Genetic resources as initial material for developing new soft winter wheat varieties
Directory of Open Access Journals (Sweden)
В. М. Кір’ян
2016-12-01
Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.
Investigation of rheological properties of winter wheat varieties during storage
Directory of Open Access Journals (Sweden)
Móré M.
2015-01-01
Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.
International Nuclear Information System (INIS)
Wang Fahong; Zhao Junshi
1996-01-01
The mass photosynthesis rate and distribution of photoassimilates of winter wheat varieties with different maturity feature were studied using GXH-305 portable CO 2 infrared ray analyzer. The mass photosynthesis rate of winter wheat varieties with better maturity feature showed little difference from the varieties with general maturity feature during the early stage of grain filling phase. However, the mass photosynthesis rate of the former was significantly higher than that of the later during the middle and late stage of grain filling. The study with 14 CO 2 -tracing method showed that the relative activity in different organs of varieties with better maturity feature was significantly higher than that of varieties with worse maturity feature during the later growth stage of winter wheat. The rate of photoassimilates distribution in stalk and root system of winter wheat varieties with better maturity was higher than that in the others organs. The physiological mechanism of difference of grain yield and plant decay in varieties with different maturity feature were also discussed
Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K
2009-10-01
Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency of bloat in stocker cattle. In
Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.)
Н. В. Булавка; Л. М. Голик
2007-01-01
The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days). Vernalization requierement differences among varieties from different climatic zones were revealed.
Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.
Directory of Open Access Journals (Sweden)
Н. В. Булавка
2007-12-01
Full Text Available The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days. Vernalization requierement differences among varieties from different climatic zones were revealed.
Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides
Directory of Open Access Journals (Sweden)
Tatyana Eugenivna KOPYTCHUK
2012-05-01
Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.
New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova
Directory of Open Access Journals (Sweden)
Л. М. Голик
2007-12-01
Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.
Directory of Open Access Journals (Sweden)
В. С. Кочмарський
2010-10-01
Full Text Available It is concluded by investigations that wheat crossing of various development types between themselves cause increase of formbuilding process in hybrid progeny, promoting the selection of practically valuable recombinats. The genotypes which present the practical valuable by complex of adaptive traits and properties have been selected by phenotype stability in the breeding process. The new bread winter wheat variety Pamyati Remesla developed with participation of spring wheat variety Hja 22139 (Finland has been proposed for including it into the Register of Plant varieties of Ukraine adapted for use in Steppe, Forest- Steppe and Woodland of Ukraine since 2010.
Directory of Open Access Journals (Sweden)
О. Л. Уліч
2017-03-01
Full Text Available Purpose. To study morphoagrobiological and adaptive properties, level of yielding capacity of recently registered soft winter wheat varieties of various ecological groups under agroecological conditions of Kirovohrad variety testing station. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. It was established that the yield level of is a key composite indicator of genotype adaptation to agroecological growing conditions. Experimental data indicate significant deviations of yield depending on the genotype and the year of study. During three years of experiments, yield depending of the variety ranged from 4.26 to 9.71 t/ha, such varieties as ‘CN Kombin’, ‘Estivus’, ‘Tradytsiia odeska’, ‘Mudrist odeska’, ‘Lil’ and ‘Fabius’ had higher yields. In case of dry weather conditions and unfavorable agro-ecological factors, the following varieties as ‘Mudrist odeska’, ‘Veteran’, ‘Lil’, ‘Tsentylivka’, ‘Fabius’, ‘Patras’, ‘Montrei’ have demonstrated good adaptive properties. Their yield has decreased by 9,2–19,0%, while in the varieties ‘Mahistral’, ‘Poltavka’, ‘Harantiia odeska’ and ‘Pokrova’ – by 34.4, 42.4, 45.2 and 50.6% accordingly. Conclusions. Investigated soft winter wheat varieties differ in morphoagrobiological characteristics, productivity, height, maturation period, adaptability as well as economic and agronomic value. According to the complex of such indices as productivity, agronomic characters and properties as well as adaptability, in the microzone of Kirovohrad variety testing station it is advisable to grow varieties ‘CN Kombi’, ‘Pokrova’, ‘Mudrist odeska’, ‘Veteran’ and ‘Lil’.
Directory of Open Access Journals (Sweden)
О. Л. Дергачов
2010-10-01
Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.
Directory of Open Access Journals (Sweden)
В. П. Петренкова
2008-10-01
Full Text Available The infection by phytoviruses and the productivity formation in the new varieties of winter bread wheat in the different years with virus damage were investigated. There were identified the varieties being more tolerant to the observed diseases, among these - the samples with different constituents of tolerance, which could be used in the breeding programs.
Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William
2015-10-01
Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Radiation use efficiency and yield of winter wheat under deficit irrigation in North China
International Nuclear Information System (INIS)
Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.
2008-01-01
An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China
Rabinovich, S V; Fedak, G; Lukov, O
2000-01-01
The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.
Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model
Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.
2016-01-01
Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.
Economical and Morpho-Biological Features of Whiner Wheat New Generation Varieties (Triticum durum
Directory of Open Access Journals (Sweden)
Л. І. Улич
2010-10-01
Full Text Available The article describes summary of the researches, characteristics of morphological and agro-biological characteristics and features, a note is made of a significant progress in the selection of productivity and adaptability of registered Durum Winter Wheat Varieties of new crops rotation. Significant developments of plants architectonic are marked, especially in height, characteristics of economical value, and in terms of considerable achievements in breeding of this kind of wheat. A stress in made on the need to enhance Durum Winter Wheat breeding to develop more frostresistant and drought-overheat resistant varieties.
[Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].
Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na
2015-04-01
Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.
Genetic gains in wheat in Turkey: Winter wheat for dryland conditions
Directory of Open Access Journals (Sweden)
Mesut Keser
2017-12-01
Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008â2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010â2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t haâ1, but varied from 1.11 t haâ1 to 6.02 t haâ1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spikeâ1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield
Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells
Directory of Open Access Journals (Sweden)
M. M. Nazarenko
2017-02-01
Full Text Available In this article we report the results of our investigation into several cytogenetic parameters of variability in mutation induction of modern winter wheat varieties and some connections between the means of cytogenetic indices and different doses of gamma-rays. Analysis of chromosomal aberrations following the action of any kind of mutagen by the anaphases method is one of the most widely investigated and most precise methods which can be used to determine the fact of mutagenic action on plants and identify the nature of the mutagen. We combined in our investigation the sensitivity of genotype to mutagen using cytological analysis of mutagen treated wheat populations with the corresponding different varieties by breeding methods to reveal its connections and differences, specific sensitivity to mutagens action on the cell level. Dry seeds of 8 varieties of winter wheat were subjected to 100, 150, 200, 250 Gy gamma irradiation, which are trivial for winter wheat mutation breeding. We investigated rates and spectra of chromosomal aberrations in the cells of winter wheat primary roots tips. The coefficients of correlations amid the rate of chromosomal aberrations and the dose of gamma-rays were on the level 0.8–0.9. The fragments/bridges ratio is a clear and sufficient index for determining the nature of the mutagen agent. We distinguished the following types of chromosomal rearrangements: chromatid and chromosome bridges, single and double fragments, micronuclei, and delayed chromosomes. The ratio of chromosomal aberrations changes with the change in mutagen; note that bridge-types are characteristic of irradiation. Radiomutants are more resistant to gamma rays. This is apparent in the lower rate of chromosomal aberrations. Varieties obtained by chemical mutagenesis (varieties Sonechko, Kalinova are more sensitive to gamma-irradiation than others. We propose these varieties as objects for a mutation breeding programme and radiation of mutants
Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions
Directory of Open Access Journals (Sweden)
М. М. Корхова
2014-12-01
Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time – September 10 leads to yields reduction and grain quality deterioration for all winter wheat varieties.
International Nuclear Information System (INIS)
Feng Zhaozhong; Pang Jing; Nouchi, Isamu; Kobayashi, Kazuhiko; Yamakawa, Takashi; Zhu Jianguo
2010-01-01
We studied leaf apoplastic ascorbates in relation to ozone (O 3 ) sensitivity in two winter wheat (Triticum aestivum L.) varieties: Yangfumai 2 (Y2) and Yangmai 16 (Y16). The plants were exposed to elevated O 3 concentration 27% higher than the ambient O 3 concentration in a fully open-air field from tillering stage until final maturity. The less sensitive variety Y16 had higher concentration of reduced ascorbate in the apoplast and leaf tissue by 33.5% and 12.0%, respectively, than those in the more sensitive variety Y2, whereas no varietal difference was detected in the decline of reduced ascorbate concentration in response to elevated O 3 . No effects of O 3 or variety were detected in either oxidized ascorbate or the redox state of ascorbate in the apoplast and leaf tissue. The lower ascorbate concentrations in both apoplast and leaf tissue should have contributed to the higher O 3 sensitivity in variety Y2. - Apoplastic ascorbate contributes to varietal difference in wheat tolerance to O 3 .
100-year history of the development of bread winter wheat breeding programs
Directory of Open Access Journals (Sweden)
М. А. Литвиненко
2016-05-01
Full Text Available Purpose. Review of the main achievements of the Wheat Breeding and Seed ProductionDepartment in the Plant Breeding and Genetic Institute – National Centre of Seed and Cultivar Investigation in the developing theoretical principles of breeding and creation of winter wheat varieties of different types during 100-year (1916–2016 period of breeding programs realization. Results. The main theoretical, methodical developments and breeding achievements of Wheat Breeding and Seed Production Department during 100-year (1916–2016 history have been considered. In the course of the Department activity, the research and methodology grounds of bread winter wheat breeding and seed production have been laid, 9 stages of breeding programs development have been accomplished. As a result, more than 130 varieties of different types have been created, 87 of them have been released in some periods or registered in the State registers of plants varieties of Ukraine and other countries and grown in the total sowing area about 220 million hectares.
Construction and analysis of a microsatellite-based database of european wheat varieties
Röder, M.S.; Wendehake, K.; Korzun, V.; Bredemeijer, G.; Laborie, D.; Bertrand, L.; Isaac, P.; Vosman, B.
2002-01-01
A database of 502 recent European wheat varieties, mainly of winter type, was constructed using 19 wheat microsatellites and one secalin-specific marker. All datapoints were generated in at least two laboratories using different techniques for fragment analysis. An overall level of >99.5ccuracy
Flowering time control in European winter wheat
Directory of Open Access Journals (Sweden)
Simon Martin Langer
2014-10-01
Full Text Available Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.
Directory of Open Access Journals (Sweden)
Ionuț RACZ
2018-05-01
Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.
Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping
2016-01-01
Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.
Directory of Open Access Journals (Sweden)
Xiubo Wang
Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.
Postharvest tillage reduces Downy Brome infestations in winter wheat
In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...
Production and evaluation of dwarf and semi-dwarf winter wheat mutants
International Nuclear Information System (INIS)
Barabas, Z.; Kertesz, Z.
1984-01-01
A special research programme for evolving and evaluating dwarf wheat forms resistant to lodging was carried out at the Cereal Research Institute, Wheat Division, Szeged, Hungary. Seed lots of the two tall winter wheat varieties Jubilejnaya 50 and Partizanka were exposed to gamma ray of 60 Co. With irradiation of 15000 rad 60 Co all of M 1 plants grown in the field were almost totally destroyed in 1980 and about 50% in 1982. In the greenhouse the number of lost M 1 plants was insignificant. Only a small number of plants died both in the greenhouse and in the field when they were irradiated with 5000 rad. A treatment with this lower dose of irradiation probably may help the breeders in selection for winter hardiness. 97 dwarf wheat lines already established were analysed for height character by a top cross method using the variety Jubilejnaya 50 as a tester. Height data of the simultaneously grown parental as well as the F 1 and F 2 offsprings indicated that the majority of them were recessive, except 3 cases where dominant or semi-dominant dwarfism was observed. Noteworthy is the Mx 158 a new semi-dwarf variety candidate, 60-65 cm in height at normal stand and resistant to all the main diseases here (powdery mildew and rusts). Its grain and protein production per unit area is also very good. Some genetically lesser-known dwarf sources were investigated in a complete crossing diallel test. (author)
Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng
2016-06-01
Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four
VARIABILITY OF AMYLOSE AND AMYLOPECTIN IN WINTER WHEAT AND SELECTION FOR SPECIAL PURPOSES
Directory of Open Access Journals (Sweden)
Nikolina Weg Krstičević
2015-06-01
Full Text Available The aim of this study was to investigate the variability of amylose and amylopectin in 24 Croatian and six foreign winter wheat varieties and to detect the potential of these varieties for special purposes. Starch composition analysis was based on the separation of amylose and amylopectin and the determination of their amounts and ratios. Analysis of the amount of amylose and amylopectin determined statistically highly significant differences between the varieties. The tested varieties are mostly bread wheat of different quality which have the usual content of amylose and amylopectin. Some varieties were identified among them with high amylopectin and low amylose content and one variety with high amylose content. They have the potential in future breeding programs and selection for special purposes.
Directory of Open Access Journals (Sweden)
I. M. Miroshnichenko
2017-08-01
Full Text Available In the course of field experiments conducted during the 2015–2016 vegetation seasons, retardants Medax Top, 1.0 l/ha (prohexadione-Са and mepiquat-chloride, appeared more effective than Terpal, 1.5 l/ha (mepiquat-chloride and ethephon, on field plots with high-yield varieties. Foliar application of Megafol promoted the productivity of winter wheat varieties Smuglyanka and Podolyanka and reduced the negative influence of retardants on the wheat plants in the vegetation seasons which were characterized by moisture deficit. The influence of modern retardants – prohexadione-Ca + mepiquat-chloride (Medax Top and mepiquat-chloride + etefone (Terpal, both BASF, Germany on the accumulation of some macro- and micronutrients in winter wheat plants was determined. The assays were performed on an ICP-MS Agilent 7700x mass spectrometer (Agilent Technologies, USA with ICP-MS Mass Hunter WorkStation. Samples of winter wheat plants were taken in the phase of flowering and grain ripening. The samples were dried, homogenized, 0.400 gof weight was dissolved in ICP-grade nitric acid in the Milestone Start D (Milestone Inc., USA. All solutions were prepared on 1st class water (18 MΩ cm–1 obtained on the Scholar-UV Nex Up 1000 (Human Corporation, Korea water purification system. The ICP-MS Complete Standard IV-ICPMS-71A was used as the external standard, and the internal standard was Sc, both of Inorganic Ventures, USA. According to the ICP-MS results of plant samples of winter wheat of Smuglylanka and Podolanka, it has been shown that, in conditions of wheat growing on light soils of Polissya, modern compositional retardants affect the ionome of plants during the vegetation season, as well as change the content of inorganic elements in the grain. It was found that winter wheat of the middle-stem intensive Podolyanka type reacted more responsively to retardant treatment than the short-stem highly intensive Smuglyanka type. At the same time, there was an
Sensibility of different wheat varieties (strains) to Ar+ implantation
International Nuclear Information System (INIS)
Cui Huanhu; Jing Hua; Ma Aiping; Kang Xiuli; Yang Liping; Huang Mingjing; Ma Buzhou; Shanxi Academy of Agricultural Sciences, Taiyuan
2005-01-01
The sensibility of different wheat varieties (strains) to Ar + implantation was studied. The results showed that the survival rate of 21 wheat varieties (strains) at the dose of 6 x 10 16 Ar + /cm 2 could be divided into five groups: surplus sensitive varieties (strains), sensitive varieties (strains), transitional varieties (strains), obtuse varieties (strains) and surplus obtuse varieties (strains). The sensibility of wheat varieties (strains) to Ar + injection is high-moisture-fertility wheat varieties (strains) > medium-moisture-fertility wheat varieties (strains) > dry land wheat varieties (strains). The study has provided theoretical basis in induced mutation medial lethal dose of different wheat varieties (strains) to Ar + implantation. (authors)
Bread-Making Quality of Standard Winter Wheat Cultivars
Ćurić, Duška; Novotni, Dubravka; Bauman, Ingrid; Krička, Tajana; Jukić, Željko; Voća, Neven; Kiš, Darko
2009-01-01
The purpose of this study was to define an impact of the cultivar, year and cultivation area of the standard Croatian winter wheat on the bread-making quality. The bread-making quality of cultivars ‘Divana’, ‘Žitarka’ and ‘Sana’ from the crop years 1998, 2000, 2002, 2004 and 2006, and from Zagreb and Osijek location was analyzed. Wheat from the cultivar tests cultivated under the same agro technological conditions was used for this testing. The tested winter wheat bread-making quality primari...
Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon
International Nuclear Information System (INIS)
Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.
2010-01-01
An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)
NUTRITIONAL CHARACTERISTICS OF EMMER WHEAT VARIETIES
Directory of Open Access Journals (Sweden)
Magdaléna Lacko - Bartošová
2015-02-01
Full Text Available The objective of this study was to evaluate the nutritional compounds (fat, sugars, crude protein, soluble fiber, ash and starch of four emmer wheat varieties grown under the conditions of organic farming system. The experiment was established on Scientific Research base Dolná Malanta, near Nitra in Slovakia during 2010 – 2011 and 2011 – 2012 growing seasons. Nutritional parameters, except crude protein content, were not influenced by the variety and weather conditions. Agnone variety had the highest content of fat, crude protein and starch but the lowest content of soluble dietary fiber. The lowest values of fat, crude protein had Molise sel Colli variety; Farvento variety had the lowest sugars and starch content. Emmer wheat as ancient wheat has a unique composition in secondary components, such as starch, which may play a role as functional food ingredients.
Research on spatial distribution of photosynthetic characteristics of Winter Wheat
Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.
2018-03-01
In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.
Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE
Directory of Open Access Journals (Sweden)
Dana Miháliková
2016-12-01
Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.
Elasticities for U.S. Wheat Food Use by Class
Marsh, Thomas L.
2003-01-01
We conceptualize wheat for food use as an input into flour production and derive demand functions to quantify price responsiveness and economic substitutability across wheat classes. Cost, price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft white winter, and durum wheat. In general, hard red winter and spring wheat varieties are much more responsive to their own price than are soft wheat varieties and durum wheat. Morishima elasticitie...
Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties
Directory of Open Access Journals (Sweden)
Babenko D. O.
2012-04-01
Full Text Available Light period significantly influences on the growth and development of plants. One of the major genes of photoperiod sensitivity is Ppd-D1, located on the chromosome 2D. The aim of the work was to determine the alleles and molecular structure of Ppd-D1 gene in samples from the collection of Ae. tauschii accessions, which have different flowering periods, and in 29 Ukrainian wheat varieties. Methods. We used methods of allele-specific PCR with primers to the Ppd-D1 gene, sequencing and Blast-analysis. Results. The collection of Ae. tauschii accessions and several varieties of winter and spring wheat was studied. The molecular structure of the allelic variants (414, 429 and 453 b. p. of Ppd-D1b gene was determined in the collection of Aegilops. tauschii accessions. Conclusions. The Ppd-D1a allele was present in all studied varieties of winter wheat. 60 % of spring wheat is characterized by Ppd-D1b allele (size of amplification products 414 b. p.. Blast-analysis of the sequence data banks on the basis of the reference sequence of sample k-1322 from the collection of Ae. tauschii accessions has shown a high homology (80 to 100 % between the nucleotide sequences of PRR genes, that characterize the A and D genomes of representatives of the genera Triticum and Aegilops.
Selection of high hectolitre weight mutants of winter wheat
International Nuclear Information System (INIS)
Crowley, C.; Jones, P.
1989-01-01
Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated
Response change in winter-wheat types to the pathogen complex under chronic gamma-irradiation
International Nuclear Information System (INIS)
Budanov, V.E.; Lysenkov, V.I.; Shcherbakov, V.K.
1975-01-01
Disease reactions in plants that have been gamma-irradiated are discussed. Damage to different types of soft winter wheat, due to pathogenic fungi, is evaluated. The Mironovski Jubilee variety showed high resistance to the leaf form of powdery mildew, along with the opposite phenomenon of a high susceptibility to the stem form of this disease. Chronic gamma irradiation of plants of this variety increased the susceptibility to this disease
Mechanical weed control in organic winter wheat
Euro Pannacci; Francesco Tei; Marcello Guiducci
2017-01-01
Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08) in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i) spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days) in t...
Estimating winter survival of winter wheat by simulations of plant frost tolerance
Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.
2018-01-01
Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this
New spring wheat varieties ‘Panianka’ and ‘Diana’
Directory of Open Access Journals (Sweden)
О. А. Демидов
2016-12-01
Full Text Available Purpose. To create new competitive spring wheat varieties. Methods. Field study, laboratory test. Results. Based on the competitive variety trial, bread spring wheat line ‘Lutescens 07-26’ has been selected due to high values of such traits as resistance to fungal diseases, grain quality(protein content accounted for 15.0%, 1000 kernel weight (44.6 g productivity (3.92 t/ha and lodging resistance (9 points. In 2011, it was submitted to the State variety testing as ‘Panianka’ variety. Durum spring wheat line ‘Leukurum 08-11’ was characterized by a number of positive traits: quite a high productivity (3.05 t/ha, short stem (79 cm, resistance to fungal diseases and lodging(9 points, and in 2011 it was submitted to the State variety testing as ‘Diana’ variety. According to the results of the State variety testing in 2012–2014, spring wheat varieties ‘Panianka’ and ‘Diana’ in 2015 were put on the State Register of plant varieties suitable for dissemination in Ukraine. Conclusions. For farms in Forest-Steppe and Polissia zones of Ukraine, bread and durum spring wheat varieties were bred by V. M.Remeslo Myronivka Institute of Wheat of NAAS of Ukraine that demonstrated rather high potential of productivity and adaptability to stress conditions. This goes to prove that cultivation of domestic spring wheat varieties will promote formation of high and quality grain yields.
Effect of seeding rate on grain quality of winter wheat
Directory of Open Access Journals (Sweden)
Veselinka Zecevic
2014-03-01
Full Text Available Planting density is important factor which influence yield and quality of wheat (Triticum aestivum L. For this reason, in scientific investigations is constantly investigated optimization of plant number per unit area. The objective of this study was to determine the influence of seeding rate in grain quality of winter wheat cultivars. The experiment was conducted with four winter wheat genotypes ('Ana Morava', 'Vizija', 'L-3027', and 'Perla' at the Small Grains Research Centre of Kragujevac, Serbia, in 3 yr at two seeding rates (SR1 = 500 and SR2 = 650 germinating seeds m-2. The 1000-kernel weight, Zeleny sedimentation, and wet gluten content in divergent wheat genotypes were investigated depending on the seeding rate and ecological factors. Significant differences in quality components were established between investigated seeding rates. The highest values of all investigated quality traits were established in SR2 variant when applied 650 seeds m-2. Genotypes reacted differently to seeding rate. 'Perla' in average had the highest mean sedimentation value (42.2 mL and wet gluten content (33.76% in SR2 variant and this cultivar responded the best to seeding rate. Significant differences for sedimentation value and wet gluten content were found among cultivars, years, seeding rate, and for all their interactions. Also, ANOVA for 1000-kernel weight showed highly significant differences among investigated varieties, seeding rate and growing seasons, but all their interactions were not significant. In all investigated genotypes, better quality was established in SR2 variant when applied 650 seeds m-2.
Comparison of winter wheat growth with multi-temporal remote sensing imagery
International Nuclear Information System (INIS)
Xiaoyu, Song; Bei, Cui; Guijun, Yang; Haikuan, Feng
2014-01-01
Leaf area index (LAI) is an important index for crop growth monitoring. This paper focused on estimation of winter wheat LAI dynamics in different growth stages based on Landsat TM data. In order to retrieve wheat LAI from remote sensing data, LAI measurements were initiated when Landsat satellite pass over the study region. Three Landsat5 TM images were acquired on April 15, May 17, and June 2, 2009, corresponding to jointing stage, flowering stage and milking stage of wheat. LAI was measured at each stage in thirty wheat fields distributed in Beijing suburb. Based on the TM images, spectral indices including NDVI, MSAVI, SAVI, RDVI, SR, ISR, MSR and NLI were calculated. Univariate correlation analysis was then conducted between LAI data and corresponding TM spectral variables. The analysis results indicated that TM ISR on April 15, TM Band4 on May17, and TM ISR on June 2 were very significantly correlated with LAI, and the coefficient values were 0.736, 0.548 and 0.493, respectively. LAI map of winter wheat for whole study area was produced based on optimal non-linear correlation models. The three LAI maps were used to winter wheat growth analysis and comparison of different growth stages. Study results indicated that from April 15 to May 17, LAI value for 14.88% of winter wheat fields (9131ha) increased less than 1, 64.43 % (39421 ha) increased between 1 to 2, 20.67 % (12685 ha) increased more than 2. LAI decreased from May 17 to June 2. 45.34% of winter wheat fields (27828 ha) decreased less than1, 45.20 % (27738 ha) decreased between 1 to 2, 9.33% (5725.42 ha) decreased more than 2
Directory of Open Access Journals (Sweden)
Xiuchen Wu
2017-10-01
Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.
Mechanical weed control in organic winter wheat
Directory of Open Access Journals (Sweden)
Euro Pannacci
2017-12-01
Full Text Available Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08 in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l. in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days in the crop sowed at narrow (traditional row spacing (0.15 m; and ii split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m. At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a randomized block with four replicates. Six weeks after mechanical treatments, weed ground cover (% was rated visually using the Braun-Blanquet coverabundance scale; weeds on three squares (0.6×0.5 m each one per plot were collected, counted, weighed, dried in oven at 105°C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2, Fallopia convolvulus (L. Á. Löve (exp. 1 and 3, Stachys annua (L. L. (exp. 1, Anagallis arvensis L. (exp. 2, Papaver rhoeas L. (exp.3, Veronica hederifolia L. (exp. 3. In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by split hoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing
Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..
Directory of Open Access Journals (Sweden)
Christine D Zanke
Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.
International Nuclear Information System (INIS)
Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren
2014-01-01
To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps
Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.
Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L
2012-03-15
Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
Directory of Open Access Journals (Sweden)
Potapova G. N.
2017-10-01
Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.
International Nuclear Information System (INIS)
Inoue, K.; Nakazono, K.; Wakiyama, Y.
2005-01-01
This paper describes effects of varied meteorological conditions on the grain filling periods, stabilities of yield and quality of winter wheat cultivars with different maturity characteristics (cv. Ayahikari, Norin61, Bandowase, and Tsurupikari). In the field experiments, the meteorological treatments were made during the first heading time on 17 April 2001 and the middle heading time on 24 April 2000. Air temperature, global solar radiation and soil moisture were controlled using a rain shelter, cheesecloth and irrigation system. The growth speed and growth period of wheat grains varied among four winter wheat cultivars, depending on meteorological conditions. The growth speed increased within 1 8.4 deg C of mean air temperature over the 30 days after the anthesis. On the other hand, it was found that the growth speed of wheat grains and the maximum number of wheat grains (Ymax) decreased greatly with the 44.4% interception of global solar radiation. Logistic functions were fitted to the relationship between the relative thousand-kernel-weight (Y/Ymax) and the total integrated temperature (sigmaTa) after heading for all treatment conditions. The maximum weight of grains (Ymax) achieved at the harvest time varied somewhat clearly among four winter wheat cultivars and meteorological conditions. Multiple regression analysis showed that the grain yield (Ymax) of four wheat cultivars correlated positively with daily mean solar radiation. It was also found that the cultivar Ayahikari had a highly significant negative correlation between its grain weight and soil moisture. Namely, the grain weight of high soil moisture plot with pF=1.5 was lower by about 9% than that of a control plot with pF=3.5. On the other hand, the grain yield of cultivar Norin61 responded inversely to a wet environment, indicating that its grain weight was higher for high soil moisture and high wet-bulb temperature than for a dry environment. The grain yield of early varieties of Bandowase and
Directory of Open Access Journals (Sweden)
О. Л. Уліч
2014-12-01
Full Text Available Results of study focusing on impact of environmental factor – time of spring vegetation renewal (TSVR of soft winter wheat on growth and development of plants, crop productivity and modern varieties response are presented. It is found that in the central part of the Right-Bank of Forest-Steppe of Ukraine this factor is important and it should be considered in planning of spring and summer care techniques, fertilizer system, especially at spring fertilizing, use of pesticides and growth regulators, in taking a decision on reseeding or underseeding of space plants. At the same time, it was determined that the environmental effect of TSVR was not occurred every year, thus it is not always possible to forecast the type of plant development. But in such years it is possible to influence the processes of plants growth, development and survival in spring and summer periods and the formation of their productivity by introducing such intensive technologies as differential crop tending, mineral nutrition optimization, the use of plant growth regulators, trace nutrients, weed, pest and disease control agents.
Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul
2015-12-01
The effect of clay soil contamination time on the transfer factors (Fvs) of (137)Cs and (90)Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The Fvs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg(-1)). Significant difference of log-Fvs was evaluated using one-way Analysis of Variance (ANOVA). Basically, Fvs of (90)Sr were higher than those of (137)Cs, despite of the application stage or crop' variety. Higher Fvs for both radionuclides were observed for lettuce in comparison to winter wheat. Fvs of (90)Sr showed comparable trends for both crops with enhanced Fvs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of Fvs for (137)Cs, soil contaminated at the second stage gave the highest Fvs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in Fv for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to (137)Cs in winter wheat-straw which reflected greater hazard at the latest application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage
Directory of Open Access Journals (Sweden)
Iduna Arduini
2016-06-01
Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.
International Nuclear Information System (INIS)
Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun
2016-01-01
The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. - Highlights: • We examine the impacts of the surface ozone exposure on winter wheat yield in China. • An econometric method is used to measure the ozone impacts. • The results conclude that surface ozone is harmful to winter wheat yield in China. • We confirm that stress conditions such as drought and air particles can mitigate the adverse effect of ozone. - Surface ozone pollution is harmful to winter wheat yield in China by considering socio-economic determinants, weather, and other stress conditions like drought and air particles.
Energy Technology Data Exchange (ETDEWEB)
Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)
2008-04-15
In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.
International Nuclear Information System (INIS)
Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng
2008-01-01
In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system
GENETIC DIVERSITY OF WINTER BREAD WHEAT (Triticum aestivum L. ssp. vulgare
Directory of Open Access Journals (Sweden)
Sonja Petrović
2011-06-01
Full Text Available Diversity was analyzed based on agronomic and morphologic traits and molecular data. The main objectives of this study were: 1. to estimate genetic diversity of wheat germplasm using agronomic and morphologic traits and molecular markers, 2. to investigate the existence of genetic erosion within tested wheat germplasm, 3. to explore potential utilization of combination of agronomic, morphologic and molecular markers in plant breeding. Forty winter bread wheat varieties were used originating from Croatia, Austria, France, Italy and Russia. Field trial was conducted during two vegetation years (2007/2008, 2008/2009 in three replications according to randomized block design. Ten traits were included in agronomic and morphologic analysis. Composition of high molecular weight glutenin subunits (HMW GS was evaluated for 16 varieties, whereas literature data are used for the rest. Starch composition analysis was based on amylose and amylopectin isolation, their quantity and ratio. For the SSR analysis 26 microsatellite primers were used, and for the AFLP analysis four primer combinations. Statistical analysis was performed using SAS Software 9.1.3, NTSYS ver.2.2., Arlequin ver2.0. and Powermarker ver.3.25. Analyzed varieties displayed highly significant differences (p<0,001 for all agronomic traits and for amylose/amylopectin ratio. High variability of HMW GS was found among varieties. Estimation of genetic diversity based on morphologic and molecular data were used to construct dendograms. AMOVA was used to evaluate variability based on molecular data. Genetic diversity was estimated among and within morphologic and molecular data. SSR and AFLP markers showed efficient discrimination power between highly related genotypes. Significant correlation was found out between two molecular methods which showed more accurate estimate of genetic diversity than by agronomic and morphologic data.
Effect of new lines of winter wheat on microbiological activity in Luvisol
Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.
2012-02-01
The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.
Road verges and winter wheat fields as resources for wild bees in agricultural landscapes
DEFF Research Database (Denmark)
Henriksen, Casper Christian I; Langer, Vibeke
2013-01-01
The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based on the perce......The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based...... on the percentage of semi-natural habitats in the surrounding landscape at 1-km scale. Mean density of high value bee plants per Raunkiaer circle was significantly higher in organic winter wheat fields and their adjacent road verges than in their conventionally farmed counterparts. The effect of organic farming...... was even more pronounced on the flowering stage of high value bee plants, with 10-fold higher mean density of flowering plants in organic fields than in conventional fields and 1.9-fold higher in road verges bordering organic fields than in those bordering conventional fields. In summary, organic farming...
Summer fallow soil management - impact on rainfed winter wheat
DEFF Research Database (Denmark)
Li, Fucui; Wang, Zhaohui; Dai, Jian
2014-01-01
Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...
Main varieties of bread (Triticum aestivum L.) and durum (Triticum durum Desf.) wheat.
М. П. Чебаков
2008-01-01
Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L.) and hard (Triticum durum Desf.) are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.
Main varieties of bread (Triticum aestivum L. and durum (Triticum durum Desf. wheat.
Directory of Open Access Journals (Sweden)
М. П. Чебаков
2008-04-01
Full Text Available Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L. and hard (Triticum durum Desf. are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.
Genetic Architecture of Main Effect QTL for Heading Date in European Winter Wheat
Directory of Open Access Journals (Sweden)
Christine eZanke
2014-05-01
Full Text Available A genome-wide association study (GWAS for heading date (HD was performed with a panel of 358 European winter wheat (Triticum aestivum L. varieties and 14 spring wheat varieties through the phenotypic evaluation of HD in field tests in eight environments. Genotyping data consisted of 770 mapped microsatellite loci and 7934 mapped SNP markers derived from the 90K iSelect wheat chip. Best linear unbiased estimations (BLUEs were calculated across all trials and ranged from 142.5 to 159.6 days after the 1st of January with an average value of 151.4 days. Considering only associations with a –log10 (P-value ≥3.0, a total of 340 SSR and 2983 SNP marker-trait associations (MTAs were detected. After Bonferroni correction for multiple testing, a total of 72 SSR and 438 SNP marker-trait associations remained significant. Highly significant MTAs were detected for the photoperiodism gene Ppd-D1, which was genotyped in all varieties. Consistent associations were found on all chromosomes with the highest number of MTAs on chromosome 5B. Linear regression showed a clear dependence of the HD score BLUEs on the number of favourable alleles (decreasing HD and unfavourable alleles (increasing HD per variety meaning that genotypes with a higher number of favourable or a low number of unfavourable alleles showed lower HD and therefore flowered earlier. For the vernalization gene Vrn-A2 co-locating MTAs on chromosome 5A, as well as for the photoperiodism genes Ppd-A1 and Ppd-B1 on chromosomes 2A and 2B were detected. After the construction of an integrated map of the SSR and SNP markers and by exploiting the synteny to sequenced species, such as rice and Brachypodium distachyon, we were able to demonstrate that a marker locus on wheat chromosome 5BL with homology to the rice photoperiodism gene Hd6 played a significant role in the determination of the heading date in wheat.
Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.
Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr
2018-02-01
Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reaction of Rust on Some Bread Wheat Varieties in Çukurova Region
AY, Hasan
2013-01-01
This study was conducted with 126 varieties of wheat between 2009-2010 years in Adana. There has not been artificially inoculated yellow, leaf and stem rusts. Races of rust in natural were evaluated in both years. Between 2009-2010 this study was conducted in Adana, with 126 varieties of bread wheat. In both years, only the natural environment leaf rust races inoculated for assessments reactions of bread wheat. According to results, 49 bread wheat varieties were found resistant, 6 bread wheat...
Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun
2016-01-01
The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. Copyright © 2015 Elsevier Ltd. All rights reserved.
Winter Wheat Root Growth and Nitrogen Relations
DEFF Research Database (Denmark)
Rasmussen, Irene Skovby
in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...
Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen
DEFF Research Database (Denmark)
Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.
2015-01-01
occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...
Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish
DEFF Research Database (Denmark)
Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag
2017-01-01
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...
Genetic variation of gliadin composition of wheat varieties in shanxi
International Nuclear Information System (INIS)
Sun Daizhen; Wang Shuguang; Yang Wude; Cao Yaping; Yang Haifeng
2009-01-01
In order to discover genetic variation of gliadin composition of wheat varieties in Shanxi, A-PAGE method was used to analyze difference of gliadin composition and genetic diversity of 214 varieties including local bred, introduced and landraces wheat in recent 40 years. The results were as follows: number of gliadin band increased by 2.1 and 1.5 in bred and introduced wheat varieties compared to Shanxi landraces. In total 70 bands,the frequency of 26 bands detected from bred and introduced cultivars was up, 23 down, 21 no regular pattern compared to Shanxi landraces. In 4 gliadin zones, variation of types and frequency of gliadin band in ω zone was largest, γ was the second, β and α was smallest. Two band block of 16.5 and 19.1, and three band block of 12.9, 15.7 and 17.8 were tested in ω zone, but they do not express in the same variety. Mean of genetic distance in Shanxi wheat landraces was larger than those in other two type wheat cultivars. The cluster analysis found that cultivars of landraces, bred or introduced were divided into the same group, which showed genetic difference of loci encoded gliadin in Shanxi wheat landraces was larger than the other two type wheat cultivars, namely, the level of genetic variation of gliadin in bred or introduced cultivars was not high in the last 40 years. (authors)
Sustainable use of winter Durum wheat landraces under ...
African Journals Online (AJOL)
... the two checks cultivars. Bi- plot analysis showed that some promising lines with reasonable grain yields, good quality parameters, winter hardiness and drought tolerances among yellow rust resistance durum wheat landraces can be selected for semiarid conditions of Mediterranean countries for sustainable production.
International Nuclear Information System (INIS)
Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul
2015-01-01
The effect of clay soil contamination time on the transfer factors (F_vs) of "1"3"7Cs and "9"0Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The F_vs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg"−"1). Significant difference of log-F_vs was evaluated using one-way Analysis of Variance (ANOVA). Basically, F_vs of "9"0Sr were higher than those of "1"3"7Cs, despite of the application stage or crop' variety. Higher F_vs for both radionuclides were observed for lettuce in comparison to winter wheat. F_vs of "9"0Sr showed comparable trends for both crops with enhanced F_vs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of F_vs for "1"3"7Cs, soil contaminated at the second stage gave the highest F_vs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in F_v for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to "1"3"7Cs in winter wheat-straw which reflected greater hazard at the latest application. - Highlights: • Higher TFs for both radionuclides were observed for leafy plant in comparison to cereals. • Despite the growth stages & plants' variety, TFs of "9"0Sr were always higher than those of "1"3"7Cs. • TFs of "9"0Sr showed comparable trends in both crops and were higher at earlier growth stages. • Fluctuation noted in TFs for "1"3"7Cs in lettuce with higher TFs at second contamination-stage. • High TFs for "1"3"7Cs when contamination occurred at the latest growth stage of wheat vegetative.
Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat
Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...
Sensory Profiles and Volatile Compounds of Wheat Species, Landraces and Modern Varieties
DEFF Research Database (Denmark)
Starr, Gerrard
as cooked wheat grain, flour porridge and for eight of these varieties, baked bread. Descriptors for odours of cocoa, oat porridge and øllebrød1) and flavours of sweet, bitter, oat porridge and øllebrød1) were common to all three wheat products. Wheat porridge shared 6 odour and 10 flavour descriptors...... be connected. This Ph. D. project aims to study sensory attributes and volatile compounds of wheat and its products in order to investigate variations between wheat species, landraces and modern varieties and to reveal their impact on bread odours and flavours. Furthermore to examine whether bread could......) were used to analyse sensory and GC-MS data. Differences in odours and flavours were found in all wheat products. Variation also occurred between volatile peak-areas of wheat grain- and bread samples. Twenty four selected wheat species, landraces and varieties were evaluated by trained sensory panels...
Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.
Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao
2017-05-25
Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.
Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen
2017-01-01
Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.
Directory of Open Access Journals (Sweden)
Sergii Skakun
2017-05-01
Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.
DEFF Research Database (Denmark)
Gerhards, R; Christensen, Svend
2003-01-01
with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site-specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including...
Yantarnaya is a new variety of fodder winter rye
Directory of Open Access Journals (Sweden)
Bezgodov A.V.
2017-11-01
Full Text Available the article has evaluation of four years observation of the prospective varieties of winter rye Yantarnaya in comparison with the standard in the nursery of the competitive variety trial of the Ural Scientific Research Institute for Agriculture in Yekaterinburg and the results of a two year test in the system of FGBU «Gossortkomissiya». A winter rye is widely used for bread baking mainly. This culture has resistance from negative environmental factors. The main cause of limited use of a winter rye grain for forage is high content water-soluble pentosans over 1.5%. They reduce availability of nutrients to an organism. Creation of varieties with low content of water-soluble pentosans is the rational solution of increase in use of parts of grain of a winter rye in forage production. Together with VIR, a variety with the required characteristics was transferred to the state grade testing. The observation took place in 2013–2017, with contrasts on the weather conditions. According to FGBU «Gossorgkomissiya», the variety has high potential productivity and significantly exceeds same low pentosan variety in the yield.
Genetic Architecture of Anther Extrusion in Spring and Winter Wheat
Directory of Open Access Journals (Sweden)
Quddoos H. Muqaddasi
2017-05-01
Full Text Available Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat (Triticum aestivum L. impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE in panels of spring (SP, and winter wheat (WP accessions by genome wide association studies (GWAS. We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation (r among all years and their best linear unbiased estimates (BLUEs within both panels were high (r(SP = 0.75, P < 0.0001;r(WP = 0.72, P < 0.0001. Genotypic data (with minimum of 0.05 minor allele frequency applied included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log10(P| > 3.0 marker trait associations (MTAs were detected (SP = 11; WP = 12. Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance (R2(SP = 9.75−14.24%; R2 (WP = 9.44−16.98%. All mapped significant markers as well as the markers within their significant linkage disequilibrium (r2 ≥ 0.30 regions were blasted against wheat genome assembly (IWGSC1+popseq to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in Hordeum vulgare, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the
Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao
2016-09-01
Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.
[Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].
Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng
2009-10-01
Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.
Economical effectiveness of fungal diseases control of winter wheat in 2000-2008
Directory of Open Access Journals (Sweden)
Anna Jaczewska-Kalicka
2009-01-01
Full Text Available Winter wheat is a very susceptible species to infection by pathogenic fungi requires the application of plant protection products. Their effectiveness and profitability of application depend on numerous factors. The most important of them are: weather and environmental conditions, managing and organisation of production, the intensity of oc-currence and harmfulness of occurring pathogenes, the amount of obtained yield, costs of protection and grain selling prices. Presented research results are derived from plot ex-periments conducted in the Field Experimental Station IOR-PIB Grodzisk Mazowiecki, on the fields of Agricultural Experimental Station SGGW Chylice, mazowieckie voivode-ship, in 2000-2008 on winter wheat. A high differentiation was stated in profitability of applying particular fungicides, as well as considerable differences between particular vegetative seasons of winter wheat cultivation. In each year, except 2000, protection treatments were profitable, in spite of high costs being on average 10% of the value of protected crop.
Flour quality and kernel hardness connection in winter wheat
Directory of Open Access Journals (Sweden)
Szabó B. P.
2016-12-01
Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.
Energy Technology Data Exchange (ETDEWEB)
Elsgaard, Lars; Olesen, Joergen E.; Hermansen, John E.; Kristensen, Inge T.; Boergesen, Christen D. [Dept. of Agroecology, Aarhus Univ., Tjele (Denmark)], E-mail: lars.elsgaard@agrsci.dk
2013-04-15
Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO{sub 2} equivalents (CO{sub 2}eq) were quantified from the footprints of CO{sub 2}, CH{sub 4} and N{sub 2}O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO{sub 2}eq MJ{sup 1} ethanol for winter wheat and 26.0 g CO{sub 2}eq MJ{sup 1} RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Territorial Units for Statistics [NUTS]) ranged from 20.0 to 23.9 g CO{sub 2}eq MJ{sup 1} ethanol and from 23.5 to 27.6 g CO{sub 2}eq MJ{sup 1} RME. Thus, at the regional level emission results varied by up to 20%. Differences in area-based emissions were only 4% reflecting the importance of regional variation in yields for the emission result. Fertilizer nitrogen production and direct emissions of soil N{sub 2}O were major contributors to the final emission result and sensitivity analyses showed that the emission result depended to a large extent on the uncertainty ranges assumed for soil N{sub 2}O emissions. Improvement of greenhouse gas balances could be pursued, e.g., by growing dedicated varieties for energy purposes. However, in a wider perspective, land-use change of native ecosystems to bioenergy cropping systems could compromise the CO{sub 2} savings of bioenergy production and challenge the targets set for biofuel
Study on genetic diversity in Pakistani wheat varieties using simple ...
African Journals Online (AJOL)
STORAGESEVER
2009-09-01
Sep 1, 2009 ... Common wheat (Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is ... A high degree of genetic polymorphism was observed among the wheat varieties with average ... cold, heat, soil salinization and water logging and (ii) ... and to find genetically most diverse genotypes of wheat.
Directory of Open Access Journals (Sweden)
Sarah Brumlop
2017-02-01
Full Text Available Three winter wheat (Triticum aestivum L. composite cross populations (CCPs that had been maintained in repeated parallel populations under organic and conventional conditions from the F5 to the F10 were compared in a two-year replicated field trial under organic conditions. The populations were compared to each other, to a mixture of the parental varieties used to establish the CCPs, and to three winter wheat varieties currently popular in organic farming. Foot and foliar diseases, straw length, ear length, yield parameters, and baking quality parameters were assessed. The overall performance of the CCPs differed clearly from each other due to differences in their parental genetics and not because of their conventional or organic history. The CCPs with high yielding background (YCCPs also yielded higher than the CCPs with a high baking quality background (QCCPs; in the absence of extreme winter stress. The QCCPs performed equally well in comparison to the reference varieties, which were also of high baking quality. Compared to the parental mixture the CCPs proved to be highly resilient, recovering much better from winter kill in winter 2011/12. Nevertheless, they were out yielded by the references in that year. No such differences were seen in 2013, indicating that the CCPs are comparable with modern cultivars in yielding ability under organic conditions. We conclude that—especially when focusing on traits that are not directly influenced by natural selection (e.g. quality traits—the choice of parents to establish a CCP is crucial. In the case of the QCCPs the establishment of a reliable high-quality population worked very well and quality traits were successfully maintained over time. However, in the YCCPs lack of winter hardiness in the YCCP parents also became clearly visible under relevant winter conditions.
Drought tolerant wheat varieties developed through mutation ...
African Journals Online (AJOL)
In search for higher yielding drought tolerant wheat varieties, one of the Kenyan high yielding variety 'Pasa' was irradiated with gamma rays (at 150, 200, and 250gy) in 1997 so as to induce variability and select for drought tolerance. Six mutants ((KM10, KM14, KM15, KM18, KM20 and KM21) were selected at M4 for their ...
Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.
Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė
2017-10-01
Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.
Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat
Directory of Open Access Journals (Sweden)
Caiyun Lu
2017-01-01
Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.
Directory of Open Access Journals (Sweden)
F Mondani
2015-09-01
Full Text Available Crop growth models could stimulate growth and development based on science principles and mathematical equations. They also able to evaluate effects of climate, soil, water and agronomic management practices on crop yield. In the present study, an eco-physiological simulation model developed to assess wild oat damage to winter wheat growth and yield. The general structure of this model is derived from LINTUL1 model which modified to wild oat competition against winter wheat. LINTUL1 model was developed for simulation of spring wheat potential production level. In this study, first, we added development stage (DVS and vernalization to LINTUL1 for simulation of winter wheat growth and development and then the model calibrated for potential production level. Finally, we incorporate harmful effects of wild oat to winter wheat growth and yield. Weather data used as input were average daily minimum and maximum temperature (°C and daily global radiation (MJ m-2 in Mashhad, Iran. Parameter values were derived from the literature. The model is written in Fortran Simulation Translator (FST programming language and then validated based on an experiment data. For these purposes different wild oat plant densities were arranged. The data of this experiment does not use for calibration. The results showed that this model was in general able to simulate the temporal changes in DVS of winter wheat and wild oat, total dry matter (TDM of winter wheat and wild oat and yield loss of wheat due to wild oat competition in all treatments, satisfactorily. Root mean square error (RMSE for winter wheat DVS, wild oat DVS, average winter wheat TDM, average wild oat TDM, and yield loss of winter wheat was 10.4, 14.5, 5.8, 7.6 and 7.5, respectively.
Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S
2017-03-01
Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
Characterization of wheat varieties by seed storageprotein ...
African Journals Online (AJOL)
Journal Home > Vol 6, No 5 (2007) > ... Wheat grains of thirteen varieties were collected from different ecological regions of Pakistan. ... the dendrogram for high molecular weight (HMW) and low molecular weight (LMW) gluten subunit bands.
Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian
2018-05-09
The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.
International Nuclear Information System (INIS)
Capouchová, I.; Petr, J.; Marešová, D.
2003-01-01
The distribution of the size of wheat starch granules using the method LALLS (Low Angle Laser Light Scattering), followed by the evaluation of the effect of variety, experimental site and intensity of cultivation on the vol. % of the starch A (starch granules > 10 μm) was determined. The total starch content and crude protein content in dry matter of flour T530 in selected collection of five winter wheat varieties were determined. Vol. % of the starch A in evaluated collection of wheat varieties varied between 65.31 and 72.34%. The effect of a variety on the vol. % of starch A seemed to be more marked than the effect of site and intensity of cultivation. The highest vol. % of starch A reached evaluated varieties from the quality group C, i.e. varieties unsuitable for baking utilisation (except variety Contra with high total content of starch in dry matter of flour T530, but relatively low vol. % of starch A). A low vol. % of starch A was also found in the variety Hana (very good variety for baking utilisation). Certain variety differences followed from the evaluation of distribution of starch fractions of starch granules, forming starch A. In the case of varieties Hana, Contra and Siria higher representation of fractions up to 30 μm was recorded, while starch A in the varieties Estica and Versailles was formed in higher degree by size fractions of starch granules over 30 μm and particularly size fraction > 50 μm was greatest in these varieties of all evaluated samples. With increasing total starch content in dry matter of flour T530 the crude protein content decreased; the vol. % of starch A not always increased proportionally with increasing total starch content. (author)
Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster
Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...
Evaluation of 14 winter bread wheat genotypes in normal irrigation ...
African Journals Online (AJOL)
Evaluation of 14 winter bread wheat genotypes in normal irrigation and stress conditions after anthesis stage. ... African Journal of Biotechnology ... Using biplot graphic method, comparison of indices amounts and mean rating of indices for ...
Influence of fungicides on occurence of Fusarium spp. and other stem base diseases on winter wheat
Directory of Open Access Journals (Sweden)
Václav Sklenář
2008-01-01
Full Text Available From 1999 to 2004 the occurence of fungi: Pseudocercosporella herpotrichoides (Fron. and Fusarium spp. was evaluated in small plot field trials on seven varieties of winter wheat. The efficacy of fungicide protection against stem base diseases and influence on yields was monitored in field conditions in Velká Bystřice near Olomouc.For diagnostic of casual fungi two methods were used: 1. Method of coloring mycelium in stems, 2. Method of cultivation of mycelim on agar.Results from detection of casual fungi are following: Pseudocercosporella herpotrichoides (Fron., Fusarium culmorum (W. G. Sm. Sacc. and Fusarium graminearum Schwabe.For high efficacy of protection against roots and stem base disease the following fungicide variants should be applied: Sportak Alpha 1.5 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51, Sportak HF 1 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1, Alert S 1.0 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51. The application of fungicides positively influenced yields. Yield increased at average by10–20 % after the aplication but the rise in yields was not in total correlation with the efficacy. These results can be possibly used in the system of integral control of winter wheat against stem base disease in wheat.
[Soil respiration characteristics in winter wheat field in North China Plain].
Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang
2004-09-01
Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship
Breeding of new variety Yangfumai 4 with high resistance to wheat yellow mosaic disease
International Nuclear Information System (INIS)
He Zhentian; Chen Xiulan; Zhang Rong; Wang Jianhua; Wang Jinrong; Liu Jian
2011-01-01
To control the infection of wheat yellow mosaic disease,new wheat variety with high-yield, disease-resistant was selected. Ningmai 9, which carries yellow mosaic disease resistant genes, was used as original material. Combination of conventional breeding technique and radiation methods, a new wheat variety Yangfumai 4 was developed during 1996-2007, and registered in 2008. The new wheat variety with high yield and resistance to yellow mosaic disease is suitable to plant in the Yangtze River region. (authors)
New NS varieties of six-rowed winter barley
Directory of Open Access Journals (Sweden)
Pržulj Novo
2009-01-01
Full Text Available The paper describes the characteristics of several new NS varieties of winter six-rowed barley released in Serbia between 2004 and 2007. These are Somborac, Ozren, Javor, Novosadski 773, Sremac and Leotar. In the official variety trials in the country, all six of these varieties outyielded the check variety, and the margins were as follows: Somborac - 3.4%, Ozren - 5.0%, Javor - 7.3%, Novosadski 773 - 3.4%, Sremac - 7.4%, and Leotar - 7.2%. Yield levels in absolute terms depended on the variety as well as year. All six-rowed NS varieties headed earlier than the check and had better resistance to lodging than the check has. The test weight of the new varieties was 70.2-73.8 kg/hl and the 1000-grain weight 33.4-50.2 g. The cellulose content was 4.4-4.8%, the fat content 1.4%, and the protein content 13.3-14.6%. The high variability of the new NS varieties of winter six-rowed barley makes it possible to choose the most suitable genotype for each barley-growing area in the country. .
International Nuclear Information System (INIS)
Zheng, Feixiang; Wang, Xiaoke; Zhang, Weiwei; Hou, Peiqiang; Lu, Fei; Du, Keming; Sun, Zhongfu
2013-01-01
With the open-top chambers (OTCs) in situ in Yangtze River Delta, China in 2007 and 2008, the effects of elevated O 3 exposure on nutrient elements and quality of winter wheat and rice grain were investigated. Grain yield per plant of winter wheat and rice declined in both years. The N and S concentrations increased under elevated O 3 exposure in both years and C–N ratios decreased significantly. The concentrations of K, Ca, Mg, P, Mn, Cu and Zn in winter wheat and the concentrations of Mg, K, Mn and Cu in rice increased. The concentrations of protein, amino acid and lysine in winter wheat and rice increased and the concentration of amylose decreased. The increase in the nutrient concentration was less than the reduction of grain yield in both winter wheat and rice, and, hence, the absolute amount of the nutrients was reduced by elevated O 3 . -- Highlights: •The nutrient elements and quality of winter wheat and rice grain response to ozone had been investigated for two years in China. •Grain yield per plant of winter wheat and rice were reduced in both years. •The extent of ozone impact on the nutrient elements concentrations of winter wheat and rice were different. •The concentrations of protein, amino acid and lysine increased but the concentrations of amylose decreased. •The absolute amount of the nutrients was reduced by elevated O 3 . -- The nutrient elements and quality of winter wheat and rice grain were seriously affected under the elevated O 3 exposure
Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...
Effect of different tillage intensity on yields and yield-forming factors in winter wheat
Directory of Open Access Journals (Sweden)
Martin Houšť
2012-01-01
Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.
Sources of Nitrogen for Winter Wheat in Organic Cropping Systems
DEFF Research Database (Denmark)
Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E
2013-01-01
mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...
Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat
Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.
2005-01-01
Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their
Study on the weediness of winter wheat in a long-term fertilization field experiment.
Lehoczky, E; Kismányoky, A; Kismányoky, T
2006-01-01
The study was carried out in Keszthely, in the long-term fertilization field experiment in April of 2005. In the experiment we had opportunity to compare the weediness in NPK and NPK + FYM* treatments, and we could study the effect of increasing N dosis on the weeds and winter wheat. The weed survey was made on the 20th of April at the end of tillering. For the weed survey used the Balázs-Ujvárosi method. After that we collected all the weeds from the plots per 1 m2. We counted, measured the fresh and dry matter weight of aerial parts. Winter wheat sampels were taken also from all plots (1 running meter per plot). In the experiment 10 weed species were found, 9 annual: Ambrosia artemisiifolia, Consolida regalis, Galium aparine, Lamiunt amplexicaule, Matricaria inodora, Papaver rhoeas, Stellaria media, Veronica hederifolia, Veronica triphyllos, and 1 perennial: Cirsium arvense. Veronica hederifolia was the dominant species in both fertilized plots, Stellaria media has the second highest weed coverage. The manuring treatments, and the N-dosis has important and significantly effect to the weedeness and the biomass production of winter wheat. On the control plots was the relation of biomass weight of weeds the highest. This relation reduced to the effect of N treatments, wich had an favorable effect on the winter wheat.
Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress
International Nuclear Information System (INIS)
Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.
2016-01-01
The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)
Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin
2018-03-15
The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.
Spectroscopic analysis of essential elements in different varieties of wheat grown in Sindh
International Nuclear Information System (INIS)
Shar, G.Q.; Kazi, T.G.; Jakhrani, M.A.; Sahito, S.R.
2002-01-01
Atomic absorption spectrometry (AAS) has been used to characterize essential elements in wheat. The procedure has been validated by analyzing a certified sample obtained from the Federal Seed Certification and Registration Department. Several wheat samples of known origin, variety and crop year have been analysed to determine the content of sodium, potassium, calcium, magnesium, iron and zinc by means of Atomic Absorption Spectrophotometric. Considerable amount of essential elements was to be found in each variety of wheat. The values of each element were compared with certified samples, which is at the 95 to 98 % confidence limit. The resulting compositions of the different samples have been used to assess species, origin and variety of the examined wheat. (author)
Relationships between the climate change and the grain filling of winter wheat
International Nuclear Information System (INIS)
Shang, Z.; Jiang, D.
2016-01-01
The present study is based on the material in a grain filling rate experiment of winter wheat and hourly weather data organised by Xinghua city of Jiangsu Province. The aims are to objectively evaluate the possible influences of the temperature, precipitation, sunshine at the different time of the same day on the grain filling rate of winter wheat. The grain filling rate evaluation model of climate change is firstly developed, and then, the model calculation results are compared with the observed data. The along the changes of the microclimate, changes of the grain filling rate of winter wheat, which is not same in the gradual, rapid and slow increase stages. The changes in grain filling rate of winter wheat, which were caused by variations of temperature, precipitation and sunshine duration, showed periodic fluctuation. Variation in temperature resulted in 1.36 g d/sup -1/(10a)/sup -1/ of grain filling rate change; variation in precipitation resulted in -1.35 g d/sup -1/. (10a)/sup -1/ of grain filling rate change; and variation in sunshine duration resulted in 0.07 g d/sup -1/ (10a)/sup -1/ of grain filling rate change. Three samples showed a grain filling rate change of 0.08 g d/sup -1/(10a)/sup -1/. These findings indicate that the increase in temperature and sunshine duration caused the elevation of grain filling rate, whereas the increase in precipitation decreased the grain filling rate. Therefore, monitoring and predication capability of Meteorological disasters, such as drought caused by high temperature, should be strengthened to ensure the favourable weather condition and improve the grain filling rate through scientific methods such as artificial precipitation. (author)
Breeding of newly licensed wheat variety Huapei 8 and improved ...
African Journals Online (AJOL)
ajl yemi
2011-12-28
Dec 28, 2011 ... Full Length Research Paper. Breeding of newly licensed wheat variety Huapei 8 and improved breeding strategy by anther culture ... more efficient in pure line selection rather than the hete- .... Regional and productivity tests showed that Huapei 8 had .... Large-scale production of wheat and triticale double.
Directory of Open Access Journals (Sweden)
Cai-Hong Li
Full Text Available To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.
Stem base diseases of winter wheat grown after forecrops of the family Brassicaceae
Directory of Open Access Journals (Sweden)
Barbara Majchrzak
2012-12-01
Full Text Available A study into the sanitary state of roots and culm base of winter wheat was carried out in 1999-2002 in the Production and Experimental Station in Bałcyny near Ostróda. Experimental wheat was cultivated after spring cross plants such as spring oilseed rape (Brassica napus ssp. oleiferus Metz., white mustard (Sinapis alba L, chinese mustard (Brassica juncea L., oleiferous radish (Raphanus sativus var. oleiferus L., false flax (Camelina sativa L., crambe (Crambe abbysinica Hoechst. and after oats (Avena sativa L. as a control. The other experimental factor was the method of after-harvest residue management, i.e. ploughing in the stubble, ploughing in the stubble and straw, ploughing in the stubble and straw with nitrogen added. The occurrence of root rot and stem base diseases was affected by weather conditions and forecrop species. Winter wheat roots were attacked to the lowest degree when spring rape and radish were used as forecrops, and to the highest degree - when grown after oat. The culm base was most intensely infected with fusarium foot rot (Fusarium spp.. The remaining root-rot diseases occurred every year but with different intensity. The method of utilization of after-harvest residues did not have a clear effect on the intensity of infection of the roots and culm base of winter wheat.
Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco
2017-05-01
Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.
Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.
Kataria, Sunita; Guruprasad, K N
2015-12-01
Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright
Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China
Institute of Scientific and Technical Information of China (English)
FANG Shuan-gxi; ZHANG Yi; MU Yu-jing
2006-01-01
A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.
Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.
Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin
2016-03-25
The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.
DEFF Research Database (Denmark)
Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik
2013-01-01
Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...
Yr10 gene polymorphism in bread wheat varieties | Temel | African ...
African Journals Online (AJOL)
Yellow rust resistance locus Yr10 located on chromosome 1B in Moro and originated from the Turkish line PI178383 was investigated in terms of polymorphism in seven winter type bread wheat cvs. (Triticum aestivum ssp. Aestivum) Altay2000, zgi2001, Sönmez2001 (yellow rust resistant), Aytýn98, ES14, Harmankaya99 ...
International Nuclear Information System (INIS)
Gray, G.R.; Savitch, L.V.; Ivanov, A.G.; Huner, N.P.A.
1996-01-01
Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5 degrees C and moderate irradiance (250 micromoles m -2 s -1 ) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20 degrees C and 250 micromoles m -2 s -1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - q p , the coefficient of photochemical quenching. Plants grown at 20 degrees C and a high irradiance (800 micromoles m -2 s -1 ) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrose-phosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance
Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique
2017-11-01
Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better
Tripartite interactions of Barley yellow dwarf virus, Sitobion avenae and wheat varieties.
Directory of Open Access Journals (Sweden)
Xiao-Feng Liu
Full Text Available The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L., the Barley yellow dwarf virus (BYDV, and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1 aphid peak number (APN in the aphid + BYDV (viruliferous aphid treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13G and Xiaoyan6. (2 The production of alatae (PA was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13G and Xiaoyan6. (3 The BYDV disease incidence (DIC on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID on Tam200(13G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4 Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing.
Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties
Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian
2014-01-01
The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214
Danuta Pięta
2013-01-01
The purpose of the studies was to determine the populations of fungi and bacteria after the cultivation of spring wheat and winter wheat. As a result of the studies it was found out that winter wheat had a stimulating effect on the total number of bacteria, especially Pseudomonas spp. On the other hand, spring wheat had a smaller influence on the growth of bacteria, while stimulating the growth of the number of fungi. Among the bacteria and saprophytic fungi isolated from the soil after the c...
Breeding of newly licensed wheat variety Huapei 8 and improved ...
African Journals Online (AJOL)
H2 was the best selection generation for traits with high heredity ability, and H3 was the best selection for grain traits and yield test. Consequently, we bred and licensed six new wheat varieties derived from anther culture and significantly reduced breeding time to three to five years. Huapei 8 was the newest released wheat ...
Winter Pea: Promising New Crop for Washington's Dryland Wheat-Fallow Region
Directory of Open Access Journals (Sweden)
William F. Schillinger
2017-05-01
Full Text Available A 2-year tillage-based winter wheat (Triticum aestivum L.-summer fallow (WW-SF rotation has been practiced by the vast majority of farmers in the low-precipitation (<300 mm annual rainfed cropping region of east-central Washington and north-central Oregon for 140 years. Until recently, alternative crops (i.e., those other than WW so far tested have not been as economically viable or stable as WW-SF. A 6-year field study was conducted near Ritzville, WA (292 mm avg. annual precipitation to determine the yield and rotation benefits of winter pea (Pisum sativum L. (WP. Two 3-year rotations were evaluated: WP-spring wheat (SW-SF vs. WW-SW-SF. Winter pea yields averaged 2,443 vs. 4,878 kg/ha for WW. No fertilizer was applied to WP whereas 56 kg N and 11 kg S/ha were applied to WW. Winter pea used significantly less soil water than WW. Over the winter months, a lesser percentage of precipitation was stored in the soil following WP compared to WW because: (i very little WP residue remained on the soil surface after harvest compared to WW, and (ii the drier the soil, the more precipitation is stored in the soil over winter. However, soil water content in the spring was still greater following WP vs. WW. Soil residual N in the spring (7 months after the harvest of WP and WW was greater in WP plots despite not applying fertilizer to produce WP. Spring wheat grown after both WP and WW received the identical quantity of N, P, and S fertilizer each year. Average yield of SW was 2,298 and 2,011 kg/ha following WP and WW, respectively (P < 0.01. Adjusted gross economic returns for these two rotation systems were similar. Based partially on the results of this study, numerous farmers in the dry WW-SF region have shown keen interest in WP and acreage planted WP in east-central Washington has grown exponentially since 2013. This paper provides the first report of the potential for WP in the typical WW-SF region of the inland Pacific Northwest (PNW.
Directory of Open Access Journals (Sweden)
Pržulj Novo
2011-01-01
Full Text Available In wheat, rate and duration of dry matter accumulation and remobilization depend on genotype and growing conditions. The objective of this study was to determine the most appropriate polynomial regression of stepwise regression procedure for describing grain filling period in three winter wheat cultivars. The stepwise regression procedure showed that grain filling is a complex biological process and that it is difficult to offer a simple and appropriate polynomial equation that fits the pattern of changes in dry matter accumulation during the grain filling period, i.e., from anthesis to maximum grain weight, in winter wheat. If grain filling is to be represented with a high power polynomial, quartic and quintic equations showed to be most appropriate. In spite of certain disadvantages, a cubic equation of stepwise regression could be used for describing the pattern of winter wheat grain filling.
Directory of Open Access Journals (Sweden)
Х. М. Піпан
2009-12-01
Full Text Available This article discusses the main factors of origin and development of analytical selection of winter wheat in Ukraine in late XIX - early XX century .. In particular highlight the role of scientific works of Charles Darwin, W. Rimpau, AL Sempolovskуу, IS Korzhinskуу and research institutions to increase attention to the study of local varieties of winter wheat and their improvement. Especially analyze values of Russia's first benefit from the breeding "Guide to Seed for the Advancement of cultivated plants", in which the author proposes methods for improving and creating new varieties. Since the end of XIX century selection were mainly involved in private owners on their own initiative, already in the beginning of XX century this trend more interested in the agricultural society, local and state authorities. Thanks to their support in the country organized congresses, meetings and conferences, set up research and field stations. It was during this period of transition took place in the national selection analysis.
High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes
Directory of Open Access Journals (Sweden)
Mehwish Yousaf
2017-06-01
Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.
Directory of Open Access Journals (Sweden)
M. SERENIUS
2008-12-01
Full Text Available Disease infection in relation to sowing time of winter rye (Secale cereale was studied in southern Finland in order to compare overwintering capacity of modern rye varieties and to give recommendations for rye cultivation. This was done by using three sowing times and four rye varieties in field trials conducted at three locations in 19992001. The early sown rye (beginning of August was severely affected by diseases caused by Puccinia recondita and Microdochium nivale, whereas postponing sowing for two weeks after the recommended sowing time resulted in considerably less infection. The infection levels of diseases differed among rye varieties. Finnish rye varieties Anna and Bor 7068 were more resistant to snow mould and more winter hardy than the Polish variety Amilo, or the German hybrid varieties Picasso and Esprit. However, Amilo was the most resistant to leaf rust. In the first year snow mould appeared to be the primary cause of winter damage, but in the second year the winter damage was positively correlated with leaf rust. No significant correlation between frit fly infestation and winter damage or disease incidence of snow mould or leaf rust was established. The late sowing of rye (in the beginning of September is recommended in Finland, particularly with hybrid varieties, to minimize the need for chemical plant protection in autumn.;
Reduction of aflatoxin B1 contamination in Pakistani wheat varieties by physical methods
International Nuclear Information System (INIS)
Hussain, A.; Lutfullah, G.
2011-01-01
In the study of effect of physical treatments, such as washing and heating, on the AFB1 contaminated wheat varieties, it was observed that the reduction of AFB1 was directly proportional to washing time in all the varieties. The concentration of AFB1 was reduced more by heating than washing. The level of AFB1 in dried wheat decreased to more than 50% and 90% by heating in oven at 150 and 200 degree C, respectively. However, the reduction of AFB1 in wet wheat in which water (10%) was intentionally added was higher on heating at 100 degree C for 30 min than that in the dried wheat. (author)
International Nuclear Information System (INIS)
Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei
2012-01-01
The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.
Quality characteristics of U.S. soft white and club wheat
U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...
Crop coefficients for winter wheat in a sub-humid climate regime
DEFF Research Database (Denmark)
Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel
2008-01-01
Estimations of evapotranspiration (ET) from natural surfaces are used in a large number of applications such as agricultural water management and water resources planning. Lack of reliable, cheap and easy-to-use instruments, associated with the chaotic and varying nature of the meteorological...... coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...
Suitability of spring wheat varieties for the production of best quality pizza.
Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan
2014-08-01
The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.
Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...
Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi
2017-12-01
The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.
Gliadin and glutenin polymorphism in durum wheat landraces and breeding varieties of Azerbaijan
Directory of Open Access Journals (Sweden)
Sadigov-Baykishi Hamlet
2015-01-01
Full Text Available Durum wheat genotypes including 7 landraces and 17 breeding varieties were studied. Polyacrylamide gel electrophoresis under acidic conditions of pH 3.1 was used to study gliadin and glutenin polymorphisms. In total, 32 gliadin and 8 high molecular weight glutenin alleles were identified. The contribution of B genome (58.5% to the allelic variation of durum wheat varieties was higher than of A genome. The cluster analysis delineated genotypes into four main clusters. According to cluster analysis, legitimacy identifying the distribution of botanical varieties through the tree was observed. The study confirms the suitability of biochemical markers for cultivar identification and genetic relation study in durum wheat genotypes.
Tan, Kaiyan; Zhou, Guangsheng; Lv, Xiaomin; Guo, Jianping; Ren, Sanxue
2018-03-12
We examined the growth and yield of winter wheat (Triticum aestivum) in response to the predicted elevated CO 2 concentration and temperature to determine the mechanism of the combined impacts in North China Plain. An elevated treatment (CO 2 : 600 μmol mol -1 , temperature: +2.5~3.0 °C, ECTI) and a control treatment (ambient CO 2 and temperature, CK) were conducted in open-top chambers from October 2013 to June 2016. Post-winter growth stages of winter wheat largely advanced and shifted to a cooler period of nature season under combined impact of elevated CO 2 and temperature during the entire growing season. The mean temperature and accumulated photosynthetic active radiations (PAR) over the post-winter growing period in ECTI decreased by 0.8-1.5 °C and 10-13%, respectively compared with that in CK, negatively impacted winter wheat growth. As a result, winter wheat in ECTI suffered from low temperature hazards during critical period of floret development and anthesis and grain number per ear was reduced by 10-31% in the three years. Although 1000-kernel weight in ECTI increased by 8-9% mainly due to elevated CO 2 , increasing CO 2 concentration from 400 to 600 μmol mol -1 throughout the growth stage was not able to offset the adverse effect of warming on winter wheat growth and yield.
Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties
Directory of Open Access Journals (Sweden)
Yitao Liang
2014-01-01
Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.
Selecting of a new soft wheat variety of Yangfumai 2
International Nuclear Information System (INIS)
He Zhentian; Chen Xiulan; Han Yuepeng; Wang Jinrong; Yang Hefeng; Liu Xueyu
2004-01-01
A new variety Yangfumai 2 was developed by hybridization (Yangmai158 x mutation line 1-9012) and irradiation. The flour quality of new variety meets the national standard of soft wheat, and agronomic characteristics show stable high yield, high stress toloerance and high 1000-grain weight. (authors)
Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo
2016-01-01
Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.
Study on physiological characteristics of winter wheat in drought land
International Nuclear Information System (INIS)
Man Huimin; Yu Guohua; Zhan Shumin; Liu Xin; Zhang Guoshu
1995-01-01
Physiological characteristics of winter wheat cultivated in drought land was studied. The results showed that with precipitation of 1 m in the growing period of wheat, it was feasible to use drought cultivation techniques, i.e., increasing the application of P, K and Zn, maintaining the present application of N and increasing the density of wheat plants, to increase the ability of photosynthesis in the parts from the top inter-node above, and a 4900 kg/hm 2 or more of grain yield was obtained. 14 C-assimilate transportation from different parts to grain in drought and irrigating cultivation conditions were 83. 73% and 75.31% respectively. The proline content in flag leaf and the chlorophyll content in the parts from the top inter-node above with drought cultivation were significantly higher than those with normal cultivation
Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping
2016-01-01
In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...
Mycological composition in the rhizosphere of winter wheat in different crop production systems
Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw
2010-05-01
Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the
Seed priming improves salinity tolerance of wheat varieties
International Nuclear Information System (INIS)
Jamal, Y.; Shafi, M.; Arif, M.
2011-01-01
To evaluate the response of wheat varieties to seed priming and salinity, an experiment was conducted in completely randomized design (CRD) with three replications at Institute of Biotechnology and Genetic Engineering (IBGE), KPK Agricultural University, Peshawar, Pakistan. The performance of 6 wheat varieties (Tatara-96, Ghaznavi-98, Fakhri Sarhad, Bakhtawar-92, Pirsabaq-2004 and Auqab-2000) at two seed conditions (primed with 30 mM NaCl and un primed) under four salinity levels (0, 40, 80 and 120 mM) was studied. Statistical analysis of the data revealed that salinity, seed priming and varieties had significantly (P= 0.05) affected shoot fresh weight plant/sup -1/ shoot dry weight plant/sup -1/, shoot Na/sup +/ contents (mg g/sup -1/ dry weight), shoot K/sup +/ contents (mg g/sup -1/ dry weight) and shoot K/sup +/Na/sup +/ ratio. Maximum shoot fresh weight plant/sup -1/ (7.71 g), shoot dry weight plant/sup -1/ (1.68 g), shoot K/sup +/ contents (1.39 mg g/sup -1/ dry weight) and shoot K/sup +/ Na/sup +/ratio (1.45) were recorded from Bakhtawar-92 as compared with other varieties. Highest shoot Na/sup +/ contents (1.43 mg g/sup -1/ dry weight) were recorded from Auqab-2000 when compared with other varieties. All parameters were enhanced with seed priming except shoot Na/sup +/ contents, which reduced significantly (p= 0.05) with seed priming. (author)
Study of Winter Wheat Yield Quality Analysis at ARDS Turda
Directory of Open Access Journals (Sweden)
Ovidiu Adrian Ceclan
2016-11-01
Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.
Cheng, Li Ping; Liu, Wen Zhao
2017-07-18
Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.
Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin
2018-04-12
Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.
Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran
Directory of Open Access Journals (Sweden)
Marta S. Lopes
2018-05-01
Full Text Available Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years and by defining a probabilistic range of trait variations [phenology and plant height (PH] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions. Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading. Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots was tested against monoculture (if only a single genotype grown in the same area and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny
International Nuclear Information System (INIS)
Akhtar, M.S.; Abbas, N.; Shaheen, A.
2004-01-01
Forty seven wheat varieties were tested for their iron and copper contents. The iron and copper contents were found to differ significantly (P 0.05) with respect to iron and copper contents. The variety named Dirk was found to possess the highest iron contents, while the variety Pasban-90 showed the highest copper contents. The varieties Dirk, Sariab, Tandojam-83, Punjab-88, Sarsabz, Punjab-81, Sandal and Sind-81 contained significantly higher iron contents as compared to other wheat varieties. The varieties, which contained the highest concentrations of copper, were Pasban-90, Chenab-79, Faisalabad-85, Lyp-73, Sind-81, Anmol-91, C-271, Rohtas-90 and Chakwal-86. However, the differences in copper contents among all these wheat varieties were non-significant (P>0.05). These varieties can therefore, be recommended to be included for future breeding and commercial exploitation. (author)
Directory of Open Access Journals (Sweden)
Hannah N Phillips
Full Text Available Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN. During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10, crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10, and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10. Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.
Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert
2017-01-01
Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.
Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.)
International Nuclear Information System (INIS)
Qiong, Y.; Yuan, G.; Zhixia, X.; Xiaojing, L.
2016-01-01
In monsoon climate regions, the tillering nodes of winter wheat can be stressed by high salt accumulation on the soil surface in spring, thereby leading to salt-induced damage. To understand whether tillering nodes could be stressed by salinity and to estimate its effects on the growth of winter wheat under salt stress, the tillering nodes of two wheat cultivars, H-4589 (salt-sensitive) and J-32 (salt-tolerant), were treated with salinity to investigate the physiological and biochemical changes in seedling growth. The results indicated that salt stress on tillering nodes significantly reduced plant height and shoot dry weight; increased Na+ accumulation, soluble sugar and proline in both H-4589 and J-32; which demonstrated remarkable effects on the growth of winter wheat when the tillering nodes were under salt stress. Furthermore, equivalent Na+ accumulations were discovered in two cultivars when tillering nodes were under salt stress, while remarkably different Na+ accumulations were discovered in two cultivars when roots were under salt stress. Based on the results from anatomic analyses, we speculated that no anatomic differences in tillering nodes between two cultivars could give reason to the equivalent Na+ accumulations in two cultivars when tillering nodes were under salt stress; and more lignified endodermis in primary roots as well as larger reduction of lateral root number in salt-tolerant cultivars which contributed to preventing Na+ influx could explain the remarkably lower Na+ accumulation in salt-tolerant cultivar when roots were under salt stress. All of these results indicated that the tillering nodes could mediate Na+ influx from the environment leading to salt-induced damage to the growth of winter wheat. (author)
Li, Zhenhai; Li, Na; Li, Zhenhong; Wang, Jianwen; Liu, Chang
2017-10-01
Rapid real-time monitoring of wheat nitrogen (N) status is crucial for precision N management during wheat growth. In this study, Multi Lookup Table (Multi-LUT) approach based on the N-PROSAIL model parameters setting at different growth stages was constructed to estimating canopy N density (CND) in winter wheat. The results showed that the estimated CND was in line with with measured CND, with the determination coefficient (R2) and the corresponding root mean square error (RMSE) values of 0.80 and 1.16 g m-2, respectively. Time-consuming of one sample estimation was only 6 ms under the test machine with CPU configuration of Intel(R) Core(TM) i5-2430 @2.40GHz quad-core. These results confirmed the potential of using Multi-LUT approach for CND retrieval in winter wheat at different growth stages and under variables climatic conditions.
Directory of Open Access Journals (Sweden)
Richard T. Koenig
2011-01-01
Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.
Hydration kinetics of some durum and bread wheat varieties grown in south-eastern region of turkey
International Nuclear Information System (INIS)
Yildirm, A.
2017-01-01
Hydration kinetics of wheat varieties grown in South-Eastern Region of Turkey, covering a temperature range from 25 to 50 degree C was examined. Peleg's model together with Arrhenius relationship were successfully used to evaluate water uptake of some Durum (Local names; Zenit and BurgosBurgos) and Bread (Local names; Dariyel and Karatopak) wheat varieties during soaking at a temperature range of 25-50 degree C. Model was found to be suitable for describing the soaking behaviour of wheat kernels with a coefficient of determination (R2) and Root mean square error (RMSE) greater than 0.9805, and less than 0.051, respectively. The Peleg rate and capacity constants, K1 and K2, were affected by temperature and wheat varieties. Activation energy values of Zenit, BurgosBurgos, Dariyel and Karatopak wheats were found as 39.94, 38.03, 36.25 and 29.54 kJ mol-1, respectively. Zenit wheat was the least hydrated while Karatopak was the most hydrated one due to kernel size and protein content. General equations to describe the water uptake of wheat varieties as a function of soaking time, temperature and initial moisture content were developed. These derived equations can be used for wheat operations such as tempering, mixing, knedding etc. (author)
A model for making field-based nitrogen recommendations for winter wheat in western oregon
International Nuclear Information System (INIS)
Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.
2010-01-01
A model based on early spring soil and tissue analysis was developed and evaluated for predicting the need for additional nitrogen (N) fertilizer on winter wheat. To develop the model, On-farm trials were' established over three years 1994-95 in grower's fields at three different locations across the Willamette Valley of western Oregon. Two field-scale validation trials were run in 1996-97. Rotations were soft white winter wheat following grass seed, sweet corn or a legume. Four treatments, including a check receiving no nitrogen, were used at each site At the site where wheat followed corn, the predicted optimum N rate was 168 kg N ha/sup -1/ however, the 112 kg N ha/sup -1/ rate was the optimum rate predicted by the developed model. The 84 kgN ha/sup -1/ and 140 kgN ha/sup -1/ rates were selected to bracket the recommended rate (+- 28 kg N ha/sup -1/). Wheat following grass seed had high soil supplied N which depressed the yield even at moderate fertilizer N rates. The model overall accurately assess field-specific optimum fertilizer N status. (author)
Wu, Huixia; Doherty, Angela; Jones, Huw D.
Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.
Early growth response of six wheat varieties under artificial osmotic stress condition
International Nuclear Information System (INIS)
Khakwani, A.A.; Dennett, M.D.; Munir, M
2011-01-01
An experiment was carried out under laboratory conditions where seeds of six wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were raised in Petri dishes and were either treated with distilled water (control) or 15% polyethylene glycol (PEG) 6000 solution. Seeds were treated with 15% PEG solution to establish an artificial osmotic stress condition (water stress) and observe its effect on germination percentage, coleoptile length, shoot and root length, fresh weight of shoot and root. A significant difference (P<0.05) was recorded between varietal and treatment means regarding all traits. Variety Hashim-8 gave maximum germination percentage (93.33%) whereas maximum coleoptile (1.78 cm) and shoot length (5.77 cm) was observed in variety DN-73 which was statistically at par with variety Hashim-8. Similarly, root length (3.63 g), fresh shoot (0.15 g) and root weight (0.12 g) was maximum in variety Dera-98 which was statistically at par with variety Hashim-8. A second experiment was carried out under glass house environment where plants were treated with non-stress (100% field capacity) and water stress (35% field capacity) treatments. Although total grain yield was significantly (P<0.05) reduced in all six wheat varieties when grown in water stress condition however Hashim-8 showed the lowest reduction (13%) while Zam-04 showed the highest (32%). The outcome of both experiments indicated that these varieties have great potential to incorporate with the existing commercial wheat varieties in order to obtain high yield in water stress regions. (author)
DEFF Research Database (Denmark)
Li, X.; Cai, J.; Liu, Fulai
2014-01-01
Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...
Directory of Open Access Journals (Sweden)
M. Malian
2014-08-01
Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.
[Winter wheat area estimation with MODIS-NDVI time series based on parcel].
Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong
2011-05-01
Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.
Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi
2018-04-20
No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.
NS Pudarka: A new winter wheat cultivar
Directory of Open Access Journals (Sweden)
Hristov Nikola
2014-01-01
Full Text Available The high-yielding, medium late winter wheat cultivar NS Pudarka was developed by crossing genetic divergent parents: line NMNH-07 and cv. NS 40S and Simonida. In cultivar NS Pudarka genes responsible for high yield potential, very good technological quality, resistance to lodging, low temperature and diseases, were successfully combined. It was registered by Ministry of agriculture, forestry and water management of Serbia Republic in 2013. This cultivar has wide adaptability and stability of yield that enable growing in different environments with optimal agricultural practice. On the base of technological quality this cultivar belongs to the second quality class, A2 farinograph subgroup and second technological group.
Directory of Open Access Journals (Sweden)
Р. А. Уразалієв
2009-10-01
Full Text Available As a result of the lead long-term selection works wint involving a World' s collection and intertype and intertype hybridization with purposeful selection on economic-biological attributes highly productive • grades of a winter wheat, with stability to various kinds of illnesses and high technological qualities of grain have been allocated. The adapted grades of a winter wheat for a various environment of various zones of the countries of the Central Asia that allows to realize potential opportunities of grades in different environments of cultivation and by that to prevent losses of a crop from biotic and abiotic stresses that allows to stabilize productivity and adaptability of culture in a zon winter husbandry are created. The long-term field experiences lead by us and laboratory analyses on a level of productivity, qualities of grain and stability to stresses allows to conclude, that alongside with a genotype, stabilityenvironmental conditions render strong and significant influence on all complex of selection attributes.
International Nuclear Information System (INIS)
Fadhl, J.; AL-A'ani, S.; AL-Noori, F.; Sajet, A.
2005-01-01
The results showed that the volume of the bread baked from wheat flour of Tammoze 3 was increased significantly compared to other wheat varieties. Maxiback flour gave the smallest bread volume; whereas Abugraib and Rabi'ah bread were not significantly different. Abugraib wheat was not significantly different from Rabi'ah bread. The taste panel results were compatible with baking results. Tammoze 3 was the highest in one thousand grain weight and total protein percentage. Rabi'ah wheat flour was superior in water absorption Among the tested wheat flour varieties, maxiback flour showed best fat content. Amylases and proteases activities were higher in wheat grains than in flour. Protease activity was the highest in Maxiback flour; whereas in Tammoze 3 it was the lowest. (Author's) 19 refs., 5 tabs
Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad
2017-12-01
Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.
Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam
2017-07-01
Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.
In this study, we investigated the changes in the levels of phenolic acids during pancake preparation from refined and whole-wheat flours of two wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenolic acids, namely ultrasonic-assisted extrac...
Directory of Open Access Journals (Sweden)
Bekir Atar
2017-02-01
Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.
Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.
2017-12-01
Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than
Metabolism of 14C-bentazone in wheat, oat, and maize
International Nuclear Information System (INIS)
Mueller, F.; Sanad, A.
1975-01-01
The uptake, distribution, and catabolism of Bentazon (3-isopropyl-2,1,3-benzo-thiadiazinon-(4)-2,2-dioxide) in winter wheat (variety Jubilar), maize (variety Inra 258), and several varieties of oat was investigated in the hothouse and under outside conditions in large culture vessels. Bentazon is decomposed fairly rapidly in wheat, maize, and oat. In the experiments with cultures in vessels under outside conditions, the metabolic fate of the 14 C-labelled pesticide was investigated in three varieties of oat after a vegetation period. (GSE/AK) [de
Improvement of baking quality traits through a diverse soft winter wheat population
Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...
Impact of Early Sowing on Winter Wheat Receiving Manure or Mineral Fertilizers
DEFF Research Database (Denmark)
Christensen, Bent Tolstrup; Jensen, Johannes Lund; Thomsen, Ingrid Kaag
2017-01-01
(late September) wheat were tested over two cropping seasons (2011–2012 and 2013–2014) using two contemporary cultivars (Hereford and Mariboss) and increasing rates of N (0–300 kg total N ha–1) with animal manure (AM; cattle slurry) or mineral fertilizers (NPK), surface applied in late March. We....... Early sowing increased grain yields by 0.5 and 1.0 Mg ha–1 for NPK and AM, respectively, regardless of N rate. Grain and straw N concentrations were higher with NPK than with AM, and NPK showed higher N use efficiency (0.48–0.53) than AM (0.15–0.22). Moving sowing of winter wheat from late September...... to late August provided higher grain and straw yields; the increased over-winter N uptake suggests that the beneficial effect of earlier sowing may surpass that of a catch crop. Cattle slurry surface applied in late March gave poor N use efficiency and low grain protein content....
Directory of Open Access Journals (Sweden)
Olga Biryukova
2015-07-01
Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.
DEFF Research Database (Denmark)
Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup
2016-01-01
The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations....... Inclusion of the oil radish catch crop could offset this loss by 2–3 percentage points. Earlier sowing of wheat increased straw production by 18% and reduced loss of soil C by 3–5 percentage points compared to normal sowing time with full straw export. Catch crops and early sowing also reduced N...
Interactions between fungi colonizing the stem base of winter wheat
Directory of Open Access Journals (Sweden)
Urszula Wachowska
2014-08-01
Full Text Available In vitro conditions, the interactions betecen the fungi most frequently isolated from the stem base of winter wheat were determined. These were the species from genus Fusarium (F. culmorum, F. avenaceum and F. poae and Rhizoctonia cerealis, Pseudocercosporella herpotrichoides, Alternaria alternata and Aureobasidium bolleyi. Some saprotrophes showed stimulating effect on R. cerealis, P. herpotrichoides and F. poae. Certain species in combined cultures showed exceptionally favourable relationships.
Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....
Directory of Open Access Journals (Sweden)
Elżbieta Harasim
2013-07-01
Full Text Available A field study was conducted in the period 2004–2007 on grey-brown podzolic soil (sandy. This study analysed the relationship between the use of stem shortening in cereals by means of retardants with the following active substances: chlormequat chloride (Antywylegacz Płynny 675 SL, trinexapac-ethyl (Moddus 250 EC, chlormequat chloride + ethephon (Cecefon 465 SL, and weed infestation. The retardants were applied at the 1st node stage (BBCH 31 – Antywylegacz Płynny 675 SL and the 2nd node stage of winter wheat (BBCH 32 – Moddus 250 EC and Cecefon 465 SL, together with the adjuvant Atpolan 80 EC (75% of SN 200 mineral oil or without the adjuvant. Winter wheat, cv. 'Muza', was grown after vetch grown for seed. The whole experiment was sprayed with the herbicides Apyros 75 WG and Starane 250 EC at the full tillering stage (BBCH 29–30. Plots where no growth regulators were used were the control treatment. Weed density and biomass showed great variation between years. In the winter wheat crop, Veronica persica, Viola arvensis, Veronica arvensis, Capsella bursa-pastoris,and Chenopodium album dominated in the dicotyledonous class, whereas Apera spica-venti, Echinochloa crus-galli,and Elymus repens were predominant among monocotyledonous plants. The level of weed infestation of the winter wheat crop, as measured by the number and air-dry weight of weeds, was significantly differentiated by years and retardants used as well as by interactions of these factors. The adjuvant Atpolan 80 EC did not have a significant effect on the above-mentioned weed infestation parameters. .
International Nuclear Information System (INIS)
Abid, N.; Maqbool, A.; Mlaik, K.
2014-01-01
Wheat is staple food crop of many countries including Pakistan. It has a large number of cultivars and genotypes. All genotypes have different tissue culture response that includes callus induction, regeneration and transformation efficiency. For transgenic plant production it is crucial to know tissue culture efficiency of a selected variety. Therefore, in the present study mature embryos of thirteen elite wheat (Triticum aestivum L.) varieties were evaluated for tissue culture response and their amenability to transformation. Each variety responded differently for callogenesis, transient GUS (glucuronidase) expression and regeneration. The results for callus induction and transient GUS expression ranged from 30-100% and 13-100%, respectively whereas regeneration response was quite different in tested varieties that ranged from 0-44%. Good quality callus was observed in all varieties except Dhurabi-11, Lasani-08, Millat and Pak-81. Maximum transient GUS expression (100%) was found in Faisalabad-2008. Highest regeneration (44%) was noticed in Pak-81. Results indicated that three varieties VIII-83, Faisalabad-2008 and Aas-11 are suitable for transformation in comparison to others. (author)
Kendal, Enver; Tekdal, Sertaç; Aktas, Hüsnü; Karaman, Mehmet
2014-01-01
In this research, were used 3 triticale varieties (Tacettinbey, Karma 2000 and Presto), one durum (Sariçanak 98) and one bread (Nurkent) wheat varieties. The study, was randomized as complete block design with four replications in 4 location (southeastern Anatolia of Turkey) and under rainfed conditions during the growing season 2010-2011. With an analysis of variance, significant differences were determined among locations, genotypes and genotype x location interactions at the 1% and 5% level. Following results were obtained: period to heading 109 till 113 days, plant height between 96 and 127 cm, hectoliter weight between 68.2 and 81.7 kg/hl, thousand grain weight between 32.9 and 42.7 g, protein content between 13.3 and 14.7%, humidty kernels at harvest between 9.2 and 9.5% and grain yield between 4409 and 6119 kg/ha(-1). The highest grain yield was obtained with Sariçanak 98 (durum wheat variety) while the best thousant grain weight was obtained by the triticale variety Tacettinbey. The triticale variety Karma 2000 showed higher protein content (14.7%) than other the other triticale varieties as well as durum and bread wheat varieties included trial. For the Southeastern Anatolia Region he results of this study demonstrated that the grain yield of triticale varieties were lower compared to common wheat. Nevertheless the triticale grain yield was higher than these of durum and bread wheat varieties under the more extrem (higher temperature and drought) growing conditions of the Kiziltepe region. For triticale the highest mean grain yield has been obtained fwith the variety Tacettinbey which is spring type. New sping type vatieties are more suitable than wheat for the more extreme growing conditions of the Southeastern Anatolia Region.
DEFF Research Database (Denmark)
Li, Xiangnan; Cai, Jian; Liu, Fulai
2014-01-01
Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperatu......-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants.......Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperature......, viz., 10.0°C) at the Zadoks growth stage 28 (i.e.re-greening stage, starting on 20th of March) for 7d, and after 14d of recovery the plants were subsequently subjected to a 5d low temperature stress (8.4°C lower than the ambient temperature, viz., 14.1°C) at the Zadoks growth stage 31 (i...
Zhu, Y.; Ren, L.; Lü, H.
2017-12-01
On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.
Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping
2015-01-01
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-10-18
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.
International Nuclear Information System (INIS)
Xiyong, C.; Haixia, X.U.; Feng, C.
2011-01-01
To determine the genetic variation of wheat germplasm resources and improve their use in wheat breeding, 215 wheat cultivars and advanced lines from the Huanghuai Wheat Region of China were used to identify 14 agronomic traits and 7 quality traits, as well as the evolution and utilization of high molecular weight glutenin subunits (HMW-GS) and low molecular weight-glutenin subunits (LMW-GS). From land race cultivars to current cultivars there had been significant increases in grain numbers spike/sip -1/, grain weight spike/sup -1/, 1000-kernel weight, grain weight plant/sup -1/, spikelet number spike/sup -1/, sterile spikelet numbers spike/sup -1/, flag leaf width, and flag leaf area. There had been significant decreases in spike number plant/sup -1/, plant height, the first inter node length, flag leaf length, kernel protein content and wet gluten content. Based on Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results, a novel HMW-GS combination 20/8 was identified in 1B chromosome of Chinese landrace cultivar Heputou. Subunits 22, 20/8, 2.2+12, and GluB3a were only found in cultivars before the 1960s, and subunits 6+8, 13+16, 3+12, and 4+12 were only found in the cultivars after the 1980s. The average diversity index of 21 traits and allele variance of HMW-GS showed a decreasing-increasing-decreasing tendency. HMW-GS and LMW-GS combination-type cultivars showed an increasing-decreasing tendency. Before the 1980s, most parental strains were from foreign cultivars and landrace cultivars, while after the 1980s, most parental strains were from released cultivars and germplasm created by distant hybridization. This study provided useful information for improvement of wheat breeding in Huanghuai winter wheat region. (author)
Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.
Directory of Open Access Journals (Sweden)
Ladislav Haris
2010-01-01
Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-chemical properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Meritto varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.
Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread
This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...
International Nuclear Information System (INIS)
Koenig, R.T.; Cogger, C.G.; Bary, A.I.
2011-01-01
Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.
DEFF Research Database (Denmark)
Reiss, Antje; Fomsgaard, Inge S.; Mathiassen, Solvejg Kopp
Above-ground competition and allelopathy are two of the most dominant mechanisms of plants to subdue their competitors in their closest surroundings. In an agricultural perspective, the suppression of weeds by the crop is of particular interest, as weeds represent the largest yield loss potential...... of competitive traits, such as early vigour, crop height and leaf area index and presence of phytotoxic compounds of the group of benzoxazinoids to weed suppression. Four cultivars of each of the winter cereals wheat, triticale and rye were grown in field experiments at two locations. Soil samples were taken...
Radio protective effect of gibberellic acid in wheat variety C306
International Nuclear Information System (INIS)
Uppal, S.; Maherchandani, N.
1988-01-01
The present study was planned to see the effect of GA 3 concentrations on the seedling height and chromosomal damage in a responsive wheat variety C 306, treated with gamma radiation. (author). 13 refs
International Nuclear Information System (INIS)
Grundas, S.
1995-01-01
The paper contains basic information on mechanical damage to wheat grains. The most important causes of mechanical damage and some of its effects in manufacturing are discussed. Grain material included 5 varieties of winter wheat and 2 varieties of spring wheat. Internal mechanical damage was examined by X-ray technique; external damage was examined with the colorimeter method. The results obtained were compared with the estimation results of more important processing features of the grain: gluten quantity and quality and grain hardness. (author)
Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping
2015-01-01
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695
International Nuclear Information System (INIS)
Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B.
2008-01-01
Nitrous oxide (N 2 O) and carbon dioxide (CO 2 ) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N 2 O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N 2 O and CO 2 emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N 2 O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N 2 O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N 2 O and CO 2 were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO 2 levels were higher when the preceding crop was winter wheat. It was concluded that N 2 O and CO 2 emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs
Energy Technology Data Exchange (ETDEWEB)
Drury, C.F.; Yang, X.M.; Reynolds, W.D. [Agriculture and Agri-Food Canada, Harrow, ON (Canada); McLaughlin, N.B. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada). Eastern Cereal and Oilseed Research Centre
2008-04-15
Nitrous oxide (N{sub 2}O) and carbon dioxide (CO{sub 2}) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N{sub 2}O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N{sub 2}O and CO{sub 2} emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N{sub 2}O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N{sub 2}O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N{sub 2}O and CO{sub 2} were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO{sub 2} levels were higher when the preceding crop was winter wheat. It was concluded that N{sub 2}O and CO{sub 2} emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs.
Directory of Open Access Journals (Sweden)
hormoz asadi
2017-08-01
Full Text Available Introduction Agricultural research is important and one of the determinant factors of development of technologies in agricultural sector. Among agricultural research disciplines, breeding programs, especially, wheat breeding programs are one of the applied approaches in improving of production and food security. Based on a study by Byerlee & Traxler (1995, economic benefits and Internal Rate of Return (IRR for Impact of International Wheat Improvement (for all breeding programs were estimated US$3.0 billion per year with internal rate of 53%, and economic benefits for Impact of International Wheat Improvement (Attributed to IWIN was estimated US$1.5 billion per year during 1966-90. Materials and methods The main objectives of this research were to determine shift of supply function of variety and impacts of breeding wheat varieties on reduction costs, and determination of economic return of released irrigated bread wheat in breeding program for the period of 1991-2000. Wheat varieties included; 23 varieties of released irrigated bread wheat by wheat breeding program of Seed and Plant Improvement Institute (SPII and Provincial Agricultural Research Centers. Ex-ante and Ex-post methods were used in this study. Measuring criteria for these methods were; quantity of shift in supply function, cost-benefit analysis and internal rate of return of varieties. For estimation of reduction costs and shift of supply function of varieties in breeding program were calculated following Brennan et al. (2002: Where: Cvb: Cost reduction due to breeding program, TCh: Cost production per ha, Yv (without: yield of check variety in breeding plots, Yv (with: yield of new variety in breeding plots, PSS: % supply shift in breeding program and Pw: price of wheat grain per kg For assessing economic criteria, Net Present Value (NPV, Cost-Benefit Analysis and Internal Rate of Return (IRR were used: Following Brennan et al (2002, gross benefit of irrigated bread wheat
Directory of Open Access Journals (Sweden)
Bin-Bin Guo
2018-05-01
Full Text Available Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat nitrogen (N nutrient status. In the paper, we examined the relationships of canopy multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L. across different growing seasons, locations, years, wheat varieties, and N application rates. Seventeen vegetation indices (VIs selected from the literature were measured for the stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs in the solar principal plane (SPP. In total, the back-scatter angles showed better VI behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial N uptake increased with decreasing VZAs. The best linear relationship was integrated with the optimized common indices DIDA and DDn to examine dynamic changes in aerial N uptake; this led to coefficients of determination (R2 of 0.769 and 0.760 at the −10° viewing angle. Our novel area index, designed the modified right-side peak area index (mRPA, was developed in accordance with exploration of the spectral area calculation and red-edge feature using the equation: mRPA = (R760/R6001/2 × (R760-R718. Investigating the predictive accuracy of mRPA for aerial N uptake across VZAs demonstrated that the best performance was at −10° [R2 = 0.804, p < 0.001, root mean square error (RMSE = 3.615] and that the effect was relatively similar between −20° to +10° (R2 = 0.782, p < 0.001, RMSE = 3.805. This leads us to construct a simple model under wide-angle combinations so as to improve the field operation simplicity and applicability. Fitting independent datasets to the models resulted in relative error (RE, % values of 12.6, 14.1, and 14.9% between estimated and measured aerial N uptake for mRPA, DIDA, and DDn across the range of −20° to +10°, respectively, further confirming the superior test performance of the mRPA index. These results illustrate that the novel index
Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru
2017-10-01
Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-01-01
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547
International Nuclear Information System (INIS)
Khakwani, A.A.; Abid, M.
2012-01-01
Plants of 6 bread wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were subjected to 2 treatments i.e., control treatment (100% field capacity) and stressed treatment (20 days water stress was given during booting stage and 20 days water stress after anthesis). The findings revealed highly significant differences among means of wheat varieties in all physiological and yield traits. Almost all varieties showed their best adaptation under stressed environment however Hashim-8 and Zam-04 behaved exclusively and indicated higher relative water content (RWC), mean productivity (MP), geometric mean productivity (GMP) and stress tolerance index (STI) whereas stress susceptibility index (SSI) and tolerance (TOL) was estimated at its lowest, as these traits are recognised beneficial drought tolerance indicators for selection of a stress tolerant variety. Similarly, total grain yield per plant, biological yield per plant and harvest index was also higher in the same wheat varieties that put them as good candidates for selection criteria in wheat breeding program for drought resistant. (author)
Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010
The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...
Directory of Open Access Journals (Sweden)
Anna Daria Stasiulewicz-Paluch
2015-11-01
Full Text Available Registration of plant protection products involves the analysis of their effects on soil microorganisms. The residues of plant protection products penetrate the soil, but their impact on fungi remains scarcely researched. In this study, the influence of selected plant protection products on the abundance of rhizosphere-dwelling fungi and the growth of winter wheat seedlings was evaluated under greenhouse conditions. The analysed plant protection products had an inhibitory effect on the growth of filamentous fungi in the rhizosphere, whereas yeasts were resistant to those products applied to soil. Tebuconazole exerted the strongest suppressive effect on the growth of filamentous fungi, and propiconazole was characterized by the greatest phytotoxic activity against winter wheat seedlings. Azoxystrobin had the weakest ecotoxic and phytotoxic effects, and its application to soil usually led to a rapid increase in the counts of fungi of the genus Acremonium.
BREAD-MAKING QUALITY OF SLOVAK AND SERBIAN WHEAT VARIETIES
Directory of Open Access Journals (Sweden)
Tatiana Bojňanská
2014-02-01
Full Text Available The basic prerequisite for the production of bakery products of a good quality is the knowledge of the quality parameters of raw materials introduced in the production process and the ability to use their potential. The bread making properties of 17 pure European wheat cultivars were analysed. Baking experiments were carried out according to the methodology of the research workplace; 1000 g of flour was processed with the addition of salt, sugar and yeast. Fermentation for 35 minutes at 30 ° C was followed by the baking with steaming (at 240 ° C and then 220 ° C. During an experimental baking test the selected parameters: loaf volume (cm3, specific loaf volume (cm3.100g-1 loaf, volume efficiency (cm3.100g-1 flour, cambering (loaf height/width ratio, bread yield (%, bread yield baking loss (% in bread were evaluated. Loaf volume has been considered as the most important criterion for the bread-making quality. In the analysed samples (11 varieties of Slovak origin and 6 varieties of Serbian origin, the value of this parameter ranged from 3575 cm3 to 5575 cm3 with higher values occurred in Slovak varieties (average 4 640.91 cm3 compared to the Serbian varieties (average 4 363.33 cm3. Based on the complex evaluation of wheat varieties of the Slovak and Serbian origin assessing the selected quality parameters of the baking experiment it can be concluded that in terms of baking quality the three Slovak varieties IS Ezopus, Bonavita and Jarissa were the best. Therefore, they are recommended for cultivation and their subsequent use in the baking industry, in particular for the production of bread According to a baking quality the evaluated varieties can be sorted from best to worst in the following order: IS Ezopus (SK > Bonavita (SK > Jarissa (SK > IS Questor > Etida (SRB > Venistar (SK > Renesansa (SRB > IS Conditor (SK > IS Corvinus (SK > Zvezdana (SRB > Simonida (SRB > Viglanka (SK > IS Agape (SK > NS 40S (SRB > Panonnija (SRB > IS Escoria (SK
Guo, P P; Li, P L; Li, Z C; Stein, H H; Liu, L; Xia, T; Yang, Y Y; Ma, Y X
2015-10-01
This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (pdigestibility of NDF changed quadratically (pdigestibility (pdigestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat was stable during the first 3 to 6 mo of post-harvest storage, and decreased during the following 6 to 12 mo of storage under the conditions of this study.
Directory of Open Access Journals (Sweden)
Ladislav Ducsay
2005-01-01
Full Text Available In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L., variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29. Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1 caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390 to +0.69 t.ha–1 (applied of DASA according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.
Use of no-till winter wheat by nesting ducks in North Dakota
Duebbert, H.F.; Kantrud, H.A.
1987-01-01
Nesting of dabbling ducks (Anatinae) was studied in fields of no-till winter wheat (Triticum aestivum) in the prairie pothole region of North Dakota during 1984 and 1985. Total area of 59 fields searched in 1984 was 1,135 ha and total area of 70 fields searched in 1985 was 1,175 ha. Field sizes ranged from 3 ha to 110 ha. Nests of five duck species were found: blue-winged teal (Anas discors), 55 nests; northern pintail (A. acuta), 44; mallard (A. platyrhynchos), 29; gadwall (A. strepera), 15; and northern shoveler (A. clypeata), 8. The average number of nests found was 8/100 ha in 1984 and 6/100 ha in 1985. Nest success for all species averaged 26% in 1984 and 29% in 1985. Predation by mammals was the principal cause of nest destruction. No egg or hen mortality could be attributed to pesticide use. Only 6 of 151 nests (4%) were abandoned during the two years. We also found 29 nests of seven other ground-nesting bird species. The trend toward increased planting of no-till winter wheat in the prairie pothole region should benefit production of ducks and other ground-nesting birds.
Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data
Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh
2017-11-01
Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop
Directory of Open Access Journals (Sweden)
M. E. Riazanova
2015-03-01
Full Text Available The study deals with the effect of proquinazid and copper oxide application on structural characteristics and resistance of wheat to powdery mildew, as well as remobilisation and redistribution of anions pools at generative stage of development. The trial series was conducted in the experimental agricultural production of the Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine. Field experiments were carried out with Smuglyanka variety of winter wheat. The trial series included the application of fungicides such as Talius (proquinazid, 200 g/L 0,25 L/ha and Kocide 2000 (copper hydroxide, 350 g/kg 150 and 300 g/ha, and combination of both fungicides. Sprays were applied at tillering stage in autumn in the first trial series and at tillering-booting stage in spring in the second one. Assessment of affected plants by powdery mildew was carried out visually in points. Anion concentration was determined with the use of ion chromatography. Application of fungicides at tillering stage increases the amount of productive stems in wheat plants. The highest effect was recorded for application of copper hydroxide at dose of 300 g/ha in autumn. Analysis of plants affected by powdery mildew shows that application of proquinazid and its composition with copper hydroxide provides sustained protection against Blumeria graminis (DC Speer. Application of fungicides at tillering stage contributes to increase of the pool of free nitrogen, phosphorus and sulfur anions in leaf tissues compared to control. These changes in anion composition may be caused by fungicide effect on activity of N, P, S transporters, as well as internal regulatory mechanisms of elements’ uptake by plants. Comparing the results of the autumn and spring application of fungicides should note the increase in concentration of free phosphates in wheat leaves in the 2nd trial with proquinazid and its composition with copper hydroxide. Accumulation of nitrogen in the
Directory of Open Access Journals (Sweden)
P. P. Guo
2015-10-01
Full Text Available This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE and crude protein (CP of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF, acid detergent fiber (ADF and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE, metabolizable energy (ME content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01 by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01. There was an interaction between wheat variety and storage time for CP digestibility (p<0.05, such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05. In conclusion, the GE, DE, and ME
Lu, Yingjian; Luthria, Devanand; Fuerst, E Patrick; Kiszonas, Alecia M; Yu, Liangli; Morris, Craig F
2014-10-29
This study investigated the effect of breadmaking on the assay of phenolic acids from flour, dough, and bread fractions of three whole and refined wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenoilc acids showed that yields of total phenolic acids (TPA) were 5-17% higher among all varieties and flour types when samples were directly hydrolyzed in the presence of ascorbate and EDTA as compared to the method separating free, soluble conjugates and bound, insoluble phenolic acids. Ferulic acid (FA) was the predominant phenolic acid, accounting for means of 59 and 81% of TPA among all refined and whole wheat fractions, respectively. All phenolic acids measured were more abundant in whole wheat than in refined samples. Results indicated that the total quantified phenolic acids did not change significantly when breads were prepared from refined and whole wheat flour. Thus, the potential phytochemical health benefits of total phenolic acids appear to be preserved during bread baking.
DEFF Research Database (Denmark)
Suarez, Alfonso; Rasmussen, Jim; Thomsen, Ingrid Kaag
2018-01-01
of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake......The current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers...... (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite...
International Nuclear Information System (INIS)
Kaliakatsou, Evridiki; Bell, J. Nigel B.; Thirtle, Colin; Rose, Daniel; Power, Sally A.
2010-01-01
Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O 3 , with losses of up to 25%. However, the only British econometric study on O 3 impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O 3 tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. - Econometric study of British winter wheat trial plot data suggests lower economic loss than predicted from experiments.
Franch, B.; Vermote, E.; Roger, J. C.; Skakun, S.; Becker-Reshef, I.; Justice, C. O.
2017-12-01
Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season and the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data. These methods were applied to MODIS CMG data in Ukraine, the US and China with errors around 10%. However, the NDVI is saturated for yield values higher than 4 MT/ha. As a consequence, the model had to be re-calibrated in each country and the validation of the national yields showed low correlation coefficients. In this study we present a new model based on the extrapolation of the pure wheat signal (100% of wheat within the pixel) from MODIS data at 1km resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national yield of winter wheat in the United States and Ukraine from 2001 to 2016.
Effects of the Tillage Technology and the Forecrop on Weeds in Stands of Winter Wheat
Directory of Open Access Journals (Sweden)
Jan Winkler
2015-01-01
Full Text Available The semipilot-scale field experiment was established in the cadastre of the village Letkovice in the South Moravian Region (Czech Republic. The study area was situated in a warm climatic region T2. Winter wheat was cultivated in two variants of tillage, viz. conventional tillage (CT and minimum tillage (MT and after three different forecrops (fodder beet, late potatoes, and broad (faba bean. Weed infestation of wheat stands was evaluated in spring seasons of 2007 and 2008, always before the application of herbicides. Numbers of weed specimens and their species were defined by means of a calculation method. Recorded data were processed by means of multidimensional analyses of ecological data, viz. Data Correspondence Analysis (DCA and Redundancy Analysis (RDA. Within the study period, altogether 22 weed species were identified in all variants with different tillage technologies and different forecrops. In the MT variant, the degree of winter wheat stand infestation with weeds was lower. As far as the forecrops were concerned, the most and the least intensive degrees of infestation were recorded on plots with faba bean and late potatoes, respectively.
Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.
2010-01-01
In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter
The response of winter wheat to water stress and nitrogen fertilizer use efficiency
International Nuclear Information System (INIS)
Wang, F.; Qi, M.; Wang, H.; Changjiu, Z.
1995-01-01
The response of winter wheat to water stress imposed at different crop growth stages by deficit irrigation and fertilizer use under several schemes of irrigation were evaluated on fine sandy soil and sand loam soil. The results showed that according to grain yield response factor K, the order of sensitive growth stages of winter wheat to water stress in decreasing sequence were booting to flowering ( K= 0.90), winter afterward to booting ( K= 0.69), flowering to milking ( K= 0.44) and milking to ripening ( K= 0.25). Field water efficiency would get 16.7 kg/mm.ha when no water stress in growth period, and when water stress has occurred in some growth stages, the value of it decreased by 5 - 20 percent. It was also found that high fertilizer application rate without split application would not significantly influence the yield on fine sandy soil. But schedule of irrigation affected the translocation of nitrogen in the plant. When water stress occurred in later growth stage, the ratio of NUE in gain to straw decreased, and fertilizer was available for crop only about one month after fertilizer application, excessive fertilizer rate would result in decrease of NUE by leaching of nitrogen in sandy soil. Total recovery of fertilizer at harvest was half amount of application. 6 refs; 10 tabs; ( author)
Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat
Directory of Open Access Journals (Sweden)
Luboš Purchart
2005-01-01
Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.
Directory of Open Access Journals (Sweden)
Xue Wang
2018-01-01
Full Text Available The North China Plain (NCP is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence drawn from a case study in Cangxian County, Hebei Province. First-hand data were collected for this study from 350 households in 35 villages, using semistructured one-on-one questionnaires. Five types of irrigation water sources were defined and identified at the level of individual land plots: “ground and surface water”, “just groundwater”, “just rivers”, “just reservoirs”, and “no irrigation”. These levels correspond to a decreasing trend in the overall frequency of irrigation and thus provide a clear proxy indicator for IWA. The results from a series of multilevel multinomial models show that the higher the IWA, the less likely it is for a land plot to abandon winter wheat. Specifically, using “no irrigation” cases as a control group, the results show that land plots with more sources of irrigation water also tend to be characterized by greater IWA, including “ground and surface water” and “just groundwater”, and also have lower probabilities of abandoning winter wheat. In contrast, land plots with less IWA (less irrigation water sources, including “just reservoirs” and “just rivers”, are more likely to abandon winter wheat. The results also show that, in addition to IWA, soil quality and plot size at the plot level, as well as demographic characteristics, farm equipment, and land fragmentation at the household level and irrigation prices at the village level, all play additional significant roles in the cropping
Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat
Directory of Open Access Journals (Sweden)
Doherty Angela
2005-09-01
Full Text Available Abstract Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties.
Girvin, John; Whitworth, R Jeff; Rojas, Lina Maria Aguirre; Smith, C Michael
2017-08-01
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a global pest of wheat and vectors some of the most damaging strains of barley yellow dwarf virus (BYDV). In years of heavy R. padi infestation, R. padi and BYDV together reduce wheat yields by 30-40% in Kansas and other states of the U.S. Great Plains wheat production area. Cultivation of wheat cultivars resistant to R. padi can greatly reduce production costs and mitigate R. padi-BYDV yield losses, and increase producer profits. This study identified cultivars of hard red and soft white winter wheat with R. padi resistance that suppress R. padi populations or tolerate the effects of R. padi feeding damage. 'Pioneer (S) 25R40,' 'MFA (S) 2248,' 'Pioneer (S) 25R77,' and 'Limagrain LCS Mint' significantly reduced R. padi populations. MFA (S) 2248, Pioneer (S) 25R40, and 'Limagrain LS Wizard' exhibited tolerance expressed as significantly greater aboveground biomass. These findings are significant in that they have identified wheat cultivars currently available to producers, enabling the immediate improvement of tactics to manage R. padi and BYDV in heavily infested areas. Secondarily, these results identify cultivars that are good candidates for use in breeding and genetic analyses of arthropod resistance genes in wheat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hezu 8, a new wheat variety developed with in vitro mutation technique
International Nuclear Information System (INIS)
Gao Mingwei
1992-01-01
A new wheat variety named Hezu 8 was developed by in vitro mutation techniques combining the somatic tissue culture with the radiation-induced mutation. This is the first one in the world for breeding wheat variety in such a way, that the nuclear technology was successfully applied to biotechnology. Hezu 8 is featured by high yield potential, early maturity, disease resistance, tolerance to moisture as well as good grain quality. In vitro mutation technique has proved to be helpful in increment of the frequency of somaclonal variation, promotion of the variation stability, acceleration of breeding process, reduction of the population size for variant selection, and finally, improvement of the breeding efficiency. In vitro mutation technique can be also widely applied to other crops and will open up a brilliant prospect for crop improvement
Czech Academy of Sciences Publication Activity Database
Janeczko, A.; Biesaga-Koscielniak, J.; Dziurka, M.; Filek, M.; Hura, K.; Jurczyk, B.; Kula, M.; Oklešťková, Jana; Novák, Ondřej; Rudolphi-Skórska, E.; Skoczowski, A.
2018-01-01
Roč. 37, č. 1 (2018), s. 199-219 ISSN 0721-7595 Institutional support: RVO:61389030 Keywords : Androstenedione * Frost resistance * Langmuir analysis * Phytohormones * Soluble sugars * Winter wheat Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.073, year: 2016
Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...
Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety
Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...
International Nuclear Information System (INIS)
Saleh, B.
2012-01-01
This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)
Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...
Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun
2018-01-01
Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.
Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.
2016-11-01
Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If
The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).
Xu, Ming
2015-07-20
This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.
Shangguan, Yu-Xian; Shi, Ri-Peng; Li, Na; Han, Kun; Li, Hui-Ke; Wang, Lin-Quan
2012-06-01
The objective of this experiment was to quantify ammonia volatilization from a winter wheat field with plastic film mulched-ridges and unmulched-furrows (PMRF). The trial was conducted during the 2010-2011 winter wheat growing season at Yangling, Shaanxi Province. Ammonia volatilization from the soil was measured using the closed-chamber method. The results indicated that NH3 emission losses ranged between (1.66 +/- 0.3) and (3.28 +/- 0.51) kg x hm(-2) in the PMRF treatment. In comparison, the NH3 emission loss was (4.68 +/- 0.35) kg x ha(-1) in the conventional tillage treatment (i. e., smooth soil surface). The PMRF treatment reduced NH3 emissions by 29.8 to 63.8% compared with the conventional treatment. The NH3 emission losses were equivalent to 1.9% of the applied N in the conventional practice treatment. In contrast, the losses were equivalent to only 0.3% to 0.8% of the applied N in the PMRF treatment. Ammonia emissions were greatest during the first two weeks after sowing. Emissions before winter accounted for 82% of total NH3 emission in the conventional practice treatment, but only 49% to 61% of the total NH3 emission in the PMRF treatment. The soil NH4+ -N content and the soil moisture content had direct effects on NH3 emission before winter in the conventional treatment. In thePMRF treatment, the soil NH4+ -N content had a direct effect on NH3 emission before winter, whereas soil surface temperature and soil moisture had indirect effects. Ammonia emissions after the greening stage were mainly influenced by the soil NH4+ -N content. Simulation results indicated that logarithmic functions best described cumulative NH3 emission in the PMRF + high N rate treatment and the conventional treatment. A linear function best described cumulative NH3 emission in the PMRF + low N rate treatment and the unfertilized treatment. In conclusion, the PMRF treatment can significantly reduce N losses from winter wheat fields by changing the spatial-temporal dynamics of soil
The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara
Marcela Dragoş; Paul Pîrşan
2011-01-01
Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sow...
SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT
CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR
The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was
Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...
Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.
2014-12-01
Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.
Application of Mutation Techniques in the Development of Drought Tolerant Wheat Varieties in Kenya
International Nuclear Information System (INIS)
Kinyua, M.G.; Wanga, H.
1998-01-01
Development of drought tolerant wheat is very important for Kenya as it could lead to utilisation of a large area of the country, which is otherwise under-utilised for crop production. At present there is no crop of economic importance, which being grown in this area. Mutation technique form one of the breeding methods, which can be used to produce suitable wheat varieties for drought prone areas in this country. Wheat seed variety ''pasa'' was irradiated with 160 gy from cobalt source. These irradiated seed were planted at the cage at Njoro, in the main season of 1996. At M2, 4 heads were harvested from 20 selected plants in each row. These were threshed singly. Three of the heads were planted in three sites which experience drought (Katumani, Naivasha and Narok), while one was kept as reserve. Selections of M3 plants, which showed tolerance to drought as compared to the parent variety were made.The parent scored 2 on a 1 to 5 scale for drought tolerance. On this scale 1 indicates susceptibility to drought while 5 indicates drought tolerance. Twenty-one M3 selections scored 4 or 5 on this scale. These therefore showed higher degree of drought tolerance than pasa. For those to score higher than pasa, mutation should have induced some higher degree of drought tolerance.There is indication that, mutation techniques could be used in inducing drought tolerance to wheat growing in Kenya (author)
Post-heading heat stress and yield impact in winter wheat of China.
Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold
2014-02-01
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.
Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.
Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw
2006-02-22
Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.
Directory of Open Access Journals (Sweden)
Darko Uher
2007-06-01
Full Text Available Two year field trials (1999 - 2001 were performed to determine theinoculation seed winter pea and nitrogen top-dressing effect on number and active nodules of pea root and also on the green mass and dry matter yield of winter pea cv. Maksimirski ozimi and wheat cv. Sana mixture. Immediately before sowing the inoculation of pea seeds was accomplished by the indigenous variety of Rhizobium leguminosarum bv. viciae which belongs to the collection of Department of Microbiology at the Faculty of Agriculture University of Zagreb. The highest total nodule number on pea root (159 was determined on the inoculated variant as well as active nodule 144. Average mixture green mass yield were ranging from 24,65 t ha-1 (control up to 35,50 t ha-1 (inoculation. Total dry matter yields were ranging from 3,93 t ha-1 (control up to 5,66 t ha-1 (inoculation. Yields crude proteins pea in 2001 were ranging from 692 kg ha-1 (control up to 1058 kg ha-1 (inoculation and for wheat, those values ranged from 199 kg ha-1 (control up to 454 kg ha-1 (nitrogen top-dressing. Total crude proteins mixture yields were in range from 891 kg ha-1 (control up to 1360 kg ha-1 (inoculation.
Bread wheat varieties as influenced by different nitrogen levels.
Hussain, Iqtidar; Khan, Muhammad Ayyaz; Khan, Ejaz Ahmad
2006-01-01
Experiment was conducted to determine the effect of different nitrogen levels on four bread wheat varieties (Triticum aestivum L.) viz. Inqilab-91, Daman-98, Dera-98 and Punjab-96 at Gomal University, Dera Ismail Khan (NWFP), Pakistan during 2000 approximatey 2001. The experiment was laid out in split plot design having four replications using a net plot size of 2 m x 5 m. Nitrogen doses used were 0, 50, 100, 150 and 200 kg/ha. The results showed that different nitrogen levels had significant effects on plant height, total number of plants/m(2), number of grains/spike, number of spike/m(2), spike weight, biological yield, grain yield and grain protein content. Maximum plant height, total number of plants/m(2), number of spikes/m(2), spike weight, biological yield and grain protein content were observed at 200 kg N/ha. Among wheat varieties Daman-98 had maximum plant height, spike weight, grains/spike, 1000-grain weight, biological yield and grain yield. Inqilab-91 had heavier grains and the most grain protein content, while Dera-98 had the maximum plant population and spikes/m(2). Grain yield and biological yield were statistically similar at doses of 150 kg N/ha and 200 kg N/ha. However, dose of 200 kg N/ha, compared to dose of 150 Kg N/ha, significantly increased the protein content.
Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin
2015-08-01
A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.
Naruoka, Y; Garland-Campbell, K A; Carter, A H
2015-06-01
Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.
Mineral nutrition as a factor of stability of technological quality in winter wheat cultivars
Directory of Open Access Journals (Sweden)
Đurić Veselinka
2005-01-01
Full Text Available Afield trial was carried out with eight cultivars (Libellula, Drina, Sremica NSR-2, Jugoslavija, Somborka, Lasta and Pobeda of winter wheat (Trticum aestivum L representing several different periods in our country's wheat selection and having different potentials for technological grain quality. Six different rates of nitrogen fertilizer were tested: 0, 60, 90, 120, 150 and 180 kgNha-1. Increasing N fertilizer rates resulted in a linear increase of the direct and indirect indicators of quality. The best results were obtained with the cultivar Sremica and the poorest with Lasta, while Jugoslavija and Pobeda were shown to be of approximately the same quality. The contribution of N fertilizer variance to total variance was the largest for protein content (43.7%. N nutrition had a greater influence on protein content in cultivars from the earlier periods of selection. Its effect on sedimentation value, on the other hand, was greater in the recently released cultivars. The contribution of the genetic factor to total variance was the highest for crumb value number (CVN (58.7% and bread volume yield (44.2% and the lowest for protein content (20.8%. The absence of significant differences in the CVN means at any of the N nutrition levels studied resulted from the variability of the indirect indicators closely linked with the direct indicators of baking quality, showing the importance of N nutrition for maintaining the stability of technological quality in winter wheat cultivars.
Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo
2017-05-01
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.
2008-01-01
A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done
DEFF Research Database (Denmark)
Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman
2017-01-01
The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...
Quantifying variety-specific heat resistance and the potential for adaptation to climate change.
Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier
2016-08-01
The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.
Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad
2013-10-01
Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.
International Nuclear Information System (INIS)
Thielert, W.
1984-11-01
The paper on hand studies the following issues: 1) What is the course of uptake of the agent and/or its metabolites into the plant following dry seed treatment of winter barley and winter wheat with [benzene ring-U- 14 C] triadimenol and sowing in the top-soil of a loess-based grey-brown podzolic soil. 2) What is the relevance of uptake and follow-up supply from the dressed zones of plants in neighbouring rows. 3) What is the extent of uptake and follow-up supply via the roots from dressed zones of neighbouring plants within the same row. 4) What is the course of dressed-zone formation following dry treatment of winter barley and winter wheat and sowing in the top-soil of a loess-based grey-brown podzolic soil. 5) What is the quantitative distribution of the agent on the pericarp of winter wheat caryopses following dry seed treatment. 6) Will the 14 C-labelled agent be taken up, too, via the caryopsis and be translocated in scion and root. 7) What are the pathways of the agent from the caryopsis into the embryo. 8) How long will follow-up supply via the scutellum continue. The results concerning issues 1 to 4 were taken from tests with field lysimeters. Experiments concerning issues 6-8 were performed without soil in an climatic chamber. (orig./MG) [de
Directory of Open Access Journals (Sweden)
Martynov Sergey
2016-12-01
Full Text Available A comparative analysis of genetic diversity of North American spring wheat varieties differing in resistance to pre-harvest sprouting was carried out. For identification of sources of resistance the genealogical profiles of 148 red-grained and 63 white-grained North-American spring wheat varieties with full pedigrees were calculated and estimates were made of pre-harvest sprouting. The cluster structure of the populations of red-grained and white-grained varieties was estimated. Analysis of variance revealed significant differences between the average contributions of landraces in the groups of resistant and susceptible varieties. Distribution of the putative sources of resistance in the clusters indicated that varieties having different genetic basis may have different sources of resistance. For red-grained varieties the genetic sources of resistance to pre-harvest sprouting are landraces Crimean, Hard Red Calcutta, and Iumillo, or Button, Kenya 9M-1A-3, and Kenya-U, or Red Egyptian and Kenya BF4-3B-10V1. Tracking of pedigrees showed these landraces contributed to the pedigrees, respectively, via Thatcher, Kenya-Farmer, and Kenya-58, which were likely donors of resistance for red-grained varieties. For white-grained varieties the sources of resistance were landraces Crimean, Hard Red Calcutta, Ostka Galicyjska, Iumillo, Akakomugi, Turco, Hybrid English, Rough Chaff White and Red King, and putative donors of resistance — Thatcher, RL2265, and Frontana. The genealogical profile of accession RL4137, the most important donor of resistance to pre-harvest sprouting in North American spring wheat breeding programmes, contains almost all identified sources of resistance.
International Nuclear Information System (INIS)
Bovkis, E.N.
1978-01-01
For the first time the mutagenous efficiency of gamma-irradiation of male gametes(pollen) for genetic and selection purposes has been studied using three sorts of winter wheat. It is shown, that a critical irradiation dose for soft wheat in respect of degree of reducing the mass of 1000 grains and survive is 2.0 krad. Application of irradiated pollen results in a wide spectrum of mutagenous changeability, at that, one part of forms remains constant and the other is splitted according to the type of intraspecific hybrids. Pollen irradiation doses are grounded to produce mutants having some important selection features. Irradiation doses from 0.25 to 0.5 krad are most effective to produce mutants with productive ears and from 1.0 to 1.5 krad to produce short-stem ones. More than 80 mutants are studied in respect of productivity and other indications in a control nursery. Combination productivity value of some short-stem mutants has been studied; it is shown, that as a rule it is preserved at the level of initial sorts. The use of historical method for understanding the regularities of mutant appearance is of great theoretical interest during the investigations. It has been established, that mutants relating to different varieties appear with unequal frequency, which, possibly, is due to the species genotype
Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed
2014-01-01
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
Directory of Open Access Journals (Sweden)
Nanna Hellum Nielsen
Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
Residual N effect of long-term applications of cattle slurry using winter wheat as test crop
DEFF Research Database (Denmark)
Suarez, Alfonso; Thomsen, Ingrid Kaag; Rasmussen, Jim
2018-01-01
) as reference treatments. In the test years, the customary nutrient treatments were withheld and each plot divided into six subplots randomly allocated increasing rates of mineral fertilizer N (0–250 kg N ha−1). The winter wheat yielded more in the first test year due to crop rotational effects and more benign...... climatic conditions, substantiating that more test years are needed when estimating residual N effects. The residual value of N added previously with NPK was negligible. In the first year, grain yields at N optimum were similar for NPK and SLU, but the amount of fertilizer N needed to reach optimum yield...... in cattle slurry (50, 100 and 150 kg total-N ha−1 termed ½, 1 and 1½ SLU), we estimated the residual N value over two consecutive growth periods (2014/2015 and 2015/2016). We used winter wheat as test crop and soils with a history of mineral fertilizers only (1 PK (no N)) and 1 NPK (100 kg N ha−1...
DEFF Research Database (Denmark)
Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine
1999-01-01
of this novelmethod with respect to various experimental parameters has been tested. The results can be summarised: (i)With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlationcoefficient of 1.0, (ii) The method is fast since the time of extracting gliadins from flour......A novel tool for variety identification of wheat (Triticum aestivum L.) has been developed: an artificialneural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... by the identity of the operator making theanalysis. This study demonstrates that a combination of an ANN and MALDI-TOFMS analysis of thegliadin fraction provides a fast and reliable tool for the variety identification of wheat. Copyright 1999 JohnWiley & Sons, Ltd....
Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul
2015-02-01
A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.
Windt, C.W.; van Hasselt, P.R
Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees
Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip
2015-02-01
New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.
Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared
Olinger, Jill M.; Griffiths, Peter R.
1989-12-01
Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9
Recurrent selection as breeding strategy for heat tolerance in wheat
Directory of Open Access Journals (Sweden)
Juarez Campolina Machado
2010-01-01
Full Text Available The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter. The genetic gain and the existence of variability show the possibility of successful recurrent selection for heattolerancein wheat.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter
Directory of Open Access Journals (Sweden)
Jingxin Xu
Full Text Available Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L. at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb, Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb, and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb, with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system. These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2 = 0.85 & T2: R(2 = 0.89 of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2 of cumulative ozone uptake. At the regional level, dry matter
Directory of Open Access Journals (Sweden)
Ewa Moszczyńska
2012-12-01
Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.
Chandna, Ruby; Gupta, Sarika; Ahmad, Altaf; Iqbal, Muhammad; Prasad, Manoj
2010-06-01
Wheat (Triticum aestivum L.) is a staple food for half of the world. Its productivity and agronomical practices, especially for nitrogen supplementation, is governed by the nitrogen efficiency (NE) of the genotypes. We analyzed 16 popular cultivated Indian varieties of wheat for their NE and variability estimates using a set of 21 simple sequence repeat (SSR) markers, derived from each wheat chromosome. These genotypes were categorized into three groups, viz., low, moderate, and high nitrogen efficient. Of these 16 genotypes, we have reported six, eight, and two genotypes in high, moderate, and low NE categories, respectively. The differential NE in these genotypes was supported by nitrogen uptake and assimilation parameters. The values of average polymorphic information content and marker index for these SSR markers were estimated to be 0.32 and 0.59, respectively. The genetic similarity coefficient for all possible pairs of varieties ranged from 0.41 to 0.76, indicating the presence of considerable range of genetic diversity at molecular level. The dendrogram prepared on the basis of unweighted pair-group method of arithmetic average algorithm grouped the 16 wheat varieties into three major clusters. The clustering was strongly supported by high bootstrap values. The distribution of the varieties in different clusters and subclusters appeared to be related to their variability in NE parameter that was scored. Genetically diverse parents were identified that could potentially be used for their desirable characteristics in breeding programs for improvement of NE in wheat.
Clement, JMAM; vanHasselt, PR
1996-01-01
Frost hardiness of winter wheat leaves (Triticum aestivum L. cv. Urban) was measured during an eight weeks hardening period using chlorophyll fluorescence. Determination of frost induced damage after freezing, measured as the decrease of photochemical capacity of photosystem II (F-V/F-M =
The breeding of a wheat mutant pollen-derived variety Chuanfu No.5 and the related techniques
International Nuclear Information System (INIS)
Xuan Pu; Yin Chunrong; Yue Chunfang; Qu Shihong
2002-01-01
With the treatment of 150 Gy 60 Co-γ irradiation to the dry F 1 (Mianyang 88-334 x 8811525) hybrid seeds and the donor plants chosen from MF 2 , wheat anther culture was made based on MW 14 and modified MS media and the pure diploid lines of MH 1 derived from anther pollen were obtained. In 1996, the new mutant line 6086 and its sibling lines, 6086 and 6087, were selected and bred successfully. In 2002, the mutant pollen-derived line 6086 was denominated as Chuanfu No.5 by Sichuan Crop Variety Identification Committee and became the first mutant variety via anther culture of wheat in Sichuan. The success of Chuanfu No.5 shown that combining radiation induction and anther technique could shorten the breeding period and increase the efficiency of breeding of wheat
OPPORTUNITIES TO USE PEA - WHEAT MIXES IN ORGANIC FARMING
Directory of Open Access Journals (Sweden)
Grigori Ivanov
2015-12-01
Full Text Available This article presented the results of productivity and quality of the green mass of pea-wheat mixes grown in conditions of organic farming. Are explored 5 wheat varieties - Sadovo 1, Geia 1, Guinness, Farmer, Liusil and 4 varieties of winter peas -Mir, Vesela, №11, L12AB, at different ratio between them - 50:50 and 30:70%. The selection of varieties is made based on previous studies of their complex characteristics – ripening, yield, chemistry (Angelova S., T.Georgieva, M.Sabeva, 2011. Setting up and raising the experimental mixture of seeds has been made in a medium free of organic and mineral fertilizers. We have studied the changes in green mass yield and the biochemistry of surface biomass. The cultivation of pea–wheat mixtures under conditions of organic farming leads to increased yields of green mass in comparison with the self-seeding of wheat and peas. According to the results obtained at early ripening and the highest crude protein content average of three years is the mixture Sadovo1–Mir 30:70%. The most productive is the mixture Sadovo1-Mir 50-50%.
Recurrent selection as breeding strategy for heat tolerance in wheat
Juarez Campolina Machado; Moacil Alves de Souza; Davi Melo de Oliveira; Adeliano Cargnin; Aderico Júnior Badaró Pimentel; Josiane Cristina de Assis
2010-01-01
The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter). The genetic gain ...
Nuclear technique for inducing new genetical sources of powdery mildew resistant mutants of wheat
International Nuclear Information System (INIS)
Shi Jinguo; Hu Xiaoyuan; Fan Qingxia; Wang Linqing; Hong Jisong
1996-01-01
Three varieties of winter wheat were treated with γ-rays, electron-beams, NaN 3 , EMS with various doses and intermittent irradiation of γ-rays respectively. 16 pure varieties and 12 hybrids were irradiated by γ-rays with appropriate doses (250∼300 Gy) for inducing mutation resistant to powdery mildew in winter wheat. γ-rays, electron-beams, NaN 3 and EMS were effective mutagens for inducing powdery mildew resistant mutants. The latter two were more effective than the former. It showed that the appropriate doses were as follows: γ-rays 300∼350 Gy, electron-beams 100∼200 Gy, NaN 3 1∼3 mmol/L, EMS about 0.3%. It also showed that the intermittent irradiation of γ-rays was more effective than the continuous irradiation for inducing powdery mildew resistant mutants. Irradiating hybrids were more effective materials than pure varieties for this purpose. 86 mutants with resistance to powdery mildew were obtained
Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.
2015-01-01
The present study described the diversity of wheat and barley varieties and landraces available in farmer’s fields in Syria using different indicators. Analysis of spatial and temporal diversity and coefficient of parentage along with measurements of agronomic and morphological traits were employed
Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao
2014-07-01
In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.
Directory of Open Access Journals (Sweden)
Xiaoyu Song
2017-03-01
Full Text Available Wheat grain protein content (GPC is a key component when evaluating wheat nutrition. It is also important to determine wheat GPC before harvest for agricultural and food process enterprises in order to optimize the wheat grading process. Wheat GPC across a field is spatially variable due to the inherent variability of soil properties and position in the landscape. The objectives of this field study were: (i to assess the spatial and temporal variability of wheat nitrogen (N attributes related to the grain quality of winter wheat production through canopy fluorescence sensor measurements; and (ii to examine the influence of spatial variability of soil N and moisture across different growth stages on the wheat grain quality. A geostatistical approach was used to analyze data collected from 110 georeferenced locations. In particular, Ordinary Kriging Analysis (OKA was used to produce maps of wheat GPC, GPC yield, and wheat canopy fluorescence parameters, including simple florescence ratio and Nitrogen Balance Indices (NBI. Soil Nitrate-Nitrogen (NO3-N content and soil Time Domain Reflectometry (TDR value in the study field were also interpolated through the OKA method. The fluorescence parameter maps, soil NO3-N and soil TDR maps obtained from the OKA output were compared with the wheat GPC and GPC yield maps in order to assess their relationships. The results of this study indicate that the NBI spatial variability map in the late stage of wheat growth can be used to distinguish areas that produce higher GPC.
The evaluation of winter wheat roots and leaf sheath diseases diagnostic methods
Directory of Open Access Journals (Sweden)
Ewa Solarska
2012-12-01
Full Text Available The maltose and mineral media for isolation of Gaeumannomyces graminis from roots were assessed. The differences in numbers of obtained isolates were found depending on the medium used and sampling date. Easier identification of pathogen was possible employing maltose medium. The fungi from genus Fusarium occurring on winter wheat leaf sheaths were identified by mycological analysis and PCR, while the fungus Pseudocercosporella herpotrichoides was detected by PCR and ELISA methods. PCR and ELISA methods enabled to detect pathogens also in periods before the disease symptoms on plants occurred.
International Nuclear Information System (INIS)
Jamali, Muhammad K.; Kazi, Tasneem G.; Arain, Muhammad B.; Afridi, Hassan I.; Jalbani, Nusrat; Kandhro, Ghulam A.; Shah, Abdul Q.; Baig, Jameel A.
2009-01-01
The concentrations of heavy metals (HMs) in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate them from the soil dressed with sewage sludge. A study to comprehend the mobility and transport of HMs from soil and soil amended with untreated sewage sludge to different newly breaded varieties of wheat (Anmol, TJ-83, Abadgar and Mehran-89) in Pakistan. A pot-culture experiment was conducted to study the transfer of HMs to wheat grains, grown in soil (control) and soil amended with sewage sludge (test samples). The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and soil amended with domestic sewage sludge (SDWS) and wheat grains were analysed by flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer, prior to microwave-assisted wet acid digestion method. The edible part of wheat plants (grains) from test samples presented high concentration of all HMs understudy (mg kg -1 ). Significant correlations were found between metals in exchangeable fractions of soil and SDWS, with total metals in control and test samples of wheat grains. The bio-concentration factors of all HMs were high in grains of two wheat varieties, TJ-83 and Mehran-89, as compared to other varieties, Anmol and Abadgar grown in the same agricultural plots.
Sensory, yield and quality differences between organically and conventionally grown winter wheat.
Arncken, Christine M; Mäder, Paul; Mayer, Jochen; Weibel, Franco P
2012-11-01
Consumers expect organic produce to have higher environmental, health and sensory related qualities than conventional produce. In order to test sensory differences between bio-dynamically, bio-organically and conventionally grown winter wheat (Triticum aestivum L., cv. Runal), we performed double-blinded triangle tests with two panels on dry wholemeal flour from the harvest years 2006, 2007 and 2009 and from two field replicates of the 'DOK' long-term farming system comparison field trial near Basel, Switzerland. Yield and quality parameters were also assessed. Significant farming system effects were found for yield (up to 42% reduction in the organic system), thousand kernel weight, hectolitre weight and crude protein content across the three years. In the triangle tests one out of 12 pair-wise farming system comparisons (PFSCs) on wholemeal flour made from the different wheat samples showed significant sensory differentiation (between bio-dynamically and conventionally grown wheat). When all data from the three harvest years and two panels were aggregated, a statistically significant effect (P = 0.045) of PFSCs on the number of correct answers became evident. Although testing of dry wholemeal flour was very challenging for panellists, we were able to show that sensory differences between farming systems can occur. Copyright © 2012 Society of Chemical Industry.
DEFF Research Database (Denmark)
Chirinda, Ngoni; Roncossek, Svenja Doreen; Heckrath, Goswin Johann
2014-01-01
Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat at shoulder...
Casagrande, M.; David, C.; Valantin-Morison, M.; Makowski, D.; Jeuffroy, M.H.
2009-01-01
Organic agriculture could achieve the objectives of sustainable agriculture by banning the use of synthetic fertilizers and pesticides. However, organic crops generally show lower performances than conventional ones. In France, organic winter wheat production is characterized by low grain protein
Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views
Directory of Open Access Journals (Sweden)
Janna Macholdt
2017-06-01
Full Text Available Most of the available research studies have focused on the production of high grain yields of wheat and have neglected yield stability. However, yield stability is a relevant factor in agronomic practice and, therefore, is the focus of this comprehensive survey. The aim was to first describe the importance of yield stability as well as currently used practical management strategies that ensure yield stability in wheat production and secondly, to obtain potential research areas supporting yield stability in the complex system of agronomy. The target groups were German farmers with experience in wheat production and advisors with expertise in the field of wheat cultivation or research. A sample size of 615 completed questionnaires formed the data basis of this study. The study itself provides evidence that the yield stability of winter wheat is even more important than the amount of yield for a large proportion of farmers (48% and advisors (47%. Furthermore, in the view of the majority of the surveyed farmers and advisors, yield stability is gaining importance in climate change. Data analysis showed that site adapted cultivar choice, favorable crop rotations and integrated plant protection are ranked as three of the most important agronomic management practices to achieve high yield stability of wheat. Soil tillage and fertilization occupied a middle position, whereas sowing date and sowing density were estimated with lower importance. However, yield stability is affected by many environmental, genetic and agronomic factors, which subsequently makes it a complex matter. Hence, yield stability in farming practice must be analyzed and improved in a systems approach.
Directory of Open Access Journals (Sweden)
Zbigniew Weber
2013-12-01
Full Text Available The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.
Nguyen, Anh T; Iehisa, Julio C M; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo
2013-12-01
Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.
Viability and vigour of ageing winter wheat grains
Directory of Open Access Journals (Sweden)
Stanisław Grzesiuk
2014-01-01
Full Text Available The viability and vigour of ageing winter wheat caryopses of the cvs. Grana and Jana were tested. Viability was determined on the basis of germination capacity and rate, and vigour on the basis of the over-all activity of hydrogenases in the sprouts, exudate conductometry, analysis of sprout growth, oxygen uptake and mitochondrial protein content in the sprouts. What is called energy (or rate of germination and over-all dehydrogenase activity in embryos and sprouts and the electroconductivity of exudates were found to be very good measures of the vigour of ageing caryopses. The latter two indices of vigour should be determined at a strictly defined moment of swelling and germination. Good measures of caryopse vigour are also respiration during swelling and at the beginning of germination and mitochondrial protein content in the sprouts or seedlings. There is a high correlation between the vigour of ageing grain and its bioenergetic indices.
DEFF Research Database (Denmark)
Mu, H; Jiang, D; Wollenweber, Bernd
2010-01-01
the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...
New early-ripening wheat mutant lines from the varieties Norman and Avalon
International Nuclear Information System (INIS)
Djelepov, K.
1988-01-01
The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding
Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...
International Nuclear Information System (INIS)
Wang Zhifen; Chen Xueliu; Yu Meiyan
1997-01-01
The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively
Ji, Xing-jie; Cheng, Lin; Fang, Wen-song
2015-09-01
Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.
Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan
2018-01-01
Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.
Directory of Open Access Journals (Sweden)
Xiangying Xu
Full Text Available Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI. The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June had a closer linkage to the yields than in the seedling stage (October-November and the over-wintering stage (December-February. Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.
Czech Academy of Sciences Publication Activity Database
Věchet, L.; Martínková, J.; Šindelářová, Milada; Burketová, Lenka
2005-01-01
Roč. 51, č. 10 (2005), s. 469-475 ISSN 1214-1178 R&D Projects: GA ČR GA522/03/0353 Institutional research plan: CEZ:AV0Z50380511 Keywords : winter wheat * inducer of resistence * powdery mildew Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.170, year: 2004
Czech Academy of Sciences Publication Activity Database
Filek, M.; Rudolphi-Skórska, E.; Sieprawska, A.; Kvasnica, Miroslav; Janeczko, A.
2017-01-01
Roč. 128, DEC (2017), s. 37-45 ISSN 0039-128X R&D Projects: GA ČR GJ15-08202Y Institutional support: RVO:61389030 Keywords : 24-Epibrassinolide * 24-Epicastasterone * Galactolipids * Phospholipids * Progesterone * Seedlings * Winter wheat Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.282, year: 2016
DEFF Research Database (Denmark)
Sørensen, Helle Aagaard; Sperotto, Maria Maddalena; Petersen, M.
2002-01-01
The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.(1) Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means of....... With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90....
Energy Technology Data Exchange (ETDEWEB)
Grundas, S [Instytut Agrofizyki Polskiej Akademii Nauk, Lublin (Poland)
1995-07-01
The paper contains basic information on mechanical damage to wheat grains. The most important causes of mechanical damage and some of its effects in manufacturing are discussed. Grain material included 5 varieties of winter wheat and 2 varieties of spring wheat. Internal mechanical damage was examined by X-ray technique; external damage was examined with the colorimeter method. The results obtained were compared with the estimation results of more important processing features of the grain: gluten quantity and quality and grain hardness. (author)
Rogniaux, Hélène; Pavlovic, Marija; Lupi, Roberta; Lollier, Virginie; Joint, Mathilde; Mameri, Hamza; Denery, Sandra; Larré, Colette
2015-05-01
Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Csorba Szilveszter
2014-12-01
Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.
Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F
2016-09-28
Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®
Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan
2016-10-01
The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.
Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat
Directory of Open Access Journals (Sweden)
Agnieszka Mączyńska
2012-12-01
Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.
Directory of Open Access Journals (Sweden)
karim moosavi
2009-06-01
Full Text Available In order to evaluate wild mustard competitive effect on winter wheat, an additive series experiment was conducted in 2000-2001 at Agricultural Research Station of Mashhad University.The experiment had 3 factor: wheat seed rate (175 , 215 and 255 kg/ha, nitrogen rate (150 and 225 kg/ha, and a range of wild mustard densities. Hyperbolic functions was used to describe yield-weed density relationship. Increasing wild mustard density had a negative , asymptotic – type effect on wheat biomass and grain yield. By increasing wheat seed rate , in optimum nitrogen rate , maximum wheat biomas loss has reduced about 51 %. Maximum yield loss has increased from 42.1 % to 50.4 %, as nitrogen rate incrased from optimum to upper optimum rate of wheat. By increasing of wheat seed rate from 175 to 255 kg/ha, maximum tiller number reduction due to high densities of wild mustard, has decreased by 54 %. Reduction of fertile tiller number was mostly occurred at presence of high nitrogen level, thus, reduction of fertile tiller number compared to control in N1 was 18% , while in N2 has increased to 30%. Wild mustard competition has reduced wheat seed number per ear 30% in compare to weed free control. Results show that wheat 1000 seed weight was more affected by nitrogen rate than plant densities. Apparently, in competition with wheat, wild mustard was better able to utilize the added nitrogen and thus gained a competitive adventage over the wheat.
Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly
2014-05-01
The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.
Directory of Open Access Journals (Sweden)
Arif Hasan Khan Robin
2015-10-01
Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.
Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana
2017-12-01
Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Directory of Open Access Journals (Sweden)
A. R. Tavakkoli
2013-03-01
Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.
Directory of Open Access Journals (Sweden)
Mukhtar Ahmed
2017-05-01
Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs
Czech Academy of Sciences Publication Activity Database
Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.
2013-01-01
Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013
'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...
DEFF Research Database (Denmark)
Mansion-Vaquie, Agathe; Ferrante, Marco; Cook, S M
2017-01-01
, intraguild predation, hyperparasitism) may complicate the assumption that a higher density of natural enemies would increase the level of biological control. We investigated the natural enemy guild composition and the predation rate along flower vs. grass margins at the edge of winter wheat (Triticum...... to the two margin types: specialists (mostly parasitic wasps) were attracted by the flower margins, while generalists (ground beetles, rove beetles and spiders) were more active in grass margins. The number of artificial caterpillars attacked was significantly greater in grass margins (mean = 48.9%, SD = 24...
Irrigation offsets wheat yield reductions from warming temperatures
Tack, Jesse; Barkley, Andrew; Hendricks, Nathan
2017-11-01
Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.
International Nuclear Information System (INIS)
Akin, A.
2001-01-01
In order to determine the biological nitrogen fixation capacities of winter and spring varieties of lentil which have of agronomic importance under the Central Anatolia region, the field experiments (winter and spring) were carried out. In both experiments, the effects of two different iconoclasts and different harvesting times on the biological nitrogen fixation capacities of lentil varieties, were investigated. The field experiments were conducted using by randomized block design as split-split plot for 4 replications. Barley was selected as the reference crop and 20 cm row spacing were used for lentil and barley. Inoculations were done immediately before sowing. 10.0 kg N/ ha for lentil varieties as 10.0 % ''1''5N atom excess and 40.0 kg N/ ha for barley (reference crop) as 2.0 % ''1''5N atom excess ammonium sulphate fertilizer were applied. In addition, 60.0 kgP 2 O 5 / ha were applied as triple superphosphate for all treatments. Plants were harvested at the different growth stages and than plant materials prepared for the analysis. Total nitrogen and % ''1''5N atom excess analysis were done by Kjeldahl method and Emission spectrometer, respectively. The amount of nitrogen fixation capacities of winter and spring lentil varieties were calculated according to the A-Value method (IAEA 1990). The results showed us that the winter varieties of lentil had higher dry matter yields and nitrogen fixation capacities than the spring varieties. Inoculation treatments had no statistically significant effects on the percentage of nitrogen derived from atmosphere (% Ndfa) and the amount of fixed nitrogen (kg N/ ha) for both experiments. In comparison between the harvesting times, the highest amount of fixed nitrogen was found at the pod formation stage for all cultivars. The average amounts of % Ndfa and fixed nitrogen (kg N/ ha) were 75.0 and 70.0 for winter cultivars, 70.0 and 45.0 for spring cultivars, respectively
[Phenotypic effects of puroindoline gene alleles of bread wheat].
Chebotar, S V; Kurakina, K O; Khokhlov, O M; Chebotar, H O; Syvolap, Iu M
2012-01-01
85 winter bread wheat varieties and lines that have been developed mostly in Ukraine were analyzed with NIR for parameters of hardness and protein content. The hardness data were compared with the data of puroindoline gene alleles analysis done earlier and the published data. Significant variation of parameters of hardness was revealed when there was low polymorphism of puroindoline genes indicating the presence of additional genes that influence the hardness parameters.
Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer
2009-01-01
The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.
Effect of gamma radiation on immature winter wheat embryo culture
International Nuclear Information System (INIS)
Sidorova, N.; Morgun, V.; Logvinenko, V.; Karpets, A.
1990-01-01
Full text: The aim was to study the effect of mutagenic treatment on callus initiation, shoot differentiation and enhancement of the variation frequency and spectrum. Seven winter wheat genotypes were used as donors for immature embryos. Spikes 14 days after anthesis were treated with 4 Gy gamma rays, then embryos were isolated. According to the effect of gamma rays on the callus induction frequency (CIF) the genotypes were divided into three groups, in the first group we observed GIF stimulation (Kiyanka, Stepnyak, UK-8, Ironovskaya 61) as compared with the control (C); the second group - CIF on the C level (Mironovskaya 806, Kharkovskaya II) and the third group - CIF is lower than in C (Lutescens 7). Regeneration frequency was reduced greatly in all genotypes under mutagenic treatment. Variation has been found for plant height, number of productive tillers, length of vegetation period, spike morphology and size, awn type. (author)
Directory of Open Access Journals (Sweden)
M. E. E. Ball
2013-03-01
Full Text Available The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG, in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP, lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI, live weight gain (LWG and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME, ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05 affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F wheats. An increase (p<0.1 of 9.3% in gain:feed was also observed at the
International Nuclear Information System (INIS)
Sohail, Y.
2015-01-01
Leaf rust infected leaves of a widely growing variety Seher-06 were collected in wheat season of 2011-12. The leaf rust isolates were assessed on Thatcher derived Lr isogenic lines and a race FHPRN was identified. Seventy six wheat varieties/lines besides Lr isogenic lines were screened against this race for seedling in glass house and for adult plant resistance at Bahawalpur and Faisalabad during 2012-13. Lr1, Lr2a, Lr9, Lr19, Lr24, Lr10+27+31 (Gatcher) and Lr28 were found completely resistant at both stages against FHPRN. Molecular screening of the wheat varieties/lines indicated the presence of leaf rust resistance genes Lr9 (0%), Lr13 (43%), Lr19 (1%), Lr20 (0%), Lr24 (4%), Lr26 (23%), Lr28 (0%), Lr34 (38%), Lr37 (1%) and Lr47 (1%) in them. Field data suggested that As-02 (Lr10+26+34), Bhakar-02 (Lr13) and Shafaq-06 (Lr10+13+27) were resistant; Pasban-90 (Lr10+13+26+27), Chenab-2000 (Lr10+13+26+27+31+34), Fbd-08 (Lr10), Millat-11 (unknown) and Punjab-11 (unknown) were found moderately resistant; Blue silver (Lr13+14a), Pak-81 (Lr10+23+26+31), Bahawalpur-97 (Lr13+26) and Lasani-08 (Lr13+27+31) were susceptible while Sh-88 (unknown), Auqab-2000 (Lr10+23+26+27+31), Iqbal-2000 (Lr3+10+13+26+27+31), Bahawalpur-2000 (Lr34) and Seher-06 (Lr10+27+31) were found highly susceptible against FHPRN. Present and previous studies revealed the presence of Lr3, 10, 13, 14a, 23, 26, 27, 31 and 34 in the Pakistani wheat varieties yet lacking Lr9, 19, 24 and 28. Therefore, the latter genes and their effective combinations should be incorporated in Pakistani varieties to combat leaf rust effectively. (author)
Directory of Open Access Journals (Sweden)
Yunlu Tian
Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.
Directory of Open Access Journals (Sweden)
ZHU Yong-chang
2017-08-01
Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.
Directory of Open Access Journals (Sweden)
A. Barbaro
2015-06-01
Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.
Reaction of winter oilseed rape varieties to elevated concentrations of lead
Directory of Open Access Journals (Sweden)
Oreščanin Bojana
2012-01-01
Full Text Available Remediation methods allow the removal of metals from contaminated soil, and phytoremediation a technology for cleaning contaminated soil and waste material by plants, is becoming increasingly used. Brassica napus L., as one of the main oilcrops and high-biomass producing species, is becoming more and more interesting for the use in phytoextraction as it is proved to be tolerant to higher concentrations of heavy metals. The aim of this study was to examine the specific responses of three commercial winter rapeseed varieties, Banaćanka, Slavica and Kata, to the increased concentrations of lead in vitro. Significant reduction in root length of plants treated with lead was observed only in the variety Slavica, indicating susceptibility of this variety to the increased concentrations of this heavy metal. As in variety Kata a significant reduction in the length of the above-ground part due to the treatment with lead was detected, it could be concluded that the variety Banaćanka is the most tolerant to the applied concentrations of lead since there were no significant changes in the growth and biomass accumulation in all treatments except one, and could be recommended for further use in phytoremediation studies. [Projekat Ministarstva nauke Republike Srbije, br. TR31025 i br. III43007
DEFF Research Database (Denmark)
Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine
2001-01-01
Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...
Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin
2013-01-01
Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754
Aroma of wheat porridge and bread-crumb is influenced by the wheat variety
DEFF Research Database (Denmark)
Starr, Gerrard; Hansen, Åse Solvej; Petersen, Mikael Agerlin
2015-01-01
evaluation, from these eight were selected for bread evaluation. Porridge and bread results were compared. Variations were found in both evaluations. Five odour- and nine flavour descriptors were found to be common to both wheat porridge and bread. The results for two descriptors: "cocoa" and "oat porridge......" were correlated between the wheat porridge and bread samples. Analysis of whole-meal and low-extraction samples revealed that the descriptors "malt", "oat-porridge", "øllebrød", "cocoa" and "grain" mostly characterized wheat bran, while descriptors for "maize", "bean-shoots", "chamomile", "umami...
Wang, Zhaohui; Wang, Bing; Li, Shengxiu
2004-08-01
Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.
Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A
2010-05-01
Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Shar, G.Q.; Kazi, T.G.; Sahito, S.; Shaikh, M.S.
2003-01-01
The determination of the aluminum and barium contents in eight wheat varieties and the soil have been carried out using wet acid digestion method by nitric acid and hydrogen peroxide for dissolution of two heavy metals, aluminum and barium. The certified and representative samples of eight wheat varieties and the soil of experimental plot of NIA, Tandojam Sindh, Pakistan was done by atomic absorption spectrometry. The experimental study was conducted using six samples for each eight wheat varieties of FSC and RD as stand reference materials and representative samples, its soil was collected from nuclear institute of agriculture (NIA), Tandojam. The characteristics mean of each element for six samples of each variety of representative samples found to be 30.14,15.06, 26.5, 19.05, 23.78, 38.77, 29.23 and 25.6 of the aluminum and 3.81, 6.73, 7.38, 7.17, 3.34, 5.99, 17.34 and 16.4 mg/kg of the barium for Anmol, TJ-83, albadgar-93, Mehran-89, Soughat-90, Sarsabaz, Kiran and SKD-10/9 varieties respectively and its soil contain 50607.1 mg/kg respectively in respectively in representative samples which are compared with certified samples which is at the 95% confidence limit. (author)
Comparative efficiency of different methods of gluten extraction in indigenous varieties of wheat
Imran, Samra; Hussain, Zaib; Ghafoor, Farkhanda; Ahmad Nagra, Saeed; Ashbeal Ziai, Naheeda
2013-01-01
The present study investigated six varieties of locally grown wheat (Lasani, Sehar, Miraj-08, Chakwal-50, Faisalabad-08 and Inqlab) procured from Punjab Seed Corporation, Lahore, Pakistan for their proximate contents. On the basis of protein content and ready availability, Faisalabad-08 (FD-08) was selected to be used for the assessment of comparative efficiency of various methods used for gluten extraction. Three methods, mechanical, chemical and microbiological were used for the extraction ...
Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui
2018-01-01
Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural
Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147
International Nuclear Information System (INIS)
Reddy, V.R.K.; Viswanathan, P.
1999-01-01
By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations
Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika
2015-01-01
There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.
Synthesis of stress proteins in winter wheat seedlings under gamma-radiation
International Nuclear Information System (INIS)
Gudkova, N.V.; Kosakovskaya, I.V.; Major, P.S.
2001-01-01
A universal cellular response to a number of diverse stresses is the synthesis of a set of stress proteins. Most of them are heat shock proteins (HSP). We show that both heat shock and gamma-radiation enhance the synthesis of HSP70 in the total protein fractions of winter wheat seedlings. It is found that a dose of 15 Gy induced the synthesis of 35 and 45 kD proteins after 5 h of irradiation in both total and mitochondrial protein fractions. On the second day after exposure, both 35 and 45 kD proteins were not observed, but new total proteins with a molecular weight of 90 and 92 kD appeared. The synthesis of 35 and 45 kD proteins after gamma-irradiation is revealed for the first time, their function being now unknown
Directory of Open Access Journals (Sweden)
Albert Kertho
Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.
International Nuclear Information System (INIS)
Mishra, Sandeep; Shukla, Pradeep K.; Ramteke, P.W.; Misra, Pragati; Shukla, Narayani; Gautam, Sanghdeep; Gayatri
2014-01-01
Gamma rays are often used on plants in developing varieties that are agriculturally and economically important and have high productivity. The results showed that variety PBW-154 was relatively tolerant to gamma radiation among all the verities, whereas, HD-2733 and LOK-1 were sensitive to gamma radiation varieties. The biochemical parameters in all wheat varieties, chlorophyll content and protein content, showed a significant decrease with the increase in treatment of gamma radiation stress
[Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].
Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin
2011-06-01
Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.
[Comparison of red edge parameters of winter wheat canopy under late frost stress].
Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing
2014-08-01
In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P frost temperatures (P frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Dr(min) and Dr/Dr(min) calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.
Directory of Open Access Journals (Sweden)
Mehmet KARAMAN
2015-08-01
Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield
Directory of Open Access Journals (Sweden)
Valéria Šudyová
2011-12-01
Full Text Available Wheat is one of the most important grains in our daily diet. Coloured wheat contains natural anthocyanin compounds. Bioactive compounds in wheat have attracted increasingly more interest from breeders because of their benefits. It is important to fully understand protein properties of red, blue, purple, and yellow-coloured wheat in order to predict their potential uses for culturing new varieties. All 21 accessions originating from different geographical areas of world were evaluated for high molecular weight glutenin subunit (HMW-GS and T1BL.1RS wheat-rye translocation using SDS-PAGE and A-PAGE. The data indicated the prevalence of the allele 1 (36%, allele 0 (30% and allele 2* (34% at the Glu-1A and five alleles, namely 7+8 (36%, 7+9 (29%, 20 (21%, 7 (12% and 17+18 (2% represented the Glu-1B. Existence of 2 alleles at the locus Glu-1D was revealed, in fact 21% of them showed the subunit pairs Glu-1D 5+10 correlated with good bread making properties. Protein subunit Glu-1A1 and Glu-1A2* were correlated positively with improved dough strength as compared to subunit null. On the chromosome Glu-1B subunit 17+18 and 7+8 were associated with slightly stronger gluten type than 7+9, whereas subunit 20 and 7 were associated with weak gluten properties. On the basis of electrophoretic separation of gliadin fraction it was found that only one genotype contained T1BL.1RS wheat-rye translocation. The Glu-1 quality score ranged from 4 to 10. Suitable accessions can be used for the crossing programs to improve colour and good technological quality of bread wheat. doi:10.5219/161
Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping
2016-01-01
In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343
Directory of Open Access Journals (Sweden)
Lucky eMehra
2016-03-01
Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early
Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S
2016-01-01
Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of
International Nuclear Information System (INIS)
Selezneva, E.M.; Sarapul'tsev, B.I.
1988-01-01
The cytogenic and morphometrical distinctions between hexaploid wheat varieties contrast by their radioresistance during the postirradiation period are attributed to the differential activity of caffeine-dependent repair processes; they are not a reliable function of the rate of aberrant cell elimination
Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L
2018-06-01
The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally. © 2018 John Wiley & Sons Ltd.
Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011
Du, Xin
2017-04-01
The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.
Nitrous oxide emission from highland winter wheat field after long-term fertilization
Directory of Open Access Journals (Sweden)
X. R. Wei
2010-10-01
Full Text Available Nitrous oxide (N2O is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L. field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK, manure (M, nitrogen (N, nitrogen + phosphorus (NP, and nitrogen + phosphorus + manure (NPM. Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK. Mineral and manure
Osman, A.M.
2014-01-01
Key words:
organic farming; principles of organic agriculture; food production chain;
plant breeding; genetic correlation; plant traits; farmers’ preferences;
variety testing; Value for Cultivation and Use; EU seed legislation;
onion; Allium cepa; spring wheat;
Directory of Open Access Journals (Sweden)
Đurić Veselinka
2006-01-01
Full Text Available Field experiments with 3 winter wheat (Triticum, aestivum. L; Lasta, Sremica and Pobeda was applied nitrogen (rate N as follows: 0, 60, 120 and 180 kg Nha-1 from 2000 to 2002. The varieties differed in their biological and production characteristics as well as in technological quality. The analyzed samples belonged to the international ISDV (Internationale Stickstoff Dauer Versuche stationary field trial established at the Rimski Šančevi Experiment Field of the Institute of Field and Vegetable Crops in Novi Sad. Improvement of end use quality in winter wheat depends on thorough understanding of the influences of environment, variety, and their interaction. Grain protein content (GPC, sedimentation value (SED, energy dough, Hagberg falling number (HFN and bread crumb quality number were measured. Highly significant differences were detected among the environments (A, rate N (B and varieties (C for each of the quality variables. Both variety (V and environment (E had a significant effect on quality traits. Significant Vx E interactions indicated that quality trait evaluations must be undertaken for environments. The most influence on protein content and sedimentation value have been climatitic condition. According to lot of environment influence on falling number and dow energy the main part of variance it is genotype and phenotype variability. .
Directory of Open Access Journals (Sweden)
Lihua Lv
2013-09-01
Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.
Genetic transformation of wheat via Agrobacterium-mediated DNA delivery.
Sparks, Caroline A; Doherty, Angela; Jones, Huw D
2014-01-01
The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).
Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.
2014-01-01
Analysis of spatial diversity, temporal diversity and coefficient of parentage (COP) were carried out along with measurements of agronomic and morphological traits to explain on-farm diversity of modern varieties or landraces of wheat (Triticum aestivum L. and Triticum durum L.) grown by farmers in
Feng, Wei; Qi, Shuangli; Heng, Yarong; Zhou, Yi; Wu, Yapeng; Liu, Wandai; He, Li; Li, Xiao
2017-01-01
Plant disease and pests influence the physiological state and restricts the healthy growth of crops. Physiological measurements are considered the most accurate way of assessing plant health status. In this paper, we researched the use of an in situ hyperspectral remote sensor to detect plant water status in winter wheat infected with powdery mildew. Using a diseased nursery field and artificially inoculated open field experiments, we detected the canopy spectra of wheat at different developmental stages and under different degrees of disease severity. At the same time, destructive sampling was carried out for physical tests to investigate the change of physiological parameters under the condition of disease. Selected vegetation indices (VIs) were mostly comprised of green bands, and correlation coefficients between these common VIs and plant water content (PWC) were generally 0.784-0.902 ( p powdery mildew stress. The Photochemical Reflectance Index (PRI) was sensitive to physiological response influenced by powdery mildew, and the relationships of PRI with chlorophyll content, the maximum quantum efficiency of PSII photochemistry (Fv/Fm), and the potential activity of PSII photochemistry (Fv/Fo) were good with R 2 = 0.639, 0.833, 0.808, respectively. Linear regressions showed PRI demonstrated a steady relationship with PWC across different growth conditions, with R 2 = 0.817 and RMSE = 2.17. The acquired PRI model of wheat under the powdery mildew stress has a good compatibility to different experimental fields from booting stage to filling stage compared with the traditional water signal vegetation indices, WBI, FWBI 1 , and FWBI 2 . The verification results with independent data showed that PRI still performed better with R 2 = 0.819 between measured and predicted, and corresponding RE = 8.26%. Thus, PRI is recommended as a potentially reliable indicator of PWC in winter wheat with powdery mildew stress. The results will help to understand the physical state of
International Nuclear Information System (INIS)
Chana, M.J.; Ghanghro, A.B.; Sheikh, S.A.; Nizamani, S.M.
2015-01-01
This study was designed to investigate the physico-chemical and rheological properties of 17 wheat varieties (TJ-83, Jouhar, TD-1, Anmool, Mehran, Indus-66, Sindh B-1, Abadgar, Bhittai, Imdad, Mexi-Pak, Soughat, Blue Silver, Moomal, Marvi, Kiran, and Pak-70 ) commercially grown on experimental field of Agriculture Research Institute, Tandojam. The results revealed that moisture percentage were in range of 11 to 12 among all varieties, high protein content of about 15.2 percentage was found in Mehran and Blue silver varieties, starch was found high in Maxi-pak (70.6 percentage), high hardness values in Imdad (70.1percentage) and Jouhar (70.2 percentage). However, zeleny content was found high in Marvi, Abadgaar and Mehran i.e. 71 percentage. Amylographic results showed that among all varieties the Bhittai variety required maximum temperature up to 65.7 Degree C for the beginning of gelatinization as compared to other varieties. The highest gelatinization temperature was noted up to 96.7 Degree C in Moomal whereas others had temperature from 82.7 to 89.0 Degree C. Highest gelatinization maxima (1782AU) acquired by T.J-83 variety. The results of Farinograph showed that highest water absorption was noted in Anmool variety. The highest dough development time and dough stability were found highest in Kiran and Indus-66, respectively. T.D-1 and Jouhar varieties had highest break down time as well as highest Farinograph quality. (author)
Dong, J.; Hengsdijk, H.; Dai, T.; Boer, de W.; Qi, J.; Cao, W.
2006-01-01
Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the
Directory of Open Access Journals (Sweden)
Bin Wang
Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.
Energy Technology Data Exchange (ETDEWEB)
Ouzouline, M.; Tahani, N.; Demandre, C.; El Amrani, A.; Benhassaine-Kesri, G.; Serghini Caid, H.
2009-07-01
The lipid composition of the seeds from two soft wheat varieties (Triticum aestivum, cv. Marchouche and Mahdia) were analyzed before and after accelerated aging. Eight days of accelerated aging resulted in a total inhibition of seed germ inability as well as a decrease in their total and especially unsaturated fatty acid contents. Oleic and linoleic acid contents decreased particularly in the phosphatidylcholine of the seeds from both varieties. The proportion of polar lipids also decreased after aging as compared to neutral lipids: a 5.8% and 7.2% decrease in polar lipids was e observed in Mahdia and Marchouche cultivars, respectively. In the neutral lipids of the seeds from the Marchouche variety, the percentage of free fatty acids increased whereas the triacylglycerols decreased. After aging, the fatty acid compositions of all lipid classes were modified in the same manner as total fatty acid compositions. Among polar lipids, phospholipid proportions were particularly small, especially the phosphatidylcholine percentages with an 18.1% and 19.1% decrease in Mahdia and Marchouche varieties, respectively. In contrast, MGDG percentages increased, especially in the seeds from the Marchouche variety. A 15.5% increase was noticed when compared with seeds which were not aged. At the same time, the DGDG percentage showed a 16.6% decrease after accelerated aging of the seeds from the Marchouche variety. From these results we concluded that the lipid content decrease observed in seeds after accelerated aging could be linked to a loss in the germination and vigor of wheat seeds. (Author) 38 refs.
Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).
Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank
2017-07-01
Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Zhang, Xiying; Shao, Liwei; Chen, Suying
2016-01-01
The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146
Directory of Open Access Journals (Sweden)
Xiuwei Liu
Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.
Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying
2016-01-01
The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.
Vasileiadis, V.P.; Dachbrodt-saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; Jørgensen, L.N.; Newton, A.C.; Toque, C.; Dijk, van W.; Lefebvre, M.; Benezit, M.; Sattin, M.
2017-01-01
In order to ensure higher sustainability of winter wheat and maize production in Europe, cropping systems featuring different levels of Integrated Pest Management (IPM) need to be tested in the field and validated for their sustainability before being adopted by farmers. However, the sustainability
Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun
2014-01-01
Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435
Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na
International Nuclear Information System (INIS)
Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.
1998-01-01
The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants
DEFF Research Database (Denmark)
Orabi, Jihad; Jahoor, Ahmed; Backes, Gunter Martin
2014-01-01
A collection of 189 bread wheat landraces and cultivars, primarily of European origin, released between 1886 and 2009, was analyzed using two DNA marker systems. A set of 76 SSR markers and ~7,000 DArT markers distributed across the wheat genome were employed in these analyses. All of the SSR...... markers were found to be polymorphic, whereas only 2,532 of the ~7,000 DArT markers were polymorphic. A Mantel test between the genetic distances calculated based on the SSR and DArT data showed a strong positive correlation between the two marker types, with a Pearson's value (r) of 0.66. We assessed...... the genetic diversity and allelic frequencies among the accessions based on spring- versus winter-wheat type as well as between landraces and cultivars. We also analyzed the changes in genetic diversity and allelic frequencies in these samples over time. We observed separation based on both vernalization type...
Directory of Open Access Journals (Sweden)
Lijie Ma
Full Text Available Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst, is one of the most important diseases of wheat worldwide. Understanding the survival of Pst during the overwintering period is critical for predicting Pst epidemics in the spring. Real-time quantitative PCR (qPCR methods quantifying Pst DNA and RNA (cDNA were developed and compared for the ability to quantify viable Pst in leaf tissues. Both qPCR of DNA and RNA can provide reliable measurement of viable Pst in plant tissues prior to the late sporulation stage for which qPCR of DNA gave a much higher estimate of fungal biomass than qPCR of RNA. The percentage of Pst biomass that was viable in detached and attached leaves under low temperatures decreased over time. Pst survived longer on attached leaves than on detached leaves. The survival of Pst in cultivars with strong winter-hardiness at 0°C and -5°C was greater than those with weak winter-hardiness. However, such differences in Pst survival among cultivars were negligible at -10, -15 and -20°C. Results indicated that Pst mycelia inside green leaves can also be killed by low temperatures rather than through death of green leaves under low temperatures. The relationship of Pst survival in attached leaves with temperature and winter-hardiness was well described by logistic models. Further field evaluation is necessary to assess whether inclusion of other factors such as moisture and snow cover could improve the model performance in predicting Pst overwintering potential, and hence the epidemic in spring.
Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten
2015-08-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.
Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk
2018-02-21
Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.
Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui
2010-01-01
Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.
International Nuclear Information System (INIS)
Shar, G.Q.; Lashari, A.K.H.; Haider, S.I.
2003-01-01
Wheat samples of twelve varieties, grown by breeders at NIAB, Faisalabad Pakistan and its soil, were collected and analyzed for aluminum and barium content by atomic absorption spectroscopy using acetylene-nitroxide flame. For dissolution for heavy metals, aluminum and barium, wet acid digestion method was used. The experimental study was conducted using six samples for each twelve varieties of FSC and RD (Federal Seed Certification and Registration Department) as standard reference materials and representative samples, and the soil which was also collected from agricultural plot of Nuclear Inst. of Agricultural and Biology (NIAB), Faisalabad, Punjab. The characteristics mean of both elements in each variety of representative samples was found to be 28.32, 71.02, 37.41, 36.95, 28.32, 47.40, 30.14, 14.69, 25.41, 32.86, 30.14 and 41.95 for the aluminum and 12.67, 6.92, 5.67, 19.82, 3.28, 17.34, 10.25, 10.49, 8.01, 14.23, 15.16 and 6.92 mg/kg for the barium of Chakwal-86, Bakhatawar-92, Shahkar-95, Parwaz-94, Punjab-96, Bahawal pur-97, Shahkar-91, Inquilab-91, Pasban-90, Punjab-85, Faisalabad-85 and Pak-81 varieties respectively. The soil of that specific plot contains 35964.3 and 111.08 mg/kg of aluminum and barium respectively. The representative samples, which are compared with certified samples at 95% confidence limit. The purpose of this study was to study the variation in uptake of aluminum and barium in twelve different wheat varieties grown in same agricultural plot. (author)
Effect of Sowing Date on Some Agronomic Characteristics and Seed Yield of Winter Wheat Cultivars
Directory of Open Access Journals (Sweden)
A. Ganbari
2012-08-01
Full Text Available To evaluate the effect of sowing dates on yield, yield components and some agronomic characteristics of four winter wheat cultivars and also their phenological changes, a factorial experiment based on randomized complete block design with three replications was carried out at the Agriculture Research Station of Ardabil (Iran during 2009 growing season. First factor consisted of four wheat cultivars (Azar2, Sabalan, Sardari and Zagros and second factor consisted of four sowing dates (1st, 10th, 20th and 30th of September. The results showed that sowing date had significant effect on the number of spikes, the number of seed per spike, 1000-seed weight, germination percentage, days to spike appearance, days to ripening, growing degree days, biological yield, seed yield and harvest index. The highest and lowest seed yields of wheat were obtained from sowing date of the September the first (4616 kg/ha and sowing date of September 30th (2197 kg/ha respectively. Delaying planting decreased the number of spikes per m2 and 1000-seed weight. Cultivars had significant effect on all of the traits measured, except leaf number, fertile and non-fertilie tillers. The highest and the lowest seed yields were obtained from Sabalan (4750 kg/ha and Zagros (2757 kg/ha cultivars respectively. Interaction of sowing date and cultivar were significant on all of traits measured, except stem height, the leaf number, the number of spikes, 1000-seed weight and seed yield (P
Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment
Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan
2014-05-01
Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.
Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat
Pitta, D. W.; Pinchak, W. E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J. D.
2016-01-01
Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bl...
Evaluation of Spring Wheat (20 Varieties Adaptation to Soil Drought during Seedlings Growth Stage
Directory of Open Access Journals (Sweden)
Jolanta Biesaga-Kościelniak
2014-04-01
Full Text Available The effect of soil drought (10 days on the growth of plants, the accumulation of water and leakage of electrolytes, gas exchange, the contents of chl a + b and carotenoids in leaves and photochemical activity of photosystem II was studied at the seedling stage by transient fluorescent analysis in 20 of the popular varieties of polish spring wheat. Drought caused a particularly strong reduction in vigor of growth of seedlings, net photosynthesis rate and triggered an increase in electrolyte leakage from the leaves. Certain varieties during the drought demonstrated relatively intense CO2 assimilation at low water loss through transpiration. The varieties tested were significantly different in terms of tolerance to drought of the processes of gas exchange and seedlings development. Photochemical processes in PSII showed high tolerance to drought and at the same time low differentiation among varieties. The results obtained suggested that tolerance of growth parameters to drought and CO2 assimilation at the seedling stage may alleviate consequent depression of final yield of the grain.
Directory of Open Access Journals (Sweden)
R Nasri
2016-02-01
Full Text Available Introduction There are about 160 species in Brassica genus, which are mostly annuals and biennials. The plants in this genus have potential for fodder uses. The progress in plant breeding science has produced new crop varieties for oil and forage usages. Perko varieties are derived from crosses between tetraploid plants of winter rapeseed (Brassica napus L.Var. napus and Chinese cabbage (Brassica campestris L. var. sensulato. The new plants are superior to their parents from various aspects. Buko varieties are new amphiploid plants obtained by crossing between tetraploid winter rapeseed, Chinese cabbage and turnips (Brassica campestris L. var. Rapa. Oilseed radish with scientific name (Raphanus sativus L. is a genus of the Brassica and consumption, oil, green manure, feed and fodder (24. This plant in many countries, including Canada, is cultivated in gardens as cover crop. Oilseed radish grows fast in the cool seasons. Ramtil (Guizotia abyssinica belongs to the Compositae family, Phasilia (Phaceli atanacetifolia L. belongs to Boraginaceae family and clover is from Fabaceae family that is grown for feeding purposes. Materials and Methods A field experiment was conducted from 2011 to 2012 in the Karezan region of Ilam, Iran (42º33′N, 33º46′E on a silty-clay with low organic carbon (1.26% and slightly alkaline soil (pH=7.9. This site is characterized as temperate climate with 370 mm annual precipitation. The experiment was arranged in a split plot based on randomized complete block design with four replications. The main plots consisted of 6 pre-sowing plant treatments (control, Perko PVH, Buko, Clover and Oilseed radish and combination of three plants Ramtil, Phaselia andclover, and sub plots covered four N fertilizer rates including no fertilizer N (Control, 50% lower than recommended N rate, recommended N rate and 50% more than recommended N rate. Winter wheat (cv. Pishtaz was sown on mid-November with the row spacing of 15 cm and a
Effects of shading on morphology, physiology and grain yield of winter wheat
DEFF Research Database (Denmark)
Li, Huawei; Jiang, Dong; Wollenweber, Bernd
2010-01-01
In a field experiment, winter wheat (Triticum aestivum L.) cultivars Yangmai 158 (YM 158, shading tolerant) and Yangmai 11 (YM 11, shading-sensitive) were subjected to shading between jointing and maturity. Three shading treatments were applied, i.e. 92% (S1), 85% (S2) and 77% (S3) of full...... the shading treatments applied, leaf area index, length of the peduncle internode, area of the upper leaves and content of pigments increased, which favoured efficient light capture. Shading modified light quality in the canopy as indicated by increases of diffuse- and blue light fractions and a reduction...... the flag leaf, as in most cases Pn of the third and the penultimate leaves were found to increase under shading treatments. Shading increased the redistribution of dry matter from vegetative organs into grains. The responses of the morphological and physiological traits to shading are discussed in relation...
Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia
International Nuclear Information System (INIS)
Halitligil, M. B.; Akin, A.; Aydin, M.
1996-01-01
In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system
Colour characteristics of winter wheat grits of different grain size
Directory of Open Access Journals (Sweden)
Horváth Zs. H.
2015-01-01
Full Text Available Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L* of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151; so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.
SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000.
Roussel, V; Leisova, L; Exbrayat, F; Stehno, Z; Balfourier, F
2005-06-01
A sample of 480 bread wheat varieties originating from 15 European geographical areas and released from 1840 to 2000 were analysed with a set of 39 microsatellite markers. The total number of alleles ranged from 4 to 40, with an average of 16.4 alleles per locus. When seven successive periods of release were considered, the total number of alleles was quite stable until the 1960s, from which time it regularly decreased. Clustering analysis on Nei's distance matrix between these seven temporal groups showed a clear separation between groups of varieties registered before and after 1970. Analysis of qualitative variation over time in allelic composition of the accessions indicated that, on average, the more recent the European varieties, the more similar they were to each other. However, European accessions appear to be more differentiated as a function of their geographical origin than of their registration period. On average, western European countries (France, The Netherlands, Great Britain, Belgium) displayed a lower number of alleles than southeastern European countries (former Yugoslavia, Greece, Bulgaria, Romania, Hungary) and than the Mediterranean area (Italy, Spain and Portugal), which had a higher number. A hierarchical tree on Nei's distance matrix between the 15 geographical groups of accessions exhibited clear opposition between the geographical areas north and south of the arc formed by the Alps and the Carpathian mountains. These results suggest that diversity in European wheat accessions is not randomly distributed but can be explained both by temporal and geographical variation trends linked to breeding practices and agriculture policies in different countries.
The effect of tillage intensity on soil structure and winter wheat root/shoot growth
DEFF Research Database (Denmark)
Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E
2008-01-01
was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....
The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara
Directory of Open Access Journals (Sweden)
Marcela Dragoş
2011-10-01
Full Text Available Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sowing links on the thousand grain mass and hectoliter mass. The average data obtained after two years of study indicate an increase of about 2 % of the thousand grain mass and hectoliter mass on the second sowing period (16-31 Octoberand a distinctive decrease of 2-3% on the fourth sowing period(16-30 November. During the two years of experience the row distance and the sowing density had a negative impact on both thousand grain mass and hectoliter mass in both variants compared with the control variant, the difference being statistical significant.
Directory of Open Access Journals (Sweden)
Jiguang Wei
Full Text Available BACKGROUND: Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. METHODOLOGY/PRINCIPAL FINDINGS: A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM and two levels of PEG6000 (0, 20% for 7 days. External K2CO3 significantly increased shoot K(+ content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. CONCLUSIONS/SIGNIFICANCE: Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.
Wei, Jiguang; Li, Caihong; Li, Yong; Jiang, Gaoming; Cheng, Guanglei; Zheng, Yanhai
2013-01-01
Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.
Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance
Energy Technology Data Exchange (ETDEWEB)
Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu
2014-09-15
Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.
Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance
International Nuclear Information System (INIS)
Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda
2014-01-01
Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress
Management Effects On Quality of Organically Grown Winter Wheat
DEFF Research Database (Denmark)
Thomsen, Ingrid Kaag; Schweinzer, A.; Friedel, J. K.
2013-01-01
The potential for improving wheat grain quality by management strategies involving crop rotation, catch crops, and organic manure was tested in organic long-term experiments in Denmark and Austria. Growing grass clover in a four-year rotation resulted in a higher wheat yield increase that could n...
Impact of Graze-‐Out in Hard Red Winter Wheat Production
Neupane, Diwash; Moss, Charles B.
2014-01-01
We investigate the relationship between wheat graze-‐out and cattle-‐wheat price ratio and moisture level and examine the impact of graze-‐out on wheat yield in major wheat-‐producing states in US. Results indicate that cattle-‐wheat price ratio and moisture level affect farmers’ graze out decision and graze-‐out have significant impact on wheat yield.
Nishijima, Ryo; Ikeda, Tatsuya M; Takumi, Shigeo
2018-02-01
Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F 2 mapping population, and found that the F 2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F 2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.
Rasmussen, Ilse A.
2002-01-01
A series of field experiments were carried out in winter wheat grown under organic conditions in Denmark on fields with different weed pressure. The treatments were sowing strategy (normal sowing time, late sowing and false seedbed), row distance (12 cm and 24 cm row distance) and weed control method (untreated, mechanical weed control (weed harrowing at 12 cm supplemented with row hoeing at 24 cm), and herbicide weed control). Weed biomass was largest at the normal sowing time and was reduce...
Winter wheat optimizes allocation in response to carbon limitation
Huang, Jianbei; Hammerbacher, Almuth; Trumbore, Susan; Hartmann, Henrik
2016-04-01
• Plant photosynthesis is not carbon-saturated at current atmospheric CO2 concentration ([CO2]) thus carbon allocation priority is of critical importance in determining plant response to environmental changes, including increasing [CO2]. • We quantified the percentage of daytime net assimilation (A) allocated to whole-plant nighttime respiration (R) and structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during winter wheat (Triticum aestivum) vegetative growth (over 4 weeks) at glacial, ambient, and elevated [CO2] (170, 390 and 680 ppm). • We found that R/A remained relatively constant (11-14%) across [CO2] treatments, whereas plants allocated less C to growth and more C to export at low [CO2] than elevated [CO2]; low [CO2] grown plants tended to invest overall less C into NSC and SMs than to SG due to reduced NSC availability; while leaf SMs/NSC was greater at 170 ppm than at 680 ppm [CO2] this was the opposite for root SMs/NSC; biomass, especially NSC, were preferentially allocated to leaves instead of stems and roots, likely to relieve C limitation induced by low [CO2]. • We conclude that C limitation may force plants to reduce C allocation to long-term survival in order to secure short-term survival. Furthermore, they optimized allocation of the available resource by concentrating biomass and storage to those tissues responsible for assimilation.
Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop
Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...
Directory of Open Access Journals (Sweden)
Yangquanwei Zhong
Full Text Available Water shortage and nitrogen (N deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L. was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for wheat in China. Using data collected over three consecutive years, commencing five years after the experiment began, the effects of N fertilization on wheat yield, evapotranspiration (ET and water use efficiency (WUE, i.e. the ratio of grain yield to total ET in the crop growing season were examined. In 2010, 2011 and 2012, N increased the yield of wheat cultivar Zhengmai No. 9023 by up to 61.1, 117.9 and 34.7%, respectively, and correspondingly in cultivar Changhan No. 58 by 58.4, 100.8 and 51.7%. N-applied treatments increased water consumption in different layers of 0-200 cm of soil and thus ET was significantly higher in N-applied than in non-N treatments. WUE was in the range of 1.0-2.09 kg/m3 for 2010, 2011 and 2012. N fertilization significantly increased WUE in 2010 and 2011, but not in 2012. The results indicated the following: (1 in this dryland farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic.
Institute of Scientific and Technical Information of China (English)
S H Park; O K Chung; P A Seib
2006-01-01
Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage,swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~ 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p < 0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μ m in size and representing 9.6%~ 19.3% of the flour weights was correlated positively (r =0.78, p < 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p<0.05) with crumb grain score.
Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy
2016-01-01
Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.
Canola versus Wheat Rotation Effects on Subsequent Wheat Yield
Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...
Wheat production in Bangladesh: its future in the light of global warming
Hossain, Akbar; Teixeira da Silva, Jaime A.
2012-01-01
Background and aims The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Key facts Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. Projections This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia. PMID:23304431
DEFF Research Database (Denmark)
Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine
1999-01-01
A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...
Allelopathic appraisal effects of straw extract wheat varieties on the ...
African Journals Online (AJOL)
hope&shola
2010-11-29
Nov 29, 2010 ... Ben HM, Ghorbal H, Kremer RJ, Oussama O (2001). Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. Agronomie, 21: 65-71. Dias LS (1991). Allelopathic activity of decomposing straw of wheat and oat and associated soil on some crop species. Soil Till.
Study on genetic diversity in Pakistani wheat varieties using simple ...
African Journals Online (AJOL)
Common wheat ( Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is the most important human food grain and ranks second in total production as a cereal crop behind maize. Genetic diversity evaluation of germplasm is the basis of improvement in wheat. In the present study genetic diversity of 10 ...
Kolmer, James A; Su, Zhenqi; Bernardo, Amy; Bai, Guihua; Chao, Shiaoman
2018-04-25
A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77. 'Santa Fe' is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of 'Thatcher' (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F 6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.
Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he
2016-04-15
Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.
Directory of Open Access Journals (Sweden)
Xiangfen eZhang
2015-07-01
Full Text Available A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.
Directory of Open Access Journals (Sweden)
Dongqing Yang
Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.
Directory of Open Access Journals (Sweden)
Dejun Yang
Full Text Available ABSTRACT Simulations for root growth, crop growth, and N uptake in agro-hydrological models are of significant concern to researchers. SWMS_2D is one of the most widely used physical hydrologically related models. This model solves equations that govern soil-water movement by the finite element method, and has a public access source code. Incorporating key agricultural components into the SWMS_2D model is of practical importance, especially for modeling some critical cereal crops such as winter wheat. We added root growth, crop growth, and N uptake modules into SWMS_2D. The root growth model had two sub-models, one for root penetration and the other for root length distribution. The crop growth model used was adapted from EU-ROTATE_N, linked to the N uptake model. Soil-water limitation, nitrogen limitation, and temperature effects were all considered in dry-weight modeling. Field experiments for winter wheat in Bouwing, the Netherlands, in 1983-1984 were selected for validation. Good agreements were achieved between simulations and measurements, including soil water content at different depths, normalized root length distribution, dry weight and nitrogen uptake. This indicated that the proposed new modules used in the SWMS_2D model are robust and reliable. In the future, more rigorous validation should be carried out, ideally under 2D situations, and attention should be paid to improve some modules, including the module simulating soil N mineralization.
Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K
2014-05-08
Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.
Shi, Yue; Huang, Wenjiang; Zhou, Xianfeng
2017-04-01
Hyperspectral absorption features are important indicators of characterizing plant biophysical variables for the automatic diagnosis of crop diseases. Continuous wavelet analysis has proven to be an advanced hyperspectral analysis technique for extracting absorption features; however, specific wavelet features (WFs) and their relationship with pathological characteristics induced by different infestations have rarely been summarized. The aim of this research is to determine the most sensitive WFs for identifying specific pathological lesions from yellow rust and powdery mildew in winter wheat, based on 314 hyperspectral samples measured in field experiments in China in 2002, 2003, 2005, and 2012. The resultant WFs could be used as proxies to capture the major spectral absorption features caused by infestation of yellow rust or powdery mildew. Multivariate regression analysis based on these WFs outperformed conventional spectral features in disease detection; meanwhile, a Fisher discrimination model exhibited considerable potential for generating separable clusters for each infestation. Optimal classification returned an overall accuracy of 91.9% with a Kappa of 0.89. This paper also emphasizes the WFs and their relationship with pathological characteristics in order to provide a foundation for the further application of this approach in monitoring winter wheat diseases at the regional scale.
The effects of 15N-fertilizer on the yields of wheat
International Nuclear Information System (INIS)
Zhou Dechao
1985-01-01
By using 15 N-fertilizer, the effects of increasing yield and the utilization of nitrogen of N-fertilizer applied at different periods and by different methods on wheat were studied. The results were as follows: The utilization of N-fertilizer by winter wheat is dependent on the fertilizer of soil before or after winter. Strong seedlings were obtained in the high fertility soils and the application of N-fertilizer in spring is recommended. In soils of low fertility, however, application of a part of N-fertilizer before winter is recommded in order to get strong seedlings. Application of a part of N-fertilizer as base manure for spring wheat is more advantageous. Deep application of N-fertilizer losses less NH 3 than surface broadcast does
The transfer of radionuclides from contaminated groundwater into perennial ryegrass and winter wheat
International Nuclear Information System (INIS)
Wadey, P.; Shaw, G.; Butler, A. P.; Tompkins, J. A.; Wheater, H. S.
1996-01-01
Lysimeter studies of the migration of radionuclides from a contaminated water table and their subsequent uptake by plant roots have been undertaken using two distinct soil types and varying crop regimes. An eight year multi-disciplinary research project (funded by Nirex) has concentrated on the upward migration of contaminants from near-surface water tables, and their uptake by winter wheat and perennial ryegrass crops. Experimental data are presented for the movement and uptake of radiocaesium 137 Cs. These data show significant movement in the unsaturated zone during the first year of dosing, followed by progressively reduced availability in subsequent years. A suite of physically based hydrological and solute transport models has been developed to model radionuclide transport in the unsaturated zone. Model simulations, based on a conventional advection-dispersion representation incorporating linear sorption processes, were unable to describe adequately the distribution of radiocaesium within the soil profile. However, the introduction of root storage and translocation processes provided significantly improved results. (author)
Response of wheat varieties to different nitrogen levels under agro-climatic conditions of mansehra
International Nuclear Information System (INIS)
Shahzad, K.; Khan, A.
2013-01-01
A field experiment, comprising of three Nitrogen levels viz.0, 60, 120 and 180 kg/ha and five wheat varieties, viz., Pir Sabak-04 (P.S), P.S-05, P.S-08, Atta Habib and Siran, was conducted at Agricultural Research Station, Baffa, Mansehra, in 2011. The experiment was laid out in randomised complete block design with split-plot arrangement. The results indicated that varieties and nitrogen levels were significantly different for tillers per m2, days to physiological maturity, plant height (cm), spike length, grains per spike, 1000 grains weight (gm), biological yield (kg/ha) and grain yield (kg/ha), while harvest index (%) was significantly affected by varieties only. Maximum tillers per m2 were produced in varieties P.S-2008, P.S-2004 and P.S-2005. Maximum days to physiological maturity and grains per spike were observed in variety P.S-2008. Taller plants were produced by variety P.S. 2005. Longer spikes, maximum thousand grains weight and grain yield (kg/ha) were obtained in varieties P.S-2008 and Atta Habib, respectively. Maximum biological yield (kg/ha) was recorded in Atta Habib. Among nitrogen levels, maximum tillers per m2, days to physiological maturity, longer spikes, number of grains per spike, thousand grains weight, biological yield and grain yield were maximum when N was applied at the rate of 120 kg/ha. Similarly the interactive response of varieties and nitrogen was significantly affected for days to emergence, grains per spike, biological yield, grain yield and harvest index (%). From the study, it was concluded that the varieties, Pir Sabak-2008 and Atta Habib, produced maximum seed yield whereas nitrogen applied at the rate of 120 kg/ha performed better in productivity than other treatments. (author)
Directory of Open Access Journals (Sweden)
Jianguo Man
2016-04-01
Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.
Directory of Open Access Journals (Sweden)
Xiuliang Jin
2015-10-01
Full Text Available Leaf area index (LAI and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ and RADARSAT-2. The objectives of this study were (1 to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs and radar polarimetric parameters (RPPs, (2 to estimate LAI and biomass with combined OSVIs and RPPs (the product of OSVIs and RPPs (COSVI-RPPs, (3 to use multiple stepwise regression (MSR and partial least squares regression (PLSR to test and compare the estimations of LAI and biomass in winter wheat, respectively. The results showed that LAI and biomass were highly correlated with several OSVIs (the enhanced vegetation index (EVI and modified triangular vegetation index 2 (MTVI2 and RPPs (the radar vegetation index (RVI and double-bounce eigenvalue relative difference (DERD. The product of MTVI2 and DERD (R2 = 0.67 and RMSE = 0.68, p < 0.01 and that of MTVI2 and RVI (R2 = 0. 68 and RMSE = 0.65, p < 0.01 were strongly related to LAI, and the product of the optimized soil adjusted vegetation index (OSAVI and DERD (R2 = 0.79 and RMSE = 148.65 g/m2, p < 0.01 and that of EVI and RVI (R2 = 0. 80 and RMSE = 146.33 g/m2, p < 0.01 were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat
Fogarasi, Attila-Levente; Kun, Szilárd; Tankó, Gabriella; Stefanovits-Bányai, Eva; Hegyesné-Vecseri, Beáta
2015-01-15
Two einkorn wheat, one barley, three optional winter cultivation wheat and five winter cultivation wheat samples harvested in Hungary in 2011, and their malts were evaluated for their DPPH radical and ABTS radical cation scavenging activity, ferric reduction capacity (FRAP) and total phenolic content (TPC). All einkorn and barley samples exhibited significant antioxidant activities determined by DPPH and ABTS radical scavenging activities. The einkorn samples show higher polyphenol content than the other wheat samples. In all cases the barley sample had the highest antioxidant potential and polyphenol content. The einkorn malts had high DPPH and ABTS radical cation scavenging activities, but the phenolic content was lower against wheat samples. There was significant difference between the antioxidant potential of optional and winter cultivation wheat samples except on ABTS scavenging activities. Einkorn wheat is potentially a new raw material to produce organic beer that might have beneficial effects with its increased antioxidant potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
IMPACT OF TRIBE TRITICEAE VARIETIES ON STRUCTURE AND COMPETITIVENESS OF SEGETAL GROUP
Directory of Open Access Journals (Sweden)
T. Z. Moskalets
2016-03-01
Full Text Available We studied the influence of varieties of tribe Triticeae (Soft Wheat, Winter Rye and Winter Triticale on the structure and competitiveness of segetal vegetation. It is shown that in the conditions of Polissya, Forest-Steppe Polissya, and Forest-Steppe ecotopes the coenotic composition of plant communities was represented mostly by annual plants and at some extent by hemycryptophytes, cryptophytes, and geophytes. The dominant weed associations of Polissya are: Erodium-Neslia; Chenopodiu-Sonchus; Galium-Setaria; Elytrigia-Convolvulus; Apera-Polygonum and Apera-Convolvulus; Polissia-steppe: Viola-Capsella; Matricaria-Galium; Elytrigia-Galeopsis; Chenopodiu-Sonchus; Thlaspi-Euphorbia; Forest-Steppe: Elytrigia-Viola; Matricaria-Taraxacum; Consolida-Convolvulus; Cirsium-Taraxacum; Galium-Stellaria; Thlaspi-Plantago, Linaria-Conyza. In terms of the Central Forest-Steppe and Eastern Polisya the medium-grown and medium ripe Wheat (Yuvivata 60 and Poliska 90, Rye (Borotba, Triticale (Slavetne, Slavetne Polipshene. and AD 256 is the most competitive towards segetal vegetation than other medium-grown and semi-dwarf varieties of such cultures. The introduction of Triticale and Rye in the structure of sown areas are an effective biological control towards segetal vegetation, particularly perennial weeds. We revealed that increasing doses of fertilizers on crops of the tribe Triticeae stimulates the growth of weeds, but the specific weight per unit area does not always correlate with density concerning cultural species. We registered the dominant competitive weeds associations in winter crops, regardless of grade, but their differentiation by population strategy and specific weight per unit area depends on the type and conditions of the specific ecotypes. We selected some six associations for the Polissya: Erodium-Neslia; Chenopodiu-Sonchus; Galium-Setaria; Elytrigia-Convolvulus; Apera-Polygonum and Apera-Convolvulus; five for Polissya Steppe
Adaptability of Wheat Cultivars to a Late-Planted No-Till Fallow Production System
Arron H. Carter; Stephen S. Jones; Ryan W. Higginbotham
2011-01-01
In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to ev...
Effect of farming system on colour components of wheat noodles
Directory of Open Access Journals (Sweden)
Magdalena Lacko-Bartosova
2016-07-01
Full Text Available Colour of noodles is definitely a key element of a consumer's buying decisions. It can be influenced by many factors. Conditions, under which is winter wheat grown, can be considered as one of these factors. The aim of this work was to evaluate colour of noodles that were prepared from winter wheat grown in ecological and integrated arable farming systems, after different forecrops with two levels of fertilization (fertilized and unfertilized during the years 2009, 2010 and 2011. Winter wheat noodles were prepared from white flour and wholegrain flour and its colour was evaluated using the spectro-colorimeter. Colour was measured by three coordinates: lightness L*, red/ green value a* and yellow/ blue value b*. Wholegrain noodles had lower L* value, so they were darker than white flour noodles, with higher redness and higher yellowness. Colour of white flour noodles and wholegrain noodles was significantly influenced by crop nutrition (fertilized and unfertilized variants, farming system and meteorological conditions during experimental years. Wholegrain noodles from ecological system were darker, with lower lightness and higher redness compared to noodles from integrated system. White flour noodles from ecological system were also darker compared to noodles from integrated system. Fertilization decreased lightness of white flour noodles, on the contrary, fertilization increased the lightness and decreased the redness of wholegrain noodles. In non-fertilized treatment, ecological wheat noodles were darker, with higher redness and yellowness than noodles prepared from winter wheat grown in integrated arable farming system.
Wheat for Kids! [and] Teacher's Guide.
Idaho Wheat Commission, Boise.
"Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…
Barmeier, Gero;Schmidhalter, Urs
2017-01-01
In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat w...
Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy
2016-01-01
Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding
Czech Academy of Sciences Publication Activity Database
Thaler, S.; Eitzinger, Josef; Trnka, Miroslav; Dubrovský, Martin
2012-01-01
Roč. 150, č. 5 (2012), s. 537-555 ISSN 0021-8596 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : climate change * weather generator * winter wheat * adaptation options * Central Europe Subject RIV: EH - Ecology, Behaviour; DG - Athmosphere Sciences, Meteorology (UFA-U) Impact factor: 2.878, year: 2012 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8678290
Directory of Open Access Journals (Sweden)
Efretuei A.
2016-06-01
Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.
A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis
International Nuclear Information System (INIS)
Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang
2010-01-01
A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency
Elbasyoni, Ibrahim S; Lorenz, A J; Guttieri, M; Frels, K; Baenziger, P S; Poland, J; Akhunov, E
2018-05-01
The utilization of DNA molecular markers in plant breeding to maximize selection response via marker-assisted selection (MAS) and genomic selection (GS) has revolutionized plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotyping-by-sequencing scored SNPs (GBS-scored SNPs) provides a large number of markers, albeit with high rates of missing data. Array scored SNPs are of high quality, but the cost per sample is substantially higher. The objectives of this study were 1) compare GBS-scored SNPs, and array scored SNPs for genomic selection applications, and 2) compare estimates of genomic kinship and population structure calculated using the two marker platforms. SNPs were compared in a diversity panel consisting of 299 hard winter wheat (Triticum aestivum L.) accessions that were part of a multi-year, multi-environments association mapping study. The panel was phenotyped in Ithaca, Nebraska for heading date, plant height, days to physiological maturity and grain yield in 2012 and 2013. The panel was genotyped using GBS-scored SNPs, and array scored SNPs. Results indicate that GBS-scored SNPs is comparable to or better than Array-scored SNPs for genomic prediction application. Both platforms identified the same genetic patterns in the panel where 90% of the lines were classified to common genetic groups. Overall, we concluded that GBS-scored SNPs have the potential to be the marker platform of choice for genetic diversity and genomic selection in winter wheat. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of irradiation on grain coat color and grain texture in winter wheat
International Nuclear Information System (INIS)
Miao Bingliang; Liu Xueyu
1989-01-01
Dry seeds of the variety ''Yangmai 5'' with red grain coat, semihard grain texture, and the variety ''Ningmai 3'' with red grain coat, soft grain texture were irradiated with Y-rays at various doses.The effect on M1 grain coat color was different between two varieties, the higher doses made grain coat color of ''Yangmai 5'' redder, but had hardly effect on ''Ningmai 3''.The effect on M1 grain texture showed that the grain texture became softer with doses increased.It was found that there were 0.6% of positive ( red to white ) grain coat color mutants and 2.0% of negative(hard to soft) grain texture mutants in M2 of ''Yangmai 5'', and there were 0.7% of negative ( white to red ) grain coat color mutants and 3.6% of positive ( soft to hard ) grain texture mutants in M2 of ''Ningmai 3''. It seemed that the positive mutants selected in M3 were stable in M4. The results showed that γ-rays can be used to improve the grain coat color andgrain texture of wheat varieties
Biotechnology in wheat improvement in Kenya
International Nuclear Information System (INIS)
Karanja, L.; Kinyua, M.G.; Njau, P.N.; Maling'a, J.
2001-01-01
Use of double haploid (DH) and mutation techniques in breeding wheat lines and varieties tolerant to drought, acid soils and resistant to Russian Wheat Aphid (RWA) at the National Plant Breeding Research Center in the last 4 years, is reported. The wheat variety, ''Pasa'' irradiated in 1996 is reported to have undergone selection process through yield trials in 1999-2000. Work done in the year 2000 is mainly described
Profitability of Integrated Management of Fusarium Head Blight in North Carolina Winter Wheat.
Cowger, Christina; Weisz, Randy; Arellano, Consuelo; Murphy, Paul
2016-08-01
Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time in which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance with FHB-specific fungicide applications; yet, when forecasted risk is intermediate, it is often unclear whether such an application will be profitable. To model the profitability of FHB management under varying conditions, we conducted a 2-year split-plot field experiment having as main plots high-yielding soft red winter wheat cultivars, four moderately resistant (MR) and three susceptible (S) to FHB. Subplots were sprayed at flowering with Prosaro or Caramba, or left untreated. The experiment was planted in seven North Carolina environments (location-year combinations); three were irrigated to promote FHB development and four were not irrigated. Response variables were yield, test weight, disease incidence, disease severity, deoxynivalenol (DON), Fusarium-damaged kernels, and percent infected kernels. Partial profits were compared in two ways: first, across low-, medium-, or high-DON environments; and second, across environment-cultivar combinations divided by risk forecast into "do spray" and "do not spray" categories. After surveying DON and test weight dockage among 21 North Carolina wheat purchasers, three typical market scenarios were used for modeling profitability: feed-wheat, flexible (feed or flour), and the flour market. A major finding was that, on average, MR cultivars were at least as profitable as S cultivars, regardless of epidemic severity or market. Fungicides were profitable in the feed-grain and flexible markets when DON was high, with MR cultivars in the flexible or flour markets when DON was intermediate, and on S cultivars aimed at the flexible market. The flour market was only profitable when FHB was present if DON levels were intermediate and cultivar
Directory of Open Access Journals (Sweden)
В. С. Хахула
2013-05-01
Full Text Available The article highlights the results of studying the soft winter wheat response to the duration of enforced winter dormancy and the time of vegetation recommencing, their impact on growth, development and the survival of the crops. It is found that the impact of those factors in the conditions of central Forest-Steppe of Ukraine is essential, which is to be taken into consideration when scheduling the measures of spring and summer care over the cultivated crops, in particular, where the spring extra nutrition takes place, pesticides and growth regulators are applied, the spaced planting resowing or partial resowing issues are to be settled down. The ecological effect of spring vegetation recommencing dates does not expose annually, therefore it is not always possible to predict the plant development type, but it is possible, nevertheless, to influence the processes of growth, development and survival of plants throughout spring-summer period and the development of their production capacity by means of introducing the intense technologies, optimization of mineral nutrition and the use of plant growth regulators, protection from rogues, diseases, pests.
Influence of gamma radiation on productiveness of Cuba C-204 wheat variety in spring
International Nuclear Information System (INIS)
Caballero Torres, I.; Perez Talavera, S.; Diaz Esquivel, R.
1995-01-01
The percentage of flowers carrying seeds in spikes from seed irradiated plant with 100 to 800 Gy and non irradiated control plants was evaluated cv. Cuba C -204 wheat affectation. The results showed a significative (1 %) dose and s'pikes maturity time influence by bi factorial analysis. A significance of 1 % dose-maturity time interaction was obtained too and that bigger flowers carrying seeds percentage is obtained in 400 Gy radiated seeds plants. A delay of 5 days is present in the 500 Gy radiated plants maturity and a seed carrying flowers reduction of 35 % with reference to control. From 600 Gy up in the studied variety seeds were not obtained in the spring season
Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System
Directory of Open Access Journals (Sweden)
Dengpan Xiao
2018-04-01
Full Text Available With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2, it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs and the Agricultural Production Systems sIMulator (APSIM–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5 were used for atmospheric greenhouse gas concentrations during two different future periods (2031–2060 referred to as 40S and 2071–2100 referred to as 80S. Relative to the baseline period (1981–2010, the trends in mean daily temperature and radiation significantly increased across all stations under the future scenarios. Furthermore, the trends in precipitation increased under future climate scenarios. Due to climate change, the trend in wheat phenology significantly advanced. The early flowering and maturity dates shortened both the vegetative growth stage (VGP and the whole growth period (WGP. As the advance in the days of maturity was more than that in flowering, the length of the reproductive growth stage (RGP of spring wheat was shortened. However, as the advance in the date of maturity was less than that of flowering, the RGP of winter wheat was extended. When the increase in CO2 concentration under future climate scenarios was not considered, the trend in change in wheat production for the baseline declined. In contrast, under increased CO2 concentration, the trend in wheat yield increased for most of the stations (except for Nangong station under future climatic conditions. Winter wheat and spring wheat evapotranspiration (ET decreased across all stations under the two future climate scenarios. As wheat yield increased with decreasing water consumption (as ET under the future climatic conditions, water use efficiency (WUE significantly improved in the future period.
DEFF Research Database (Denmark)
Qin, Xiao-liang; Weiner, Jacob; Qi, Lin
2013-01-01
allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...
Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei
2017-04-01
Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed
Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields
Directory of Open Access Journals (Sweden)
A Khodashenas
2011-02-01
Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems
based molecular characterization of popular wheat varieties of ...
African Journals Online (AJOL)
ajl yemi
2011-12-19
Dec 19, 2011 ... (Talbert et al., 1994) and AFLP (Barrett and Kidwell,. 1998) have been used for the estimation of genetic diversity in wheat. The RAPD technique, regardless of its sensitivity to reaction conditions and problems with repeatability and amplifying of non-homologous sequen- ces (Devos and Gale, 1992), has ...
Al-Issawi, Mohammed; Rihan, Hail Z; Woldie, Wondwossen Abate; Burchett, Stephen; Fuller, Michael P
2013-02-01
Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
Dawson, J C; Serpolay, E; Giuliano, S; Schermann, N; Galic, N; Chable, V; Goldringer, I
2012-03-01
Because of the lack of varieties for organic agriculture, associations of organic farmers in several European countries have begun cultivating landraces and historic varieties, effectively practicing in situ conservation of agricultural biodiversity. To promote agrobiodiversity conservation, a special list for "conservation varieties" was implemented in 2008 by the EU because for any exchange and marketing of seeds in the EU, a variety must be registered in an official catalog. Our study aimed at improving knowledge on the phenotypic diversity and evolution of such varieties when cultivated on organic farms in Europe, in order to better define their specific characteristics and the implications for the registration process. We assessed multi-trait phenotypic evolution in eight European landraces and historic varieties of bread wheat and in two pureline variety checks, each grown by eight organic farmers over 2 years and then evaluated in a common garden experiment at an organic research farm. Measurements on each farmer's version of each variety included several standard evaluation criteria for assessing distinctness, uniformity and stability for variety registration. Significant phenotypic differentiation was found among farmers' versions of each variety. Some varieties showed considerable variation among versions while others showed fewer phenotypic changes, even in comparison to the two checks. Although farmers' variety would not satisfy uniformity or stability criteria as defined in the catalog evaluation requirements, each variety remained distinct when assessed using multivariate analysis. The amount of differentiation may be related to the initial genetic diversity within landraces and historic varieties.
Characterization and glutenin diversity in tetraploid wheat varieties ...
African Journals Online (AJOL)
STORAGESEVER
2008-11-19
Nov 19, 2008 ... Important methods applied for the breeding of bread-quality wheat (Triticum durum L.) consist of small- scale bread-quality tests for the determination of the grain protein content, SDS-sedimentation volume, thousand weight kernel and ... marked as a x and y – type subunits, based on their electrophoretic ...
Directory of Open Access Journals (Sweden)
Maria Corbellini
2006-09-01
Full Text Available It is important, both for farmer profit and for the environment, to correctly dose fertilizer nitrogen (N for winter wheat growth. Balance-sheet methods are often used to calculate the recommended dose of N fertilizer. Other methods are based on the dynamic simulation of cropping systems. Aim of the work was to evaluate the balance-sheet method set up by the Region Emilia-Romagna (DPI, by comparing it with the cropping systems simulation model CropSyst (CS, and with an approach based on fixed supplies of N (T. A 3-year trial was structured as a series of N fertility regimes at 3 sites (Papiano di Marsciano, Ravenna, San Pancrazio. The N-regimes were generated at each site-year as separate trials in which 3 N rates were applied: N1 (DPI, N2 (DPI+50 kg ha-1 N at spike initiation, N3 (DPI + 50 kg ha-1 N at early booting. Above ground biomass and soil data (NO3-N and water were sampled and used to calibrate CS. Doses of fertilizer N were calculated by both DPI and CS for winter wheat included in three typical rotations for Central and Northern Italy. Both these methods and method T were simulated at each site over 50 years, by using daily generated weather data. The long-term simulation allowed evaluating such alternative fertilization strategies. DPI and CS estimated comparable crop yields and N leached amounts, and both resulted better than T. Minor risk of leaching emerged for all N doses. The N2 and N3 rates allowed slightly higher crop yields than N1.
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, U.N.; Burnett, R.B.; Kanemasu, E.T.; Kirkham, M.B.
1987-12-31
This report deals with the second-year (1985-86) findings of an on going experiment with winter wheat (Triticum aestivum L.) at different carbon dioxide (CO{sub 2}) levels and under two moisture regimes. The results for the first year are given in the U.S. Department of Energy, Carbon Dioxide Research Division Response of Vegetation to Carbon Dioxide. The purpose of the second year`s experiment was to verify the results of 1984-85. However, based on the performance and the results of 1984-85 experiments, a few modifications were made.
Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.
1973-01-01
The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.
Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.
2017-12-01
Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.
[Clarification of Rht8 and Ppd-D1 gene linkage on the 2D chromosome of winter bread wheat].
Chebotar, H O; Chebotar, S V; Motsnyĭ, I I; Syvolap, Iu M
2013-01-01
In the south part of Ukraine the haplotype of Rht8c and Ppd-D1a genes is highly distributed among modern bread wheat varieties. During the time of breeding program it has been selected as one of the most important adaptive complex for plants of this region. Genetic distance between Rht8c and Ppd-D1a was clarified.
DEFF Research Database (Denmark)
Thomsen, Ingrid Kaag; Lægdsmand, Mette; Olesen, Jørgen E
2010-01-01
The rise in mean annual temperatures under the projected climate change will affect both soil organic matter turnover and cropping patterns in agriculture. Nitrogen (N) mineralization may be higher during autumn and winter and may increase the risk of nitrate leaching. Our study tested whether...... before the late sowing of wheat caused generally higher levels of inorganic N to accumulate in soil. Despite the higher mineralization under the raised temperatures, at T+8 the late-sown winter wheat was able to reduce soil inorganic N to a lower level than late-sown wheat at the two lower temperatures...
The influence of soil type and climate on the uptake of radionuclides into wheat
International Nuclear Information System (INIS)
Mitchell, N.G.
1992-03-01
The study investigated the uptake by winter wheat of radionuclides deposited onto the soil surface following a hypothetical accidental release to atmosphere from a nuclear power station. A series of lysimeters were filled with four soil types characteristic of wheat growing areas of Europe. Four radionuclides ( 137 Cs, 144 Ce, 106 Ru, 125 Sb) were watered onto the soil surface and the subsequent contamination of winter wheat crops was monitored over two seasons. Subsidiary experiments considered: effects of ploughing and pot size on root uptake; movement of radionuclides in soil profiles; soil contamination of wheat plants and of grain leaving the field; the influence of climate on root uptake; and, the availability of radionuclides. Compared with the literature, this study found a smaller range of transfer factors appropriate to agricultural soils that predominate in the wheat growing areas of the EEC. The use of pots or tubes to investigate soil-to-plant transfer was justified. The study showed that resuspension of radionuclides bound to soil particles must be considered when assessing soil-to-plant transfer. It was demonstrated that the contribution of soil-bound activity to the radionuclide content of combine harvested grain is underestimated in existing dose assessment methodologies by at least an order of magnitude on average and by over two orders of magnitude in extreme cases. Climatic conditions simulated in a growth chamber had little impact on radionuclide transfer. The relative availability of radionuclides for extraction by ammonium acetate did not reflect percentage transfer to grain. Ploughing reduced uptake by winter wheat, resulted in different patterns of transfer between cultivation treatments and influenced the distribution of activity between grain and straw. Results of this work were used in the development of a multi-compartmental time-dependent model called WHEAT which predicts radionuclide transfer from soil to winter wheat. (author)
Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake
Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva
2010-01-01
In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934
Productivity performance of bread winter wheat genotypes of local and foreign origin
Directory of Open Access Journals (Sweden)
P. Chamurliyski
2016-12-01
Full Text Available Abstract. The proper choice of parental forms is the basis for developing superior varieties with valuable agronomic properties. A priority in modern breeding is increased productivity. The aim of this study was to establish the relative contribution of the yield traits to the productivity of common wheat accessions of different geographical origin. The trial was conducted during 2012 – 2014 at Dobrudzha Agricultural Institute, General Toshevo. The study included 118 varieties and lines originating from Europe, Asia and North America. The tested materials were grown in a randomized block design in three replications, the 2 plot size being 7.5 m . Six cultivars were used as standards: Aglika, Pobeda, Enola, Sadovo 1, Antonovka and Pryaspa. Number of grains per spike, number of 2 grains per m and thousand kernel weight had the highest positive influence on grain yield. The highest levels of productivity were reported in cultivars PKB -1 Vizelika, PKB Rodika, Joana and Midas averaged for the two years of the study, cultivar Vizelika with origin from PKB - Serbia realizing a yield of 9.03 t.ha . Despite environmental effect and interaction, significant genotypic modality on the investigated traits was observed and analysed. All studied accessions can be successfully included in a breeding program to increase productivity.
Directory of Open Access Journals (Sweden)
Piotr Kraska
2012-12-01
Full Text Available The present study was carried out in the years 2006-2008 in the Bezek Experimental Farm (University of Life Sciences in Lublin. A two-factor field experiment was set up according to a randomized block design, in three replications. The experimental field was situated on medium heavy mixed rendzina developed from chalk rock with medium dusty loam granulometric composition. The soil was characterised by neutral pH, a very high content of P (342.1 and K (278.9 along with a very low level of magnesium (16.0 mg × kg-1 of soil and organic carbon (over 3.5%. The aim of this research was to compare the effect of three herbicide doses and two foliar fertilizers applied in a winter wheat canopy on weed infestation. The herbicides Mustang 306 SE 0.4 l × ha-1 and Attribut 70 WG 60 g × ha-1 were applied at full recommended doses as well as at doses reduced to 75% and 50%. Foliar fertilizers Insol 3 (1 1 × ha-1 and FoliCare (20 kg × ha-1 were applied at full recommended doses twice in the growing season BBCH* development stage 23-25* and 33-35*. The control was not treated with the herbicides and foliar fertilizers. The weed infestation level was determined by means of the quantitative gravimetric method at two dates: the first one 6 weeks after herbicide application and the second one - before harvest. The number of weed individuals was counted; species composition and air-dry biomass of aboveground parts were estimated from randomly selected areas of 1 m × 0.25 m at four sites on each plot. Galium aparine and Apera spica-venti plants were sampled for molecular analysis 6 weeks after herbicide application (the treatments with the full herbicide dose, a 50% dose and the control without herbicides. The density of weeds and weed air-dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air-dry weight of weeds in the
The experience in the development of a new soft wheat variety of Yangfumai 2 with good quality
International Nuclear Information System (INIS)
He Zhentian; Chen Xiulan; Han Yuepen; Wang Jinrong; Yang Hefeng; Liu Xueyu
2004-01-01
A new variety Yangfumai 2 derived from a combination, Yangmail 58 x 1-9012, was developed by the way of hybridization and irradiation. Its flour quality meets the standard of national soft wheat, and its agronomic characteristics are described as the high and steady yield, resistance to bad growth condition, the high value of 1000-grainweight and the good-looking at the late seed-filling stage. Yangfumai 2 is suitable to growth in the region of Huaihe canallying in the south along Yangtze River in the middle and lower area. (authors)
Genome-Wide Association Study of Calcium Accumulation in Grains of European Wheat Cultivars
Directory of Open Access Journals (Sweden)
Dalia Z. Alomari
2017-10-01
Full Text Available Mineral concentrations in cereals are important for human health, especially for people who depend mainly on consuming cereal diet. In this study, we carried out a genome-wide association study (GWAS of calcium concentrations in wheat (Triticum aestivum L. grains using a European wheat diversity panel of 353 varieties [339 winter wheat (WW plus 14 of spring wheat (SW] and phenotypic data based on two field seasons. High genotyping densities of single-nucleotide polymorphism (SNP markers were obtained from the application of the 90k iSELECT ILLUMINA chip and a 35k Affymetrix chip. Inductively coupled plasma optical emission spectrometry (ICP-OES was used to measure the calcium concentrations of the wheat grains. Best linear unbiased estimates (BLUEs for calcium were calculated across the seasons and ranged from 288.20 to 647.50 among the varieties (μg g-1 DW with a mean equaling 438.102 (μg g-1 DW, and the heritability was 0.73. A total of 485 SNP marker–trait associations (MTAs were detected in data obtained from grains cultivated in both of the two seasons and BLUE values by considering associations with a -log10 (P-value ≥3.0. Among these SNP markers, we detected 276 markers with a positive allele effect and 209 markers with a negative allele effect. These MTAs were found on all chromosomes except chromosomes 3D, 4B, and 4D. The most significant association was located on chromosome 5A (114.5 cM and was linked to a gene encoding cation/sugar symporter activity as a potential candidate gene. Additionally, a number of candidate genes for the uptake or transport of calcium were located near significantly associated SNPs. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally variable traits in genetically highly diverse variety panels. The research demonstrates the feasibility of the GWAS approach for illuminating the genetic architecture of
Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott
2013-09-01
Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a process-based model, APSIM, was modified to incorporate gene effects into estimation of heading time, while minimizing degradation in the predictive capability of the model. Model parameters describing environment responses were replaced with functions of the number of winter and photoperiod (PPD)-sensitive alleles at the three VRN1 loci and the Ppd-D1 locus, respectively. Two years of vernalization and PPD trials of 210 lines (spring wheats) at a single location were used to estimate the effects of the VRN1 and Ppd-D1 alleles, with validation against 190 trials (~4400 observations) across the Australian wheatbelt. Compared with spring genotypes, winter genotypes for Vrn-A1 (i.e. with two winter alleles) had a delay of 76.8 degree days (°Cd) in time to heading, which was double the effect of the Vrn-B1 or Vrn-D1 winter genotypes. Of the three VRN1 loci, winter alleles at Vrn-B1 had the strongest interaction with PPD, delaying heading time by 99.0 °Cd under long days. The gene-based model had root mean square error of 3.2 and 4.3 d for calibration and validation datasets, respectively. Virtual genotypes were created to examine heading time in comparison with frost and heat events and showed that new longer-season varieties could be heading later (with potential increased yield) when sown early in season. This gene-based model allows breeders to consider how to target gene combinations to current and future production environments using parameters determined from a small set of phenotyping treatments.
Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids
Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.
2018-06-01
Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.
Energy Technology Data Exchange (ETDEWEB)
Studnicki, M.; Mądry, W.; Noras, K.; Wójcik-Gront, E.; Gacek, E.
2016-11-01
The main objectives of multi-environmental trials (METs) are to assess cultivar adaptation patterns under different environmental conditions and to investigate genotype by environment (G×E) interactions. Linear mixed models (LMMs) with more complex variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covariance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified possible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009-2010/2011) from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpretation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on environments, and it can be successfully used in METs data after determining the optimal component number for each dataset. (Author)
Impact of Added Colored Wheat Bran on Bread Quality
Lenka Machálková; Marie Janečková; Luděk Hřivna; Yvona Dostálová; Joany Hernandez; Eva Mrkvicová; Tomáš Vyhnánek; Václav Trojan
2017-01-01
The impact of colored wheat bran addition on bread quality was tested on wheat varieties with purple pericarp (Konini, Rosso and Karkulka) and on a variety containing blue aleurone (Skorpion). The effect of 10 %, 15 % and 20 % bran addition on sensory evaluation, bread color and texture was compared to the characteristics of bread prepared from wheat variety Mulan. The addition of 10 % bran significantly increased the sensory evaluation scores of bread. Crumb characteristics were improved mai...
Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang
2018-02-01
The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation
Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie
2018-08-01
Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.
Cereal aphid colony turnover and persistence in winter wheat.
Directory of Open Access Journals (Sweden)
Linton Winder
Full Text Available An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot and large (field scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m. At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot and large (field scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion; Colonised (aphids recorded on the second occasion but not the first; Extinction (aphids recorded on the first occasion but not the second; Stable (aphids recorded on both occasions. At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development--by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant.
Directory of Open Access Journals (Sweden)
Renata GAJ
2014-12-01
Full Text Available The aim of the study carried out under field conditions was to evaluate the effect of differentiated phosphorus and potassium fertilization level on nutritional status of winter wheat at stem elongation (BBCH 31 and flowering (BBCH 65 development stages as well as on macronutrient contents in yield obtained (grain and straw. The research was conducted in 2007-2010, within an individual agricultural holding, on lessive soil with medium and high richness in potassium and phosphorus, respectively. The contents of nitrogen, phosphorus, potassium, magnesium and calcium in wheat changed depending on the organ assessed and plant development stage. At BBCH 31, regardless fertilization level, the plants observed were malnourished with potassium, phosphorus and calcium and at the control site also with nitrogen. Furthermore, there were found significant correlation relationships among the contents of nutrient pairs: nitrogen-potassium, nitrogen-phosphorus, nitrogen-magnesium and nitrogen-calcium. The content of nitrogen in wheat grain and straw differed mainly due to weather conditions during the study. Irrespective of the years of observation, differentiated rates of P and K applied had no significant effect on N accumulation in wheat at full ripening stage. In contrast to nitrogen, the level of P and K fertilization significantly differentiated the contents of phosphorus, potassium and magnesium in wheat grain and straw. In case of calcium, the effect of fertilization factor was indicated only as regards the content of this nutrient in grain.
Directory of Open Access Journals (Sweden)
Eun-Sook Lee
2011-04-01
Full Text Available It was identified as a sharp eyespot (Rhizoctonia cerealis that the isolates from abnormal symptoms in wheat that showed yellowing leaves, necrotic spot on stem base and dead tillers. These isolates have slower growth property and fewer mycelia than Rhizoctonia solani AG-1(1A (KACC 40106. They showed binuclear cell, same media cultural and DNA characteristics to R. cerealis. They caused same symptoms on leaves and stem base appeared in artificial inoculation test, comparing to diseased wheat fields and also affect to maturing of kernels. They have optimal growth temperature and acidity on the artificial media as 20~25℃ and pH 5~7, respectively. In the investigation of varietal resistance of Korean winter cereal crops to sharp eyespot, there was no resistant in wheat cultivars that all materials infected over 20% diseased ratio. 12 cultivars including ``Anbaekmil``, however, considered to moderate resistance with 20 to 30% infection ratio. The others crops using in feeding, whole crop barley, oat, rye and triticale were resistant below 15% diseased degree except the rye that showed over 50% infection rate. It was the first evaluation to sharp eyespot resistance for the Korean feeding crop cultivars. Most tested Korean barley cultivars for malting and food were moderate and susceptible to the sharp eyespot. Only 3 hulled barley, ``Tapgolbori``, ``Albori`` and ``Seodunchalbori``, showed resistance with less than 10% diseased ratio. All tested naked barley cultivars showed susceptible response to the disease.
Verreet, J A; Heger, M; Oerke, E; Dehne, H W; Finger, I; Busse, C; Klink, H
2003-01-01
Under the primary utilisation of phytosanitary production factors such as selection of variety, crop rotation and N fertilisation according to plant requirements, the IPM Wheat Model comprises the elements diagnosis (qualitative = type of pathogen, quantitative = disease severity), scientifically grounded treatment thresholds which, as critical values in pathogen development, can be applied to define the optimum time of fungicide application, and pathogen-specific effective fungicides and application amounts. This leads to the location and year-specific optimised control of the pathogen and of the associated yield performance. After several years of development in Bavaria (from 1985 on) and Schleswig-Holstein (1993-1999), the model was tested as part of a project involving the Universities of Bonn and Kiel and the plant protection services of the German states of Lower Saxony, North Rhine-Westphalia and Schleswig-Holstein in a three-year study (1999-2001) in interregional locations (usually nine per state) with the winter wheat variety Ritmo (interregional indicator variety) and a further variety of regional importance in different variations (untreated control, three to four times growth stage-oriented variants for the determination of the absolute damage potential, IPM-variant). In exact records (approx. 12 dates per vegetation period), the disease epidemics were recorded weekly. With the genetically uniform indicator variety Ritmo, the results documented substantially differing year- and location-specific disease and yield patterns. Interregionally, a broad wheat pathogen spectrum (Puccinia striiformis, P. recondita, Septoria tritici, Stagonospora (syn. Septoria) nodorum, Blumeria (syn. Erysiphe) graminis, Pseudocercosporella herpotrichoides, Drechslera tritici-repentis) in differing composition, disease severity and damage effect was demonstrated. The heterogeneity of the infection and damage patterns was increased in the case of the second variety, in
Directory of Open Access Journals (Sweden)
Domenico Ventrella
2012-03-01
Full Text Available Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for determined environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of most productive areas of Italy (i.e. Capitanata, Puglia, using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i a single dataset (50 km x 50 km provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060 and +5°C (centred over 2070-2099, respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG. No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.
Selection of salt-tolerant variant of wheat in vitro
International Nuclear Information System (INIS)
Zheng, Q.; Zhu, Y.; Chen, W.; Tang, X.
1990-01-01
Full text: Growing-tip explants of four winter wheat varieties were cultured on basal medium supplemented with 2,4-D 2mg/l and various NaCI concentrations. The calli derived from 'Nongda 139' growing-tips were subcultured on the medium salinized with 0.4% NaCI for one year. Then they were cultured on a medium serially salinised with NaCI, increasing by 0.4% steps until 2%. Finally, surviving calli were transferred to a medium containing 0.4% NaCI for regeneration. 21 plants were obtained among which 3 were sterile. Dwarf, late ripening, shrunken grains and spike shape variations were observed, but they were non-heritable except dwarf and spike shape. Some potential NaCI-tolerant variants were identified. (author)
Promising semi-dwarf mutant in wheat variety K68
Energy Technology Data Exchange (ETDEWEB)
Kumar, D [Banaras Hindu Univ. (India). Dept. of Genetics and Plant Breeding
1977-04-01
A semi-dwarf mutant (HUW-SDf 1) was induced from common wheat Var. K68 through the exposure of /sup 60/Co ..gamma..-rays at 15 kR. This mutant along with other induced mutants and control was assessed for yield components, yield and grain quality (M/sub 4/ generation); internode length reduction pattern and the yielding ability at three levels of nitrogen (M/sub 5/ generation). The mutant was significantly shorter in height and almost equal in tillers per plant and grains per spike to K68. However, it showed marked reduction in spike length and spikelets per spike. On the other hand, it possessed significantly higher (50.04 g) 1000-grain weight against control (41.15 g). The mutant gave 56.0% higher yield than the control. Grain quality studies indicated that the mutant possessed significantly higher (14.15%) total protein than K68. It was equally as good as K68 in lysine content. Pelshenke value (62.5 min) of the mutant indicated medium hard nature of gluten as compared to hard nature (198.0) of the control. The mutant showed 24.0% reduction in total culm length compared to K68. Reduction occurred due to maximum and almost equal reduction in 5th and 4th internodes (ca 34.0%) followed by 3rd, 2nd and 1st. The mutant showed similar yield and yield response to increasing nitrogen levels (80 to 160 kg per ha.) as for current commercial semi-dwarf varieties.
Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).
Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon
2014-01-01
Vernalization, photoperiod and the relatively poorly defined earliness per se ( eps ) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62 , consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111 . SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.
Winter barley mutants created in the Ukraine
International Nuclear Information System (INIS)
Zayats, O.M.
2001-01-01
Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)
Ratajczak, Dominika; Górny, Andrzej G
2012-11-01
The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.
Identification of vernalization responsive genes in the winter wheat ...
Indian Academy of Sciences (India)
2National Engineering Research Centre for Wheat, 3Collaborative Innovation Center of ... among the specific genes were selected for validation by quantitative reverse transcription ... expression of TaSnRK2.8 enhanced the tolerance to low.
Directory of Open Access Journals (Sweden)
Ondřej Šťastník
2017-01-01
Full Text Available The feeding effect of of three spring wheat genotypes (Vánek, Konini and UC66049 with different grain colour on growth performance, body composition and meat quality parameters of broiler chickens was tested. Ninety chickens were divided into three groups (control, Konini and UC with 30 chickens in each. The tested genotypes were compares with standard variety Vánek (control with common (red grain colour. The two experimental groups received feed mixtures containing 38.2% of wheats with different grain colour: groups Konini (n = 30 and UC (n = 30 with. The third group (n = 30 had 38.2% of common wheat Vánek cultivar (Control group. The live weight of chickens between the experimental groups and control group was not significant different, as well as body composition and chemical analysis of breast and thigh meat of chickens. The feeding of wheat with different grain colour had no effect on performance parameters of broiler chickens. Breast meat tenderness according to the Razor Blade Shear Force was higher in control group against experimental groups. The colour change was not significantly different in all coordinates. pH values (measured after 1-hour post mortem were found significantly higher in the group fattening with Konini wheat than control and UC groups. Chickens meat from the experimental group was characterised by steady overall quality. The effect of various feeding had no effect on meat quality in terms of relevance to consumers.
‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...
Nitrogen economy in relay intercropping systems of wheat and cotton
Zhang, L.Z.; Spiertz, J.H.J.; Zhang, S.; Li, B.; Werf, van der W.
2008-01-01
Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are
Wang, Sisi; Mo, Xingguo; Liu, Zhengjia; Baig, Muhammad Hasan Ali; Chi, Wenfeng
2017-05-01
Monitoring the spring green-up date (GUD) has grown in importance for crop management and food security. However, most satellite-based GUD models are associated with a high degree of uncertainty when applied to croplands. In this study, we introduced an improved GUD algorithm to extract GUD data for 32 years (1982-2013) for the winter wheat croplands on the North China Plain (NCP), using the third-generation normalized difference vegetation index form Global Inventory Modeling and Mapping Studies (GIMMS3g NDVI). The spatial and temporal variations in GUD with the effects of the pre-season climate and soil moisture conditions on GUD were comprehensively investigated. Our results showed that a higher correlation coefficient (r = 0.44, p the improved algorithm relative to GUD from the MCD12Q2 phenology product. In spatial terms, GUD increased from the southwest (less than day of year (DOY) 60) to the northeast (more than DOY 90) of the NCP, which corresponded to spatial reductions in temperature and precipitation. GUD advanced in most (78%) of the winter wheat area on the NCP, with significant advances in 37.8% of the area (p the interannual scale, the average GUD advanced from DOY 76.9 in the 1980s (average 1982-1989) to DOY 73.2 in the 1990s (average 1991-1999), and to DOY 70.3 after 2000 (average 2000-2013), indicating an average advance of 1.8 days/decade (r = 0.35, p the pre-season temperature, our findings underline that the effect of the pre-season soil moisture on GUD should also be considered. The improved GUD algorithm and satellite-based long-term GUD data are helpful for improving the representation of GUD in terrestrial ecosystem models and enhancing crop management efficiency.
Response of wheat to tillage and nitrogen fertilization in rice-wheat system
International Nuclear Information System (INIS)
Qamar, R.; Ehsanullah, A.; Ahmad, R.; Iqbal, M.
2012-01-01
In a rice-wheat system, rice stubbles remaining in the field often delay early planting of winter wheat to utilize residual soil moisture and reduce operating costs. A randomized complete block design in a split plot arrangement was conducted with four seasonal tillage methods [conventional tillage, CT; deep tillage, DT; zero tillage with zone disk tiller, ZDT; and happy seeder, HS] as main plots and five N levels [0, 75, 100, 125, and 150 kg ha/sup -1/] as subplots during 2009 to 2010 and 2010 to 2011 wheat growing seasons. Results showed that DT significantly decreased soil bulk density, penetration resistance, and volumetric moisture content compared with CT, ZDT and HS. However, wheat growth and yield parameter such as fertile tillers, plant height, root length, spike length, grain yields, and water and nutrient-use efficiency was significantly higher in DT compared with other tillage treatments. Wheat growth and yield was more increased by N fertilization at 125 kg ha/sup -1/ than other N rates. However, when the wheat plant productivity index was plotted over N rates, the non-linear relationship showed that N fertilization at 80 kg N ha-1 accounted for 85% of the variability in the plant productivity under DT and HS while ZDT had the same productivity at 120 kg N ha/sup -1/. (author)
Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*
Directory of Open Access Journals (Sweden)
Hamouz P.
2015-03-01
Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.
Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae
Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian
2016-01-01
The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of
Directory of Open Access Journals (Sweden)
Ian M. Haigh
2012-01-01
Full Text Available Exposure to pre-emergent freezing temperatures significantly delayed the rate of seedling emergence (P<0.05 from an infected and a non-infected winter wheat cv. Equinox seed lot, but significant effects for timing of freezing and duration of freezing on final emergence were only seen for the Microdochium-infested seed lot. Freezing temperatures of −5∘C at post-emergence caused most disease on emerged seedlings. Duration of freezing (12 hours or 24 hours had little effect on disease index but exposure to pre-emergent freezing for 24 hours significantly delayed rate of seedling emergence and reduced final emergence from the infected seed lot. In plate experiments, the calculated base temperature for growth of M. nivale and M. majus was −6.3∘C and −2.2∘C, respectively. These are the first set of experiments to demonstrate the effects of pre-emergent and post-emergent freezing on the severity of Microdochium seedling blight.
Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat
DEFF Research Database (Denmark)
Li, Yafei; Li, Xiangnan; Yu, Jingjie
2017-01-01
Abstract Climate change predicts more frequent drought spells along with an elevation in atmospheric CO2 concentration (e[CO2]). Although the responses of winter wheat (Triticum aestivum L.) plants to drought or a single generation exposure to e[CO2] have been well documented, the transgenerational...... effect of e[CO2] in combination of drought on stomatal behavior, plant water consumption and water use efficiency (WUE) have not been investigated. Seeds harvested from plants after two generations (2014–2015) continuously grown in ambient CO2 (a[CO2], 400 μmol L−1) and e[CO2] (800 μmol L−1) were sown...... in 4 L pots, and the plants were grown separately in greenhouse cells with either a[CO2] or e[CO2]. At stem elongation stage, in each of the cells half of the plants were subjected to progressive drought stress until all the plant available soil water was depleted, and the other half were well-watered...
Genetic variation at loci controlling quality traits in spring wheat