobility and ecotoxicity of herbicides. The EIQ field use rating values for atrazine and simazine in particular were high compared with those for glyphosate and trifluralin. Imazapic and imazapyr, which are only used in Clearfield® canola, had extremely low EIQ field use rating values, likely reflecting the very low application rates used for these chemicals (0.02 to 0.04kg/ha) compared with those used for atrazine and simazine (1.2 to 1.5kg/ha). The PIRI assessment showed that irrespective of the canola variety grown, trifluralin posed a high toxicity risk to fish (Rainbow trout, Oncorhynchus mykiss), algae and Daphnia sp. While the replacement of trifluralin with propyzamide had little effect on the mobility score, it greatly decreased the ecotoxicity score to fish, algae and Daphnia sp. due to the lower LC50 values for propyzamide compared with trifluralin. This study has shown that based on likelihood of off-site transport of herbicides in surface water and potential toxicity to non-target organisms, the GM canola varieties have no advantage over non-herbicide tolerant (non HT) or Clearfield® canola. Crown Copyright

  20. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  1. Decremento de la calidad fisiológica durante el almacenamiento en semillas de maíz, frijol y canola

    OpenAIRE

    Brenes Alcántara, Edgar

    2012-01-01

    xii La humedad relativa y la temperatura del almacén, así como el contenido de humedad de la semilla, provocan deterioro de la misma, pero se desconoce la tasa a la cual ocurre en especies con diferente composición química. En el presente estudio se evaluó el efecto interactivo de diferentes ambientes de almacenamiento en la calidad fisiológica en semillas de maíz (Zea mays L.), frijol (Phaseolus vulgaris L.) y canola (Brassica campestris L.). Se generaron ambientes de...

  2. Response and sensitivity of lipid related molecular structure to wet and dry heating in Canola tissue

    Science.gov (United States)

    Abeysekara, Saman; Samadi; Yu, Peiqiang

    2012-05-01

    Heat treatments are used to manipulate nutrient utilization, availability and functional properties. The objective of this study was to characterize any molecular level changes of the functional groups associated with lipid structure in canola (Brassica) seed, as affected during the wet and dry heat treatment processes using molecular spectroscopy. The parameters included lipid CH3 asymmetric (ca. 2970-2946 cm-1), CH2 asymmetric (ca. 2945-2880 cm-1), CH3 symmetric (ca. 2881-2864 cm-1) and CH2 symmetric (ca. 2864-2770 cm-1) functional groups, lipid carbonyl Cdbnd O ester group (ca. 1774-1711 cm-1), lipid unsaturation group (CH attached to C-C) (ca. 3007 cm-1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Raw canola seeds were used for the control or autoclaved at 120 °C for 1 h (HT-1: wet heating) or dry roasted at 120 °C for 1 h (HT-2: dry heating). Molecular spectral analysis of lipid functional group ratios were not significantly changed (P > 0.05) in the CH2 asymmetric to CH3 asymmetric stretching band peak intensity ratios for canola seed. Both wet (HT-1) and dry heating method (HT-2) had no significant effect (P > 0.05) on lipid carbonyl Cdbnd O ester group and lipid unsaturation group (CH attached to Cdbnd C). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH3 and CH2 asymmetric and symmetric region (ca. 2992-2770 cm-1), unsaturated lipids band region (ca. 3025-2993 cm-1) and lipid carbonyl Cdbnd O ester band region (ca. 1774-1711 cm-1). The results indicated that both dry and wet heating of given intense had no impact to the molecular spectrum in lipid related functional groups of canola seed, and was not strong enough to elicit heat-induced changes in lipid conformation.

  3. Honey bee contribution to canola pollination in Southern Brazil Abelhas melíferas na polinização de canola no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Annelise de Souza Rosa

    2011-04-01

    Full Text Available Although canola, (Brassica napus L., is considered a self-pollinating crop, researchers have indicated that crop productivity increases as a result of honey bee Apis mellifera L. pollination. Given this crop's growing importance in Rio Grande do Sul State, Brazil, this work evaluated the increase in pod and seed productivity with respect to interactions with anthophilous insects and manual pollination tests. The visiting frequency of A. mellifera was correlated with the crop's blooming progression, and productivity comparisons were made between plants visited by insects, manually pollinated plants (geitonogamy and xenogamy and plants without pollination induction. Pod set and seed production per plant were determined for each treatment. Among the 8,624 recorded flower-visiting insects, Hymenoptera representatives were the most prevalent (92.3%, among which 99.8% were A. mellifera. The correlation between these bees and blooming progression was positive (r = 0.87; p = 0.002. Pollination induction increased seed productivity from 28.4% (autogamy to 50.4% with insect visitations, as well as to 48.7 (geitonogamy and to 55.1% (xenogamy through manual pollination.A canola (Brassica napus L. é considerada autocompatível, embora pesquisadores indiquem aumento na produtividade da cultura resultante da polinização efetuada por Apis mellifera L.. Considerando-se a crescente importância dessa cultura no Rio Grande do Sul, avaliou-se o incremento da produtividade de síliquas e sementes a partir de interações com insetos antófilos e com testes de polinização manual. A freqüência de visitas de A. mellifera foi relacionada com o desenvolvimento da floração da cultura e a produtividade foi comparada entre plantas visitadas por insetos, polinizadas manualmente (geitonogamia e xenogamia e com ausência de indução de polinização. Em cada tratamento avaliou-se a produtividade de síliquas e de sementes formadas por planta. Dentre os 8.624 insetos

  4. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    Science.gov (United States)

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  5. Lipase-Catalyzed Modification of Canola Oil with Caprylic Acid

    DEFF Research Database (Denmark)

    Wang, Yingyao; Luan, Xia; Xu, Xuebing

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids. Six commercial lipases from different sources were screened for their ability to incorporate the caprylic acid into the canola oil. The positional distribution of FA on the glycerol backbone...

  6. Antioxidant properties of Brassica vegetables

    OpenAIRE

    Soengas Fernández, María del Pilar; Sotelo Pérez, Tamara; Velasco Pazos, Pablo; Cartea González, María Elena

    2011-01-01

    Brassica vegetables include some economically interesting crops such as cabbage, broccoli, cauliflower, Brussels sprouts, kale and turnip, which are consumed all over the world. A high intake of Brassica vegetables reduces the risk of age-related chronic illness such as cardiovascular health and other degenerative diseases and reduces the risk of several types of cancer, thanks in part to the antioxidant properties of different compounds. Compared to other vegetables, Brassica vegetables have...

  7. Tamanho de parcela e número de repetições em canola

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2015-06-01

    Full Text Available Os objetivos deste trabalho foram determinar o tamanho ótimo de parcela e o número de repetições, para avaliar a massa verde de canola (Brassica napus L.. Foram realizados 27 ensaios de uniformidade de 5m×5m (25m2, sendo nove ensaios para cada um dos seguintes híbridos: Hyola 61, Hyola 76 e Hyola 433. Cada ensaio foi dividido em 25 unidades experimentais básicas (UEB de 1m×1m, totalizando 675 UEB. Foi pesada a massa verde das plantas de cada UEB. O tamanho ótimo de parcela (Xo foi determinado por meio do método da curvatura máxima do modelo do coeficiente de variação, e as comparações de médias, entre os híbridos, foram feitas pelo teste de Scott-Knott. O número de repetições, para experimentos nos delineamentos inteiramente casualizados e blocos ao acaso, em cenários formados pelas combinações de i tratamentos (i=3, 4, ..., 50 e d diferenças mínimas entre médias de tratamentos a serem detectadas como significativas a 5% de probabilidade, pelo teste de Tukey, expressas em percentagem da média do experimento (d=10%, 13%, ..., 40%, foi determinado por processo iterativo até a convergência. O tamanho ótimo de parcela para avaliar a massa verde de canola é 6,41m2. Quatro repetições, para avaliar até 50 tratamentos, nos delineamentos inteiramente casualizados e blocos ao acaso, são suficientes para identificar, como significativas a 5% de probabilidade, pelo teste de Tukey, diferenças entre médias de tratamentos de 41,4% da média do experimento.

  8. Brassica napus L.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... time PCR analysis revealed that they were salt-inducible genes and their transcript levels were gradually increased during 0 - 24 ... Key words: Salt stress, Brassica napus L., anti-oxidant enzymes, quantitative real-time PCR. .... mol.l-1 pH 7.0 ice-cold phosphate buffer (1 mmol.l-1 EDTA, pH7.8,. 0.1% Triton ...

  9. Selection for Improved Energy Use Efficiency and Drought Tolerance in Canola Results in Distinct Transcriptome and Epigenome Changes.

    Science.gov (United States)

    Verkest, Aurine; Byzova, Marina; Martens, Cindy; Willems, Patrick; Verwulgen, Tom; Slabbinck, Bram; Rombaut, Debbie; Van de Velde, Jan; Vandepoele, Klaas; Standaert, Evi; Peeters, Marrit; Van Lijsebettens, Mieke; Van Breusegem, Frank; De Block, Marc

    2015-08-01

    To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Occurrence of Diaretiella rapae (Mc´Intosh, 1855 (Hymenoptera: Aphidiidae Parasitising Lipaphis erysimi (Kaltenbach, 1843 and Brevicoryne brassicae (L. 1758 (Homoptera: Aphididae in Brassica napus in Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Mussury Rosilda Mara

    2002-01-01

    Full Text Available The occurrence of Diaretiella rapae parasitising Lipaphis erysimi and Brevicoryne brassicae in canola field (Brassica napus was evaluated through two sample methods in Dourados-MS. The methods, used weekly, were: entomologic sweep net and plants sacking. The aphids population was observed from initial to the senescence plant development. Aphids were more abundant during the flowering phase, and they were usually located in the stems of the inflorescence and development fruits. In this phase the largest parasitism level for D. rapae (89,7% occurred. The sample method with a sweep net captured significantly (t=4,484, P <= 0,01 more D. rapae while sacking method captured more parasitise aphids (t=2,199 with P <= 0,05 and active aphids (t=3,513, P <= 0,01.

  11. Nutritional and Metabolic Characteristics of Brassica carinata Co-products from Biofuel Processing in Dairy Cows.

    Science.gov (United States)

    Ban, Yajing; Khan, Nazir Ahmad; Yu, Peiqiang

    2017-07-26

    The increased utilization of Brassica carinata in the biofuel industry in Canada has resulted in the large-scale production of co-products that can be potentially exploited as alternative protein ingredients in dairy ration. The objectives of this study were to investigate the nutritive value of carinata presscake and meal for dairy cows in terms of (1) nutrient and antinutrient composition, (2) rumen degradation kinetics of organic matter (OM), crude protein (CP), and neutral detergent fiber, (3) hourly effective degradation ratio and potential N to energy synchronization, (4) intestinal digestion of rumen undegraded protein (RUP), and (5) total metabolizable protein (MP) supply to the small intestine. Samples (n = 3) of carinata meal, carinata presscake, and canola meal (as reference feed), collected from three consecutive batches, were evaluated. In comparison to canola meal, carinata presscake and meal had greater (p < 0.05) contents of CP [39.7 versus 48.5 and 53.5% dry matter (DM)], with a high proportion of soluble crude protein (24.0 versus 53.0 and 72.6% CP), resulting in their extensive degradation (59.2 versus 76.3 and 89.3% CP) in the rumen. As a result, carinata presscake and meal supplied smaller (p < 0.05) quantities (92 and 136 g/kg of DM) of MP compared to canola meal (153 g/kg of DM). The contents of glucosinolates were greater (p < 0.05) in carinata presscake (168.5 μmol/g) and meal (115.2 μmol/g) compared to canola meal (3.4 μmol/g), limiting its utilization as a ruminant feed. Carinata co-products can be used as an alternative feed protein source, given their nutrient composition, rumen degradation, and intestinal digestion characteristics, provided that the high glucosinolate content can be reduced.

  12. The progress of intersubgenomic heterosis studies in Brassica napus

    African Journals Online (AJOL)

    The new nomenclature of Brassica has been suggested in a previous study by same authours where the symbols of Ar, Aj and An represented the A genome in the Brassica rapa, Brassica juncea and Brassica napus, Bb, Bj and Bc for the B genome of Brassica nigra (black mustard), B. juncea and Brassica carinata, Co, Cn ...

  13. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    Science.gov (United States)

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  14. The fate of chromosomes and alleles in an allohexaploid Brassica population.

    Science.gov (United States)

    Mason, Annaliese S; Nelson, Matthew N; Takahira, Junko; Cowling, Wallace A; Alves, Gustavo Moreira; Chaudhuri, Arkaprava; Chen, Ning; Ragu, Mohana E; Dalton-Morgan, Jessica; Coriton, Olivier; Huteau, Virginie; Eber, Frédérique; Chèvre, Anne-Marie; Batley, Jacqueline

    2014-05-01

    Production of allohexaploid Brassica (2n = AABBCC) is a promising goal for plant breeders due to the potential for hybrid heterosis and useful allelic contributions from all three of the Brassica genomes present in the cultivated diploid (2n = AA, 2n = BB, 2n = CC) and allotetraploid (2n = AABB, 2n = AACC, and 2n = BBCC) crop species (canola, cabbages, mustards). We used high-throughput SNP molecular marker assays, flow cytometry, and fluorescent in situ hybridization (FISH) to characterize a population of putative allohexaploids derived from self-pollination of a hybrid from the novel cross (B. napus × B. carinata) × B. juncea to investigate whether fertile, stable allohexaploid Brassica can be produced. Allelic segregation in the A and C genomes generally followed Mendelian expectations for an F2 population, with minimal nonhomologous chromosome pairing. However, we detected no strong selection for complete 2n = AABBCC chromosome complements, with weak correlations between DNA content and fertility (r(2) = 0.11) and no correlation between missing chromosomes or chromosome segments and fertility. Investigation of next-generation progeny resulting from one highly fertile F2 plant using FISH revealed general maintenance of high chromosome numbers but severe distortions in karyotype, as evidenced by recombinant chromosomes and putative loss/duplication of A- and C-genome chromosome pairs. Our results show promise for the development of meiotically stable allohexaploid lines, but highlight the necessity of selection for 2n = AABBCC karyotypes.

  15. 7 CFR 810.304 - Grades and grade requirements for canola.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for canola. 810.304... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Canola-Terms Defined Grades and Grade Requirements § 810.304 Grades and grade requirements for canola. Grading factors Grades, U.S. Nos...

  16. Abiotic Factors Affecting Canola Establishment and Insect Pest Dynamics

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2012-01-01

    Full Text Available Canola is grown mainly as an oil-seed crop, but recently the interest in canola has increased due to its potential as a biodiesel crop. The main objectives of this paper were to evaluate effects of abiotic factors and seed treatment on canola plant establishment and pest pressure in the Southern High Plains of Texas. Data was collected at two field locations during the first seven months of two field seasons. Based on multi-regression analysis, we demonstrated that precipitation was positively associated with ranked plant weight, daily minimum relative humidity and maximum temperature were negatively associated with plant weight, and that there may be specific optimal growth conditions regarding cumulative solar radiation and wind speed. The outlined multi-regression approach may be considered appropriate for ecological studies of canola establishment and pest communities elsewhere and therefore enable identification of suitable regions for successful canola production. We also demonstrated that aphids were about 35% more abundant on non-treated seeds than on treated seeds, but the sensitivity to seed treatment was only within four months after plant emergence. On the other hand, seed treatment had negligible effect on presence of thrips.

  17. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus

    Science.gov (United States)

    Bennett, Rick A.; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola–whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity. PMID:29320498

  18. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage

    Directory of Open Access Journals (Sweden)

    W. G. Dilantha Fernando

    2016-03-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a major threat to canola production in Canada. With the exception of China, L. maculans is present in areas around the world where cruciferous crops are grown. The pathogen can cause trade barriers in international canola seed export due to its potential risk as a seed contaminant. The most recent example is China restricting canola seeds imported from Canada and Australia in 2009. Therefore, it is important to assess the level of Blackleg infection in Canadian canola seed lots and dockage (seeds and admixture. In this study, canola seed lots and dockage samples collected from Western Canada were tested for the presence of the aggressive L. maculans and the less aggressive L. biglobosa. Results showed that both L. maculans and L. biglobosa were present in seed lots and dockage samples, with L. biglobosa being predominant in infected seeds. Admixture separated from dockage had higher levels of L. maculans and L. biglobosa infection than samples from seed lots. Admixture appears to harbour higher levels of L. maculans infection compared to seeds and is more likely to be a major source of inoculum for the spread of the disease than infected seeds.

  19. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage.

    Science.gov (United States)

    Fernando, W G Dilantha; Zhang, Xuehua; Amarasinghe, Chami C

    2016-03-01

    Blackleg, caused by Leptosphaeria maculans, is a major threat to canola production in Canada. With the exception of China, L. maculans is present in areas around the world where cruciferous crops are grown. The pathogen can cause trade barriers in international canola seed export due to its potential risk as a seed contaminant. The most recent example is China restricting canola seeds imported from Canada and Australia in 2009. Therefore, it is important to assess the level of Blackleg infection in Canadian canola seed lots and dockage (seeds and admixture). In this study, canola seed lots and dockage samples collected from Western Canada were tested for the presence of the aggressive L. maculans and the less aggressive L. biglobosa. Results showed that both L. maculans and L. biglobosa were present in seed lots and dockage samples, with L. biglobosa being predominant in infected seeds. Admixture separated from dockage had higher levels of L. maculans and L. biglobosa infection than samples from seed lots. Admixture appears to harbour higher levels of L. maculans infection compared to seeds and is more likely to be a major source of inoculum for the spread of the disease than infected seeds.

  20. Effect of Canola oil enrichment with microconsituants against metabolic disorders

    OpenAIRE

    Capel, Frédéric; Pineau, Gaëlle; Pitois, Elodie; De Saint Vincent, Sarah; Chardigny, Jean-Michel; Demaison, Luc; Vaysse, Carole; Geleon, A; Lagarde, Michel; Malpuech-Brugère, Corinne; Michalski, Marie-Caroline

    2016-01-01

    Aim/hypothesis: Insulin resistance (IR) favors the progression of metabolicsyndrome (MetS) and increases the risk of type2 diabetes. IR results from metabolic dysfunctions,oxidative stress and inflammation caused by ectopic fat depots. We studied the effect of canola oil enriched with micronutrients naturally present in canola seed on IR and MetS during a high fat (HF)-challenge]. [br/] Research design and Methods: Rats were fed with a HF diet containing 30% of lipids, mainly derived from...

  1. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    Science.gov (United States)

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  2. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  3. Occurrence of metaxenia and false hybrids in Brassica juncea L. cv. Kikarashina × B. napus

    Science.gov (United States)

    Tsuda, Mai; Konagaya, Ken-ichi; Okuzaki, Ayako; Kaneko, Yukio; Tabei, Yutaka

    2011-01-01

    Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids. PMID:23136472

  4. Growth performance, haematology, serum biochemistry and meat quality characteristics of Japanese quail (Coturnix coturnix japonica fed canola meal-based diets

    Directory of Open Access Journals (Sweden)

    Caven M. Mnisi

    2018-03-01

    Full Text Available The present study investigated the effect of partial replacement of soybean meal (Glycine max with canola meal (CM (Brassica napus on the growth performance, haematology, serum biochemistry and meat quality characteristics of female Japanese quails in a 35-day feeding trial. One hundred and forty 6-week-old quails 158.28 ± 11.919 g were randomly allocated to 5 isonitrogenous and isoenergetic experimental diets: control diet (CM0; with no CM inclusion; CM0 with 2.5% (CM25, 5.0% (CM50, 12.5% (CM125 and 17.5% (CM175 soybean meal replaced with CM. Average weekly gain (AWG and feed conversion efficiency (FCE were determined. Haematology, serum biochemistry, carcass traits and meat quality parameters were determined at slaughter. Quails fed CM175 had the lowest (P  0.05 on cooking losses and peak positive force of quail meat. It was concluded that CM can replace soybean in quail diets up to 12.5% without compromising growth performance, health and quality of meat. Inclusion levels beyond 12.5% promoted poor voluntary feed intake and thus may require feed additives to enhance utilization. Keywords: Japanese quail, Haematology, Meat, Feed intake, Canola meal

  5. A reproducible protocol for regeneration and transformation in canola

    African Journals Online (AJOL)

    The objective of the present study is to develop an efficient protocol for shoot and plant regeneration using five commercial canola cultivars grown under the Egyptian agricultural conditions. The regeneration efficiency from hypocotyl explants was examined. The data indicated that embryonic calli were formed within two ...

  6. Identification of Turnip mosaic virus isolated from canola in northeast ...

    African Journals Online (AJOL)

    During March and April of 2011, 436 samples showing viral disease symptoms were collected from canola fields in the Khorasan Razavi province. The samples were tested by double-antibody sandwich (DAS)-enzyme linked immunosorbent assay (ELISA) for the presence of Turnip mosaic virus (TuMV). Among the 436 ...

  7. Effects of canola and corn oil mimetic on Jurkat cells

    Directory of Open Access Journals (Sweden)

    Akinsete Juliana A

    2011-06-01

    Full Text Available Abstract Background The Western diet is high in omega-6 fatty acids and low in omega-3 fatty acids. Canola oil contains a healthier omega 3 to omega 6 ratio than corn oil. Jurkat T leukemia cells were treated with free fatty acids mixtures in ratios mimicking that found in commercially available canola oil (7% α-linolenic, 30% linoleic, 54% oleic or corn oil (59% linoleic, 24% oleic to determine the cell survival or cell death and changes in expression levels of inflammatory cytokines and receptors following oil treatment. Methods Fatty acid uptake was assessed by gas chromatography. Cell survival and cell death were evaluated by cell cycle analyses, propidium-iodide staining, trypan blue exclusion and phosphatidylserine externalization. mRNA levels of inflammatory cytokines and receptors were assessed by RT-PCR. Results There was a significant difference in the lipid profiles of the cells after treatment. Differential action of the oils on inflammatory molecules, following treatment at non-cytotoxic levels, indicated that canola oil mimetic was anti-inflammatory whereas corn oil mimetic was pro-inflammatory. Significance These results indicate that use of canola oil in the diet instead of corn oil might be beneficial for diseases promoted by inflammation.

  8. Canola traits and some soil biological parameters in response to ...

    African Journals Online (AJOL)

    This study describes the effects of fertilization and tillage methods on soil microbial community and canola traits. A field experiment was carried out in 2009 to 2010 growing season. Experiments were arranged in a split plot based on randomized complete block design with three replications. Main plots consisted of no ...

  9. Glucosinolates and other anti-nutritive compounds in canola meals ...

    African Journals Online (AJOL)

    Canola meals from six varieties cultivated in Egypt (Seru4 and Pactol) and Japan (Kirariboshi, Tohoku95, Oominantane and Kizakinonatane) were investigated regarding anti-nutritive compounds, namely glucosinolates, phytic acid, sinapine and total phenols. All varieties except Kirariboshi contained a high level of total ...

  10. Nitrous Oxide (N2O) Emissions in Wheat and Canola Crops under Fertigation Management in the Canadian Prairies

    Science.gov (United States)

    Chai, L.; Hernandez Ramirez, G.; Dyck, M. F.; Pauly, D.; Kryzanowski, L.; Middleton, A.; Powers, L. A.; Lohstraeter, G.; Werk, D.

    2016-12-01

    Nitrous oxide (N2O) emissions from agricultural soils contribute significantly to the amount of greenhouse gases released to the atmosphere every year. Farming practices, such as fertigation in which nitrogen fertilizer is added to crops through irrigation water, could increase the risk for N2O losses. To assess the effect of N fertigation rates on N2O production, field chambers were used to collect weekly gas samples throughout the 2015 growing season in wheat (Triticum aestivum) and canola (Brassica Napus) plots in southern Alberta, Canada. Synthetic fertilizer was either added at seeding or both added at seeding and through irrigation water at one early crop growth stage. The 6 fertilizer treatments were: 60, 90 and 120 kg N ha-1 added at seeding in early May, and 30, 60 and 90 kg N ha-1 at seeding plus another 30 kg N ha-1 added through fertigation in mid-June. Controls with no fertilizer were also evaluated, and each treatment was replicated 4 times. In the wheat plots at a fertilization rate of 120 kg N ha-1, irrespective of single or split application, a larger N2O flux was produced compared to the control (P = 0.024). Similarly, in canola, a total N addition of 90 kg N ha-1 also led to larger N2O fluxes than the control (P = 0.035). The use of fertigation to split the N application had no effect on the N2O emissions in canola; however, in wheat, there was a statistical difference between emissions from 90 kg N ha-1 added all at seeding versus 90 kg N ha-1 split between seeding (60) and fertigation (30); splitting the fertilizer resulted in a 62% decrease in the overall N2O emissions (324 g vs. 524 g N2O-N ha-1; P = 0.039). No other N rates resulted in statistically different N2O emissions when N application was split. These results suggest that fertigation can reduce N2O emissions, but only at moderate N rates (90 kg ha-1 yr-1); conversely, when lower (60) or higher (120) rates are split, emissions remain unaffected.

  11. Estimação da área foliar de canola por dimensões foliares

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2015-06-01

    Full Text Available O objetivo deste trabalho foi modelar e identificar os melhores modelos para a estimação da área foliar determinada por fotos digitais, de três híbridos de canola, em função do comprimento, ou da largura e/ou do produto comprimento vezes largura do limbo foliar. Foram conduzidos três ensaios de uniformidade com canola (Brassica napus L., e em cada ensaio avaliou-se um dos seguintes híbridos: Hyola 61, Hyola 76 e Hyola 433. Em cada híbrido, foram coletadas 125 folhas aos 77, 84, 91 e 97 dias após a semeadura, totalizando 1.500 folhas. Nessas 1.500 folhas, foram mensurados o comprimento (C e a largura (L, e calculado o produto do comprimento vezes a largura (C×L do limbo foliar. Determinou-se a área foliar de cada folha, por meio do método de fotos digitais (Y. Posteriormente, para cada híbrido, foram separadas, aleatoriamente, 80% das folhas (100 folhas por coleta × 4 coletas por híbrido = 400 folhas por híbrido para a geração de modelos do tipo quadrático, potência e linear, de Y em função do C, da L, e/ou do C×L. Os 20% das folhas restantes (100 folhas por híbrido foram usadas, separadamente, para a validação dos modelos. Em canola, os modelos do tipo potência, para os híbridos Hyola 61 (Ŷ = 1,3000x1,9336, R2 = 0,9531, Hyola 76 (Ŷ = 1,0579x2,0383, R2 = 0,9733 e Hyola 433 (Ŷ = 1,4154x1,9096, R2 = 0,9613, são adequados para a estimação da área foliar determinada por fotos digitais (Y em função da largura do limbo foliar (x.

  12. The origins of edible brassicas

    OpenAIRE

    Dixon, Geoffrey Richard

    2017-01-01

    A summary of the horticultural types of Brassica oleracea (European vegetables) and B. rapa (Oriental vegetables) and the manner by which they both evolved from a common ancestor. This paper examines the evolution in cultivation of the two species which in parallel developed similar forms of edible plants.

  13. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  14. Effects of diet energy concentration and an exogenous carbohydrase on growth performance of weanling pigs fed diets containing canola meal produced from high protein or conventional canola seeds

    DEFF Research Database (Denmark)

    Pedersen, Trine Friis; Liu, Yanhong; Stein, Hans H.

    2016-01-01

    The objectives were to determine effects of diet NE and an exogenous carbohydrase on growth performance and physiological parameters of weanling pigs fed a corn-soybean meal (SBM) diet or diets containing high protein canola meal (CM-HP) or conventional canola meal (CM-CV). A total of 492 pigs...

  15. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, fermentation pattern, omasal nutrient flow, and performance in lactating dairy cows

    Science.gov (United States)

    Extrusion-treated canola meal (TCM) was produced in an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, fermentation pattern, omasal nutr...

  16. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, and omasal nutrient flow in lactating dairy cows

    Science.gov (United States)

    Treated canola meal (TCM) was produced as an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM) with the goal of enhancing amino acid (AA) availability for absorption in the small intestine of dairy cows. The objective of this study was to measure nutrient and micr...

  17. User Guidelines for the Brassica Database: BRAD.

    Science.gov (United States)

    Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.

  18. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    Full Text Available Resistance to pod shattering (shatter resistance is a target trait for global rapeseed (canola, Brassica napus L., improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.

  19. Adaptability and stability of canola hybrids in different sowing dates

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva Lima

    Full Text Available ABSTRACT Canola is an important crop in the world market, mainly for its oil being used for human consumption and biodiesel production, being a great economical option for the farmer, which are the reasons to the increase in its cultivation in Brazil. This study aimed to evaluate the adaptability and stability of canola hybrids, depending on the sowing dates. The canola hybrids (Hyola 61, Hyola 76, Hyola 411 and Hyola 433 were evaluated in three sowing dates (04/10, 04/25 and 05/10 in the agricultural years of 2013 and 2014, under a randomized complete block design with five replications. The response variables analyzed were seed yield and oil content. Adaptability and stability of the hybrids were evaluated by three methods: Wricke's ecovalence (1962; confidence index (ANNICCHIARICO, 1992 and method of maximum ideal deviation (LIN; BINNS, 1988. The methodology proposed by Wricke (1962 highlighted as stable the hybrids Hyola 61 for seed yield and Hyola 411 for oil content. In the methodology proposed by Lin and Binns (1988 and Annicchiarico (1992, the hybrids with higher general adaptability and stability were Hyola 411 and 433. These hybrids presented the highest means for seed yield and oil content with predictable and responsive behavior to changes in sowing dates tested in the region of Maringá-PR.

  20. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  1. Genetic diversity evaluation of rapeseed genotypes ( Brassica ...

    African Journals Online (AJOL)

    Oilseed is the most important source of vegetable oil and the basis of breeding strategies is genetic diversity assessment. Genetic diversity of 19 rapeseed genotypes as well as their ancient ancestors Brassica rapa L. and Brassica oleracea L. were assessed using random amplified polymorphic DNA (RAPD) primers and ...

  2. Performance of Regular and Modified Canola and Soybean Oils in Rotational Frying.

    Science.gov (United States)

    Przybylski, Roman; Gruczynska, Eliza; Aladedunye, Felix

    2013-01-01

    Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1-2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.

  3. IMPACTS OF IRON, NUTRIENTS, AND MINERAL FINES ON ANAEROBIC BIODEGRADATION OF CANOLA OIL IN FRESHWATER SEDIMENTS

    Science.gov (United States)

    Factors affecting anaerobic biodegradation kinetics of canola oil in freshwater sediments were investigated. An optimum dose of ferric hydroxide (10.5 g Fe(III)·kg-1 sediment) was found to stimulate anaerobic biodegradation of canola oil (18.6 g oil kg-1). ...

  4. Anti-nutritional factors in canola produced in the Western and ...

    African Journals Online (AJOL)

    The development of low erucic acid, low glucosinolate cultivars of canola seed has led to the availability of a feed ingredient with considerable potential to replace soyabean meal in diets for all classes of farm animals. The sinapine and glucosinolate content of various canola cultivars cultivated in two areas of the Western ...

  5. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176

  6. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.

  7. Physiological biosafety assessment of genetically modified canola on weed (Avena sativa).

    Science.gov (United States)

    Syed, Kashmala; Shinwari, Zabta Khan

    2016-03-01

    The present study was carried out for the assessment of physiological biosafety and effects of genetically modified (GM) canola on Avena sativa, which is a common weed plant of South Asia. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of A. sativa under sterilized conditions. The extracts were treated with 3%, 5%, and 10% concentrations of methanol. Results showed that the extract of GM canola increases the number of roots and root fresh weight. However, root length was significantly decreased. Similarly, a significant rate of increase was observed in shoot fresh weight and shoot length of A. sativa by treatment of GM canola. Emergence percentage, germination index, and emergence rate index show a significant effect of decrease when treated with GM canola. © The Author(s) 2013.

  8. Apis mellifera (Hymenoptera: Apidae) as a potential Brassica napus pollinator (cv. Hyola 432) (Brassicaceae), in Southern Brazil.

    Science.gov (United States)

    Rosa, A S; Blochtein, B; Ferreira, N R; Witter, S

    2010-11-01

    Brassica napus Linnaeus is considered a self-compatible crop; however, studies show that bee foraging elevates their seed production. Considering bee food shortages during the winter season and that the canola is a winter crop, this study aimed to evaluate the foraging behaviour of Apis mellifera Linnaeus, 1758 regarding those flowers, and to verify if it presents adequate behaviour for successfully pollinating this crop in Rio Grande do Sul State. The study was carried out in a canola field, in Southern Brazil. The anthesis stages were morphologically characterised and then related to stigma receptivity and pollen grain viability. Similarly, the behaviour of A. mellifera individuals on flowers was followed, considering the number of flowers visited per plant, the amount of time spent on the flowers, touched structures, and collected resources. Floral fidelity was inferred by analysing the pollen load of bees collected on flowers. The bees visited from 1-7 flowers/plant (x = 2.02; sd = 1.16), the time spent on the flowers varied between 1-43 seconds (x = 3.29; sd = 2.36) and, when seeking nectar and pollen, they invariably touched anthers and stigmas. The pollen load presented 100% of B. napus pollen. The bees' attendance to a small number of flowers/plants, their short permanence on flowers, their contact with anthers and stigma and the integral floral constancy allows their consideration as potential B. napus pollinators.

  9. Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Sundelin, Thomas; Jensen, Dan Funck; Lübeck, Mette

    2011-01-01

    and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed......Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing...... is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen–host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty...

  10. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    2016-12-01

    Full Text Available Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus, one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-wild or resistant near isogenic line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher

  11. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.

    Science.gov (United States)

    Duke, Kelly A; Becker, Michael G; Girard, Ian J; Millar, Jenna L; Dilantha Fernando, W G; Belmonte, Mark F; de Kievit, Teresa R

    2017-06-19

    The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H 2 O 2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.

  12. Herdabilidade e correlação fenotípica de caracteres relacionadosà produtividade de grãos e à morfologia da canola

    Directory of Open Access Journals (Sweden)

    Cleusa Adriane Menegassi Bianchi Krüger

    2011-12-01

    Full Text Available O objetivo deste trabalho foi estimar a herdabilidade e avaliar a correlação fenotípica entre caracteres de canola (Brassica napus relacionados à produtividade de grãos e à arquitetura de plantas. Foram realizados três experimentos, com espaçamento entre linhas de 0,20, 0,40 e 0,60 m. Durante dois anos de cultivo (2008 e 2009, os genótipos 'Hyola 432' e 'Hyola 61' foram avaliados em quatro densidades de plantio (20, 40, 60 e 80 plantas por metro quadrado, em cada experimento. Empregou-se o delineamento de blocos ao acaso, em arranjo fatorial 2x2x4 (anos x genótipos x densidades, com quatro repetições. Foram avaliados componentes ligados à produção (produtividade de grãos por área e por planta, número de síliquas por planta, número de grãos por síliqua e por planta, e massa de síliqua e à morfologia da canola (comprimento de síliqua, número de ramos secundários, altura de inserção do ramo secundário, comprimento de ramo e número de ramos terciários. A produtividade de grãos por área e por planta apresenta maior herdabilidade no menor espaçamento entre linhas. O número de síliquas e o de grãos por planta são os componentes de produção com maior correlação direta e positiva com a produtividade de grãos.

  13. Efeito da adubação potássica e da época de colheita na produtividade de canola

    Directory of Open Access Journals (Sweden)

    C. A. V. Rossetto

    1998-03-01

    Full Text Available O experimento foi desenvolvido na Fazenda Experimental São Manuel da Universidade Estadual Paulista, Campus de Botucatu, em Latossolo Vermelho-Amarelo fase arenosa, no ano de 1996, com o objetivo de estudar o efeito da adubação potássica e da época de colheita na produtividade de canola (Brassica napus L. var. oleifera Metzg.. O delineamento experimental foi o de blocos ao acaso com parcelas subdivididas, com quatro repetições. As parcelas constituíram-se de duas doses de potássio (0 e 40 kg ha-1 de K, e as subparcelas, de sete épocas de colheita, realizadas em intervalos semanais, no período de 112 a 154 dias após a semeadura. A adubação potássica não favoreceu o crescimento das plantas e a produtividade de sementes de canola, porém acarretou maior retenção das síliquas nas colheitas realizadas aos 147 e 154 dias da semeadura. A época de colheita não resultou em benefício consistente ao rendimento de sementes. O máximo de matéria seca da parte aérea das plantas foi atingido aos 112 dias da semeadura, e o das sementes, aos 126 dias, na presença da adubação potássica.

  14. Consumo e digestibilidade em ovinos alimentados com grãos e subprodutos da canola Intake and digestibility of sheep fed grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    Priscila Silva Neubern de Oliveira

    2009-03-01

    Full Text Available Objetivou-se avaliar a inclusão de 8% de grãos e subprodutos da canola (farelo ou torta nas dietas sobre o consumo e a digestibilidade. Seis ovinos machos não-castrados da raça Santa Inês (210 e 240 dias de idade e peso corporal de 44,8 + 4,2kg receberam dietas contendo 40% de feno de capim Tifton e 60% de concentrado composto por milho em grão, farelo de soja, mistura mineral, além de canola em grão integral, farelo de canola e torta de canola, que constituíram os três tratamentos. Não houve diferença (P>0,05 para o consumo de matéria seca (MS, matéria orgânica (MO, extrato etéreo (EE, energia bruta (EB, fibra em detergente neutro (FDN, carboidratos totais (CT e carboidratos não-fibrosos (CNF entre as dietas experimentais, no ensaio de digestibilidade. Não houve efeito (P>0,05 de tratamento para a digestibilidade de MS, MO, EE, PB, EB, FDN, CT e CNF. Recomenda-se incluir até 8% de grãos e subprodutos da canola (farelo ou torta na dieta de ovinos.The effect of feeding 8% of grains and byproducts (meal or cake of canola on intake and digestibility was evaluated. Six non castrated Santa Ines sheep (from 210 to 240 days old and body weight of 44.8 + 4.2kg were fed diets composed by 40% of Tifton hay and 60% of concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. No differences on the intakes of dry matter (DM, organic matter (OM, ether extract (EE, gross energy (GE, neutral detergent fiber (NDF, total carbohydrates (TC and non fiber carbohydrate (NFC were observed among treatments, in the digestibility trial. No treatment effect on the digestibilities of DM, OM, EE, CP, GE, NDF, TC and NFC was observed. It is recommended to include up to 8% of grains and byproducts (meal or cake of canola in the sheep diet.

  15. Physico-chemical characteristics and sensory acceptance of Italiantype salami with canola oil addition

    Directory of Open Access Journals (Sweden)

    Nelcindo Nascimento Terra

    2014-02-01

    Full Text Available The aim of this study was to evaluate the effects of partial pork fat replacement with emulsified canola oil in Italian-type salami. Three treatments were done: Control (100% pork fat, without fat replacement, T1 (15% pork fat was replaced by emulsified canola oil and T2 (30% pork fat was replaced by emulsified oil canola. There were evaluated the salamis’ physicochemical characteristics (pH, water activity, weight loss, color and lipid oxidation during the manufacture and storage period, and sensory evaluation after the manufacture process. The emulsified canola oil addition at different levels did not change the pH and color during the manufacture process, even though significant differences were found in these parameters during the storage period. The water activity did not differ significantly among the treatments. However, the treatments with emulsified canola oil added have a lower weight loss than the control. It was possible to observe an elevation on lipid oxidation values in the T2 during manufacture and storage periods, while in the T1, the values did not differ from the control at the end of manufactures and remained lower than the control during the storage period. Even more, the partial replacement of pork fat by emulsified canola oil did not affect the acceptance of the product for aroma, flavor, color, texture and visual appearance. Thus, the 15% pork fat replacement by emulsified canola oil in Italian-type salami is a viable alternative for the product diversification.

  16. Infection of Plasmodiophora brassicae in Chinese cabbage.

    Science.gov (United States)

    Ji, R; Zhao, L; Xing, M; Shen, X; Bi, Q; Peng, S; Feng, H

    2014-12-19

    Brassica crops infected by Plasmodiophora brassicae can produce root galls (clubroots) and be prevented from growing normally. To understand the series of changes that occur in the host root during root gall production, the resistance character of 21 Chinese cabbage lines were identified and then resistant and susceptible lines were used for infection observation. Hydroponic technology system was used for plants growing, and the infection process of P. brassicae in the roots of resistant and susceptible Chinese cabbage was examined based on morphology and microscopic characteristics using micoscope. In susceptible Chinese cabbage, the root hair infection stage occurred over approximately 7 days after inoculation, the cortical infection happened over approximatly 14 days after inoculation, and clubroots formed in approximately 30 days after inoculation. However, in resistant Chinese cabbage, the pathogen could be prevented and maintained in the root hair infection stage. This research provides a foundation for the subsequent studies of cabbage resistance of P. brassicae.

  17. Genetic diversity and relationships among cabbage ( Brassica ...

    African Journals Online (AJOL)

    The integration of our data with historical documents confirmed that traditional cabbage landraces cultivated in North of China were first introduced from Russia. Key words: Amplified fragment length polymorphism (AFLP), genetic diversity, cabbage (Brassica oleracea var. capitata), landraces, population structure.

  18. Enzymatic production of biodiesel from canola oil using immobilized lipase

    Energy Technology Data Exchange (ETDEWEB)

    Dizge, Nadir; Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze 41400 (Turkey)

    2008-12-15

    In the present work, a novel method for immobilization of lipase within hydrophilic polyurethane foams using polyglutaraldehyde was developed for the immobilization of Thermomyces lanuginosus lipase to produce biodiesel with canola oil and methanol. The enzyme optimum conditions were not affected by immobilization and the optimum pH for free and immobilized enzyme were 6, resulting in 80% immobilization yield. Using the immobilized lipase T. lanuginosus, the effects of enzyme loading, oil/alcohol molar ratio, water concentration, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 20 g of refined canola oil were: 430 {mu}g lipase, 1:6 oil/methanol molar ratio, 0.1 g water and 40 C for the reactions with methanol. Maximum methyl esters yield was 90% of which enzymatic activity remained after 10 batches, when tert-butanol was adopted to remove by-product glycerol during repeated use of the lipase. The immobilized lipase proved to be stable and lost little activity when was subjected to repeated uses. (author)

  19. Oilseed brassica improvement: through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rehman, K.

    1990-06-01

    The oilseed brassica improvement programme is discussed in this report. Some observations on different plant mutants were made throughout the growth period and results revealed that most of the selected mutants of both the varieties expressed better performance than the parent by showing superior plant traits. A new species named brassica carinata has tremendous untapped potential as an oilseed crop. Efforts for creating maximum variability in rapeseed mustard varieties by means other than gamma radiation continued. (A.B.)

  20. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    NARCIS (Netherlands)

    Khaling, E.; Papazian, S.; Poelman, E.H.; Holopainen, J.K.; Albrectsen, B.R.; Blande, J.D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under

  1. Lipase-catalysed interesterification between canola oil and fully hydrogenated canola oil in contact with supercritical carbon dioxide.

    Science.gov (United States)

    Jenab, Ehsan; Temelli, Feral; Curtis, Jonathan M

    2013-12-01

    The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Genetic variation in glucosinolate content within Brassica rapa vegetables

    NARCIS (Netherlands)

    He, H.; Ping, L.; Bonnema, G.; Dekker, M.; Verkerk, R.

    2012-01-01

    Glucosinolates (GSs) were analyzed in 56 accessions of Brassica rapa grown in the greenhouse. Eight different glucosinolates were identified in the Brassica rapa group. They are the aliphatic glucosinolates progoitrin (PRO), gluconapin (NAP), glucobrassicanapin (GBN), the indolyl glucosinolates

  3. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  4. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Seeds of 10 canola cultivars from different geographical regions (table 1) were planted and grown under field condi- tions. For DNA extraction, leaf materials were harvested at four to six leaf stage. Keywords. internal transcribed spacers; internal transcribed spacer sequences; canola cultivars; phylogenetic analysis; ...

  5. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  6. Differences in Thermal Stability of Glucosinolates in Five Brassica Vegetables

    NARCIS (Netherlands)

    Dekker, M.; Hennig, K.; Verkerk, R.

    2009-01-01

    The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were Brassica oleracea (red cabbage, broccoli and Brussels sprouts) and two were Brassica

  7. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  8. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  9. Canola/Rapeseed Protein: Future Opportunities and Directions—Workshop Proceedings of IRC 2015

    Directory of Open Access Journals (Sweden)

    Lisa Campbell

    2016-04-01

    Full Text Available At present, canola meal is primarily streamlined into the animal feed market where it is a competitive animal feed source owing to its high protein value. Beyond animal feed lies a potential game-changer with regards to the value of canola meal, and its opportunity as a high quality food protein source. An economic and sustainable source of protein with high bioavailability and digestibility is essential to human health and well-being. Population pressures, ecological considerations, and production efficiency underscore the importance of highly bioavailable plant proteins, both for the developed and developing world. Despite decades of research, several technologies being developed, and products being brought to large scale production, there are still no commercially available canola protein products. The workshop entitled “Canola/Rapeseed Protein—Future Opportunities and Directions” that was held on 8 July 2015 during the 14th International Rapeseed Congress (IRC 2015 addressed the current situation and issues surrounding canola meal protein from the technological, nutritional, regulatory and genomics/breeding perspective. Discussions with participants and experts in the field helped to identify economic barriers and research gaps that need to be addressed in both the short and long term for the benefit of canola industry.

  10. Effect of Pre-culture Irradiation and Explant Types on Efficiency of Brassica napus Genetic Transformation

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Azzam, C.R.

    2008-01-01

    The irradiated seeds of canola cv. Drakkar ( Brassica napus l. ) were germinated under aspect conditions, cotyledonary petioles and hypocotyl of 6 days old seedlings were used for Agrobacterium-mediated transformation. Agrobacterium tumefaciens has construct with the selectable marker gene (NPT II) and the desirable gene (HPPD). Direct and indirect shoot organogenesis were obtained from the both explants. Cotyledonary petioles was higher responded than hypocotyl with respective 26% and 14% of the explants producing NPT II-positive shoots after the selection on 50mg/l kanamycin. Calli might develop on and not in the agar medium were un transformation. This explains the higher number of escapes detected in hypocotyl explants than in experiments with cotyledons. The frequency of transformation plants as a function of indirect organogenesis was more than direct shoot regeneration from explants. The pre- irradiation with 75 Gy of gamma rays enhanced the genetic transformation frequencies by about 10 % as compared to that of the un-irradiated material. The obtained shoots were rooted and regenerated mature plants

  11. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: life cycle perspectives on Canadian canola, corn, soy, and wheat production.

    Science.gov (United States)

    Pelletier, N; Arsenault, N; Tyedmers, P

    2008-12-01

    We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.

  12. Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris

    DEFF Research Database (Denmark)

    Mikkelsen, T.R.; Jensen, J.; Bagger Jørgensen, Rikke

    1996-01-01

    Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as...... markers could be assigned to six linkage groups, most probably reflecting six B. napus C-chromosomes. The presence of backcross plants with recombinant genotypes suggests that complex genetic processes can take place during the interspecific hybridisation and backcrossing in these Brassica species...

  13. Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L.

    Science.gov (United States)

    Londo, J P; Bollman, M A; Sagers, C L; Lee, E H; Watrud, L S

    2011-01-01

    Increasingly, genetically modified crops are being developed to express multiple ‘stacked' traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and tolerance to environmental stresses. The release of crops that express multiple traits could result in ecological changes in weedy environments if feral crop plants or hybrids formed with compatible weeds results in more competitive plants outside of agriculture. To examine the effects of combining transgenes, we developed a stacked line of canola (Brassica napus L.) from a segregating F2 population that expresses both transgenic glyphosate resistance (CP4 EPSPS) and lepidopteran insect resistance (Cry1Ac). Fitness-associated traits were evaluated between this stacked genotype and five other Brassica genotypes in constructed mesocosm plant communities exposed to insect herbivores (Plutella xylostella L.) or glyphosate-drift. Vegetative biomass, seed production and relative fecundity were all reduced in stacked trait plants when compared with non-transgenic plants in control treatments, indicating potential costs of expressing multiple transgenes without selection pressure. Although costs of the transgenes were offset by selective treatment, the stacked genotype continued to produce fewer seeds than either single transgenic line. However, the increase in fitness of the stacked genotype under selective pressure contributed to an increased number of seeds within the mesocosm community carrying unselected, hitchhiking transgenes. These results demonstrate that the stacking of these transgenes in canola results in fitness costs and benefits that are dependent on the type and strength of selection pressure, and could also contribute to changes in plant communities through hitchhiking of unselected traits. PMID:21427753

  14. Carcass yield and meat quality in broilers fed with canola meal.

    Science.gov (United States)

    Gopinger, E; Xavier, E G; Lemes, J S; Moraes, P O; Elias, M C; Roll, V F B

    2014-01-01

    1. This study evaluated the effects of canola meal in broiler diets on carcass yield, carcass composition, and instrumental and sensory analyses of meat. 2. A total of 320 one-day-old Cobb broilers were used in a 35-d experiment using a completely randomised design with 5 concentrations of canola meal (0, 10, 20, 30 and 40%) as a dietary substitute for soya bean meal. 3. Polynomial regression at 5% significance was used to evaluate the effects of canola meal content. The following variables were measured: carcass yield, chemical composition of meat, and instrumental and sensorial analyses. 4. The results showed that carcass yield exhibited a quadratic effect that was crescent to the level of 18% of canola meal based on the weight of the leg and a quadratic increase at concentrations up to 8.4% of canola meal based on the weight of the chest. The yield of the chest exhibited a linear behaviour. 5. The chemical composition of leg meat, instrumental analysis of breast meat and sensory characteristics of the breast meat was not significantly affected by the inclusion of canola meal. The chemical composition of the breast meat exhibited an increased linear effect in terms of dry matter and ether extract and a decreased linear behaviour in terms of the ash content. 6. In conclusion, soya bean meal can be substituted with canola meal at concentrations up to 20% of the total diet without affecting carcass yield, composition of meat or the instrumental or sensory characteristics of the meat of broilers.

  15. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  16. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  17. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas.

    Science.gov (United States)

    Nayidu, Naghabushana K; Tan, Yifang; Taheri, Ali; Li, Xiang; Bjorndahl, Trent C; Nowak, Jacek; Wishart, David S; Hegedus, Dwayne; Gruber, Margaret Y

    2014-07-01

    Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

  18. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  19. Unleashing the Genome of Brassica Rapa

    Science.gov (United States)

    Tang, Haibao; Lyons, Eric

    2012-01-01

    The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with A. thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from A. thaliana is used to find duplicated orthologs in B. rapa. These TOC1 genes are further analyzed to identify conserved non-coding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each “cookbook style” analysis includes a step-by-step walk-through with links to CoGe to quickly reproduce each step of the analytical process. PMID:22866056

  20. Intraspecific chromosomal and genetic polymorphism in Brassica ...

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... A. V., Lemesh V. A. and Muravenko O. V. 2014 Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. J. Genet. ...... Howell E. C., Kearsey M. J., Jones G. H., King G. J. and Armstrong. S. J. 2008 A and C genome distinction and ...

  1. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  2. Improving cold flow properties of canola-based biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Chastek, Thomas Q. [Washington State University, ISP, Applied Sciences Laboratory, PO Box 1495, Spokane, WA 99210-1495 (United States)

    2011-01-15

    Methods for improving the cold flow properties of canola-based biodiesel are described. Freezing point depression via dilution is evaluated through controlled studies of methyl stearate freezing in seven different solvents, and methyl palmitate in three solvents. Without accounting for solute activity, the Hildebrand equation can predict the impact of methyl stearate freezing point in an alkane solvent (pentane) to within 4 C. However, there is wide deviation for the other solutions, indicating wide ranging solute activities in these solvents. Dilution in toluene results in the greatest freezing point depression. In addition, several polymeric additives are screened for their effectiveness as biodiesel pour point depressants. After examining more than 13 polymers, including several alkyl methacrylate homo- and copolymers, it is shown that poly(lauryl methacrylate) homopolymer most effectively improves the biodiesel cold flow properties. At 1% loading, poly(lauryl methacrylate) lowers the pour point by as much as 30 C and the low temperature filterability point (LTFP) by as much as 28 C. When evaluating the impact of polymer concentration, it is shown that poly(lauryl methacrylate) concentrations of 0.14% perform poorly, whereas 0.5% has only a slightly lower impact than 1%. Concentrations above 1% exhibit no improvement. Finally, it is shown that a limited amount of mixing can notably reduce the LTFP in several samples. (author)

  3. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  4. Impact of endogenous canola phenolics on the oxidative stability of oil‐in‐water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Winkler‐Moser, Jill K.

    2013-01-01

    The aim of this study was to evaluate the antioxidative effect of phenolics naturally present in canola seeds and meal. Individual phenolics were extracted from ground, defatted canola seeds, and meal. Fractionated extracts rich in sinapic acid, sinapine, or canolol as well as a non......‐fractionated extract were used. These extracts (100 and 350 µM) were evaluated as antioxidants in stripped canola oil‐in‐water (o/w) emulsion. For comparison, the antioxidative effect of phenolic standards for sinapic acid and sinapine (as sinapine thiocyanate) and butylated hydroxytoluene (BTH) as a positive control...... were also evaluated. The concentration of lipid hydroperoxides and selected volatiles measured at different time points was used to evaluate the antioxidative effect. Moreover, the properties of extracts and corresponding phenolic standards were evaluated in three different in vitro antioxidant assays...

  5. Bee assemblage in habitats associated with Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Rosana Halinski

    2015-09-01

    Full Text Available ABSTRACTAssessments in agricultural crops indicate that alterations in the landscape adjacent to the crops can result in reduced productivity due to loss or low abundance of pollinating agents. In the canola crop, production is partially dependent on insect pollination. Therefore, knowledge of the faunal diversity within and near crop fields is key for the management of these insects and consequently for the increase in productivity. This study aimed to determine and compare the diversity of bees in habitats associated with canola fields in southern Brazil. Bees were captured in four agricultural areas using pan traps in three habitat classes: (1 flowering canola crop, (2 forest remnant, and (3 grassland vegetation. The highest abundance of bees was observed in the grassland vegetation (50% and in the flowering canola field (47%. Eight species common to the three habitat classes were recorded, four of which are represented by native social bees. In addition, a single or a few individuals represented species that were exclusive to a specific habitat class; eight species were collected exclusively in the interior of the canola field, 51 in the grassland vegetation, and six in the forest remnant. The majority of the rare species recorded exhibits subsocial or solitary behaviour and inhabit open places. The composition of bee groups differed between the habitats showing the importance of maintaining habitat mosaics with friendly areas for pollinators, which promote the pollination service for canola flowers.

  6. Apparent nutrient and energy digestibility of canola meal for Nile tilapia (Oreochromis niloticus)

    OpenAIRE

    Furuya, Wilson Massamitu; Pezzato, Luiz Edivaldo [UNESP; Miranda, Edma Carvalho de; Furuya, Valéria Rossetto Barriviera; Barros, Margarida Maria [UNESP; Lanna, Eduardo Arruda Teixeira

    2001-01-01

    Este estudo foi realizado para determinar a energia digestível e a digestibilidade aparente de nutrientes do farelo de canola pela tilápia do Nilo (Oreochromis niloticus). O óxido de crômio (0,1%) foi utilizado como indicador inerte em dieta semi-purificada, com coleta de fezes pelo sistema Guelph. Os peixes foram alimentados até saciedade aparente. O farelo de canola apresentou valores de energia e nutrientes digestíveis de: 77,84; 71,99; 86,92; 88,19; 67,16 e 29,86% para a matéria seca, ene...

  7. Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response.

    Science.gov (United States)

    Kalischuk, Melanie L; Johnson, Dan; Kawchuk, Lawrence M

    2015-02-25

    Abiotic and biotic stresses alter genome stability and physiology of plants. Under some stressful situations, a state of stress tolerance can be passed on to the offspring rendering them more suitable to stressful events than their parents. In plants, the exploration of transgenerational response has remained exclusive to model species, such as Arabidopsis thaliana. Here, we expand transgenerational research to include Brassica rapa, a close relative to economically important plant canola (Brassica napus), as it is exposed to the biotic stress of a double-stranded DNA virus Cauliflower mosaic virus (CaMV). Parent plants exposed to a low dose of 50ng purified CaMV virions just prior to the bolting stage produced significantly larger seeds than mock inoculated and healthy treatments. The progeny from these large seeds displayed resistance to the pathogen stress applied in the parental generation. Differences in defense pathways involving fatty acids, and primary and secondary metabolites were detected by de novo transcriptome sequencing of CaMV challenged progeny exhibiting different levels of resistance. Our study highlights biological and cellular processes that may be linked to the growth and yield of economically important B. rapa, in a transgenerational manner. Although much remains unknown as to the mechanisms behind transgenerational inheritance, our work shows a disease resistance response that persists for several weeks and is associated with an increase in seed size. Evidence suggests that a number of changes involved in the persistent stress adaption are reflected in the transcriptome. The results from this study demonstrate that treating B. rapa with dsDNA virus within a critical time frame and with a specified amount of infectious pathogen produces economically important agricultural plants with superior coping strategies for growing in unfavorable conditions. Copyright © 2014. Published by Elsevier B.V.

  8. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  9. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  10. Aclimatação ao frio e dano por geada em canola Acclimatization to cold and frost-injury in canola

    Directory of Open Access Journals (Sweden)

    Genei Antonio Dalmago

    2010-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da aclimatação ao frio sobre o dano causado pela geada em diferentes estádios fenológicos de genótipos de canola. Foram realizados cinco experimentos em ambiente controlado, em 2006, 2007 e 2008. Os fatores avaliados foram: genótipos, aclimatação (com; sem, intensidades de geada, estádios de desenvolvimento de plantas, regimes de aclimatação e regimes de geada. As variáveis avaliadas foram: queima de folhas, massa de matéria seca, estatura de plantas, duração de subperíodo, componentes de rendimento e rendimento de grãos. A aclimatação ao frio, antes da geada, resultou em menor queima de folhas e maior massa de matéria seca, em comparação a plantas não aclimatadas. As geadas foram prejudiciais a partir de -6°C no início do ciclo de desenvolvimento, principalmente em plantas não aclimatadas, e a partir de -4ºC na floração, com redução do número de síliquas e do número de grãos por síliqua. A aclimatação após as geadas não contribuiu para a tolerância da canola a esse evento. Geadas consecutivas não acarretaram maior prejuízo à canola. A aclimatação de plantas de canola antes da geada reduz os danos, principalmente quando a geada ocorre no início do desenvolvimento das plantas.The objective of this work was to evaluate the influence of cold acclimatization on frost damage at different phenological stages of canola genotypes. Five experiments were carried out under controlled conditions, in 2006, 2007, and 2008. The evaluated factors were: genotypes, acclimatization (with; without, frost gradient, plant developmental stages, acclimatization regimes and frost regimes. The evaluated variables were: leaf scorching symptoms, dry weight, plant height, length of subperiod, yield components and grain yield. The acclimatization before frost resulted in lesser leaf scorching symptoms and higher dry matter in comparison to plants not acclimated. Frosts were

  11. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    Science.gov (United States)

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  13. A Canola Oil-Supplemented Diet Prevents Type I Diabetes-Caused Lipotoxicity and Renal Dysfunction in a Rat Model.

    Science.gov (United States)

    Cano-Europa, Edgar; Ortiz-Butron, Rocio; Camargo, Estela Melendez; Esteves-Carmona, María Miriam; Oliart-Ros, Rosa Maria; Blas-Valdivia, Vanessa; Franco-Colin, Margarita

    2016-11-01

    We investigated the effect of a canola oil-supplemented diet on the metabolic state and diabetic renal function of a type I diabetes experimental model. Male Sprague-Dawley rats were randomly divided into four groups: (1) normoglycemic+chow diet, (2) normoglycemic+a canola oil-supplemented chow diet, (3) diabetic+chow diet, and (4) diabetic+a canola oil-supplemented chow diet. For 15 weeks, animals were fed a diet of Purina rat chow alone or supplemented with 30% canola oil. Energetic intake, water intake, body weight, and adipose tissue fat pad were measured; renal function, electrolyte balance, glomerular filtration rate, and the plasmatic concentration of free fatty acids, cholesterol, triglycerides, and glucose were evaluated. The mesenteric, retroperitoneal, and epididymal fat pads were dissected and weighed. The kidneys were used for lipid peroxidation (LP) and reactive oxygen species (ROS) quantifications. Diabetic rats fed with a canola oil-supplemented diet had higher body weights, were less hyperphagic, and their mesenteric, retroperitoneal, and epididymal fat pads weighed more than diabetic rats on an unsupplemented diet. The canola oil-supplemented diet decreased plasmatic concentrations of free fatty acids, triglycerides, and cholesterol; showed improved osmolarity, water clearances, and creatinine depuration; and had decreased LP and ROS. A canola oil-supplemented diet decreases hyperphagia and prevents lipotoxicity and renal dysfunction in a type I diabetes mellitus model.

  14. Características de carcaça de cordeiros alimentados com grãos e subprodutos da canola = Carcass characteristics in lambs fed with grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    José Carlos Barbosa

    2009-10-01

    Full Text Available O objetivo foi estudar a introdução de 8% de grãos e subprodutos (farelo ou torta da canola em dietas para cordeiros. Para a avaliação das características quantitativas da carcaça, foram utilizadas 24 carcaças de cordeiros, utilizando delineamento inteiramente casualizado. As dietas com média de 15,4% de PB na MS e 80,2% de NDT foram compostas por 40% de feno de capim-Tifton e 60% de concentrado composto por milho em grão, farelo de soja, canola em grão integral, farelo de canola, torta de canola e mistura mineral. A utilização de grãos e subprodutos da canola na dieta de borregos terminados em confinamento não influenciou (p > 0,05 as características quantitativas da carcaça. Em relação aos rendimentos dos cortes, não houve efeito dos tratamentos para nenhuma das variáveis analisadas. Assim, a introdução de 8% de grãos e subprodutos (farelo ou torta da canola possibilitaram bons resultados podendo ser recomendados nas formulações de dietas para cordeiros.The aim of this work was to evaluate the introduction of 8% grains and by-products (meal or cake of canola in the diets of lambs. To evaluate quantitative carcass characteristics, 24 Santa Ines lambs were used in a completely randomized design. Diets with averages of 15.4% of CP in DM and 80.2% of TDN were composed for 40% Tifton hay and 60% concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. The use of whole grains and by-products of canola in the diet of lambs finished in feedlot did not influence (p > 0.05 quantitative carcass characteristics. For cut dressing in relation to the CCW, no effect was observed for the analyzed variables among treatments. It was concluded that the introduction of grains and by-products of canola allow for satisfactory results, and could be recommended in the formulations of lamb diets.

  15. Mucilage in Yellow Mustard (Brassica Hirta) Seeds

    OpenAIRE

    Siddiqui, I. R.; Yiu, S. H.; Jones, J. D.; Kalab, M.

    1986-01-01

    Release of mucilage from yellow mustard (brassica hirta, also known as Sinapis alba) seed coats (hulls) was studied by optical and scanning electron microscopy. Micrographs were obtained of the mucilage which had exuded from briefly moistened seeds and dried subsequently in the form of small droplets on the seed surface. The mucilage collected from the seed surface and mucilage isolated on a larger scale from seed hulls was hydrolyzed with sulfuric acid and the hydrolyzates were analyzed f...

  16. Salt tolerance potential of brassica juncea Linn

    International Nuclear Information System (INIS)

    Ibrar, M.; Jabeen, M.; Tabassum, J.; Hussain, F.; Ilahi, I.

    2003-01-01

    The present study showed that percent germination, radicle and plumule lengths of Brassica juncea were adversely affected by increasing the level of salinity. As compared to 95 per cent germination of the control, there were 92.50. 90.00. 90.00, 85.00, 87.50 and 80.00 per cent germinations respectively at 2.5, 5.0, 7.5. 10.0. 12.5 and 15.0 dSm/sup -1/ NaCI salinity levels. Similarly. all the parameters tested in the pot experiments showed gradual decline with the corresponding increasing levels of NaCl salinity. At lower levels of salinity (2.5 and 5.0 dSm/sup -l/), Brassica juncea had reasonably good growth and productivity. It showed greatly reduced growth and at 7.5 and 10.0 dSm/sup -1/ while at 12.5 and 15.0 10.0 dSm/sup -1/ salinity levels it was severely production affected. It is concluded from the present work that Brassica juncea can be grown fairly on mild saline soils for a food, fodder and seed production. (author)

  17. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  18. Humic acid and enzymes in canola-based broiler diets: Effects on ...

    African Journals Online (AJOL)

    Gross lesion analysis displayed high prevalence of rickets in boilers fed CMEnz diet compared with all other dietary treatments. Intestinal morphometric parameters demonstrated some dietary differences in the height and width of the intestinal villi and intestinal crypts. In conclusion, inclusion of humic acid in canola-based ...

  19. Canola straw as a bio-waste resource for medium density fiberboard (MDF) manufacture.

    Science.gov (United States)

    Yousefi, Hossein

    2009-10-01

    Canola straw as an agricultural residue has been investigated for MDF production. The variables were steaming time (2, 5 and 8 min), the resin content (9% and 11%), and press time (4 and 6 min). Common physical and mechanical properties of experimental boards including modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength (IB) and thickness swelling (TS) were measured. Fiber properties of canola straw including length, diameter and cell wall thickness were determined. The results showed that all the tested mechanical properties improved with the increase of steaming time level. The results were close to the minimum requirements of MDF specified in the ANSI A208.2 standard. Dimensional stability of the MDFs improved as adhesive content increased. The IB values are positively affected by the increase of press time. MDF properties made from canola straw possess acceptable qualities as compared to those made from other non-wood plants. Furthermore, the fiber dimensions of canola straw were also in the range of reported values in hardwoods.

  20. Evaluation of canola chlorophyll index and leaf nitrogen under wide range of soil moisture

    Science.gov (United States)

    Meskini-Vishkaee, Fatemeh; Mohammadi, Mohammad Hosein; Neyshabouri, Mohammad Reza; Shekari, Farid

    2015-01-01

    The paper presents a study on the effect of soil matric suction on the variation of leaf chlorophyll index and nitrogen concentration of canola. Results showed that chlorophyll index increases exponentially with soil matric suction, especially at the late season of canola growing time. At moderate matric suction (200 and 300 kPa soil suction heads), chlorophyll index remains nearly constant, but in drier soil (matric suction >300 kPa), chlorophyll index increases gradually with time. Despite the variation of the total leaf nitrogen with the soil matric suction, it is similar to the variation of the chlorophyll index, but the results showed that the chlorophyll index - nitrogen concentration curve has a demarcated bi-modal shape. We suggest that 2.7% of nitrogen and 69.8 of the chlorophyll index value represent the upper limit of the chlorophyll meter reliability for estimation of canola nitrogen under a wide range of soil moisture levels. These results confirm that the chlorophyll meter can be used as an effective tool for rapid and non-destructive estimation of the relative chlorophyll and nitrogen content in canola leaves at a wide range of soil moisture content, except for nearly wilting coefficient or extremely high drought stress

  1. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    Science.gov (United States)

    Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A. A.; Raisali, G.; Moradi-Shahrebabak, M.

    2008-07-01

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, Pruminal protein degradation and increase (linear effect, Pruminant nutrition.

  2. Metabolisable energy of Canola acid oil and Famarol acid oil for ...

    African Journals Online (AJOL)

    Unknown

    Acid oils are one of the by-products of the chemical refining of crude oils and have a high free fatty acid content. It was the objective of the current study to determine the metabolisable energy value of Canola acid oil (CAO) and a South. African commercial feed acid oil (Famarol -FAO). Materials and Methods. Both the CAO ...

  3. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  4. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    African Journals Online (AJOL)

    Effect of strong electrolytes on the viscosity of canola oil in 1,4 dioxane was undertaken. The viscosity of oil in 1,4 dioxane was found to increase with the concentration of oil and decrease with rise in temperature. Strong electrolytes reduce the rate of flow of oil in 1,4 dioxane. It was noted that amongst these electrolytes, ...

  5. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  6. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  7. Humic acid and enzymes in canola-based broiler diets: Effects on ...

    African Journals Online (AJOL)

    NWUUser

    2017-10-17

    Oct 17, 2017 ... Abstract. The objective of the study was to investigate the effects of dietary inclusion of humic acid and enzymes on bone development, histomorphology of internal organs and the incidence of rickets in broiler chickens fed canola-based diets. In the study, Cobb 500 broiler chicks were used and the ...

  8. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pcanola meal at doses of 45 kGy decreased ( Pcanola meal at doses of 15 and 30 kGy was improved ( Pcanola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  9. The progress of intersubgenomic heterosis studies in Brassica napus

    African Journals Online (AJOL)

    ONOS

    2010-03-15

    Mar 15, 2010 ... China (Fan and Stefansson, 1986; Downey and. Röbbelen, 1989; Fu, 2000). Lots of research revealed ... THE CONCEPT OF SUBGENOME OF BRASSICA. Long years of evolution and artificial selection have ... To distinguish the difference, the concept of subgenome was introduced to genus Brassicas.

  10. Epidemiological studies on Brassica vegetables and cancer risk

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Goldbohm, R.A.; Poppel, G. van; Verhagen, H.; Brandt, P.A. van den

    1996-01-01

    This paper gives an overview of the epidemiological data concerning the cancer-preventive effect of brassica vegetables, including cabbage, kale, broccoli, Brussels sprouts, and cauliflower. The protective effect of brassicas against cancer may be due to their relatively high content of

  11. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  12. Dispersal behaviour of Trichogramma brassicae in maize fields

    NARCIS (Netherlands)

    Suverkropp, B.P.; Bigler, F.; Lenteren, van J.C.

    2009-01-01

    Glue-sprayed maize plants were used to study dispersal behaviour of the egg parasitoid Trichogramma brassicae Bezdenko (Hymenoptera Trichogrammatidae) in maize fields. To estimate the distance covered during an initial flight, T. brassicae were studied in a field cage with 73 glue-sprayed plants.

  13. Expression of human interferon gamma in Brassica napus seeds

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... express human therapeutic protein, interferon gamma (IFN_γ) in Brassica napus seeds. Kozak sequence was linked to the .... witness successful expression of the human interferon gamma in Brassica napus ..... Cytosolic factors block antibody binding to the C-terminal tail of the. KDEL receptor. Eur. J. Cell ...

  14. Fatty Acid and Transcript Profiling in Developing Seeds of Three Brassica napus Cultivars

    Directory of Open Access Journals (Sweden)

    Petkova Mariana

    2015-12-01

    Full Text Available Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty acids (FA, triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus cultivars that have utility for cultivar development in our spring canola breeding program. The seed oil content of Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF. During the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were that expression of KAS1 and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAE1 was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene expression against DAF for each genotype supported a common trend in gene expression among the three cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase. The correlation between the level of FAs and expression of genes by genotype indicated no general trend; rather correlations seem to depend on the genotype.

  15. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance.

    Science.gov (United States)

    Becker, Michael G; Zhang, Xuehua; Walker, Philip L; Wan, Joey C; Millar, Jenna L; Khan, Deirdre; Granger, Matthew J; Cavers, Jacob D; Chan, Ainsley C; Fernando, Dilantha W G; Belmonte, Mark F

    2017-05-01

    The hemibiotrophic fungal pathogen Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus (canola, oilseed rape) and causes significant loss of yield worldwide. While genetic resistance has been used to mitigate the disease by means of traditional breeding strategies, there is little knowledge about the genes that contribute to blackleg resistance. RNA sequencing and a streamlined bioinformatics pipeline identified unique genes and plant defense pathways specific to plant resistance in the B. napus-L. maculans LepR1-AvrLepR1 interaction over time. We complemented our temporal analyses by monitoring gene activity directly at the infection site using laser microdissection coupled to quantitative PCR. Finally, we characterized genes involved in plant resistance to blackleg in the Arabidopsis-L. maculans model pathosystem. Data reveal an accelerated activation of the plant transcriptome in resistant host cotyledons associated with transcripts coding for extracellular receptors and phytohormone signaling molecules. Functional characterization provides direct support for transcriptome data and positively identifies resistance regulators in the Brassicaceae. Spatial gradients of gene activity were identified in response to L. maculans proximal to the site of infection. This dataset provides unprecedented spatial and temporal resolution of the genes required for blackleg resistance and serves as a valuable resource for those interested in host-pathogen interactions. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. ANTIBACTERIAL EFFECT OF COMPOUNDS OF PEPTIDE NATURE CONTAINED IN AQUEOUS EXTRACT OF BRASSICA NAPUS SOLANUM LYCOPERSICUM AND TETRAGONIA TETRAGONIOIDES LEAVES

    Directory of Open Access Journals (Sweden)

    Tereza Neubauerová

    2015-04-01

    Full Text Available Treatment of infections caused by pathogenic bacteria is still harder. Due to increasing number of microbial species resistant against so far invented antibiotics. This presents great problem for public health. One of the potential solutions seems to be antimicrobial peptides. Those peptides are synthetized in all organisms as a part of innate immunity with rapid mode of antimicrobial action. Lot of them have been isolated from bacteria, plants, insects and mammals as well. Our project was aimed on finding such peptides in plant extracts, respectively in leaves of Brassica napus (canola, Solanum lycopersicum (tomato and Tetragonia tetragonioides (New Zealand spinach. We used several separation techniques to obtain fractions containing compounds of peptide nature with hydrophobic character. Antimicrobial activity of these fractions was tested against several gram-positive and gram-negative bacteria. Mass spectrometry analysis of antimicrobial active fractions proved presence of low molecular peptides with molecular masses 1.9 - 4.9 kDa and a partial amino acid sequence in hydrophobic part of Tetragonia extract. In hydrophilic fraction of the Solanum extract with proved antibacterial activity two patogenesis-related proteins with antifungal activity NP24 and TPM-1 were detected.

  17. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection

    NARCIS (Netherlands)

    Cheng, Feng; Wu, Jian; Cai, Chengcheng; Fu, Lixia; Liang, Jianli; Borm, Theo; Zhuang, Mu; Zhang, Yangyong; Zhang, Fenglan; Bonnema, Guusje; Wang, Xiaowu

    2016-01-01

    The closely related species Brassica rapa and B. oleracea encompass a wide range of vegetable, fodder and oil crops. The release of their reference genomes has facilitated resequencing collections of B. rapa and B. oleracea aiming to build their variome datasets. These data can be used to

  18. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  19. Notice and Supplemental Determination for Renewable Fuels Produced Under the Final Renewable Fuel Standard Program from Canola Oil

    Science.gov (United States)

    This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).

  20. Nutritional and histopathological studies on Black Cutworm Agrotis Ipsilon (HUFN.) fed on irradiated Canola and bean plants

    International Nuclear Information System (INIS)

    Rizk, S.A.; Mansour, W.; Abdel-Hamid, I.A.

    2006-01-01

    The black cutworm (fifth instar) were fed on leaves of canola and bean plants irradiated as seeds at the dose levels 10, 20 and 30 Gy. Their effects on food utilization, consumption, digestion and on the mid gut were detected. It was noticed that using irradiated bean and canola plants leads to decrease in values of consumption index and growth rate than control. Also, approximate digest ability (A.D), efficiency of conversion of digested food (E.C.D) and efficiency of conversion of ingested food (E.C.I) were also less than control in most treatments. A. ipsilon larvae fed on bean and canola plants gamma irradiated at the dose levels 10 and 30 Gy in both bean and canola plants, respectively, caused some histopathological changes such as separation of muscle layers, breakdown of epithelium with the appearance of some gaps as well as disintegration of epithelial cells and appearance of vacuoles

  1. Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity

    OpenAIRE

    Mayengbam, Shyamchand; Aachary, Ayyappan; Thiyam-Holländer, Usha

    2014-01-01

    Endogenous sinapic acid (SA), sinapine (SP), sinapoyl glucose (SG) and canolol (CAN) of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted from whole seeds and their fractions: hulls and cotyledons, using 70% methanol by the ultrasonication method and quantified using HPLC-DAD. The major phenolics from both hulls and...

  2. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    NARCIS (Netherlands)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J.A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus,

  3. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  4. COMPARATIVE STUDY ON THE EFFECTS OF FEEDING CANOLA AND SOYBEAN OILS ON EGG PRODUCTION AND CHOLESTEROL IN COMMERCIAL LAYERS

    Directory of Open Access Journals (Sweden)

    H. I. Shakoor, M. A. Javed1, Z. Iqbal2 Z. Nasir and N. Mukhtar

    2003-01-01

    Full Text Available The purpose of this study was to assess the effect of canola and soybean oils on egg production and cholesterol in layers. for this purpose. 15 experimental units (8 layers per experimental unit were randomly allotted to 5 dietary treatments (3 experimental units/treatment containing 2,5% canola oil, 5% canola oil, 2.5% soybean oil, 5% soybean oil and control without any oil (all five rations were isocaloric and isonitrogenous for a period of9 weeks. Effect of these treatments on production parameters including egg production, egg mass, weight gain, feed intake and feed conversion ratio and egg quality parameters including shell thickness, albumen quality, yolk index, egg cholesterol level and yolk fatty acid composition were studied. The results indicated that the effect of canola and soybean oils on egg production and egg mass was non-significant. Significantly (P<0.05 less yolk cholesterol was found in hens fed diets containing oils compared with the control. Palmitic fatty acid content and total saturated fatty acids (SFA content decreased as oils percentage increased. Total Polyunsaturated fatty acids (PUFA content was significantly (P<0.01 greater in canola and soybean oil fed hens eggs than the control diet fed hens eggs. Addition of 5% canola oil to the diet resulted in yolk omega-6:omega-3 PUFA being significantly lower (P<0.01 than those of the control diets.

  5. Contamination of Chinese Cabbage Soil with Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Jae-Woo Soh

    2013-09-01

    Full Text Available This research was performed to establish basic technology for Chinese cabbage clubroot chemical control by investigating the soil contamination of Plasmodiophora brassicae in major producing regions of fall Chinese cabbage. PCR primers were developed to detect P. brassicae, a causal agent of Chinese cabbage club-root that generally occurs in Cruciferae family. A primer set, PbbtgF761 and PbbtgR961, specifically amplified a 245 bp fragment from P. brassicae only. At places well known for fall Chinese cabbage, 10 out of 33 in Haenam-gun, 5 out of 13 in Yeongam-gun and Yeonggwang-gun, 1 out of 6 in Gochang-gun, 2 out of 12 in Hongseong-gun, and 5 out of 17 in Dangjin-si resulted positive for P. brassicae contamination. The results show that the soil contamination rate of P. brassicae was 30.3% in Haenam-gun, 38.5% in Yeongam-gun and Yeonggwang-gun, 16.7% in Gochang-gun, 16.7% in Hongseong-gun, and 29.4% in Dangjin-si. The six places where Chinese cabbage clubroot was visible by naked eye were 100% confirmed by the PCR test of the P. brassicae contaminated soil. Thus, simple PCR test may be utilized as an index to decide on chemical control of P. brassicae.

  6. Oilseed brassica improvement through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rehman, K.

    1992-07-01

    The improvement in processing and refining technologies of oil seed brassica have now made possible the use of rape seed mustard oil as cooking medium shortening, salad ingredients and in margarine in many countries. Different promising rape seed mutants were tested for yield and other agronomic traits in eight preliminary yields trails and results of these trails are presented in this report. Three varieties of rape seeds were subjected to 80, 100, 120 krads and two varieties of mustard were treated 60, 80, 100 krads dose of gamma rays. (A.B.)

  7. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  8. Field evaluation of leaf blight-resistant plant introductions of Brassica Juncea and Brassica Rapa and elucidation of inheritance of resistance

    Science.gov (United States)

    Brassica leafy greens (Brassica juncea and Brassica rapa) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf blight disease on these leafy vegetables have been reported in several states. One ...

  9. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating....... Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement...... of Brassica oil and vegetable crops....

  10. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii.

    Science.gov (United States)

    Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong

    2018-05-01

    Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.

  11. Landfill gas, canola, and biodiesel. Working towards a sustainable system [Snohomish County Biodiesel Project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Terrill; Carveth, Deanna

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to grow this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  12. Slug control in Australian canola: monitoring, molluscicidal baits and economic thresholds.

    Science.gov (United States)

    Nash, Michael A; Thomson, Linda J; Hoffmann, Ary A

    2007-09-01

    Exotic slugs have become serious pests of canola, at establishment, in Southern Australian high-rainfall cropping zones. Slugs were monitored using relatively inexpensive 300 mm x 300 mm terracotta tiles acting as refuges. An investigation was made of the effects of the time of application of chelated iron baits on the slug species Deroceras reticulatum Müller and Lehmannia nyctelia Bourguignat. Baits reduced the number of surface-active slug species. A single application at sowing provided greater efficacy than one application before sowing, and efficacy was comparable with that of two applications. Canola seedling densities showed a negative response to D. reticulatum numbers; the presence of even one individual per refuge trap reduced seedling numbers below optimum densities. Thistles and other vegetation were associated with increased numbers of slugs. European guidelines for slug monitoring and damage appear to be at least partly applicable to Australian conditions. 2007 Society of Chemical Industry

  13. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  14. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  15. Anthocyanins facilitate tungsten accumulation in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  16. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis.

    Science.gov (United States)

    James, Delano; Schmidt, Anna-Mary; Wall, Erika; Green, Margaret; Masri, Saad

    2003-09-24

    Multiplex PCR procedures were developed for simultaneously detecting multiple target sequences in genetically modified (GM) soybean (Roundup Ready), maize (event 176, Bt11, Mon810, T14/25), and canola (GT73, HCN92/28, MS8/RF3, Oxy 235). Internal control targets (invertase gene in corn, lectin and beta-actin genes in soybean, and cruciferin gene in canola) were included as appropriate to assess the efficiency of all reactions, thereby eliminating any false negatives. Primer combinations that allowed the identification of specific lines were used. In one system of identification, simultaneous amplification profiling (SAP), rather than target specific detection, was used for the identification of four GM maize lines. SAP is simple and has the potential to identify both approved and nonapproved GM lines. The template concentration was identified as a critical factor affecting efficient multiplex PCRs. In canola, 75 ng of DNA template was more effective than 50 ng of DNA for the simultaneous amplification of all targets in a reaction volume of 25 microL. Reliable identification of GM canola was achieved at a DNA concentration of 3 ng/microL, and at 0.1% for GM soybean, indicating high levels of sensitivity. Nonspecific amplification was utilized in this study as a tool for specific and reliable identification of one line of GM maize. The primer cry1A 4-3' (antisense primer) recognizes two sites on the DNA template extracted from GM transgenic maize containing event 176 (European corn borer resistant), resulting in the amplification of products of 152 bp (expected) and 485 bp (unexpected). The latter fragment was sequenced and confirmed to be Cry1A specific. The systems described herein represent simple, accurate, and sensitive GMO detection methods in which only one reaction is necessary to detect multiple GM target sequences that can be reliably used for the identification of specific lines of GMOs.

  17. Farmer knowledge and risk analysis: postrelease evaluation of herbicide-tolerant canola in Western Canada.

    Science.gov (United States)

    Mauro, Ian J; McLachlan, Stéphane M

    2008-04-01

    The global controversy regarding the use of genetically modified (GM) crops has proved to be a challenge for "science-based" risk assessments. Although risk analysis incorporates societal perspectives in decision making over these crops, it is largely predicated on contrasts between "expert" and "lay" perspectives. The overall objective of this study is to explore the role for farmers' knowledge, and their decade-long experience with herbicide-tolerant (HT) canola, in the risk analysis of GM crops. From 2002 to 2003, data were collected using interviews (n= 15) and mail surveys (n= 370) with farmers from Manitoba and across Canada. The main benefits associated with HT canola were management oriented and included easier weed control, herbicide rotation, and better weed control, whereas the main risks were more diverse and included market harm, technology use agreements (TUAs), and increased seed costs. Benefits and risks were inversely related, and the salient factor influencing risk was farmer experiences with HT canola volunteers, followed by small farm size and duration using HT canola. These HT volunteers were reported by 38% of farmers, from both internal (e.g., seedbank, farm machinery, etc.) and external (e.g., wind, seed contamination, etc.) sources, and were found to persist over time. Farmer knowledge is a reliable and rich source of information regarding the efficacy of HT crops, demonstrating that individual experiences are important to risk perception. The socioeconomic nature of most risks combined with the continuing "farm income crisis" in North America demonstrates the need for a more holistic and inclusive approach to risk assessment associated with HT crops and, indeed, with all new agricultural technology.

  18. Effects of feeding high protein or conventional canola meal on dry cured and conventionally cured bacon.

    Science.gov (United States)

    Little, K L; Bohrer, B M; Stein, H H; Boler, D D

    2015-05-01

    Objectives were to compare belly, bacon processing, bacon slice, and sensory characteristics from pigs fed high protein canola meal (CM-HP) or conventional canola meal (CM-CV). Soybean meal was replaced with 0 (control), 33, 66, or 100% of both types of canola meal. Left side bellies from 70 carcasses were randomly assigned to conventional or dry cure treatment and matching right side bellies were assigned the opposite treatment. Secondary objectives were to test the existence of bilateral symmetry on fresh belly characteristics and fatty acid profiles of right and left side bellies originating from the same carcass. Bellies from pigs fed CM-HP were slightly lighter and thinner than bellies from pigs fed CM-CV, yet bacon processing, bacon slice, and sensory characteristics were unaffected by dietary treatment and did not differ from the control. Furthermore, testing the existence of bilateral symmetry on fresh belly characteristics revealed that bellies originating from the right side of the carcasses were slightly (P≤0.05) wider, thicker, heavier and firmer than bellies from the left side of the carcass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.

    Science.gov (United States)

    Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G

    2014-06-01

    In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.

  20. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  1. new time-saving transformation system for Brassica napus | Kong ...

    African Journals Online (AJOL)

    mediated transformation system for Brassica napus was developed. A series of combinations of optical densities, infection durations, concentrations of acetosyringone and silwet L77 were evaluated. Maximum transformation efficiency reached ...

  2. Glucosinolates during preparation of Brassica vegetables in Indonesia

    NARCIS (Netherlands)

    Nugrahedi, P.Y.

    2015-01-01

    Title: Glucosinolates during preparation of Brassica vegetables in Indonesia Dutch translation of title: Effecten van Indonesische bereidingsmethoden op gezondheidsbevorderende stoffen in groenten Title/description for non-professionals: Effects

  3. Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology

    Science.gov (United States)

    Pacheco, Anna; McNairn, Heather; Li, Yifeng; Lampropoulos, George; Powers, Jarrett

    2016-10-01

    Knowing the exact growth stage of agricultural crops can be valuable information for crop management and monitoring. In Canada, canola fields are particularly vulnerable for crop disease development during their flowering stage, especially when the fields are under persistent wet conditions. Clubroot and sclerotinia are diseases that can occur in canola when these two factors come together. Remote sensing can provide an interesting tool for the monitoring of crop phenological stages over large agriculture landscapes. Reliable and frequent access to data is needed to determine field-specific growth stages. Given their all-weather capability, radar sensors are optimal for monitoring such a dynamic crop parameter. In 2014, Agriculture and Agri-Food Canada collected crop phenology information over multiple canola fields in the area of Carman, Manitoba. Coincidental to ground data collection, fully polarimetric RADARSAT-2 and dual-polarimetric TerraSAR-X satellite data were acquired over the study site. In collaboration with A. U. G. Signals Ltd., a methodology will be developed and validated for the identification of inflorescence emergence and flowering in canola fields. Analysis of the polarimetric datasets from this study determined that several polarimetric parameters were sensitive to the emergence of flower buds and the flowering stage in canola. The alpha angle and entropy in both the C- and X-band were able to identify these growth stages, in addition to any of the reflectivity ratios and differential reflectivity responses that incorporated an HV response. The RADARSAT-2 scatter diversity, degree of purity and depolarization index also demonstrated great potential at identifying canola flower emergence and flowering. These latter polarimetric parameters along with the reflectivity ratios may be advantageous given their ease in implementation within a larger risk assessment satellite-derived methodology for canola crop disease.

  4. The economic and environmental cost of delayed GM crop adoption: The case of australia's GM canola moratorium.

    Science.gov (United States)

    Biden, Scott; Smyth, Stuart J; Hudson, David

    2018-01-23

    Incorporating socio-economic considerations (SECs) into national biosafety regulations regarding genetically modified (GM) crops have opportunity costs. Australia approved the cultivation of GM canola through a science-based risk assessment in 2003, but allowed state moratoria to be instituted based on potential trade impacts over the period 2004 to 2008 and 2010 in the main canola growing states. This analysis constructs a counterfactual assessment using Canadian GM canola adoption data to create an S-Curve of adoption in Australia to measure the environmental and economic opportunity costs of Australia's SEC-based moratoria between 2004 and 2014. The environmental impacts are measured through the amount of chemical active ingredients applied during pest management, the Environmental Impact Quotient indicator, and greenhouse gas emissions. The economic impacts are measured through the variable costs of the weed control programs, yield and the contribution margin. The environmental opportunity costs from delaying the adoption of GM canola in Australia include an additional 6.5 million kilograms of active ingredients applied to canola land; a 14.3% increase in environmental impact to farmers, consumers and the ecology; 8.7 million litres of diesel fuel burned; and an additional 24.2 million kilograms of greenhouse gas (GHG) and compound emissions released. The economic opportunity costs of the SEC-based moratoria resulted in foregone output of 1.1 million metric tonnes of canola and a net economic loss to canola farmers' of AU$485.6 million. The paper provides some of the first quantified, post-adoption evidence on the opportunity cost and environmental impacts of incorporating SECs into GM crop regulation.

  5. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea

    NARCIS (Netherlands)

    Hol, W.H.G.; Boer, de W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H.M.; Putten, van der W.H.; Dam, N.M.

    2013-01-01

    Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica

  6. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  7. Genetic dissection of leaf development in Brassica rapa using a ‘geneticalgenomics’ approach

    NARCIS (Netherlands)

    Xiao, D.; Wang, H.; Basnet, R.K.; Jianjun Zhao, Jianjun; Lin, K.; Hou, X.; Bonnema, A.B.

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa

  8. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  9. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    Science.gov (United States)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (pcanola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  10. Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Shyamchand Mayengbam

    2014-08-01

    Full Text Available Endogenous sinapic acid (SA, sinapine (SP, sinapoyl glucose (SG and canolol (CAN of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted from whole seeds and their fractions: hulls and cotyledons, using 70% methanol by the ultrasonication method and quantified using HPLC-DAD. The major phenolics from both hulls and cotyledons extracts were SP, with small amounts of SG, and SA with a significant difference of phenolic contents between the two seed fractions. Cotyledons showed relatively high content of SP, SA, SG and total phenolics in comparison to hulls (p < 0.001. The concentration of SP in different fractions ranged from 1.15 ± 0.07 to 12.20 ± 1.16 mg/g and followed a decreasing trend- canola cotyledons > mustard cotyledons > mustard seeds > canola seeds > mustard hulls > canola hulls. UPLC-tandem Mass Spectrometry confirmed the presence of sinapates and its fragmentation in these extracts. Further, a high degree of correlation (r = 0.93 was noted between DPPH scavenging activity and total phenolic content.

  11. Effect of Canola Oil and Vitamin A on Egg Characteristics and Egg Cholesterol in Laying Hens During Hot Summer Months

    Directory of Open Access Journals (Sweden)

    S Ahmad*1, Ahsan-ul-Haq2, M Yousaf2, Z Kamran1, Ata-ur-Rehman3, MU Suhail1 and HA Samad1

    2013-07-01

    Full Text Available Canola oil and vitamin A were evaluated for their effects on egg characteristics, egg cholesterol and egg triglycerides (TG in laying hens prone to heat-stress during summer months. Four levels of canola oil (0, 2, 3 and 4% of diet in combination with two levels of vitamin A (3,000 or 10,000 IU/kg of diet were fed to laying hens for a period of 12 weeks. Various egg-quality parameters were measured on weekly basis while, serum TG, egg cholesterol and TG contents were analyzed during the last week of the trial. The results of the study showed that the egg weight, egg mass, yolk weight, Haugh unit score, shell thickness, shell weight and egg breaking-strength were similar (P>0.05 for all canola oil levels supplemented to the laying hens. Higher egg weight and egg mass (P0.05 by increasing canola oil or vitamin A levels in the diet of laying hens. It might be concluded from the results of the present study that canola oil as a source of omega-3 fatty acids can be included in the diet of laying hens without compromising the quality characteristics of the eggs.

  12. The evolution of Brassica under domestication

    International Nuclear Information System (INIS)

    Crisp, P.

    1989-01-01

    Four species of Brassica show highly diverse cultivated forms of vegetables. Similar morphotypes arose in different species, and in different geographic regions. Morphotypic variation may have originated as major gene mutations which were canalized into stable, polygenically controlled characters. Different genetic systems may control the same phenotype within and between species. It is argued that the likelihood of the success of major gene mutation in fresh domestications, particularly of vegetables, will be increased if the wild species is already edible, and is related to cultivated or highly diverse species. New phenotypes arising from mutation programmes should be assessed by groups of individuals with diverse interests in the exploitation of crop plants. (author). 30 refs, 1 tab

  13. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  14. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?

    Science.gov (United States)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are regarded as “safe” feed for cattle during late summer and fall in the North Island of New Zealand when high Pithomyces chartarum spore counts in pastures frequently lead to sporidesmin toxicit...

  15. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be Hepato-and/or cholangiotoxic in cattle?

    Science.gov (United States)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are generally regarded as “safe” feed for cattle during late summer and fall in New Zealand. However, when Pithomyces chartarum spore counts are high there are epidemics of sporidesmin toxicity (...

  16. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2017-12-01

    Full Text Available This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60 : 40, control + 6% of Ca-soap of canola oil, and control + 6% of Ca-soap of flaxseed oil. Variables observed were pH value, NH3 concentration, volatile fatty acid (VFA, dry matter and organic matter digestibility, and fatty acid profile.  The results showed that the addition of Ca-soap of canola or flaxseed oil did not affect the pH value, NH3 concentration, dry matter digestibility, organic matter digestibility, total population of bacteria and protozoa in the rumen. However, the total production of ruminal VFA was increased (P<0.05 with the addition of Ca soap of canola oil/flaxseed oil. The use of Ca-soap of flaxseed oil increased (P<0.05 the content of unsaturated fatty acids in the rumen at 4 h incubation. The addition of Ca-soap of flaxseed oil resulted the lowest (P<0.05 level of unsaturated fatty acids biohydrogenation compared to the other treatments at 4 h incubation. In conclusion, the addition of Ca soap of canola/flaxseed oil could improve VFA total production. Vegetable oils protected using calcium soap could inhibit unsaturated fatty acid biohidrogenation by rumen microbes. Ca-soap of flaxseed oil could survive from rumen biohydrogenation in the rumen better than Ca-soap of canola oil.

  17. Digestibilidade aparente de dietas com diferentes níveis de farelo de canola para cavalos

    Directory of Open Access Journals (Sweden)

    Oliveira Kátia de

    2001-01-01

    Full Text Available Foram utilizados quatro eqüinos, machos, com média de 3,5 anos e peso vivo entre 400-450 kg, distribuídos em um delineamento experimental em quadrado latino 4 x 4 (período x animal. Os níveis de inclusão do farelo de canola nas rações foram de 0,0; 2,5; 4,5 e 7,0%, substituindo, respectivamente, 0; 35; 65 e 100% da proteína bruta (PB do farelo de soja. As rações foram isoprotéicas (13% PB e isocalóricas (4250 kcal/kg. Utilizou-se o método de coleta total de fezes para determinação dos coeficientes de digestibilidade dos nutrientes. Não houve efeito entre os níveis de substituição da proteína bruta do farelo de soja pelo farelo de canola para nenhum dos nutrientes avaliados. Os valores médios obtidos para os coeficientes de digestibilidade aparente da matéria seca, energia bruta, proteína bruta, fibra em detergente neutro e fibra em detergente ácido foram, respectivamente, 64,04; 55,82; 62,89; 51,20 e 42,05%. Os concentrados para eqüinos podem ser formulados com substituição total da proteína bruta do farelo de soja pelo farelo de canola (nível de inclusão de 7%, sem afetar adversamente a digestibilidade dos nutrientes, tornando-se, assim, uma fonte protéica alternativa para as dietas desta espécie.

  18. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    International Nuclear Information System (INIS)

    Akandeh, M.; Kocheili, F.; Rasekh, A.; Soufbaf, M.

    2017-01-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  19. EFFECT OF FEEDING CANOLA AND SOYBEAN OILS ON SERUM LIPID PROFILE IN COMMERCIAL LAYERS

    Directory of Open Access Journals (Sweden)

    Shakoor. H. I., M. L. Khan, Z. Nasir, N. Mukhtar and M. S. Rehman

    2002-04-01

    Full Text Available The purpose of this study was to assess the effect of canola oil and soybean oil on production performance and serum lipid profile in layers. In this study 15 experimental units (8 layers per experimental unit were randomly allotted to 5 different dietary treatments viz control (A. containing 2.5 % canola oil (B, 5% canola oil (C, 2.5% soybean oil (D and 5% soybean oil (E for a period of 9 weeks. Effects of five treatments on production parameters including egg production, egg quality, weight gain and serum lipid profile, serum cholesterol, triglycerides, low-density lipoprotein and high-density lipoprotein were monitored. Serum lipid profile was determined 0.31 and 63 days from start of experiment. Significantly (P<0.05 less serum cholesterol was found in treatment C (295.1 mg/dl as compared with treatment A (321 mg/dl. Low density lipoprotein cholesterol (LDL was significantly (P<0.01 , less in treatment C ( 131.7 mg/dl as compared with treatment A. ( 161 mg/dl and high density lipoprotein cholesterol (HDL was significantly (P<0.01 high in treatment C (31.76 mg/dl as compared with treatment A (25.42 mg/dl and triglyceride (TG was found significantly (P<0.01 less in treatment E ( 907.3 mg/dl as compared with treatment A (960 mg/dl. The results suggested that as the percentage of oils increased in the diet, serum lipid profile showed a positive trend.

  20. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions.

    Science.gov (United States)

    Akandeh, M; Soufbaf, M; Kocheili, F; Rasekh, A

    2017-06-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions.

  1. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akandeh, M.; Kocheili, F.; Rasekh, A. [Dept. of Entomology, Shahid Chamran Univ of Ahvaz (Iran, Islamic Republic of); Soufbaf, M., E-mail: msoufbaf@nrcam.org [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2017-06-15

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  2. EFFECTS OF SEED IRRADIATION ON 14C FIXATION AND ANTIOXIDANT ACTIVITY OF VITAMIN C AND TOTAL PHENOLS OF CANOLA LEAVES

    International Nuclear Information System (INIS)

    KAMEL, H.A.

    2008-01-01

    Seeds of canola were gamma irradiated with doses of 10, 25, 50, 100 and 200 Gy then cultivated in 30 cm plastic pots containing 7 kg clay soil. After 45 days of cultivation, plants were used to measure 14 C fixation capacity, vitamin C, total phenol, free proline and peroxidase activity in addition to the antioxidant activity. The results showed decrease in the chlorophyll content and 14 C fixation at all gamma doses. Irradiation of canola seeds caused significant reduction in vitamin C and phenol content, while significant increase was occurred in free proline and peroxidase activity. Antioxidant activity of vitamin C was higher than that of phenols at all doses used

  3. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.

  4. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Shawrang, P. [Agriculture, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)], E-mail: parvinshawrang@yahoo.co.uk; Nikkhah, A.; Zare-Shahneh, A. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of); Sadeghi, A.A. [Department of Animal Science, Faculty of Agriculture, Science and Research Branch, Islamic Azad University, P.O. Box 14515-4933, Tehran (Iran, Islamic Republic of); Raisali, G. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Moradi-Shahrebabak, M. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)

    2008-07-15

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition.

  5. Improvement of brassica oilseeds through modern biotechnological approaches

    International Nuclear Information System (INIS)

    Khan, M.R.; Rashid, H.

    2007-01-01

    Pakistan is chronically deficient in the production of edible oils. So much so that 3/4 (three fourth) of the country's requirements are met through imports, costing huge amounts in foreign exchange. The total edible-oil requirements of Pakistan for 1999-2000 stands at 2 million tons. The rest was imported on heavy foreign exchange cost of US dollars 800 million/year (Anonymous, 2000). One disturbing aspect of this critical issue is an annual increase in the gap between consumption and domestic production of edible oils. The different uses of rapeseed have given rise to specialized cultivars, and it is important to differentiate between the three principal types viz. seed quality, high erucic acid (HEAR), and canola. The term Canola refers to seed or seed-products with less than 2% erucic acid in the oil and less than 30 macro mol/g meal of aliphatic glucosinolates. (author)

  6. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters

    DEFF Research Database (Denmark)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven

    2017-01-01

    -of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited......The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss...... over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed...

  7. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters.

    Science.gov (United States)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven; Jørgensen, Morten Egevang; Olsen, Carl Erik; Andersen, Jonathan Sonne; Seynnaeve, David; Verhoye, Thalia; Fulawka, Rudy; Denolf, Peter; Halkier, Barbara Ann

    2017-04-01

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed glucosinolate content in other oilseed crops, such as Camelina sativa or Crambe abyssinica.

  8. Light influence in the nutritional composition of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The genome of the mesopolyploid crop species Brassica rapa.

    Science.gov (United States)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun; Sun, Rifei; Wu, Jian; Liu, Shengyi; Bai, Yinqi; Mun, Jeong-Hwan; Bancroft, Ian; Cheng, Feng; Huang, Sanwen; Li, Xixiang; Hua, Wei; Wang, Junyi; Wang, Xiyin; Freeling, Michael; Pires, J Chris; Paterson, Andrew H; Chalhoub, Boulos; Wang, Bo; Hayward, Alice; Sharpe, Andrew G; Park, Beom-Seok; Weisshaar, Bernd; Liu, Binghang; Li, Bo; Liu, Bo; Tong, Chaobo; Song, Chi; Duran, Christopher; Peng, Chunfang; Geng, Chunyu; Koh, Chushin; Lin, Chuyu; Edwards, David; Mu, Desheng; Shen, Di; Soumpourou, Eleni; Li, Fei; Fraser, Fiona; Conant, Gavin; Lassalle, Gilles; King, Graham J; Bonnema, Guusje; Tang, Haibao; Wang, Haiping; Belcram, Harry; Zhou, Heling; Hirakawa, Hideki; Abe, Hiroshi; Guo, Hui; Wang, Hui; Jin, Huizhe; Parkin, Isobel A P; Batley, Jacqueline; Kim, Jeong-Sun; Just, Jérémy; Li, Jianwen; Xu, Jiaohui; Deng, Jie; Kim, Jin A; Li, Jingping; Yu, Jingyin; Meng, Jinling; Wang, Jinpeng; Min, Jiumeng; Poulain, Julie; Wang, Jun; Hatakeyama, Katsunori; Wu, Kui; Wang, Li; Fang, Lu; Trick, Martin; Links, Matthew G; Zhao, Meixia; Jin, Mina; Ramchiary, Nirala; Drou, Nizar; Berkman, Paul J; Cai, Qingle; Huang, Quanfei; Li, Ruiqiang; Tabata, Satoshi; Cheng, Shifeng; Zhang, Shu; Zhang, Shujiang; Huang, Shunmou; Sato, Shusei; Sun, Silong; Kwon, Soo-Jin; Choi, Su-Ryun; Lee, Tae-Ho; Fan, Wei; Zhao, Xiang; Tan, Xu; Xu, Xun; Wang, Yan; Qiu, Yang; Yin, Ye; Li, Yingrui; Du, Yongchen; Liao, Yongcui; Lim, Yongpyo; Narusaka, Yoshihiro; Wang, Yupeng; Wang, Zhenyi; Li, Zhenyu; Wang, Zhiwen; Xiong, Zhiyong; Zhang, Zhonghua

    2011-08-28

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

  10. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection.

    Science.gov (United States)

    Cheng, Feng; Wu, Jian; Cai, Chengcheng; Fu, Lixia; Liang, Jianli; Borm, Theo; Zhuang, Mu; Zhang, Yangyong; Zhang, Fenglan; Bonnema, Guusje; Wang, Xiaowu

    2016-12-20

    The closely related species Brassica rapa and B. oleracea encompass a wide range of vegetable, fodder and oil crops. The release of their reference genomes has facilitated resequencing collections of B. rapa and B. oleracea aiming to build their variome datasets. These data can be used to investigate the evolutionary relationships between and within the different species and the domestication of the crops, hereafter named morphotypes. These data can also be used in genetic studies aiming at the identification of genes that influence agronomic traits. We selected and resequenced 199 B. rapa and 119 B. oleracea accessions representing 12 and nine morphotypes, respectively. Based on these resequencing data, we obtained 2,249,473 and 3,852,169 high quality SNPs (single-nucleotide polymorphisms), as well as 303,617 and 417,004 InDels for the B. rapa and B. oleracea populations, respectively. The variome datasets of B. rapa and B. oleracea represent valuable resources to researchers working on evolution, domestication or breeding of Brassica vegetable crops.

  11. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  12. The broccoli (Brassica oleracea) phloem tissue proteome.

    Science.gov (United States)

    Anstead, James A; Hartson, Steven D; Thompson, Gary A

    2013-11-07

    The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.

  13. Oil quality of canola cultivars in response to water stress and super absorbent polymer application

    OpenAIRE

    Moghadam,Hamid Reza Tohidi; Zahedi,Hossein; Ghooshchi,Farshad

    2011-01-01

    Water stress significantly limits plant growth and crop yield. Hence, the efficient management of soil moisture and the study of metabolic changes which occur in response to drought stress are important for agriculture. The present study was conducted to evaluate the effect of six oilseed rape (Brassica napus L.) genotypes (Rgs003, Sarigol, Option500, Hyola401, Hyola330, and Hyola420), with and without drought stress, and with and without the use of super absorbent polymer, on oil quality and...

  14. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    Science.gov (United States)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  15. Effect of laser priming on canola yield and its components under salt stress

    Science.gov (United States)

    Mohammadi, S. K.; Shekari, F.; Fotovat, R.; Darudi, A.

    2012-02-01

    The effect of laser priming at different irradiation times on canola yield and its components under saline conditions were investigated. The results showed that laser priming had a positive effect on yield and its components and caused yield increase under saline conditions. Increase in salt levels had a negative and significant effect on seed yield, number of seeds per pod, number of pod per plant, pod length and plant height. The results showed that 45-min laser priming had the strongest effect on yield and yield components and reduced significantly the adverse effects of salinity. By contrast, laser radiation applied for 60 and 75 min, resulted in a dramatic decrease in yield and its components. Correlation coefficients between the attributes showed that canola yield had a positive and significant correlation with plant height, number of seeds, pod per main branch and lateral branches, length of pod and number of lateral branches. Effects of laser and salinity were significant on lateral branch pod length but not on main branch pods.

  16. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  17. Effect of Packaging Films on the Quality of Canola Oil under Photooxidation Conditions

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2015-01-01

    Full Text Available The objective of this study was to evaluate the influence of packaging films on the quality of canola oil which contains high concentration of fat under photooxidation condition and get the oxidation kinetics based on measuring the oxidation intensities including peroxide value, hexanal, and photosensitizer (chlorophyll. The canola oil was packaged by PET/CPP; KPET/PE was used for experiments. The change of light and oxygen transmission rate (OTR of PET/CPP which was considered as the typical fatty foods packaging film under different light intensities was also tested. The results show that the peroxide value increased rapidly under light conditions and fitted the zero order kinetics; also the oxygen transmission rate had great impact on it; hexanal fitted the zero order kinetic in oil whose package of low OTR generated a lot; however package in high OTR films changed very slowly that might be dependent on the performance of hexanal through plastic films. The degradation of chlorophyll fitted the first order kinetic and decreased quickly under light but was almost independent of OTR of transparent packaging material. Light reduced the oxygen barrier properties of the films, which should be considered as the photooxidation condition (and the photooxidation condition thus should be considered.

  18. Transfer of dietary fatty acids from butyric acid fortified canola oil into the meat of broilers

    Directory of Open Access Journals (Sweden)

    Stefano Rapaccini

    2010-01-01

    Full Text Available The literature reported positive beneficial effects of butyric acid and canola oil on production performance traits of broiler chickens. Three hundred hybrid Ross 708 (150 males and 150 females were randomly allotted to 10 pens per treatment with 5 males and 5 females per pen. Ten pens were administered a diet supplemented with soybean oil (control, ten pens the same basal diet but supplemented with a blend of mono-, di-, tri-glyceride of butyric acid added to soybean oil (T1 and ten pens the same basal diet supplemented with a mix of soybean and canola oil containing butyrate (T2. No differences in final body weight, dressing percentage, liver and thigh weight were found be- tween groups. The T2 birds showed the highest feed/gain ratio (P<0.05. The control group showed the highest value for breast weight while the highest quantity of abdominal fat was in T2 carcasses. Fatty acid profile was significantly influenced by the presence of oil supplements, not only quantitatively but also qualitatively.

  19. Effects of protein separation conditions on the functional and thermal properties of canola protein isolates.

    Science.gov (United States)

    Manamperi, Wajira A R; Wiesenborn, Dennis P; Chang, Sam K C; Pryor, Scott W

    2011-04-01

    Canola meal protein isolates were prepared from defatted canola meal flour using alkaline solubilization and acid precipitation. A central composite design was used to model 2nd-order response surfaces for the protein yield and the functional properties of protein isolates. The solubilization pH and precipitation pH were used as design factors. The models showed that the protein yield and functional properties of isolates, such as water absorption and fat absorption, were sensitive to both solubilization pH and precipitation pH, whereas the emulsification was sensitive to only solubilization pH. Gel electrophoresis analysis of protein fractions gave evidence to the compositional changes between proteins isolated under different conditions. Differences in glass transition temperatures suggest that proteins tend to be more denatured when solubilized at highly alkaline conditions. These conformational and compositional changes due to different protein separation conditions have contributed to the changes in functional properties of protein isolates.   Protein isolation conditions may be determined primarily through optimization of total protein yield. Improvements in protein functional properties may be achieved with a relatively small sacrifice in yield by altering isolation conditions.

  20. Desempenho e morfometria da mucosa de duodeno de frangos de corte alimentados com farelo de canola, durante o período inicial Performance and duodenum mucous morphometry of broiler chickens fed canola meal, during the starting period

    Directory of Open Access Journals (Sweden)

    Denise Fontana Figueiredo

    2003-12-01

    Full Text Available Um experimento foi conduzido para verificar o efeito da utilização de níveis crescentes (0, 10, 20, 30 e 40% de farelo de canola nas rações de frangos de corte, sobre o desempenho e a morfologia da mucosa, durante o período inicial (1 - 21 dias e os efeitos de sua utilização no período de crescimento. Foram utilizados 1000 pintos machos de um dia de idade, distribuídos em delineamento experimental inteiramente casualizado, com cinco tratamentos, quatro repetições e 50 aves por unidade experimental. No 1º, 21º e 41º dia, as aves e as rações foram pesadas e no 21º dia duas aves de cada unidade experimental foram sacrificadas para a colheita de um segmento do duodeno para avaliação de morfometria intestinal. Os resultados demonstraram que níveis crescentes de farelo de canola induziram à redução linear no ganho de peso, peso médio e consumo de ração e piora na conversão alimentar. Durante o período de crescimento (21 a 41 dias, no qual todas as aves receberam ração semelhante, observou-se decréscimo no peso médio e ganho de peso, com o aumento dos níveis de farelo de canola, enquanto os parâmetros conversão alimentar e consumo de ração foram semelhantes. Os dados referentes a morfometria da mucosa intestinal, submetidos à análise de regressão, demonstraram que houve aumento na profundidade de cripta conforme o aumento nos níveis de farelo de canola. Os resultados permitem afirmar que é possível a inclusão de até 20% de farelo de canola, sem prejuízos no desempenho das aves e no trato digestório.A trial was carried to verify the effect of increasing levels (0, 10, 20, 30 and 40% of canola meal in diets of broiler chickens, on performance and mucous morphology, during the starting period (1 - 21 days. 1,000 male chicks one-day-old were used, distributed in a randomized experimental assay, with five treatments, four replicates and 50 birds per experimental unit. At the 1st, 21st and 41st days, the birds

  1. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity

    Directory of Open Access Journals (Sweden)

    Gregory Sekulic

    2016-08-01

    Full Text Available The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST is compatible with principles of integrated pest management (IPM. The neonicotinoid insecticide (NNI seed treatment (NNI ST use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.. Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species.

  2. Influence ofTeucrium poliumL. essential oil on the oxidative stability of canola oil during storage.

    Science.gov (United States)

    Sayyad, Ruhollah; Farahmandfar, Reza

    2017-09-01

    The susceptibility of Teucrium polium essential oil (EO) as an antioxidant for canola oil was studied. Major compounds of the EO were 11-acetoxyeudesman-4-α-ol (26.3%) and α-bisabolol (24.6%). Different concentrations (200, 600 and 1200 ppm) of EO and synthetic antioxidant BHA (200 ppm) were added to canola oil and incubated for 60 days at room temperature. Acid value (AV), peroxide value (PV), carbonyl value (CV), iodine value (IV), total phenolics (TP), total polar compounds (TPC) and oxidative stability index (OSI) of canola oil were determined. Antioxidant capacity of the EO was measured by DPPH and β-carotene-linoleic acid assays. Results exhibited that DPPH and β-carotene-linoleic acid experiment detections on the EO were analogous in high concentrations to those detected on BHA. Moreover, incorporated EO samples had better AV, PV, CV, IV, TP and TPC than control. EO at concentration of 600 ppm indicated higher antioxidant activity in canola oil compared with BHA.

  3. Milk and methane production in lactating dairy cattle consuming distillers dried grains and solubles or canola meal

    Science.gov (United States)

    The use of byproducts as an alternative feed source is becoming increasingly popular among dairy producers. A study using 12 multiparous (79 ± 16 DIM) (mean ± SD) lactating Jersey cows, was conducted over 5 months to evaluate the effects of dried distillers grains with solubles (DDGS) or canola meal...

  4. Raapzaadeiwitconcentraat en erwteneiwitconcentraat in biologisch biggenvoer = Canola protein concentrate and pea protein concentratrate in diets for organically housed piglets

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Diepen, van J.T.M.

    2011-01-01

    At the Experimental Farm Raalte it was investigated whether canola protein concentrate and pea protein concentrate are suitable protein-rich feedstuffs for organically housed piglets. It is concluded that both protein concentrates are suitable protein-rich feedstuffs for piglets. Feed intake and

  5. Kinetic Modeling of Glycerolysis – Hydrolysis of Canola Oil in Supercritical Carbon Dioxide Media Using Equilibrium Data

    Czech Academy of Sciences Publication Activity Database

    Moquin, P.H.L.; Temelli, F.; Sovová, Helena; Saldana, M.D.A.

    2006-01-01

    Roč. 37, č. 3 (2006), s. 417-424 ISSN 0896-8446. [International Symposium on Supercritical Fluids. Orlando , 01.05.2005-04.05.2005] Institutional research plan: CEZ:AV0Z40720504 Keywords : canola oil * glycrolysis * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.037, year: 2006

  6. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  7. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    Directory of Open Access Journals (Sweden)

    Younes Tahmazi

    2015-04-01

    Full Text Available This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A, canola meal treated with 0.5% urea (B and canola meal treated with micro wave (C were 4.74, 15.81 and 15%, and for fermentable portion were 31.05, 39.62 and 65.55%, respectively. The cumulative gas production of soluble and insoluble portions (a+b were 252.13, 213.57 and 240.88 ml/g DM. Metabolizable protein of treatments A, B and C were 283.11, 329.33 and 284.39 g/kg DM, that were not significantly different. The relationship between dry matter and cumulative gas production values for treatments obtained about 0.958, 0.976 and 0.932 and this parameter for crude protein and cumulative gas production achieved 0.987, 0.994 and 0.989, respectively. High correlation between in situ and cumulative gas production techniques indicated that digestibility values can be predicted from cumulative gas production data.

  8. Rumen fermentation and nutrient flow to the omasum in Holstein cows fed extruded canola seeds treated with or without lignosulfonate

    Directory of Open Access Journals (Sweden)

    Wallacy Barbacena Rosa dos Santos

    2012-07-01

    Full Text Available Four multiparous Holstein cows averaging 548 kg of body weight and 74 d in lactation were used in a Latin square design with four 21-d experimental periods to determine effects of feeding extruded versus non-extruded canola seed, with or without 50 g/kg lignosulfonate on rumen fermentation, nutrient flow to the omasum, and degradability of dry matter (DM and N of each diet. The DM effective degradability increased with extrusion and lignosulfonate treatment had no effect. The effective degradability of N was similar between diets. Lignosulfonate treatment of extruded versus non-extruded canola seeds decreased ruminal and total tract apparent digestibility of organic matter. The lowest apparent ruminal and highest intestinal digestibilities of protein, expressed as a percentage of N intake were observed for cows fed extruded canola seeds without lignosulfonate. Lignosulfonate treatment and extrusion had no effect on pH and concentrations of ammonia N and volatile fatty acids in the rumen. Results suggest that extruded canola seed untreated with formaldehyde may stimulate efficiency of microbial protein synthesis and is an effective means of increasing the availability of protein in the small intestine without affecting the total tract apparent digestibility of protein.

  9. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...... screened for their ability to incorporate caprylic acid into the canola oil. The sn-1,3 regiospecificity toward the glycerol backbone of canola oil of the lipases with relatively higher acidolysis activity was compared by investigating the fatty acid profiles of the products. The results showed...

  10. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tumuluru; L.G. Tabil; Y. Song; K.L. Iroba; V. Meda

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barley and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).

  11. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  12. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  13. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  14. The genome of the mesopolyploid crop species Brassica rapa

    NARCIS (Netherlands)

    Wang, Xiaowu; Wang, Hanzhong; Sun, Rifei; Bonnema, A.B.

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the

  15. Phytotoxicity assay for seed production using Brassica rapa L.

    Science.gov (United States)

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...

  16. Anti-ulcer activity of Brassica oleracea on induced ...

    African Journals Online (AJOL)

    The animals were sacrificed following mild anesthesia using chloroform inhalation. The dissected stomach and duodenum were examined macroscopically, tissue blocks taken, fixed in 10% formol saline and prepared for histopathological diagnosis. Brassica oleracea exhibited better healing activity of gastric ulcers than ...

  17. Production of Sauerkraut (Picked) from Cabbage (Brassica oleracea ...

    African Journals Online (AJOL)

    Production of Sauerkraut (Picked) from Cabbage (Brassica oleracea) by the Action of Lactic Acid Bacteria. ... These decreased to 2.167x107 cfu/ml of day 7 of fermentation, from 11 to the 28 days no microorganism was detected in the test sample. Concurrently, increased CO2 production was observed between day one and ...

  18. Glucosinolates during preparation of Brassica vegetables in Indonesia

    NARCIS (Netherlands)

    Nugrahedi, P.Y.

    2015-01-01

    Title:

    Glucosinolates during preparation of Brassica vegetables in Indonesia

    Dutch translation of title:

    Effecten van Indonesische bereidingsmethoden op gezondheidsbevorderende stoffen in groenten

    Title/description

  19. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  20. Ring spot disease of brassica crops : resistance and epidemiology

    NARCIS (Netherlands)

    Ende, van den J.E.

    1998-01-01

    Ring spot disease of brassica crops is caused by the fungus Mycosphaerella brassicicola . The disease can cause severe qualitative and quantitative losses, depending on the initial inoculum, the environmental conditions during the growing season and the susceptibility

  1. Genetic diversity analysis of mustard ( Brassica spp.) germplasm ...

    African Journals Online (AJOL)

    Molecular characterization of 16 mustard (Brassica spp.) genotypes by using 12 RAPD markers revealed that three primers GLA-11, OPB-04 and OPD-02 showed good technical resolution and sufficient variations among different genotypes. A total of 40 RAPD bands were scored of which 38 (94.87%) polymorphic ...

  2. Ascorbate peroxidase gene from Brassica napus enhances salt and ...

    African Journals Online (AJOL)

    A full-length cDNA clone, BnAPX (GenBank: FJ965556.1) encoding ascorbate peroxidase and isolated from Brassica napus, was successfully introduced into Arabidopsis thaliana. Investigation into the function of BnAPX demonstrated that BnAPX transgenic plants grew better than wild type under NaCl stress, and also had ...

  3. Morphology and cytology of flower chimeras in hybrids of Brassica ...

    African Journals Online (AJOL)

    Hybridization between white flowered Brassica carinata and yellow flowered B. rapa were made, and the flower chimeras were observed in a few hybrids. The simple single sequence molecular markers verified the hybridity of those hybrids. Chimeras were justified and totally classified based on the morphological ...

  4. Occurrence of Escherichia coli in Brassica rapa L. chinensis ...

    African Journals Online (AJOL)

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106 samples including Chinese ...

  5. Origin of new Brassica types from a single intergeneric hybrid ...

    Indian Academy of Sciences (India)

    Rieseberg L. H., Raymond O., Rosenthal D. M., Lai Z., Livingstone. K., Nakazato T. et al. 2003 Major ecological transition in wild sunflowers facilitated by hybridization. Science 301, 1211–1216. Snowdon R. J., Köhler W., Friedt W. and Köhler A. 1997 Genomic in situ hybridization in Brassica amphidiploids and interspecific.

  6. Study of total seed storage protein in indigenous Brassica species ...

    African Journals Online (AJOL)

    Genetic diversity was studied in 234 accessions of locally collected Brassica species for total seed protein content through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). These accessions were collected from different locations of Pakistan. After the study of these accessions on SDS-PAGE, ...

  7. Metabolomic changes of Brassica rapa under biotic stress

    NARCIS (Netherlands)

    Abdel-Farid Ali, Ibrahim Bayoumi

    2009-01-01

    It has been shown by this thesis that plant metabolomics is a promising tool for studying the interaction between B. rapa and pathogenic fungi. It gives a picture of the plant metabolites during the interaction. Brassica rapa has many defense related compounds such as glucosinolates, IAA,

  8. Mineral, vitamin C and crude protein contents in kale (Brassica ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-27

    Oct 27, 2011 ... Key words: Kale (Brassica oleracea var. acephala), harvesting stage, vitamin C, crude protein, mineral content. INTRODUCTION. Cabbage .... Weeding activity was performed when needed in the growing periods. All data were .... metabolism, nucleic acids, and binding agents of cell walls (Russel, 1973).

  9. Generation and characterization of Brassica rapa ssp. pekinensis ...

    Indian Academy of Sciences (India)

    2015-09-11

    Sep 11, 2015 ... Abstract. Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis – B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien link- age groups were identified using 42 B. oleracea ...

  10. Screening of Chinese brassica species for anti-cancer sulforaphane ...

    African Journals Online (AJOL)

    Natural sulforaphane and erucin have been of increasing interest for nutraceutical and pharmaceutical industries due to their anti-cancer effect. The sulforaphane and/or erucin contents in seeds of 43 different Chinese Brassica oleracea L. varieties were analyzed by HPLC and GC-MS. Among them, 21 cultivars seed meal ...

  11. Proteome level changes in the root of Brassica alboglabra induced ...

    African Journals Online (AJOL)

    Chinese kale (Brassica alboglabra) is a famous and extensively grown vegetable in Southeast Asia. Despite its nutritional values, pesticides are heavily applied to it. In this study, changes in protein expression due to alachlor treatment on B. alboglabra were investigated by using the 2-dimensional PAGE. Differential protein ...

  12. Carbon and nitrogen stoichiometry in Brassica napus L. seedlings ...

    African Journals Online (AJOL)

    Exposure of plants to long periods of water scarcity, mainly in arid and semi-arid regions, is one of the major reasons for over 50% reduction in average yields. Proper management of Brassica napus to enhance its ability to survive under drought and high temperature stress at early growth stages, besides development of ...

  13. Molecular characterization of some local and exotic Brassica juncea ...

    African Journals Online (AJOL)

    The production of Brassica germplasm with a wider genetic base is essential for using them properly in the genetic improvement of rapeseed/mustard. During the present study, different RAPD (Random Amplified Polymorphic DNA) primers were used to estimate the genetic distances among thirty different genotypes in all ...

  14. Floristic diversity and vegetation analysis of Brassica nigra (L.) Koch ...

    African Journals Online (AJOL)

    The floristic composition and species diversity of Brassica nigra communities were investigated in Beni Suef Governorate, Egypt. In 46 stands, a total of 49 species belonging to 42 genera and 18 families were recorded. Vegetation classification and ordination distinguished seven groups: two in reclaimed land only, three ...

  15. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  16. Genetic diversity and relationship analysis of the Brassica napus ...

    African Journals Online (AJOL)

    Oilseed rape (Brassica napus L.) is an important oilseed crop worldwide. The objective of this research was to study the genetic diversity and relationships of B. napus accessions using simple sequence repeat (SSR). A set of 217 genotypes was characterized using 37 SSR markers of mapping on the B. napus genome.

  17. Mineral, vitamin C and crude protein contents in kale ( Brassica ...

    African Journals Online (AJOL)

    This study compares mineral, vitamin C and crude protein contents at different harvesting stages in kale (Brassica oleraceae var. acephala). Three different harvest periods as first harvest stage (at the rosette stage), second harvest stage (at the budding stage) and third harvest stage (at the flowering/blooming stage) were ...

  18. Local cabbage ( Brassica oleracea var. capitata L.) populations from ...

    African Journals Online (AJOL)

    In previous experiments, we were able to augment cabbages (Brassica oleracea L. var. capitata L.) with two new local open pollinated (OP) populations and one cultivar. The type of use indicated that these are cabbages with thinner and juicier leaves, which predisposes their heads for fine grating and also makes their ...

  19. Immunopurification and characterization of a rape ( Brassica napus L.)

    African Journals Online (AJOL)

    Lipase or triacylglycerol acylhydrolase (E.C.3.1.1.3) was purified to homogeneity from rapeseed-germinated cotyledons (Brassica napus L.). The purification scheme involved homogenization, centrifugation, ultracentrifugation and affinity chromatography using polyclonal antibodies raised against porcine pancreatic lipase.

  20. Study of total seed storage protein in indigenous Brassica species ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... presented in Figures 1, 2 and 3 showed close relation- ship among these studied accessions, while the diffe- .... Dendrogram showing the relationship between different protein types in indigenous brassica species based on ... Bangladesh, Japan and China. Similarly, Munazza et al. (2009) evaluated 30 ...

  1. Allelopathic potentials of residues of 6 brassica species on ...

    African Journals Online (AJOL)

    Johnsongrass ( Sorghum halepense (L.) Pers.) is a troublesome weed species of many crops in Turkey as well as worldwide. Allelopathic potential of residues of some brassica species, which are round white radish (Raphanus sativus L.), garden radish (R. sativus L.), black radish (R. sativus L. var. niger), little radish (R.

  2. Origin of new Brassica types from a single intergeneric hybrid ...

    Indian Academy of Sciences (India)

    Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression ... The lines with high productivity showed not only a wide spectrum of phenotypes but also obvious variations in fatty acid profiles of seed oil and glucosinolate ...

  3. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul. Ehsan, Malaysia. Accepted 20 March, 2009. Hypocotyls and shoot tips were used as explants in in vitro plant regeneration of broccoli (Brassica oleracea subsp.italica) cv. Green Marvel.

  4. Suitability of an artificial diet for rape aphid, Brevicoryne brassicae ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... discs (a) and artificial diet (b). structure of our testing material and show just the effect of that. The results in this investigation showed that this artificial diet can support all life stages of B. brassicae and this aphid can be established on that. The compare- son of results with life table parameters that Francisco.

  5. Screening of Chinese brassica species for anti-cancer sulforaphane ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... Natural sulforaphane and erucin have been of increasing interest for nutraceutical and pharmaceutical industries due to their anti-cancer effect. The sulforaphane and/or erucin contents in seeds of 43 different Chinese Brassica oleracea L. varieties were analyzed by HPLC and GC-MS. Among them, 21.

  6. Transposon variation by order during allopolyploidisation between Brassica oleracea and Brassica rapa.

    Science.gov (United States)

    An, Z; Tang, Z; Ma, B; Mason, A S; Guo, Y; Yin, J; Gao, C; Wei, L; Li, J; Fu, D

    2014-07-01

    Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE-associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE-associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter-Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE-associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self-pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety-two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR-REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: Regulation of sulfur uptake and assimilation

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Hawkesford, M.J.; De Kok, L.J.

    2016-01-01

    Brassica juncea and Brassica rapa were able to utilize foliarly absorbed H2S and SO2 as sulfur source for growth and resulted in a decreased sink capacity of the shoot for sulfur supplied by the root and subsequently in a partial decrease in sulfate uptake capacity of the roots. Sulfate-deprived

  8. Genome Wide Identification and Expression Profiling of SWEET Genes Family Reveals Its Role During Plasmodiophora brassicae-Induced Formation of Clubroot in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Hong Li

    2018-02-01

    Full Text Available Plasmodiophora brassicae is a soil borne pathogen and the causal agent of clubroot, a devastating disease of Brassica crops. The pathogen lives inside roots, and hijacks nutrients from the host plants. It is suggested that clubroot galls created an additional nutrient sink in infected roots. However, the molecular mechanism underlying P. brassicae infection and sugar transport is unclear. Here, we analyzed sugar contents in leaves and roots before and after P. brassicae infection using a pair of Chinese cabbage near-isogenic lines (NILs, carrying either a clubroot resistant (CR or susceptible (CS allele at the CRb locus. P. brassicae infection caused significant increase of glucose and fructose contents in the root of CS-NIL compared to CR-NIL, suggesting that sugar translocation and P. brassicae growth are closely related. Among 32 B. rapa SWEET homologs, several BrSWEETs belonging to Clade I and III were significantly up-regulated, especially in CS-NIL upon P. brassicae infection. Moreover, Arabidopsis sweet11 mutant exhibited slower gall formation compared to the wild-type plants. Our studies suggest that P. brassicae infection probably triggers active sugar translocation between the sugar producing tissues and the clubbed tissues, and the SWEET family genes are involved in this process.

  9. Evaluation of Promising Mutant Lines of Canola Grown under New Reclamation Lands (Harsh Lands)

    International Nuclear Information System (INIS)

    Amer, I.M.; Farrag, M.E.; Soliman, S.S.; Hassan, A.A.

    2017-01-01

    Canola seed lots of four varieties (Serow4, Serow6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). The present study aims to evaluate useful mutations in canola which possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sinai (saline) and Inshas (harsh and poor fertility) in M 4 and M 5 generations. The results at M 4 and M 5 generations showed that the 13-selected mutant lines on the bases of number of pods and seed yield/plant differed in their yield response according to environmental conditions. Over the two locations, the highest number of pods plant and seed yield was found at line 75 (M4) and line 11 for seed yield and line 78 for number of pods in M5 compared to other genotypes. More over, all the mutant lines compared to their parents showed significant or insignificant increases for all studies traits during the two successive generations. Over the two generations, the highest mean value compared to all genotypes was found in line 22 for plant height at Sudr and line 11 at Inshas, for fruiting zone length, the highest value was noticed in line 18 at Sudr and line 75 at Inshas, for the highest number of pods, (125/plant) it was found in line 63 at Sudr and (193/plant) in line 75 at Inshas which reflected the highest seed yield ( 8 g/plant).The highest mean value compared to all genotypes was found for 100 seed-weight in line 8 at Sudr and line 11 at Inshas which appeared the highest seed yield at Suder. Over all studied conditions, the mutant line 75 derived from Evita variety was characterized by the highest mean values for fruiting zone length of plant and number of pods/plant, reflecting a high seed yield (6.47 g/plant ) or about 83.87% over its parent. The increase of seed yield/plant for mutant line 11 over its parent was about 68.8% followed by line 8 surpassed its parent for seed yield by about 60.2 %. The oil content of canola seeds in

  10. Segregation for fertility and meiotic stability in novel Brassica allohexaploids.

    Science.gov (United States)

    Mwathi, Margaret W; Gupta, Mehak; Atri, Chaya; Banga, Surinder S; Batley, Jacqueline; Mason, Annaliese S

    2017-04-01

    Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability. Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata × B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus × B. carinata) × B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.

  11. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  12. Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach

    NARCIS (Netherlands)

    Broekgaarden, C.; Poelman, E.H.; Steenhuis, M.M.; Voorrips, R.E.; Dicke, M.; Vosman, B.

    2008-01-01

    Intraspecific variation in resistance or susceptibility to herbivorous insects has been widely studied through bioassays. However, few studies have combined this with a full transcriptomic analysis. Here, we take such an approach to study the interaction between the aphid Brevicoryne brassicae and

  13. Digestibilidade aparente da energia e nutrientes do farelo de canola pela tilápia do Nilo (Oreochromis niloticus Apparent nutrient and energy digestibility of canola meal for Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Wilson Massamitu Furuya

    2001-06-01

    Full Text Available Este estudo foi realizado para determinar a energia digestível e a digestibilidade aparente de nutrientes do farelo de canola pela tilápia do Nilo (Oreochromis niloticus. O óxido de crômio (0,1% foi utilizado como indicador inerte em dieta semi-purificada, com coleta de fezes pelo sistema Guelph. Os peixes foram alimentados até saciedade aparente. O farelo de canola apresentou valores de energia e nutrientes digestíveis de: 77,84; 71,99; 86,92; 88,19; 67,16 e 29,86% para a matéria seca, energia, proteína, lipídios, cálcio e fósforo, respectivamente, correspondendo a 2969,98 (kcal/kg; 69,97; 32,6; 1,2; 0,41 e 0,28%, de energia digestível, matéria seca, proteína e lipídios digestíveis e cálcio e fósforo disponíveis, respectivamente. Os resultados obtidos neste trabalho evidenciam que a tilápia do Nilo pode utilizar eficientemente o farelo de canola.This study was carried out to determine the digestible energy and apparent nutrient digestibility of canola meal for Nile tilapia (Oreochromis niloticus. The chromic oxide (0.1% was used as an inert indicador in the semi-purified diet and faeces were collected by Guelph system. Fish were fed to apparent satiation. The apparent nutrient and energy digestibility of canola meal were: 77.84, 71.99, 86.92, 88.19, 67.16, and 29.86% for dry matter, energy, protein, lipids, calcium and phosphorus, respectively, corresponding to 2969,98 (kcal/kg; 69.97, 32.6, 1.2, 0.41, and 0.28% of, digestible energy, dry matter, protein and lipids and available calcium and phosphorus, respectively. The results obtained in this experiment evidence that Nile tilapia may be able to utilize canola meal eficiently.

  14. Evaluation of canola seeds of different cultivars with special emphasis on the quantification of erucic acid and glucosinolates

    Directory of Open Access Journals (Sweden)

    Anwar, Farooq

    2009-03-01

    Full Text Available This study reports the characterization of the seeds and seed oils of five locally grown canola cultivars: Zafar-2002, Bulbul (Frontier, Dunkeld, Oscar and Con-11. The oil contents from canola seeds ranged from 34.3 to 39.3%. The levels of protein, fiber, ash and moisture were found to be 22.1-41.0, 12.0-14.0, 3.0-3.5 and 4.0-7.5%, respectively. The glucosinolate (GSL contents in the canola seeds examined ranged from 49.7 to 78.1 mmol g-1. The extracted canola seed oils revealed an iodine value of 118.2-124.6 g of I/100g of oil; refractive index (40 °C, 1.460-1.464; density (24 °C, 0.914-0.919 mg m-1; saponification value, 187-195; unsaponifiable matter, 0.51-1.10%; acidity (% as oleic acid, 0.40-1.40, and color (1-in. cell, 1.35-1.73 R + 21.0-38.0 Y. Peroxide value (meq/ kg of oil and specific extinctions at 232 and 270 nm were determined to be 2.00-7.08, 2.17-3.16 and 0.44-0.91, respectively. The seed oils of the five canola cultivars mainly consisted of oleic (C18:1, linoleic (C18:2 and linolenic (C18:3 acids at levels of 49.16-62.14, 14.61, 23.45 and 6.97-9.10%, respectively. The concentrations of palmitic (C16:0, stearic (C18:0, erucic (C22:1 and gadoleic (C20:1 acids ranged from 3.47 to 6.00, 1.51 to 2.10, traces to 13.03 and 1.30 to 10.63%, respectively. A small amount of arachidic acid (20:0 with a contribution below 1% was also detected. The contents of tocopherols (α, γ, and δ in the canola oils accounted for 77.1-270.3, 191-500, 3.5-15.6 mg kg-1, respectively.The presence of rather high levels of erucic acid and GSL in the present analysis of canola emphasized the need to further reduce the contents of these two antinutritional constituents in the investigated cultivars.Este estudio describe de la caracterización de semillas y de sus aceites de cinco cultivos locales de canola: Zafar2002, Bulbul (Frontier, Dunkeld, Oscar y Con 11. El contenido de aceite de las semillas de canola varió entre un 34.3 y un 39.3%. Los niveles

  15. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    OpenAIRE

    Cutler, G. Christopher; Scott-Dupree, Cynthia D.; Sultan, Maryam; McFarlane, Andrew D.; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, ...

  16. Effect of pressing and combination of three storage temperatures and times on chemical composition and fatty acid profile of canola expellers

    Directory of Open Access Journals (Sweden)

    Matteo Guadagnin

    2013-05-01

    Full Text Available This experiment investigated the effects of combinations of three temperatures and storage times on chemical composition, fatty acid profile, and oxidative stability of canola expellers obtained from the cold-pressing extraction of oil. Canola seeds were single-crushed at moderate temperatures (60°C during 3 pressing sessions. Nine samples (100±1 g of each session were collected, inserted into sealed bags, stored at three temperatures (12, 24, 36°C over 3 periods of time (10, 20, 30 d. Then, samples (100±1 g of canola seeds collected before each pressing session and canola expellers collected before and after each storage time were analyzed for chemical composition, fatty acid profile, peroxide number and Kreis test. Before storage, the fatty acid profile of canola seeds and expellers differed significantly, except for myristic (P=0.18, palmitic (P=0.57, oleic (P=0.07, and α-linolenic acids (P=0.45. Compared to canola seeds, expellers showed greater content of saturated, poly-unsaturated, and n-6 fatty acids (P<0.01, but a lower content of mono-unsaturated fatty acids (P<0.01. Peroxide values were definitely (P<0.01 greater for expellers and averaged 4.22 and 4.11 mEq/kg fat before and after storage, respectively. The Kreis test was negative for all samples. Under different temperatures and times of storage, canola expellers showed to maintain a good oxidative stability, as highlighted by low peroxide values (<10 mEq/kg fat and negative response for Kreis test. Canola expellers obtained by on-farm cold extraction, despite great oil residual (from 17 to 19% ether extracts on dry matter basis, can be stored at farm without significant chemical and nutritional changes.

  17. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films.

    Science.gov (United States)

    Chang, Chang; Nickerson, Michael T

    2015-01-01

    Biodegradable edible films prepared using proteins are both economically and environmentally important to the food packaging industry relative to traditional petroleum-derived synthetic materials. In the present study, the mechanical and water vapor barrier properties of casted canola protein isolate edible films were investigated as a function of protein (5.0% and 7.5%) and glycerol (30%, 35%, 40%, 45%, and 50%) content. Specifically, tensile strength and elongation, elastic modulus, puncture strength and deformation, opacity, and water vapor permeability were measured. Results indicated that tensile strength, puncture strength, and elastic modulus decreased, while tensile elongation and puncture deformation values increased as glycerol concentration increased for both 5.0% and 7.5% canola protein isolate films. Furthermore, tensile strength, puncture strength, and elastic modulus values were found to increase at higher protein concentrations within the canola protein isolate films, whereas puncture deformation values decreased. Tensile elongation was found to be similar for both canola protein isolate protein levels. Canola protein isolate films became more transparent with increasing of glycerol concentration and decreasing of canola protein isolate concentration. Water vapor permeability value was also found to increase with increasing glycerol and protein contents. Overall, results indicated that canola protein isolate films were less brittle, more malleable and transparent, and had greater water vapor permeability at higher glycerol levels. However, as protein level increased, canola protein isolate films were more brittle, less malleable and more opaque, and also had increased water vapor permeability. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  19. Wheat bran extracts: a potent source of natural antioxidants for the stabilization of canola oil

    Directory of Open Access Journals (Sweden)

    Shahid Chatha, Shahzad Ali

    2011-06-01

    Full Text Available In the present work, the antioxidant activity of different solvent extracts of wheat (var. Inqalab 91 bran was evaluated following different antioxidant assays using canola oil as the oxidation substrate. The bran samples were extracted with 80% and 100% methanol and acetone. A preliminary assessment of the antioxidant activity of the 80 and 100% acetone and methanolic extracts of wheat bran was done by the measurement of % inhibition of peroxidation in a linoleic acid system, total phenolic contents (TPC and bleachability of β-carotene in the linoleic acid system. Additionally, the canola oil samples were stabilized with crude concentrated extracts and subjected to ambient aging (6 months. The extent of oxidative deterioration was followed by the measurement of peroxide-, p-anisidine-, conjugated dienes-, and trienes- values. The results of ambient stored samples revealed a significant improvement in these oxidation parameters. The overall order of antioxidant activity of the extracts as determined by various antioxidant assays was determined to be; 80% methanolic extract > 100% methanolic extract > 80% acetone extracts . 100% acetone extract. The results of the present comprehensive analysis demonstrate that extracts of the wheat bran indigenous to Pakistan are a viable source of natural antioxidants and might be exploited for commercial and neutraceutical applications.

    En el presente trabajo la actividad antioxidante de diferentes extractos obtenidos con disolventes del salvado de trigo (var. Inqalab 91 fue evaluada mediante diferentes ensayos antioxidantes y aceite de canola como substrato de oxidación. Las muestras de salvado fueron extraídas con metanol y acetona al 80% y al 100%. La evaluación preliminar de la actividad antioxidante de los extractos de metanol y de acetona al 80% y 100% fue hecha mediante la medida del % de inhibición de la peroxidación en un sistema con ácido linoleico, el contenido total de fenoles

  20. In situ disappearance of canola meal treated with heat and/or tannin

    OpenAIRE

    Loyola, Vânia Regina; Santos, Geraldo Tadeu dos; Zeoula, Lúcia Maria; Bett, Vanderlei; Pereira, André Luiz Taborianski

    1999-01-01

    O objetivo deste trabalho foi avaliar a degradabilidade in situ do farelo de canola comercial tratado com água (controle), em autoclave a 127ºC por 30 min (CC), com 15% de tanino de acácia negra (Acacia mearnsii) (CT) e tanino seguido de autoclavagem (CTC). O efeito destes tratamentos sobre a degradação in situ da matéria seca (MS) e proteína bruta (PB) foi avaliado pela técnica de saco de náilon, usando duas vacas da raça Holandesa fistuladas no rúmen. As estimativas de degradação efetiva, c...

  1. Degradabilidade in situ do farelo de canola tratado com calor e/ou tanino

    OpenAIRE

    Loyola,Vânia Regina; Santos,Geraldo Tadeu dos; Zeoula,Lúcia Maria; Bett,Vanderlei; Pereira,André Luiz Taborianski

    1999-01-01

    O objetivo deste trabalho foi avaliar a degradabilidade in situ do farelo de canola comercial tratado com água (controle), em autoclave a 127ºC por 30 min (CC), com 15% de tanino de acácia negra (Acacia mearnsii) (CT) e tanino seguido de autoclavagem (CTC). O efeito destes tratamentos sobre a degradação in situ da matéria seca (MS) e proteína bruta (PB) foi avaliado pela técnica de saco de náilon, usando duas vacas da raça Holandesa fistuladas no rúmen. As estimativas de degradação efetiva, c...

  2. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    OpenAIRE

    Ann-Charlotte Wallenhammar; Albin Gunnarson; Fredrik Hansson; Anders Jonsson

    2016-01-01

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to plantin...

  3. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  4. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  5. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi).

    Science.gov (United States)

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product.

  6. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Transesterification is the most common method of producing biodiesel from vegetable oils. A comparative study on the optimization of reaction variables for refined canola oil, unrefined canola oil, and unrefined camelina oil using a four-factor (temperature, time, molar ratio of methanol to oil, and catalyst loading face-centered central composite design (FCCCD was carried out. The optimum settings of these four factors that jointly maximize product, fatty acid methyl ester (FAME and biodiesel yields for each of refined canola, unrefined canola and unrefined camelina were determined. Results showed that the optimized conditions were associated with the fatty acid profile and physical properties of the parent oils. The optimum temperature of vegetable oil with low polyunsaturation degree was higher than that of oils with high polyunsaturation degree. High free fatty acid content in parent oils led to low optimized catalyst concentration, and the decreased reaction rate could be compensated by increased reaction temperature due to significant interaction effect between reaction temperature and catalyst loading in the transesterification process. The highest biodiesel yields from the optimum setting for refined canola oil, unrefined canola oil, and unrefined camelina oil were 97.7%, 95.2%, and 95.6%, respectively. This study provided guidelines on how to optimize different reaction variables taking economic viability and feedstock availability into consideration when producing biodiesel at plant scale.

  7. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi)

    Science.gov (United States)

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product. PMID:26761287

  8. Secondary Metabolism in Brassica Rapa Under Hypergravity

    Science.gov (United States)

    Levine, Lanfang; Darnell, Rebecca; Allen, Joan; Musgrave, Mary; Bisbee, Patricia

    Effect of altered gravity on secondary metabolism is of critical importance not only from the viewpoint of plant evolution, but also of productivity (carbon partition between edible and non-edible parts), plant fitness, as well as culinary and nutraceutical values to human diet. Previous work found that lignin content decreases in microgravity as the need for mechanical support decreases, while the response of other small molecular secondary metabolites to microgravity varies. Our recent ISS experiment showed that 3-butenyl glucosinolate (a predominant glucosinolate in Brassica rapa) increased in stems of B. rapa grown in the microgravity conditions. To further elucidate the role of gravity in plant secondary metabolism, a series of hypergravity (the other end of gravity spectrum) experiments were carried out using the 24-ft centrifuge at Ames Research Center. Thirteen-day-old B. rapa L. (cv. Astroplants) were transferred to the Plant Growth Facility attached to the centrifuge following previous experimental conditions, and subsequently grown for 16 days. Plants were harvested, immediately frozen in liquid nitrogen, and lyophilized prior to analysis for glucosinolates and lignin. In general, glucosinolate concentration was the highest in stems, followed by leaves, then roots. Glucosinolate concentration was significantly lower in stems of the 2-g and 4-g plants - averaging 4.6 and 2.5 ng/g DW, respectively - compared with the stationary control plants, which averaged 7.9 ng/g DW. Similarly, there was a 2.2-fold and 7.5-fold decrease in 3-butenyl glucosinolate in roots of the 2-g and 4-g plants, respectively, compared with the control (2.6 ng/g DW). There was a significant decrease in 3-butenyl glucosinolate concentration in leaves of the 4-g compared to leaves of the control plants (2.6 and 4.5 ng/g DW, respectively); however, there was no effect of 2-g on leaf glucosinolate concentration. Increasing gravity from 1-g to 2-g to 4-g generally resulted in further

  9. Embryogenesis of brassica rapa l. under clinorotation

    Science.gov (United States)

    Popova, A.; Ivanenko, G.

    Investigation of reproductive development of higher plants in spaceflight represents scientific interest first of all with the necessity to work out the plant space technologies for creation of controlled life-support systems. In such systems mainly the higher plants are considered to be an important component that makes it necessary to obtain the several generations of higher plants with their full ontogenesis. As a rule, seeds obtained in three species of the higher plants in a series of experiments differ from the control by some parameters (Merkis, Laurinavichius, 1983; Musgrave et al., 1998; 2000; Levinskikh et all. 1999; Stankovich et al., 2002). It was shown, that immature embryos generated in microgravity were at a range of developmental stage, while the ground control embryos had all reached the premature stage of development (Kuang et al., 2003). Besides, the distinctions in a degree of nutrient substances accumulation in them were revealed (Kuang et al., 2000). Therefore, the elucidation of the possible reasons for distortion of plant reproduction in microgravity demands the further research. In this study we examined embryogenesis of higher plant Brassica rapa L. with an application of slow horizontal clinostats, that allows to deprive the plants the opportunity to perceive the gravitational stimulus. Some plants were clinorotated from the moment sowing of seeds; in other series the experiment plants were placed on clinostats after formation of flower buds. Temporal fixation of the material was used in these experiments, which allow to obtain material for studying of consecutive stages of embryogenesis. The development of 2-21 day-old embryos was studied. Comparative embryological analysis has shown a similarity in the main of process of embryo differentiation produced under clinorotation and in the stationary control. At the early stages of embryogenesis, the distortion in suspensor formation was observed more frequently. Embryos generated in

  10. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  11. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  12. Desempenho e qualidade dos ovos de poedeiras semipesadas alimentadas com dietas contendo óleos de soja e canola Performance and eggs quality in laying hens fed diets with soybean and canola oils

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2008-08-01

    Full Text Available Objetivou-se analisar a influência da adição de níveis crescentes de óleo de soja e canola sobre os índices de desempenho e qualidade interna e externa dos ovos de poedeiras comerciais semipesadas da linhagem Bovans Goldline durante cinco períodos de 28 dias. Foram utilizadas 280 aves com 18 semanas de idade, em um delineamento inteiramente casualizado, com sete tratamentos em um esquema fatorial 2 × 3 + 1 (dois tipos de óleo e três níveis de óleo mais um testemunha adicional com cinco repetições e oito aves por unidade experimental. Os níveis de óleo de soja e de canola não alteraram o consumo de ração, os pesos dos ovos, de albúmen, de gema e de casca, as porcentagens de albúmen, de gema e de casca e a gravidade específica dos ovos. Houve influência significativa da interação tipo × nível de óleo sobre a produção de ovos e a conversão por massa e por dúzia de ovos. Com o aumento do nível de óleo de soja, os resultados obtidos para estas variáveis melhoraram, entretanto, a conversão por massa de ovo piorou com o aumento dos níveis de óleo de canola. A adição de óleo de soja promoveu desempenho melhor que o obtido com óleo de canola.The objective of this study was to evaluate the influence of soybean and canola oil added in crescent levels on production performance indexes and internal and external egg quality of brown commercial layers of the strain Bovans Goldline during five periods of 28 days. Two hundred and eighty hens with 18 weeks old were distributed in a completely randomized design, with seven diets in a 2 × 3 + 1 factorial arrangement (oil type and oil level, and an additional control, with 5 replicates of 8 hens per experimental unit. The soybean and canola oil levels did not affect the feed consumption; egg, albumen, yolk and shell weights; albumen, yolk and shell percentages, neither the specific gravity. There was an interaction between type and oils levels on egg production and mass

  13. Potencial alelopático de extratos aquosos de genótipos de canola sobre Bidens pilosa Allelopathic potential of aqueous extracts of canola genotypes on Bidens Pilosa

    Directory of Open Access Journals (Sweden)

    A. Rizzardi

    2008-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de extratos aquosos de plantas de genótipos de canola na germinação e comprimento da radícula de picão-preto (Bidens pilosa. Os tratamentos estudados foram constituídos dos genótipos de canola Hyola 420, Hyola 401, Hyola 43, Hyola 60, Hyola 61, Y 3000, H 1432, Dln 03-02, Dln 03-04, Sdh 03-01, Sdh 03-07, Sw-2797 e Sw-Eclipse, nas concentrações de extrato aquoso a 100, 75, 50, 25 e 0%. O delineamento experimental foi inteiramente casualizado, em esquema fatorial com dois fatores 12 x 4 (genótipos e concentração do extrato, com quatro repetições. O experimento foi conduzido em caixas gerbox com papel de germinação embebido nos extratos das plantas de canola, sobre os quais foram dispostos aquênios de picão-preto. Sete dias após a semeadura, avaliou-se o número de aquênios germinados e o comprimento das radículas. Os resultados revelaram que os extratos de canola influenciam negativamente a germinação de aquênios e o comprimento da radícula de Bidens pilosa. Para alguns genótipos, as baixas concentrações de extratos estimularam tanto o crescimento da radícula quanto a porcentagem de germinação dos aquênios; em altas concentrações, os genótipos não diferiram na germinação dos aquênios e no comprimento da radícula.The objective of this experiment was to evaluate the effect of aqueous extract of plants of canola genotypes on the germination and radicle length of hairy beggartick (Bidens pilosa. The treatments consisted of genotypes of canola Hyola 420, Hyola 401, Hyola 43, Hyola 60, Hyola 61, Y 3000, H 1432, Dln 03-02, Dln 03-04, Sdh 03-01, Sdh 03-07, sw-2797, and Sw-Eclipse. The concentrations of aqueous extract of 100, 75, 50, 25 and 0 % were tested. A completely randomized experimental design was used in a factorial 12 x 4 (genotypes and extract concentrations with four replications. The experiment was carried out in plastic boxes containing ot the bottom blotter

  14. Perfil dos ácidos graxos da carcaça de cordeiros alimentados com grãos de canola em diferentes formas Meat fatty acid profile of lambs fed processed or unprocessed canola seeds

    Directory of Open Access Journals (Sweden)

    Francisco de Assis fonseca de Macedo

    1999-11-01

    Full Text Available O objetivo deste trabalho foi determinar a alteração do perfil dos ácidos graxos da carcaça de ovinos alimentados com dietas contendo grãos inteiros de canola (CI em duas formas de processamentos (quebrados - CQ ou peletizados - CP. Foram utilizados 28 cordeiros, distribuídos num delineamento inteiramente casualizado e abatidos com média de peso vivo entre 31 e 33kg, coletando-se amostras entre a 12ª e 13ª costela. Houve diferença significativa para os ácidos graxos C10:0, C14:1ω5, C15:0, C16:0, C16:1ω7e C17:0, cujas médias foram maiores que na dieta controle. Os ácidos graxos C18:0, C18:1ω9, C18:3ω6, C18:3ω3, C20:0, C20:1ω9, C22:0 e C24:0 sofreram alterações com a inclusão de grãos de canola. Também foi observado diferença significativa para os totais de ácidos graxos mono-insaturados, porém, os totais de ácidos graxos polinsaturados e a relação entre ácidos graxos polinsaturados e saturados foram inalterados. Os resultados levam à conclusão de que a inclusão de grãos inteiros de canola nas dietas para cordeiros altera o perfil dos ácidos graxos independentemente da forma de apresentação.The objective of this experiment was to compare carcass fatty acids profile of lambs fed a control diet and diets containing either whole (WC, cracked (CC or pelleted (PC canola seeds. Twenty-eight lambs assigned to a completely randomized design were fed their respective diets for 132 days and slaughtered between 31 and 33kg of body weight. Samples of muscle Longissimus dorsi, Psoas maior and Psoas menor were collected on the left side of the carcass between the 12th and 13th ribs and 11 cm from the carcass midline. Concentrations of C10:0, C14:ω5, C15:0, C16:0, C16:1ω7. C17:0 and, C18:3ω3 were significantly higher (P < 0.05 in the carcass of lambs fed the three canola seed diets than in the carcass of those fed the control diet. Pelleted canola seeds increased the percentages of C18:1ω9, C18:3ω6, C20:0, C20:1ω9, C22

  15. Conseqüências da multicolinearidade sobre a análise de trilha em canola Multicolinearity consequence on path analysis in canola

    Directory of Open Access Journals (Sweden)

    Jefferson Luís Meirelles Coimbra

    2005-04-01

    Full Text Available A análise estatística do tipo multivariada vem crescendo consideravelmente, motivando a sua ampla utilização por parte dos pesquisadores criando, assim, grande demanda por conhecimentos específicos tanto a respeito da sua aplicação quanto das suas pressuposições ou limitações. Para que a avaliação do grau de associação entre diferentes caracteres de importância agronômica tenha uma estimativa confiável em termos biológico, é de fundamental importância identificar e quantificar o grau de multicolinearidade entre as variáveis estudadas. Além disso, os tipos de modelos estatísticos e matemáticos utilizados na determinação desta dependência linear entre as variáveis classificatórias ou independentes podem ou não ser adequados a estimativas dos parâmetros biológicos avaliados. O presente trabalho tem como objetivo apresentar uma avaliação crítica sobre o grau de multicolinearidade identificado e avaliado sobre a análise de trilha analisada sobre partes de um experimento de canola. Os resultados permitem inferir que a aplicação da análise de trilha sobre o grau de multicolinearidade severa produz resultados sem nenhuma importância biológica para o melhorista de plantas. No entanto, esta limitação pode ser facilmente identificada e corrigida através da análise de trilha com colinearidade empregando uma constante (k na diagonal da matriz X‘X. O modelo de análise com multicolinearidade severa, entretanto, superestimou, valores de coeficientes de correlação simples, comparativamente com a multicolinearidade fraca. Mesmo assim, pode não ser necessariamente mais precisa, principalmente em virtude da avaliação de um número restrito de variáveis incluídas na análise ou de uma sobreposição destas variáveis explicativas.The statistical multivariate analysis has a widespread use by researchers, creating a large demand for specific knowledge regarding its application concerning its assumptions and or

  16. Impact of Endogenous Phenolics in Canola Oil on the Oxidative Stability of Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Moser, Jill

    , the effect of these endogenous antioxidants on lipid oxidation in o/w emulsion is yet unknown. Hence, the aim of this study was to evaluate the effect of the endogenous phenolics in Canola oil on lipid oxidation in o/w emulsion. For this purpose individual phenolics were extracted from defatted grinded...... Value (PV) and secondary volatile oxidation products by headspace GC supported by evaluation of the properties of the extracts and corresponding phenolic standards in 3 different in vitro antioxidant assays....... antioxidants will result in increased shelf life and thereby increased quality of the food products. Besides tocopherols, Canola oil contains different compounds with antioxidative properties. These compounds are Sinapic acid, Sinapine and Canolol; all belonging to the group of phenolic compounds. However...

  17. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals.

    Science.gov (United States)

    Behnam, S; Ahmadzadeh, M; Sharifi Tehrani, A; Hedjaroude, Gh A; Farzaneh, M

    2007-01-01

    Sclerotinia sclerotiorum is an important pathogen on canola. Due to the public concern over pesticide use, alternative methods of disease control, such as biological control, should be considered. Several bacterial strains were isolated from canola and soja plants. Inhibition of S. sclerotiorum by bacterial strains in vitro was assayed on PDA medium in dual culture test. Eight Pseudomonas sp. strains (PB-3, PB-4, PB-5, PB-6, PB-7, PB-8, PB-10 and PB-11) caused inhibition zone against 5. sclerotiorum hyphal growth. The biocontrol potential of the bacteria was tested in a plant assay. Disease suppression was investigated using a petal inoculation technique. Canola petals were pretreated with bacteria, and then inoculated with 5. sclerotiorum ascospores 24 h later. Greenhouse experiment showed that application of Pseudomonas sp. strains (1 x 10(8) cfu ml(-1)) effectively suppressed S. sclerotiorum (1 x 10(5) ascospores ml(-1)) on petals and all of them achieved significant (P<0.01) disease suppression. Fourteen days after inoculation, strain PB-3 had 88/7% disease control and strain PB-4 had 69/9% disease control. Result from all studies indicates PB-3 to be effective biocontrol against S. sclerotiorum of canola. PB-3, PB-4, PB-7, PB-8, PB-10 and PB-11 were identified as Pseudomonas fluorescens biovar III. PB-5 and PB-6 was identified as Pseudomonas fluorescens biovar II. Strains PB-3, PB-4, PB-6, PB-10 and PB-11 produced protease and HCN. Strain PB-5 produce protease; no HCN.

  18. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    OpenAIRE

    S. Suharti; A. R. Nasution; K. G. Wiryawan

    2017-01-01

    This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap) on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60...

  19. Measurement of true ileal digestibility and total tract retention of phosphorus in corn and canola meal for broiler chickens.

    Science.gov (United States)

    Mutucumarana, R K; Ravindran, V; Ravindran, G; Cowieson, A J

    2014-02-01

    The study reported herein was conducted to determine and compare the nonphytate P, digestible P, and retainable P contents of corn and canola meal for broiler chickens. Four semipurified diets were formulated from each of ingredient to contain graded concentrations of nonphytate P. The experiment was conducted as a randomized complete block design with 4 weight blocks of 8 cages each (6 birds per cage). A total of 192 broilers (Ross 308), 21 d old, were assigned to the 8 test diets. Ileal digestibility and total tract retention coefficients of P were determined by the indicator and total collection methods, respectively, and linear regression method was used to determine the true P digestibility and true P retention coefficients. The apparent ileal digestibility of P in corn was influenced (quadratic, P 0.05). The apparent ileal P digestibility in broilers fed diets based on canola meal was similar (P > 0.05) at different P concentrations. Phosphorus retention in broilers fed diets based on canola meal (linear, P 0.05). Total P, nonphytate P, true digestible P, and true retainable P contents of corn were determined to be 2.5, 0.8, 1.7, and 1.6 g/kg (as received), respectively. The corresponding values for canola meal were 9.7, 2.8, 4.6, and 4.7 g/kg (as received), respectively. The present data demonstrated that the regression method can be successfully used to measure true P digestibility of low and high P feed ingredients and that both true ileal digestibility and retention coefficients are suitable to assess P availability in broilers.

  20. First report of bacterial leaf blight on mustard greens (Brassica juncea) caused by pseudomonas cannabina pv. alisalensis in Mississippi

    Science.gov (United States)

    In 2010, a brassica leafy greens grower in Sunflower County, Mississippi, observed scattered outbreaks of a leaf blight disease on mustard greens (Brassica juncea) in a 180-hectare field. A severe outbreak of leaf blight occurred on mustard greens and turnip greens (Brassica rapa) in the same field...

  1. Erosion of Brassica incana Genetic Resources: Causes and Effects

    Science.gov (United States)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  2. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  3. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.

    Science.gov (United States)

    Francisco, Marta; Soengas, Pilar; Velasco, Pablo; Bhadauria, Vijai; Cartea, Maria E; Rodríguez, Victor M

    2016-01-01

    Understanding plant's defense mechanisms and their response to biotic stresses is of fundamental meaning for the development of resistant crop varieties and more productive agriculture. The Brassica genus involves a large variety of economically important species and cultivars used as vegetable source, oilseeds, forage and ornamental. Damage caused by pathogens attack affects negatively various aspects of plant growth, development, and crop productivity. Over the last few decades, advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to biotic stress conditions. In this regard, various 'omics' technologies enable qualitative and quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. In this review, we have described advances in 'omic' tools (genomics, transcriptomics, proteomics and metabolomics) in the view of conventional and modern approaches being used to elucidate the molecular mechanisms that underlie Brassica disease resistance.

  4. Effect of Heavy Metals in Plants of the Genus Brassica.

    Science.gov (United States)

    Mourato, Miguel P; Moreira, Inês N; Leitão, Inês; Pinto, Filipa R; Sales, Joana R; Martins, Luisa Louro

    2015-08-04

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra.

  5. Comparison of the effects of canola oil versus sunflower oil on the biochemical markers of bone metabolism in osteoporosis

    Directory of Open Access Journals (Sweden)

    Mahbobe Azemati

    2012-01-01

    Full Text Available Background: Recently, omega-3 fatty acids are in the center of attention for their potent anti-inflammatory effects. Osteoporosis as a chronic senile disease is associated with inflammation, and the role of inflammatory mediators has been demonstrated in the recent years. The beneficial effects of n-3 fatty acids on bone were proven in many animal studies, while to date, no conclusive data is available in human. The aim of this study was to evaluate the impact of n-3 fatty acids on bone biomarkers in osteoporotic women. Material and Methods: Forty osteoporotic post-menopausal women were recruited in the study and randomized in receiving either 40 g canola oil or the same amount sunflower oil per day as their dietary oil for 3 months. Serum levels of osteocalcin, bone alkaline phosphatase (BALP, N telo peptide collagen (NTX and 25- hydroxy vitamin D3 were measured at baseline and at the end of the third month in both groups. Results: In the canola oil group, BALP and NTX were increased after 3 months while Osteocalcin decreased in both groups slightly; however,none of these changes were significant. In both groups, serum vitamin D3 was increased significantly; however, this change between groups was not significant. Conclusion: Canola oil did not affect bone formation and resorption significantly after 3 months consumption. Further investigations with longer follow up are recommended.

  6. Catalytic properties of three catalases from Kohlrabi ( Brassica ...

    African Journals Online (AJOL)

    Catalase (EC 1.11.1.6) was extracted from kohlrabi bulbs (Brassica oleracea gongylodes) with 0.05 M phosphate buffer, pH 7.0. On the basis of kinetic studies and activity stain for catalase, only three isoenzymes of catalases were detected in kohlrabi bulbs extract with pH optima at 4.5, 6.5 and 10. Highest catalytic ...

  7. Pollination and embryo development in Brassica rapa L. in microgravity

    Science.gov (United States)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  8. Transcriptomic basis for drought-resistance in Brassica napus L.

    OpenAIRE

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were ...

  9. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the B. rapa R500 x IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive glucosinolates are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  10. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  11. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population str...

  12. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring

    International Nuclear Information System (INIS)

    Ion, Gabriela; Akinsete, Juliana A; Hardman, W Elaine

    2010-01-01

    Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring. Female SV 129 mice were divided into two groups and placed on diets containing either 10% w/w corn oil (which is 50% n-6 PUFA, control diet) or 10% w/w canola oil (which is 20% n-6 PUFA, 10% n-3 PUFA, test diet). After two weeks on the diets the females were bred with homozygous C3(1) TAg transgenic mice. Mother mice consumed the assigned diet throughout gestation and nursing of the offspring. After weaning, all female offspring were maintained on the control diet. Compared to offspring of mothers fed the corn oil diet (CO/CO group), offspring of mothers fed the canola oil diet (CA/CO group) had significantly fewer mammary glands with tumors throughout the experiment. At 130 days of age, the CA/CO group had significantly fewer tumors per mouse (multiplicity); the tumor incidence (fraction of mice with any tumor) and the total tumor weight (per mouse that developed tumor) was less than one half that of the CO/CO group. At 170 days of age, the total tumor weight per mouse was significantly less in the CA/CO group and if a tumor developed the rate of tumor growth rate was half that of CO/CO group. These results indicate that maternal consumption of canola oil was associated with delayed appearance of mammary gland tumors and slowed growth of the tumors that developed. Substituting canola oil for corn oil is an easy dietary change for people to make; such a change to the maternal diet may decrease risk for breast cancer in the daughter

  13. Application of gamma rays for induction of tolerance mutants to environmental stress conditions in canola

    International Nuclear Information System (INIS)

    Mansour, M.E.S.F.

    2013-01-01

    The present study aimed to induce useful mutations in canola possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sina (saline) and Inshas (harsh and poor fertility). Canola seeds of four varieties (Serow 4, Serow 6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). Thirty mutant plants for number of pods/plant and changes in morphological criteria were selected at M 2 generation. The mutants at M 3 generation confirmed that induction of mutant lines possessed higher number of pods and seed yield/plant than the mother varieties. The mutant lines possessed homogeneity at M 3 generation were 5, 8,10, 11, 18 and 22 at serow 4, 38 and 45 at serow 6, 63 and 66 at Pactol and mutant lines 74,75, 78,92 at Evita. Highest number of pods/plant (110) was recorded at line 74 derived from Evita variety. The results were appeared the same trend for seed yield/plant with number of pods/plant, the lines which possessed high number of pods/plant were had high seed yield/plant. The results at M 4 and M 5 generations for 13 homogeneity mutant lines selected from M 3 generation contained different response of mutant genotypes for different conditions on the bases of number of pods and seed yield/plant. Promising mutant lines were detected under both conditions possessed significant increases at both M 4 and M 5 generations. Oil percent as well as acid value at M 4 and M 5 were recorded the highest mean value was found at Inshas in line 75 and the lowest acid value was noticed at line 5. Finally nine mutant lines possessed promising traits of this study, lines 11, 66 and 87 under both conditions (Suder and Inshas), lines 8, 38 and 63 under Ras-Sudr and lines 74, 75 and 92 under Inshas condition.

  14. Development of Species-Specific Primers for Plasmodiophora brassicae, Clubroot Pathogen of Kimchi Cabbage

    Directory of Open Access Journals (Sweden)

    Jin Su Choi

    2014-03-01

    Full Text Available Clubroot caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin is one of the most damaging diseases of Brassicaceae family. In this study, we developed species-specific primer sets for rapid and accurate detection of P. brassicae. The primer sets developed amplified a specific fragment only from P. brassicae DNA while they did not amplify a band from 10 other soilborne pathogens or from Kimchi cabbage. In sensitivity test, the species-specific primer set ITS1-1/ITS1-2 could work for approximately 10 spores/ml of genomic DNA showing more sensitivity and accuracy than previous methods. With quantitative real-time PCR test, the primer set detected less spores of P. brassicae than before, confirming that the species-specific primer set could be useful for rapid and accurate detection of P. brassicae.

  15. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    Full Text Available Introduction Canola can be cultivated in large areas of the country due to its specific characteristics such as suitable composition of the fatty acids, its germination ability under low temperature, as well as its good compatibility with different climates. Canola is a high demanding crop in terms of fertilizers so that it uptakes considerable amount of nutrients from the soil during the growing season. Canola cultivation in poor soils or application of imbalanced fertilizers, especially nitrogen, can reduce qualitaty and quantity of final yield. On the other hand, salinity is known as one of the major limiting factors in canola production. Therefore, the aim of this study is the application of zeolite, selenium and silicon treatments to amend soil and increasing salinity tolerance in canola. Materials and Methods In order to study the effect of soil applied zeolite and foliar application of selenium and silicon on yield, yield components and some physiological traits of canola grown under salinity stress, a factorial experiment in randomized complete block design was conducted in Agriculture and Natural Resource Research Center in East Azerbaijan during 2011-2013 cropping seasons. Zeolite was applied at three levels (0, 5 and 10 ton ha-1 and foliar selenium and silicon were applied at three levels as well (each one zero, 2 and 4 g l-1. For this purpose, seedbed was prepared using plow and disk and then plot were designed. Canola seeds, cultivar Okapi, were sown in sandy loam soil with 4 dS.m-1 salinity at the depth of 2-3 cm. Irrigation was performed using local well based on 60% field capacity using the closed irrigation system. Potassium selentae and potassium silicate were used for selenium and silicon treatments. Treatments at rosette and stem elongation stages were sprayed on plants using a calibrated pressurized backpack sprayer. At flowering stage, photosynthesis rate was recorded. Then leaf samples were randomly collected to assay

  16. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    Directory of Open Access Journals (Sweden)

    Lisong eMa

    2015-10-01

    Full Text Available AbstractThe fungus Leptosphaeria maculans (L. maculans is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localised cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR. However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1. Silencing of NbSOBIR1 or NbSERK3 (BAK1 compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signalling complex and were able to define the AvrLm1 effector domain.

  17. A spatial assessment of Brassica napus gene flow potential to wild and weedy relatives in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    J. M. Kalwij

    2010-01-01

    Full Text Available Gene flow between related plant species, and between transgenic and non-transgenic crop varieties, may be considered a form of biological invasion. Brassica napus (oilseed rape or canola and its relatives are well known for intra- and inter-specific gene flow, hybridisation and weediness. Gene flow associated with B. napus poses a potential ecological risk in the Fynbos Biome of South Africa, because of the existence of both naturalised (alien, weedy and native relatives in this region. This risk is particularly pertinent given the proposed use of B. napus for biofuel and the potential future introduction of herbicide-tolerant transgenic B. napus. Here we quantify the presence and co-occurrence of B. napus and its wild and weedy relatives in the Fynbos Biome, as a first step in the ecological risk assessment for this crop. Several alien and at least one native relative of B. napus were found to be prevalent in the region, and to be spatially congruent with B. napus fields. The first requirement for potential gene flow to occur has thus been met. In addition, a number of these species have elsewhere been found to be reproductively compatible with B. napus. Further assessment of the potential ecological risks associated with B. napus in South Africa is constrained by uncertainties in the phylogeny of the Brassicaceae, difficulties with morphology-based identification, and poor knowledge of the biology of several of the species involved, particularly under South African conditions.

  18. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.

    Science.gov (United States)

    Pashaei, S; Ghoorchi, T; Yamchi, A

    2016-04-01

    An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro-organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  19. Pineapple by-product and canola oil as partial fat replacers in low-fat beef burger: Effects on oxidative stability, cholesterol content and fatty acid profile.

    Science.gov (United States)

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Rasera, Mariana L; Marabesi, Amanda C; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-05-01

    The effect of freeze-dried pineapple by-product and canola oil as fat replacers on the oxidative stability, cholesterol content and fatty acid profile of low-fat beef burgers was evaluated. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple by-product (PA), canola oil (CO), and pineapple by-product and canola oil (PC). Low-fat cooked burgers showed a mean cholesterol content reduction of 9.15% compared to the CN. Canola oil addition improved the fatty acid profile of the burgers, with increase in the polyunsaturated/saturated fatty acids ratio and decrease in the n-6/n-3 ratio, in the atherogenic and thrombogenic indexes. The oxidative stability of the burgers was affected by the vegetable oil addition. However, at the end of the storage time (120 days), malonaldehyde values of CO and PC were lower than the threshold for the consumer's acceptance. Canola oil, in combination with pineapple by-product, can be considered promising fat replacers in the development of healthier burgers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Agrobacterium Mediated Transformation of Fld and GUS Genes into Canola for Salinity Stress

    Directory of Open Access Journals (Sweden)

    Niapour, Nazila

    2013-04-01

    Full Text Available Salinity is one of the major abiotic stress which limits wide spread canola cultivation. One way to overcome this problem could be transfection, to produce tolerable species. Cotyledonary and hypocotyls explants obtained from 4 and 7 days old seedling of Elite and RJS003 varieties were utilized in this study. Genetic transformation was implemented through Agrobacterium tumefaciens LBA4404 containing PBI121 plasmid and Agrobacterium tumefaciens C58, LBA4404, AGL0 and EHA 101 strains which contain P6u- ubi- fvt1 construct. The T-DNA region of P6u- Ubi- Fvt1 plasmid included HPT (Hygromycin phosphotransferase plant selectable marker and Fld (flavodoxin gene. PBI121 plasmid had NptII (Neomycin phosphotransferase plant Selectable marker and β-glucuronidase (GUS reporter genes. Transfected explants were analyzed by PCR and histochemical assay for Fld and Gus genes, respectively. Our data indicated that the cotyledonary explants of both cultivars were incompetent to be infected with Fld gens. However, the transformation in Elite hypocotyls explants with Agrobacterium tumefaciens C58 and LBA 4404 strains were confirmed through PCR product and histochemical evaluation for Fld and GUS genes, respectively. Therefore, the result of this manuscript may to certain degree fulfill the endeavor appointed to this oilseed.

  1. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  2. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  3. Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil.

    Science.gov (United States)

    Zhao, Dong; Kim, Sang-Min; Pan, Cheol-Ho; Chung, Donghwa

    2014-02-15

    The effects of heating, aerial exposure and illumination on the stability of fucoxanthin was investigated in canola oil. In the absence of air and light, the heating caused the degradation of total and all-trans fucoxanthin at all tested temperatures between 25 and 100 °C. The increase of heating temperature promoted the formation of 13-cis and 13'-cis and the degradation of 9'-cis. The degradation and formation reactions were found to follow simple first-order kinetics and to be energetically unfavorable, non-spontaneous processes. Arrhenius-type temperature dependence was observed for the degradation of total and all-trans fucoxanthin but not for the reactions of cis isomers. The aerial exposure promoted the oxidative fucoxanthin degradation at 25 °C, whilst illumination caused the initial formation of all-trans, with concurrent sudden degradation of 13-cis and 13'-cis, and the considerable formation of 9'-cis. The fucoxanthin degradation was synergistically promoted when exposed to both air and light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Alimentação do jundiá com dietas contendo óleos de arroz, canola ou soja Feeding of jundiá with diets containing rice, canola or soybean oils

    Directory of Open Access Journals (Sweden)

    Marcos Eliseu Losekann

    2008-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência de óleos vegetais no desenvolvimento corporal e composição do filé de jundiás. Foram testadas seis dietas (32%PB, sendo avaliados óleos de arroz, canola ou soja com 5 ou 10% de inclusão, durante 90 dias. Os peixes (180, peso inicial=71,0±0,8g foram distribuídos ao acaso em 18 caixas (280L de um sistema de recirculação de água, com temperatura controlada. Para avaliação de desempenho, estimaram-se variáveis como peso, comprimentos totais, padrão, altura caudal, sobrevivência, taxa de crescimento específico, fator de condição, consumo diário, conversão alimentar aparente e rendimento de partes comestíveis. Além disso, foram avaliadas a composição centesimal e taxas de deposição de proteína e gordura nos filés. Não houve diferenças entre os óleos e os níveis sobre o crescimento dos peixes; entretanto, os jundiás alimentados com 10% de óleo depositaram mais gordura no filé. Conclui-se que os óleos de canola, arroz e soja proporcionam bom crescimento e rendimento de partes comestíveis. As dietas contendo óleo de canola, com 5% de inclusão, possibilitam menor deposição de gordura no filé.The influence of vegetable oils in the body development of jundiá (Rhamdia quelen and its relationship with the flesh quality were evaluated in the present study. Six diets (32% of crude protein with rice, canola or soybean oil at 5 or 10% of inclusion were tested, for 90 days. The fishes (180, initial weight=71± 0.8g were randomly distributed in 18 boxes (280L in a water re-use system, with controlled temperature. The following parameters were considered for evaluation of fish performance: weight, total and standard length, survival, specific growth rate, condition factor, daily consumption, food conversion ratio, carcass and fillet yield, proximate composition and protein and fat deposition in the filets. There were no differences for the productive parameters among the

  5. Efeito da substituição do farelo de algodão pelo farelo de canola no desempenho de novilhas Nelore confinadas Effect of cottonseed meal replacement by canola meal on performance of feedlot Nellore heifers

    Directory of Open Access Journals (Sweden)

    Ivanor Nunes do Prado

    1999-01-01

    Full Text Available O objetivo deste trabalho foi estudar o efeito da substituição do farelo de algodão pelo farelo de canola sobre ganho em peso, consumo de ração, conversão alimentar e rendimento de carcaça de novilhas Nelore confinadas. Trinta novilhas com, em média, 225 kg PV inicial e 20 meses de idade foram distribuídas ao acaso em dois tratamentos (farelo de algodão - FAG ou farelo de canola - FAC como fontes de proteína com 15 animais por tratamento. O experimento foi realizado em três períodos de 28 dias, mais 14 dias de adaptação. O ganho médio diário no tratamento FAC (1,05 kg foi maior que no tratamento FAG (0,87 kg. Da mesma forma, a conversão alimentar da MS no tratamento FAC (6,72 foi melhor que no tratamento FAG (8,13; todavia, o rendimento de carcaça foi semelhante para ambos os tratamentos (51,6 e 51,7%, para FAC e FAG, respectivamente. O uso de farelo de canola, em comparação ao farelo de algodão, como fonte de proteína alternativa na ração de novilhas Nelore em crescimento e terminação, mostrou-se viável, uma vez que o ganho em peso e a conversão alimentar dos animais foram melhores.The objective of this work was to study the effect of the substitution of cottonseed meal by canola meal on weight gain, feed intake, feed:gain ratio and dressing percentage of the feedlot Nellore heifers. Thirty Nellore heifers averaging initial of 225 kg LW and 20 months of age were randomly allotted to two treatments (cottonseed meal - COM or canola meal - CAM as protein sources with 15 animals for each treatment. The experiment was carried out in three periods of 28 days each, plus 14 days of adaptation. The daily average weight gain in CAM treatment (1.05 kg was higher than in the COM treatment (.87 kg. In the same way, feed:gain ratio of DM in CAM treatment (6.72 was better than COM treatment (8.13. However, the dressing percentage was similar for both treatments (51.6 and 51.7, for CAM and COM, respectively. The use of canola meal

  6. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Katiéli Caroline Welter

    Full Text Available To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4 kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil, 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis. The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  7. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Science.gov (United States)

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  8. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    Science.gov (United States)

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. The beneficial effects of Brassica vegetables on human health.

    Science.gov (United States)

    Kapusta-Duch, Joanna; Kopeć, Aneta; Piatkowska, Ewa; Borczak, Barbara; Leszczyńska, Teresa

    2012-01-01

    The products of plant origin are a rich source of biologically active substances, both nutritive and referred as anti-nutritive. A large group of these compounds are substances with antioxidant activity that fights against free radicals. In the family of Brassicaceae vegetables, Brassica, is the largest and most widely consumed a group of plants in Europe and all over the world. They are characterized by different levels of nutrients. However because of their large and frequent consumption, they may become a significant source of nutrients and bioactive compounds in the daily diet. The beneficial effects of Brassica vegetables on human health have been somewhat linked to phytochemicals. They prevent oxidative stress, induce detoxification enzymes, stimulate immune system, decrease the risk of cancers, inhibit malignant transformation and carcinogenic mutations, as well as, reduce proliferation of cancer cells. Brassica vegetables contain a lot of valuable metabolites, which are effective in chemoprevention of cancer, what has been already documented by numerous studies. Due to the presence of vitamins C and E, carotenoids and antioxidant enzymes such as catalase, superoxide dismutase (SOD) and peroxidase, these vegetables are considerable source ofantioxidants, and due to the presence of polyphenols and the sulfur-organic compounds exert also antimutagenic action. Moreover, these vegetables are also rich in glucosinolates, which are unstable compounds and undergo degradation into biologically active indoles and isothiocyanates under the influence of enzyme presented in plant tissues- myrosynase. These substances through the induction of enzymatic systems I and II phase of xenobiotics metabolism may affect the elimination or neutralization of carcinogenic and mutagenic factors, and consequently inhibit DNA methylation and cancer development. Despite many healthy benefits upon eating of cruciferous vegetables, it has been also seen a negative impact of their certain

  10. Anthocyanin content and UVB sensitivity in Brassica rapa

    Energy Technology Data Exchange (ETDEWEB)

    Klaper, R.; Frankel, S.; Berenbaum, M.R. [Illinois Univ., Urbana, IL (United States)

    1996-06-01

    Three genotypes of rapid-cycling Brassica rapa that differ in anthocyanin content were grown in the presence and absence of elevated levels of shortwave ultraviolet (UBV, 280-325 nm) radiation. After 41 days, UVB exposure reduced leaf length and plant height of all genotypes. Plants with low levels of anthocyanin experienced a reduction in flower number twice as great as in genotypes with normal or elevated levels of anthocyanins; however, the absence of differences in flower production by genotypes with normal and elevated levels of anthocyanins suggests that factors other than anthocyanin pigmentation contribute to UVB responses in this species. (UK).

  11. Functional innovations of three chronological mesohexaploid Brassica rapa genomes.

    Science.gov (United States)

    Kim, Jungeun; Lee, Jeongyeo; Choi, Jae-Pil; Park, Inkyu; Yang, Kyungbong; Kim, Min Keun; Lee, Young Han; Nou, Ill-Sup; Kim, Dae-Soo; Min, Sung Ran; Park, Sang Un; Kim, HyeRan

    2014-07-18

    The Brassicaceae family is an exemplary model for studying plant polyploidy. The Brassicaceae knowledge-base includes the well-annotated Arabidopsis thaliana reference sequence; well-established evidence for three rounds of whole genome duplication (WGD); and the conservation of genomic structure, with 24 conserved genomic blocks (GBs). The recently released Brassica rapa draft genome provides an ideal opportunity to update our knowledge of the conserved genomic structures in Brassica, and to study evolutionary innovations of the mesohexaploid plant, B. rapa. Three chronological B. rapa genomes (recent, young, and old) were reconstructed with sequence divergences, revealing a trace of recursive WGD events. A total of 636 fast evolving genes were unevenly distributed throughout the recent and young genomes. The representative Gene Ontology (GO) terms for these genes were 'stress response' and 'development' both through a change in protein modification or signaling, rather than by enhancing signal recognition. In retention patterns analysis, 98% of B. rapa genes were retained as collinear gene pairs; 77% of those were singly-retained in recent or young genomes resulting from death of the ancestral copies, while others were multi-retained as long retention genes. GO enrichments indicated that single retention genes mainly function in the interpretation of genetic information, whereas, multi-retention genes were biased toward signal response, especially regarding development and defense. In the recent genome, 13,302, 5,790, and 20 gene pairs were multi-retained following Brassica whole genome triplication (WGT) events with 2, 3, and 4 homoeologous copies, respectively. Enriched GO-slim terms from B. rapa homomoelogues imply that a major effect of the B. rapa WGT may have been to acquire environmental adaptability or to change the course of development. These homoeologues seem to more frequently undergo subfunctionalization with spatial expression patterns compared with

  12. Alternaria resistance of Brassicae campestris L. improved by induced mutations

    International Nuclear Information System (INIS)

    Das, M.L.; Rahman, A.

    1989-01-01

    Full text: Seeds of 'YS 52', a cultivar susceptible to Alternaria brassicae (Berk.) Sacc., were exposed to gamma rays (30-90 kR). Eight more resistant mutants were selected in M3 and subjected to further field evaluation. The best mutant '17-5-83' appeared resistant and gave 44% higher yield than the parent, mutant '70-7-82' was found to be moderately resistant and gave a yield 21% higher than the parent. The yield increases seem to be connected with plant architecture changes. (author)

  13. EFFECT OF EXTRACTS FROM GERANIACEAE PLANTS ON PIERIS BRASSICAE L.

    Directory of Open Access Journals (Sweden)

    MARIA WAWRZYNIAK

    2010-06-01

    Full Text Available The conducted studies comprised the analyses of activity of extracts derived from selected plants of the Geranium family on some processes of large white butterfly (Pieris brassicae development (oviposition, survival of eggs and caterpillar feeding. The results proved that all tested extracts showed activity against large white butterfly. Geranium pratense L. and Geranium senquineum L. showed better activity than other Geranium plants. Water extracts from these species protected cabbage plants against laying eggs, while applied on eggs caused their mortality. Alcohol and water extracts from G. pratense L. and water extracts from G. senquineum L. increased an amount of food put on mass gain of caterpillars.

  14. Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach

    Science.gov (United States)

    Zhao, Qin; Zou, Jun; Meng, Jinling; Mei, Shiyong; Wang, Jianbo

    2013-01-01

    Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the Brassica

  15. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications.

    Science.gov (United States)

    Xu, Tianbo; Dyer, Dan G; McConnell, Laura L; Bondarenko, Svetlana; Allen, Richard; Heinemann, Oliver

    2016-02-01

    Limited data are available on the fate of clothianidin under realistic agricultural production conditions. The present study is the first large-scale assessment of clothianidin residues in soil and bee-relevant matrices from corn and canola fields after multiple years of seed-treatment use. The average soil concentration from 50 Midwest US corn fields with 2 yr to 11 yr of planting clothianidin-treated seeds was 7.0 ng/g, similar to predicted concentrations from a single planting of Poncho 250-treated corn seeds (6.3 ng/g). The water-extractable (i.e., plant-bioavailable) clothianidin residues in soil were only 10% of total residues. Clothianidin concentrations in soil reached a plateau concentration (amount applied equals amount dissipated) in fields with 4 or more application years. Concentrations in corn pollen from these fields were low (mean: 1.8 ng/g) with no correlation to total years of use or soil concentrations. For canola, soil concentrations from 27 Canadian fields with 2 yr to 4 yr of seed treatment use (mean = 5.7 ng/g) were not correlated with use history, and plant bioavailability was 6% of clothianidin soil residues. Average canola nectar concentrations were 0.6 ng/g and not correlated to use history or soil concentrations. Under typical cropping practices, therefore, clothianidin residues are not accumulating significantly in soil, plant bioavailability of residues in soil is limited, and exposure to pollinators will not increase over time in fields receiving multiple applications of clothianidin. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.

  16. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  17. Intake, nutrient apparent digestibility and ruminal constituents of sheep fed diets with canola, sunflower or castor oils

    Directory of Open Access Journals (Sweden)

    Michelle de Oliveira Maia

    2012-11-01

    Full Text Available The objective in this experiment was to determine the effects of feeding diets with canola, sunflower or castor oils on intake, nutrient apparent digestibility and ruminal constituents of crossbred Dorper × Santa Inês sheep. Four rumen-cannulated animals of 90.2±11.4 kg average body weight were assigned to a 4 × 4 latin square. Animals remained individually in cages for the metabolism assay and were fed diets containing roughage at 500 g/kg and concentrate based on ground corn and soybean meal also at 500 g/kg. No oil was added to the control diet, whereas the others had canola, sunflower or castor oils at 30 g/kg (DM basis. There was no difference for the intake of DM and nutrients, except for ether extract, which was greater when animals received oil. The digestibility coefficients of dry matter, organic matter, crude protein, non-fiber carbohydrates and neutral detergent fiber were not changed; however, the addition of oil increased the ether extract digestibility. The values of total digestible nutrients (TDN, g/kg of DM, digestible energy (DE, Mcal/kg of DM, TDN intake and DE intake also did not change with the addition of lipids. Concerning the ruminal constituents, the addition of vegetable oils reduced the concentrations of acetate, butyrate and total short-chain fatty acids. Adding canola, sunflower or castor oils at 30 g/kg in diets with 500 g roughage/kg and 500 g concentrate/kg does not impair the intake or digestibility of nutrients in sheep, although it reduces the concentration of short-chain fatty acids in the rumen.

  18. Technical and Economical Evaluations of Canola Harvesting Losses in Different Maturity Stages Using Three Different Combine Harverster Heads

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2013-09-01

    Full Text Available Rapeseed cultivation in Iran is growing rapidly while this product has been facing specific problems. Every year a significant portion of edible oil is imported to the country from other countries. Despite this deficit, a great amount of canola is being lost every year. Therefore, in compliance with technical points, adding a suitable platform to the exisiting machineries may reduce the losses. A field study was conducted in Moghan Agricultural Research Centre to study the technical and economical characteristics of harvesting machineries and evaluate Canola harvesting losses in different maturity stages, using three different combine harvester heads. The experiments were conducted in a completely randomized\tsplit split plot design with four replications. The main plot included seed maturity stage at three levels: A 60%, B 70% and C 80%, and the subplot was the harvester’s ground speed at three levels: A 1.5, B 2.5 and C 3.5 km h-1. The sub-subplot was combine head type with three forms: A Mechanical, B Hydraulically Joybar and C Hydraulically Biso's Head. The results of ANOVA showed that maximum cutter bar losses occurred with Mechanical Head (5.36% while the loss of Hydraulically Joybar's and Biso's head were 4.28 and 4.13 %, respectively. The results also showed that the maximum cutter bar losses occurred when 80% of seeds were matured and adequate time for canola harvesting was 70% of seeds maturity. The results of analysing the effects of harvesting ground speeds showed that the maximum cutter bar losses occurred with the speed of 3.5 km h-1. Finally, the results showed that the minimum cutter bar loss was obtained with Hydraulically Joybar's head considering the benefit per cost ratio. The cost for Mechanical head and Hydraulically Biso's head were 13500 and 262500 Rial ha-1, respectively.

  19. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications

    OpenAIRE

    Xu, Tianbo; Dyer, Dan G.; McConnell, Laura L.; Bondarenko, Svetlana; Allen, Richard; Heinemann, Oliver

    2016-01-01

    Abstract Limited data are available on the fate of clothianidin under realistic agricultural production conditions. The present study is the first large?scale assessment of clothianidin residues in soil and bee?relevant matrices from corn and canola fields after multiple years of seed?treatment use. The average soil concentration from 50 Midwest US corn fields with 2 yr to 11 yr of planting clothianidin?treated seeds was 7.0?ng/g, similar to predicted concentrations from a single planting of ...

  20. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages at it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial

  1. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  2. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Effect of incremental levels of crude degummed canola oil on milk progesterone, plasma

    Directory of Open Access Journals (Sweden)

    John R. Otto

    2014-12-01

    Full Text Available Dietary supplementation of lactating cows with fat can alter the profiles of key reproductive hormones and boost postpartum energy balance. However, published data under Australian pasture-based dairy production conditions are scanty and inconsistent. Therefore, the objective of this study was to determine whether dietary inclusion of crude degummed canola oil (CDCO at incremental levels for eight-weeks will have significant influence on progesterone (P4, luteinizing hormone (LH and follicle stimulating hormone (FSH of primiparous Holstein–Friesian cows grazing pastures. We tested the hypothesis that postpartum supplementation of primiparous Holstein–Friesian cows with dietary CDCO in a pasture-based system will alter the concentrations of P4, LH and FSH reproductive hormones. A random allocation of twenty primiparous Holstein–Friesian cows into four treatment groups that consisted of a wheat-based pelleted basal diet with no supplemental CDCO (control, or a wheat-based pelleted basal diet with CDCO added at 25 ml/kg (low, 35 ml/kg (medium and 50 ml/kg (high was employed in an eight-week feeding trial after two weeks of adjustment. Supplementation levels of CDCO and week of data collection were significant sources of variation (P  0.05. It was apparent that cows in the high (0.459 ng/ml, medium (0.367 ng/ml and low (0.251 ng/ml levels of oil treatments had higher mean plasma FSH concentrations compared to the control (0.172 ng/ml cows. It was concluded that the current levels of CDCO can be used in pasture-based dairy systems to increase FSH, but not LH and P4.

  4. Selective Breeding under Saline Stressed Conditions of Canola Mutations Induced by Gamma Rays

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Mansour, M.F.

    2009-01-01

    Mutation breeding program has been initiated for inducing canola mutations tolerance to saline stressed conditions for growing at harsh land in Egypt. Therefore, seed lots of three cultivars and exotic variety (Bactol, Serow 4, Serow 6 and Evita) were subjected to 100,400 and 600 Gy of gamma rays. Mass selection with 20 % intensity for high number of pods per plant has been done in each treatment in M2 generation. However, individually plants with high number of pods / plant were selected from each variety in M3 generation for test under saline stressed conditions at Ras Sudr region in M4 (8600 and 8300 ppm salinity for soil and irrigation, respectively). The obtained results revealed that eight mutated families from 12- test families in M4 generation surpassed their parents in seed yield / plant and related characters ( plant height ,fruiting zone length , No. of branches , No. of pods / plant ). In addition, the mutant F93 characterized by fast growing and non shuttering pods reflecting 50.4% over Evita control in seed yield/ plant. Twelve mutant lines in M5 represented the mutant families were grown in sandy-loam soil at Inshas region. The three mutant lines (L 22, L 38 and L 45) continuously surpassed their parents in seed yield and related characters, but the increases were less than the previous generation. The increase was 22.3 %, 38.7 % and 36.7 % over seed yield of respective parents. Moreover, mutant L66 exhibited an increase in its yield components in M5 at Inshas only, suggesting that gene expression and genomic structure extremely influenced by environmental factors. Genetic stability for the obtained mutations could be done at different environmental conditions in further studies

  5. PRODUCTION AND PHYSICOCHEMICAL CHARACTERIZATION OF METHYLIC AND ETHYLIC BIODIESEL FROM CANOLA OIL / OBTENÇÃO E CARACTERIZAÇÃO DO BIODIESEL DE CANOLA PELAS ROTAS METÍLICA E ETÍLICA

    Directory of Open Access Journals (Sweden)

    A.C.F. BATISTA

    2014-12-01

    Full Text Available Atualmente as reservas de combustíveis fósseis têm diminuído, acarretando um aumento de preço dos derivados do petróleo. Desta forma o biodiesel surge como uma alternativa, sendo o óleo de canola uma opção para esse biocombustível, o qual possui de 40 a 46% de óleo no grão, e que é de excelente qualidade pela composição em ácidos graxos e já usado na Europa para produção de biodiesel. Este trabalho apresenta propriedades físico-químicas do biodiesel de canola nas rotas metílica e etílica através do processo de transesterificação e os resultados encontram-se dentro das normas estabelecidas pela Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP.

  6. Identification of seed-related QTL in Brassica rapa

    Directory of Open Access Journals (Sweden)

    H. Bagheri

    2013-10-01

    Full Text Available To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin with B. rapa ssp. trilocularis R-o-18 (spring oil seed, both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL were detected for nine traits. A strong seed colour QTL (LOD 26 co-localized with QTL for seed size (LOD 7, seed weight (LOD 4.6, seed oil content (LOD 6.6, number of siliques (LOD 3 and number of seeds per silique (LOD 3. There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas.

  7. A proteomic analysis of seed development in Brassica campestri L.

    Science.gov (United States)

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  8. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  9. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2017-01-01

    Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...... and reduced N leaching during the winter compared with the normal seeding time. Early-seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results...... radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples...

  10. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpaGuss.) in Response toPlasmodiophora brassicaeduring Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  11. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea

    Science.gov (United States)

    2013-01-01

    Background The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. Results Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. Conclusions Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage. PMID:23586706

  12. Glucosinolate profiling of Brassica rapa cultivars after infection by Leptosphaeria maculans and Fusarium oxysporum

    NARCIS (Netherlands)

    Abdel-Farid, I.B.; Jahangir, M.; Mustafa, N.R.; Van Dam, N.M.; van den Hondel, C.A.M.J.J.; Kim, H.K.; Choi, Y.L.; Verpoorte, R.

    2010-01-01

    The glucosinolate contents of two different cultivars of Brassica rapa (Herfstraap and Oleifera) infected with Leptosphaeria maculans and Fusarium oxysporum were determined. Infection triggered the accumulation of aliphatic glucosinolates (gluconapin, progoitrin, glucobrassicanapin and

  13. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  14. Varietal improvement of Brassica species through introduction, hybridization and mutation breeding techniques

    International Nuclear Information System (INIS)

    Rhaman, A.

    1988-11-01

    Germplasm of Brassica campestris and Brassica juncea was collected from various parts of Bangladesh and evaluated for yield, oil content etc. prior to the breeding programme. Seeds of the B. campestris variety YS-52, possessing good agronomic characteristics, were treated with mutagens (gamma rays and sodium azide) to widen the genetic variation. Mutants were selected for higher yield and resistance against Alternaria brassicae. The two mutant lines BINA 1 and BINA 2 were selected exceeding the parent variety considerably in yield and disease resistance. They are candidates for recommended varieties. Brassica juncea variety RCM 625 was treated with gamma rays and EMS. Four higher yielding and earlier maturing mutants are being evaluated further. 6 tabs

  15. Energy consumption during impact cutting of canola stalk as a function of moisture content and cutting height

    Directory of Open Access Journals (Sweden)

    Mohsen Azadbakht

    2015-06-01

    Full Text Available This study surveys the needed energy for cutting canola stems in different levels of cutting height and moisture content. The canola was harvested from the experimental farm in Gorgan, Iran. Test device fabricated and then calibrated. The device works on the principle of conservation of energy. The tests were repeated 15 times for any level of moisture content and cutting height and they were analyzed using split plot design. The results showed the effect of height and moisture content on cutting energy is significant (P < 1%, but their interaction is not significant. The highest cutting energy was 1.1 kJ in 25.5 (w.b.% moisture content and 10 cm cutting height. Also the minimum cutting energy was 0.76 kJ in 11.6 (w.b.% moisture content and 30 cm cutting height. Blade velocity was 2.64 m/s in cutting moment.

  16. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects.

    Science.gov (United States)

    Vega-López, Sonia; Ausman, Lynne M; Jalbert, Susan M; Erkkilä, Arja T; Lichtenstein, Alice H

    2006-07-01

    Partially hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil is a potential substitute because of favorable physical characteristics. We assessed the effect of palm oil on lipoprotein profiles compared with the effects of both partially hydrogenated fat and oils high in monounsaturated or polyunsaturated fatty acids. Fifteen volunteers aged > or =50 y with LDL cholesterol > or =130 mg/dL were provided with food for each of 4 diets (35 d/phase) varying in type of fat (partially hydrogenated soybean, soybean, palm, or canola; two-thirds fat, 20% of energy). Plasma fatty acid profiles, lipids, lipoproteins, apolipoprotein A-I, apolipoprotein B, lipoprotein(a), glucose, insulin, HDL subfractions, and indicators of lipoprotein metabolism (HDL-cholesterol fractional esterification rate, cholesteryl ester transfer protein, phospholipid transfer protein, and paraoxonase activities) were measured at the end of each phase. Plasma fatty acid profiles reflected the main source of dietary fat. Partially hydrogenated soybean and palm oils resulted in higher LDL-cholesterol concentrations than did soybean (12% and 14%, respectively; P oils. Apolipoprotein B (P palm oil compared with the other dietary fats. HDL3 cholesterol was higher after palm oil than after partially hydrogenated and soybean oils (P Palm and partially hydrogenated soybean oils, compared with soybean and canola oils, adversely altered the lipoprotein profile in moderately hyperlipidemic subjects without significantly affecting HDL intravascular processing markers.

  17. Stability of canola oil encapsulated by co-extrusion technology: effect of quercetin addition to alginate shell or oil core.

    Science.gov (United States)

    Waterhouse, Geoffrey I N; Wang, Wei; Sun-Waterhouse, Dongxiao

    2014-01-01

    This study examines the co-extrusion encapsulation of canola oil by alginate, with an antioxidant (quercetin) incorporated either in the oil core or alginate shell. Optical and environmental scanning electron microscopy revealed spherical beads of diameter ∼350μm and wall thickness ∼65μm. Bead appearance, size, wall thickness and surface characteristics did not change appreciably after treatments at pH 3 for 2h, pH 6.5 for 2h or pH 6.5 for 1min then pH 3 for 2h, although the amounts of phenolics released from beads differed depending on the conditions. The quercetin addition approach strongly influenced the stability of canola oil during storage at 20 and 38°C. Quercetin in the core more effectively suppressed oil deterioration. Quercetin in shell caused a higher phenolic content after storage. FTIR and HPLC analyses were used to track changes in the chemical composition of the encapsulated oil beads during storage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Production of glycerol-free biofuel from canola oil and dimethyl carbonate using triazabicyclodecene in homogeneous and heterogeneous catalysis operations

    Science.gov (United States)

    Islam, Mohammad Rafiqul

    Due to the increasing awareness of the dwindling fossil fuel resources and environmental issues, biofuel became an alternative renewable fuel to meet the steady increase of energy consumption and environmental demands. This work was designed to produce biofuel free from glycerol, soap, catalyst and wastes from canola oil and dimethyl carbonate (DMC) using an organocatalyst, triazabicyclodecene (TBD). To achieve these goals, several interconnected research activities were undertaken. First, a flow sheet was developed for the process and operating criteria were identified by laboratory experimentation verified with Aspen Plus. Mass and energy integration studies were performed to minimize the consumption of materials and energy utilities. Next, kinetics of canola oil transesterification using TBD as homogeneous catalyst in dimethyl carbonate has been investigated and a model was developed. Kinetics data were vital in process assessment and kinetics model was essential in the study of chemical reaction and catalyst development. Finally, a heterogeneous catalyst was developed for use as a biofuel catalyst through the immobilization of TBD into MgAl layered double hydroxides (LDHs) which can combine the advantages of homogeneous catalysis with the best properties of heterogeneous materials.

  19. Effect of solid state fermentation on nutrient content and ileal amino acids digestibility of canola meal in broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-06-01

    Full Text Available The aim of the current study was to investigate the potential of Lactobacillus salivarius solid state fermentation for reduction of glucosinolate content in canola meal (CM as well as the improvement of its nutrient digestibility for broiler chickens. Canola meal was treated with the L. salivarius in solid state fermentation for 30 days. Nutrients ileal digestibility was tested using 42-day-old broilers fed by either CM or fermented CM (FCM as the sole source of energy and protein. The results showed that fermentation of CM using L. salivarius reduced glucosinolate content of CM by 38%. The digestibility coefficient was improved significantly for crude protein, Met, Cys, Arg, Asp, Glu, and Ser in FCM compared to CM. However, apparent metabolisable energy of CM was not affected by fermentation. It appears that fermentation treatment of CM using L. salivarius may improve the overall nutritive value of CM for broiler chickens, reducing its total glucosinolate and crude fibre content by 38 and 16%, respectively.

  20. Variation of five major glucosinolate genes in Brassica rapa in relation to Brassica oleracea and Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Qiu, D.; Quiros, F.

    2010-07-01

    Glucosinolates and their derivatives isothiocyanates are important secondary metabolites in the Brassica cea that has biological activity, such as cancer protecting and bio fumigant properties. The putative ortho logs of five major genes in the glucosinolate biosynthetic pathway, Bra.GSELONG.a, Bra.GSALK.a, Bra.CYP83B1, Bra.SUR1.a and Bra.ST5.a, were cloned from both cDNA and genomic DNA from different subspecies of Brassica rapa. Inter species comparative analysis disclosed high conservation of exon number and size for GS-Elong, GS-Alk, GS-CYP83B1 and GS-ST5a among B. rapa, B. oleracea and A. thaliana. Splice site mutations caused the differences observed for exon numbers and sizes in GS-SUR1 among the three species. However, the exonic sequences were highly conserved for this gene. There were not major differences of intronic sizes among the three species for these genes, except for intron 1 for GS-Elong in two subspecies of B. rapa. The cloning of the putative ortho logs of all these major genes involved in the glucosinolate biosynthesis pathway of B. rapa and sequence analysis provide a useful base for their genetic manipulation and functional analysis. (Author) 31 refs.

  1. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake

    DEFF Research Database (Denmark)

    Gorovic, Nela; Afzal, Shoaib; Tjonneland, Anne

    2011-01-01

    on their brassica vegetables intake from the upper quartile (>= a parts per thousand yen23 g/day) and the lower quartile (parts per thousand currency sign7 g/day) daily intake of brassicas from a randomly selected sub-cohort of DCH. DNA was analysed for three functional SNPs in the hTAS2R38 gene. The hTAS2R38...

  3. Coat protein of Turnip mosaic virus in oilseed rape (Brassica napus)

    African Journals Online (AJOL)

    mohammad

    2Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad,. Iran. Accepted 15 August, 2012 ... led to prevalence of infectious diseases. Turnip mosaic virus (TuMV) is an .... During the sampling of canola plants for the detection of virus, some colonies of aphids were ...

  4. Full chain life cycle assessment of greenhouse gases and energy demand for canola-derived jet fuel in North Dakota, United States

    Science.gov (United States)

    The success of long-term sustainable biofuel production on agricultural lands is still questionable. To this end, we investigated the effects of crop prices on the changes of agricultural land use for biofuel canola production in three wheat crop management zones in North Dakota. The effects of cano...

  5. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.

    Science.gov (United States)

    Sotelo, T; Lema, M; Soengas, P; Cartea, M E; Velasco, P

    2015-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  7. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT

    Directory of Open Access Journals (Sweden)

    Shuaihua Pu

    2016-10-01

    Full Text Available Long-term dietary fatty acid intake is believed to induce changes in the human gut microbiome which might be associated with human health or obesity status; however, considerable debate remains regarding the most favorable ratios of fatty acids to optimize these processes. The objective of this sub-study of a double-blinded randomized crossover clinical study, the canola oil multi-center intervention trial (COMIT, was to investigate effects of five different novel oil blends fed for 30 days each on the intestinal microbiota in 25 volunteers with risk of metabolic syndrome. The 60 g treatments included three MUFA-rich diets: 1 conventional canola oil (Canola; 2 DHA-enriched high oleic canola oil (CanolaDHA; 3 high oleic canola oil (CanolaOleic; and two PUFA-rich diets: 4 a blend of corn/safflower oil (25:75 (CornSaff; and 5 a blend of flax/safflower oil (60:40 (FlaxSaff. Stool samples were collected at the end of each period. DNA was extracted and amplified for pyrosequencing. A total of 17 phyla and 187 genera were identified. While five novel oil treatments failed to alter bacterial phyla composition, obese participants produced a higher proportion of Firmicutes to Bacteroidetes than overweight or normal weight groups (P = 0.01. Similarly at the genus level, overall bacterial distribution was highly associated with subjects’ body mass index (BMI. Treatment effects were observed between MUFA- and PUFA-rich diets, with the three MUFA diets elevating Parabacteroides, Prevotella, Turicibacter, and Enterobacteriaceae (F’s populations, while the two PUFA-rich diets favored the abundance of Isobaculum. High MUFA content feedings also resulted in an increase of Parabacteroides and a decrease of Isobaculum in obese, but not overweight subjects. Data suggest that BMI is a predominant factor in characterization of human gut microbiota profiles, and that MUFA-rich and PUFA-rich diets impact the composition of gut microbiota at lower taxonomical levels

  8. Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.

    Science.gov (United States)

    Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu

    2013-01-01

    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P oil sensor value was detected between CO and PC throughout the heating periods. Microwave heating caused formation of comparatively

  9. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and –susceptible alleles in response to Plasmodiophora brassicae during early infection

    Directory of Open Access Journals (Sweden)

    Jingjing eChen

    2016-01-01

    Full Text Available Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs of clubroot-resistant (CR BJN3-2 and clubroot-susceptible (BJN3-2 Chinese cabbage (Brassica rapa was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1,875 and 2,103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 hours after inoculation (hai. Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins, PR genes involved in salicylic acid (SA signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection.

  10. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  11. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Till Arvid Diehn

    2015-04-01

    Full Text Available Aquaporins (AQPs are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea and other Brassica species. The recent releases of the genome sequences of B. oleracea and B. rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins.In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of A. thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re- name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  12. Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs.

    Science.gov (United States)

    Parr, C K; Liu, Y; Parsons, C M; Stein, H H

    2015-05-01

    An experiment was conducted to evaluate effects of 2 high-protein canola meals (canola meal A [CMA]: 45.69% CP and canola meal B [CMB]: 46.97% CP) and a conventional canola meal (CM-CV: 35.10% CP) on growth performance, organ weights, bone ash, and blood parameters of weanling pigs. Inclusion rates of canola meal (CM) in the diets were 10, 20, 30, or 40% for CMA and CM-CV, whereas inclusions were 10, 20, or 30% for CMB. A control diet containing no CM was also formulated. Therefore, 12 diets were used in this experiment. A total of 420 pigs (initial BW: 9.8 ± 1.1 kg) were divided into 3 blocks and randomly allotted to 1 of the 12 diets with 8 replicate pens per treatment and 4 or 5 pigs per pen. The ADG, ADFI, and G:F were calculated, and at the conclusion of the experiment, 1 pig in each pen was euthanized to allow measurements of organ weights, collection of blood, and collection of the third and fourth metacarpals from the left foot. Results indicate that ADFI was linearly (P ash percentage in the metacarpals. Inclusion of CMA or CM-CV linearly (P < 0.05) decreased concentrations of serum triiodothyronine, and the inclusion of CMA also linearly (P < 0.05) decreased serum thyroxine concentrations. No differences were observed for complete blood counts or blood urea nitrogen if CM was added to the diets. In conclusion, up to 20% high-protein CM or CM-CV may be included in diets for weanling pigs from 2 wk postweaning without reducing growth performance or negatively affecting organ, bone, or blood parameters. In some instances, it may also be possible to use greater inclusion rates.

  13. Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat

    Directory of Open Access Journals (Sweden)

    Ki Ho Baek

    2016-06-01

    Full Text Available The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON, 20% canola oil (CA and 20% flaxseed oil (FL. The pH value of the CA was significantly higher than the others (p<0.05. The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05. CA had the highest lightness value (p<0.05. However, FL showed the highest yellowness value (p<0.05 because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05; furthermore, CA had the highest texture profile values (p<0.05 among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05 over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05. The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality.

  14. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  15. Hormones and Pod Development in Oilseed Rape (Brassica napus) 1

    Science.gov (United States)

    de Bouille, Pierre; Sotta, Bruno; Miginiac, Emile; Merrien, André

    1989-01-01

    The endogenous levels of several plant growth substances (indole acetic acid, IAA; abscisic acid, ABA; zeatin, Z; zeatin riboside, [9R]Z; isopentenyladenine, iP; and isopentenyladenosine, [9R]iP were measured during pod development of field grown oilseed Rape (Brassica napus L. var oleifera cv Bienvenu) with high performance liquid chromatography and immunoenzymic (enzyme-linked immunosorbent assay, ELISA) techniques. Results show that pod development is characterized by high levels of Z and [9R]Z in 3 day old fruits and of IAA on the fourth day. During pod maturation, initially a significant increase of IAA and cytokinins was observed, followed by a progressive rise of ABA levels and a concomitant decline of IAA and cytokinin (except iP) levels. The relationship between hormone levels and development, especially pod number, seed number per pod, and seed weight determination, will be discussed. PMID:16666891

  16. Temperature Distribution Pattern of Brassica chinensis during Vacuum Cooling

    Directory of Open Access Journals (Sweden)

    Xiao-yan Song

    2016-01-01

    Full Text Available The temperature distribution of leafy vegetables is often less uniform than that of other vegetables during the vacuum cooling process, a factor that can cause undesired effects such as frostbite. Brassica chinensis, a type of classical leafy vegetable, was used as a model in this paper to optimize vacuum cooling technology for the whole and fresh-cut leafy vegetables. We found that noticeable temperature differences between the leaf and the petiole occurred, which resulted from their structural difference. Temperature variations of different parts of the leaf were also observed, indicating that cooling rate of leaf margin was quicker than the other parts. Our experiments show that using a moderate volumetric displacement of the chamber (0.033 s−1 is beneficial for obtaining a relative uniform temperature distribution of the leaf part.

  17. Effects of gamma radiation in cauliflower (Brassica spp) minimally processed

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Thomaz, Fernanda S.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Alencar, Severino M.

    2007-01-01

    Consumers demand for health interests and the latest diet trends. The consumption of vegetables worldwide has increased every year over the past decade, consequently, less extreme treatments or additives are being required. Minimally processed foods have fresh-like characteristics and satisfy the new consumer demand. Food irradiation is an exposure process of the product to controlled sources of gamma radiation with the intention to destroy pathogens and to extend the shelf life. Minimally processed cauliflower (Brassica oleraceae) exposed to low dose of gamma radiation does not show any change in sensory attributes. The aim of this study was to analyze the effects of the low doses of gamma radiation on sensorial aspects like appearance, texture and flavor of minimally processed cauliflower. (author)

  18. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production.

    Science.gov (United States)

    Wallenhammar, Ann-Charlotte; Gunnarson, Albin; Hansson, Fredrik; Jonsson, Anders

    2016-04-22

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil(-1)) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g(-1) soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g(-1) soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g(-1) soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of

  19. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    Directory of Open Access Journals (Sweden)

    Ann-Charlotte Wallenhammar

    2016-04-01

    Full Text Available Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1 in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20% showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of

  20. UTILIZAÇÃO DO FARELO DE CANOLA EM RAÇÕES PARA POEDEIRAS COMERCIAIS FORMULADAS COM BASE EM AMINOÁCIDOS TOTAIS E DIGESTÍVEIS CANOLA MEAL IN LAYING HENS DIETS FORMULATED ACCORDING TO TOTAL AND DIGESTIBLE AMINO ACID BASIS

    Directory of Open Access Journals (Sweden)

    Vinícius Assuena

    2007-04-01

    Full Text Available O experimento teve por objetivo avaliar o efeito da inclusão do farelo de canola em rações para poedeiras comerciais, formuladas com diferentes recomendações de aminoácidos. Foram utilizadas 144 poedeiras comerciais, distribuídas em um delineamento inteiramente casualizado com três repetições de seis aves cada, em esquema fatorial 2 x 4, constituído da combinação de duas recomendações de aminoácidos (totais e digestíveis e quatro níveis de inclusão do farelo de canola (0%, 4%, 8% e 12%. Durante quatro ciclos de 21 dias, avaliaram-se o desempenho e nos dois últimos dias de cada ciclo a qualidade dos ovos. As aves que receberam a ração formulada com aminoácidos digestíveis apresentaram menor massa de ovos e pior conversão alimentar (P<0,05. O farelo de canola pode ser incluído em até 8% da ração sem prejuízo ao desempenho e qualidade da casca dos ovos. Na região de condução da pesquisa o custo do farelo de canola onerou o custo da ração. PALAVRAS-CHAVE: Alimento alternativo, desempenho, nutrição, qualidade de ovos This experiment was conducted to evaluated increasing levels of canola meal in laying hens diets formulated based in different amino acid recommendations. 144 commercial laying hens was allotted in laying cages during 4 periods of 21 days. Performance and egg quality parameters were evaluated In the last two days of each period. Hens were distributed in a complete randomized design, in factorial arrangement 2x4, with eight treatments and three replicates of six hens each. The factors were diets formulated based on total and digestible aminoacids and increasing levels of canola meal on these diets (0; 4; 8 and 12%. Recommendations of digestible amino acid promoted worst feed conversion and lower egg mass output. Canola meal can be included in laying hens diets until 8% without decrease performance and egg shell quality. However, canola meal increased feed cost on the region where the experiment was