WorldWideScience

Sample records for winter wheat flag

  1. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  2. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    Science.gov (United States)

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  3. Study on physiological characteristics of winter wheat in drought land

    International Nuclear Information System (INIS)

    Man Huimin; Yu Guohua; Zhan Shumin; Liu Xin; Zhang Guoshu

    1995-01-01

    Physiological characteristics of winter wheat cultivated in drought land was studied. The results showed that with precipitation of 1 m in the growing period of wheat, it was feasible to use drought cultivation techniques, i.e., increasing the application of P, K and Zn, maintaining the present application of N and increasing the density of wheat plants, to increase the ability of photosynthesis in the parts from the top inter-node above, and a 4900 kg/hm 2 or more of grain yield was obtained. 14 C-assimilate transportation from different parts to grain in drought and irrigating cultivation conditions were 83. 73% and 75.31% respectively. The proline content in flag leaf and the chlorophyll content in the parts from the top inter-node above with drought cultivation were significantly higher than those with normal cultivation

  4. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  5. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  6. Genetic evolution and utilization of wheat germplasm resources in Huanghuai winter wheat region of China

    International Nuclear Information System (INIS)

    Xiyong, C.; Haixia, X.U.; Feng, C.

    2011-01-01

    To determine the genetic variation of wheat germplasm resources and improve their use in wheat breeding, 215 wheat cultivars and advanced lines from the Huanghuai Wheat Region of China were used to identify 14 agronomic traits and 7 quality traits, as well as the evolution and utilization of high molecular weight glutenin subunits (HMW-GS) and low molecular weight-glutenin subunits (LMW-GS). From land race cultivars to current cultivars there had been significant increases in grain numbers spike/sip -1/, grain weight spike/sup -1/, 1000-kernel weight, grain weight plant/sup -1/, spikelet number spike/sup -1/, sterile spikelet numbers spike/sup -1/, flag leaf width, and flag leaf area. There had been significant decreases in spike number plant/sup -1/, plant height, the first inter node length, flag leaf length, kernel protein content and wet gluten content. Based on Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results, a novel HMW-GS combination 20/8 was identified in 1B chromosome of Chinese landrace cultivar Heputou. Subunits 22, 20/8, 2.2+12, and GluB3a were only found in cultivars before the 1960s, and subunits 6+8, 13+16, 3+12, and 4+12 were only found in the cultivars after the 1980s. The average diversity index of 21 traits and allele variance of HMW-GS showed a decreasing-increasing-decreasing tendency. HMW-GS and LMW-GS combination-type cultivars showed an increasing-decreasing tendency. Before the 1980s, most parental strains were from foreign cultivars and landrace cultivars, while after the 1980s, most parental strains were from released cultivars and germplasm created by distant hybridization. This study provided useful information for improvement of wheat breeding in Huanghuai winter wheat region. (author)

  7. Mechanical weed control in organic winter wheat

    OpenAIRE

    Euro Pannacci; Francesco Tei; Marcello Guiducci

    2017-01-01

    Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08) in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i) spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days) in t...

  8. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  9. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...

  10. Flowering time control in European winter wheat

    Directory of Open Access Journals (Sweden)

    Simon Martin Langer

    2014-10-01

    Full Text Available Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.

  11. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  12. Mechanical weed control in organic winter wheat

    Directory of Open Access Journals (Sweden)

    Euro Pannacci

    2017-12-01

    Full Text Available Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08 in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l. in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days in the crop sowed at narrow (traditional row spacing (0.15 m; and ii split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m. At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a randomized block with four replicates. Six weeks after mechanical treatments, weed ground cover (% was rated visually using the Braun-Blanquet coverabundance scale; weeds on three squares (0.6×0.5 m each one per plot were collected, counted, weighed, dried in oven at 105°C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2, Fallopia convolvulus (L. Á. Löve (exp. 1 and 3, Stachys annua (L. L. (exp. 1, Anagallis arvensis L. (exp. 2, Papaver rhoeas L. (exp.3, Veronica hederifolia L. (exp. 3. In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by split hoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing

  13. NS Pudarka: A new winter wheat cultivar

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2014-01-01

    Full Text Available The high-yielding, medium late winter wheat cultivar NS Pudarka was developed by crossing genetic divergent parents: line NMNH-07 and cv. NS 40S and Simonida. In cultivar NS Pudarka genes responsible for high yield potential, very good technological quality, resistance to lodging, low temperature and diseases, were successfully combined. It was registered by Ministry of agriculture, forestry and water management of Serbia Republic in 2013. This cultivar has wide adaptability and stability of yield that enable growing in different environments with optimal agricultural practice. On the base of technological quality this cultivar belongs to the second quality class, A2 farinograph subgroup and second technological group.

  14. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  15. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.

    Science.gov (United States)

    Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus

    2013-01-01

    The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  16. Evaluation of 14 winter bread wheat genotypes in normal irrigation ...

    African Journals Online (AJOL)

    Evaluation of 14 winter bread wheat genotypes in normal irrigation and stress conditions after anthesis stage. ... African Journal of Biotechnology ... Using biplot graphic method, comparison of indices amounts and mean rating of indices for ...

  17. Bread-Making Quality of Standard Winter Wheat Cultivars

    OpenAIRE

    Ćurić, Duška; Novotni, Dubravka; Bauman, Ingrid; Krička, Tajana; Jukić, Željko; Voća, Neven; Kiš, Darko

    2009-01-01

    The purpose of this study was to define an impact of the cultivar, year and cultivation area of the standard Croatian winter wheat on the bread-making quality. The bread-making quality of cultivars ‘Divana’, ‘Žitarka’ and ‘Sana’ from the crop years 1998, 2000, 2002, 2004 and 2006, and from Zagreb and Osijek location was analyzed. Wheat from the cultivar tests cultivated under the same agro technological conditions was used for this testing. The tested winter wheat bread-making quality primari...

  18. Photosynthetic characteristics and distribution of 14C assimilates in the winter wheat of late growing period in dry land

    International Nuclear Information System (INIS)

    Qing Huimin; Yu Guohua; Yin Xisheng; Zhan Shumin; Liu Xin

    1999-01-01

    The photosynthetic characteristics and distribution of 14 C assimilates of winter wheat in late growing period in the field of natural drought condition was studied. The results showed that photosynthetic rate of flag leaves was up to 14.24 μmol CO 2 ·m -2 ·s -1 , the ribulose-1,5-bisphosphate carboxylase (RUBpCase) activity of flag leaves in late growing period in field drought treatment was about 20∼23 μmol CO 2 ·min -1 ·g -1 dw when the water potential of flag leaves was about -1.8∼-2.1 MPa. The photosynthetic rate of flag leaves of control was 15.15 μmol CO 2 ·m -2 ·s -1 . The RUBpCase activity was about 22∼25 μmol CO 2 ·min -1 · -1 ·g -1 dw in the field of irrigated condition when the water potential of flag leaves was about -1.65∼-1.8 MPa, indicating that the RUBpCase activity of flag leaves in drought condition was not a major limiting factor. The total distribution rate of 14 C assimilates of flag leaves, flag leaf sheath, flag leaf node and awn to grain in drought treatment was about 44.8%, and that of control was about 40.2%. The results also showed that in late growing period the proportion of 14 C assimilates to roots in the both drought and control treatment was similar, about 2.0%. But the amount of 14 C assimilates in the roots in the soil layer of 120∼200 cm was up to 8.34% of the total 14 C assimilates in the roots, however, that of control was only about 3.6%

  19. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat.

    Science.gov (United States)

    Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana

    2017-12-01

    Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  1. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  2. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen

    DEFF Research Database (Denmark)

    Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.

    2015-01-01

    occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...

  3. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat

    Directory of Open Access Journals (Sweden)

    Nunun eBarunawati

    2013-08-01

    Full Text Available The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA in green leaves, while 2’-deoxymugineic acid (DMA remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approx. one third of the total Fe, Zn or Cu content in leaves. The significant increase in the accumulation of Fe, Zn and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  4. Sustainable use of winter Durum wheat landraces under ...

    African Journals Online (AJOL)

    ... the two checks cultivars. Bi- plot analysis showed that some promising lines with reasonable grain yields, good quality parameters, winter hardiness and drought tolerances among yellow rust resistance durum wheat landraces can be selected for semiarid conditions of Mediterranean countries for sustainable production.

  5. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Investigation of rheological properties of winter wheat varieties during storage

    Directory of Open Access Journals (Sweden)

    Móré M.

    2015-01-01

    Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.

  7. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...

  8. Effects of shading on morphology, physiology and grain yield of winter wheat

    DEFF Research Database (Denmark)

    Li, Huawei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    In a field experiment, winter wheat (Triticum aestivum L.) cultivars Yangmai 158 (YM 158, shading tolerant) and Yangmai 11 (YM 11, shading-sensitive) were subjected to shading between jointing and maturity. Three shading treatments were applied, i.e. 92% (S1), 85% (S2) and 77% (S3) of full...... the shading treatments applied, leaf area index, length of the peduncle internode, area of the upper leaves and content of pigments increased, which favoured efficient light capture. Shading modified light quality in the canopy as indicated by increases of diffuse- and blue light fractions and a reduction...... the flag leaf, as in most cases Pn of the third and the penultimate leaves were found to increase under shading treatments. Shading increased the redistribution of dry matter from vegetative organs into grains. The responses of the morphological and physiological traits to shading are discussed in relation...

  9. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...

  10. Interactions between fungi colonizing the stem base of winter wheat

    Directory of Open Access Journals (Sweden)

    Urszula Wachowska

    2014-08-01

    Full Text Available In vitro conditions, the interactions betecen the fungi most frequently isolated from the stem base of winter wheat were determined. These were the species from genus Fusarium (F. culmorum, F. avenaceum and F. poae and Rhizoctonia cerealis, Pseudocercosporella herpotrichoides, Alternaria alternata and Aureobasidium bolleyi. Some saprotrophes showed stimulating effect on R. cerealis, P. herpotrichoides and F. poae. Certain species in combined cultures showed exceptionally favourable relationships.

  11. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  12. Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)

  13. Effect of seeding rate on grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Veselinka Zecevic

    2014-03-01

    Full Text Available Planting density is important factor which influence yield and quality of wheat (Triticum aestivum L. For this reason, in scientific investigations is constantly investigated optimization of plant number per unit area. The objective of this study was to determine the influence of seeding rate in grain quality of winter wheat cultivars. The experiment was conducted with four winter wheat genotypes ('Ana Morava', 'Vizija', 'L-3027', and 'Perla' at the Small Grains Research Centre of Kragujevac, Serbia, in 3 yr at two seeding rates (SR1 = 500 and SR2 = 650 germinating seeds m-2. The 1000-kernel weight, Zeleny sedimentation, and wet gluten content in divergent wheat genotypes were investigated depending on the seeding rate and ecological factors. Significant differences in quality components were established between investigated seeding rates. The highest values of all investigated quality traits were established in SR2 variant when applied 650 seeds m-2. Genotypes reacted differently to seeding rate. 'Perla' in average had the highest mean sedimentation value (42.2 mL and wet gluten content (33.76% in SR2 variant and this cultivar responded the best to seeding rate. Significant differences for sedimentation value and wet gluten content were found among cultivars, years, seeding rate, and for all their interactions. Also, ANOVA for 1000-kernel weight showed highly significant differences among investigated varieties, seeding rate and growing seasons, but all their interactions were not significant. In all investigated genotypes, better quality was established in SR2 variant when applied 650 seeds m-2.

  14. Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2005-01-01

    Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.

  15. Study of Winter Wheat Yield Quality Analysis at ARDS Turda

    Directory of Open Access Journals (Sweden)

    Ovidiu Adrian Ceclan

    2016-11-01

    Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.

  16. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  17. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  18. Genetics of leaf rust resistance in the hard red winter wheat cultivars Santa Fe and Duster

    Science.gov (United States)

    Leaf rust caused by Puccinia triticina is a common and important disease of hard red winter wheat in the Great Plains of the United States. The hard red winter wheat cultivars 'Santa Fe' and 'Duster' have had effective leaf rust resistance since their release in 2003 and 2006, respectively. Both cul...

  19. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2017-01-01

    Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...

  20. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    Science.gov (United States)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Contribution of allelopathy and competition to weed suppression by winter wheat, triticale and winter rye

    DEFF Research Database (Denmark)

    Reiss, Antje; Fomsgaard, Inge S.; Mathiassen, Solvejg Kopp

    Above-ground competition and allelopathy are two of the most dominant mechanisms of plants to subdue their competitors in their closest surroundings. In an agricultural perspective, the suppression of weeds by the crop is of particular interest, as weeds represent the largest yield loss potential...... of competitive traits, such as early vigour, crop height and leaf area index and presence of phytotoxic compounds of the group of benzoxazinoids to weed suppression. Four cultivars of each of the winter cereals wheat, triticale and rye were grown in field experiments at two locations. Soil samples were taken...

  2. Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley

    DEFF Research Database (Denmark)

    Gerhards, R; Christensen, Svend

    2003-01-01

    with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site-specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including...

  3. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat

    Directory of Open Access Journals (Sweden)

    Quddoos H. Muqaddasi

    2017-05-01

    Full Text Available Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat (Triticum aestivum L. impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE in panels of spring (SP, and winter wheat (WP accessions by genome wide association studies (GWAS. We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation (r among all years and their best linear unbiased estimates (BLUEs within both panels were high (r(SP = 0.75, P < 0.0001;r(WP = 0.72, P < 0.0001. Genotypic data (with minimum of 0.05 minor allele frequency applied included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log10(P| > 3.0 marker trait associations (MTAs were detected (SP = 11; WP = 12. Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance (R2(SP = 9.75−14.24%; R2 (WP = 9.44−16.98%. All mapped significant markers as well as the markers within their significant linkage disequilibrium (r2 ≥ 0.30 regions were blasted against wheat genome assembly (IWGSC1+popseq to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in Hordeum vulgare, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the

  4. Viability and vigour of ageing winter wheat grains

    Directory of Open Access Journals (Sweden)

    Stanisław Grzesiuk

    2014-01-01

    Full Text Available The viability and vigour of ageing winter wheat caryopses of the cvs. Grana and Jana were tested. Viability was determined on the basis of germination capacity and rate, and vigour on the basis of the over-all activity of hydrogenases in the sprouts, exudate conductometry, analysis of sprout growth, oxygen uptake and mitochondrial protein content in the sprouts. What is called energy (or rate of germination and over-all dehydrogenase activity in embryos and sprouts and the electroconductivity of exudates were found to be very good measures of the vigour of ageing caryopses. The latter two indices of vigour should be determined at a strictly defined moment of swelling and germination. Good measures of caryopse vigour are also respiration during swelling and at the beginning of germination and mitochondrial protein content in the sprouts or seedlings. There is a high correlation between the vigour of ageing grain and its bioenergetic indices.

  5. Effect of gamma radiation on immature winter wheat embryo culture

    International Nuclear Information System (INIS)

    Sidorova, N.; Morgun, V.; Logvinenko, V.; Karpets, A.

    1990-01-01

    Full text: The aim was to study the effect of mutagenic treatment on callus initiation, shoot differentiation and enhancement of the variation frequency and spectrum. Seven winter wheat genotypes were used as donors for immature embryos. Spikes 14 days after anthesis were treated with 4 Gy gamma rays, then embryos were isolated. According to the effect of gamma rays on the callus induction frequency (CIF) the genotypes were divided into three groups, in the first group we observed GIF stimulation (Kiyanka, Stepnyak, UK-8, Ironovskaya 61) as compared with the control (C); the second group - CIF on the C level (Mironovskaya 806, Kharkovskaya II) and the third group - CIF is lower than in C (Lutescens 7). Regeneration frequency was reduced greatly in all genotypes under mutagenic treatment. Variation has been found for plant height, number of productive tillers, length of vegetation period, spike morphology and size, awn type. (author)

  6. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions

    Directory of Open Access Journals (Sweden)

    Mesut Keser

    2017-12-01

    Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008–2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010–2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t ha−1, but varied from 1.11 t ha−1 to 6.02 t ha−1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spike−1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield

  7. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  8. The impacts of surface ozone pollution on winter wheat productivity in China – An econometric approach

    International Nuclear Information System (INIS)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. - Highlights: • We examine the impacts of the surface ozone exposure on winter wheat yield in China. • An econometric method is used to measure the ozone impacts. • The results conclude that surface ozone is harmful to winter wheat yield in China. • We confirm that stress conditions such as drought and air particles can mitigate the adverse effect of ozone. - Surface ozone pollution is harmful to winter wheat yield in China by considering socio-economic determinants, weather, and other stress conditions like drought and air particles.

  9. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elsgaard, Lars; Olesen, Joergen E.; Hermansen, John E.; Kristensen, Inge T.; Boergesen, Christen D. [Dept. of Agroecology, Aarhus Univ., Tjele (Denmark)], E-mail: lars.elsgaard@agrsci.dk

    2013-04-15

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO{sub 2} equivalents (CO{sub 2}eq) were quantified from the footprints of CO{sub 2}, CH{sub 4} and N{sub 2}O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO{sub 2}eq MJ{sup 1} ethanol for winter wheat and 26.0 g CO{sub 2}eq MJ{sup 1} RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Territorial Units for Statistics [NUTS]) ranged from 20.0 to 23.9 g CO{sub 2}eq MJ{sup 1} ethanol and from 23.5 to 27.6 g CO{sub 2}eq MJ{sup 1} RME. Thus, at the regional level emission results varied by up to 20%. Differences in area-based emissions were only 4% reflecting the importance of regional variation in yields for the emission result. Fertilizer nitrogen production and direct emissions of soil N{sub 2}O were major contributors to the final emission result and sensitivity analyses showed that the emission result depended to a large extent on the uncertainty ranges assumed for soil N{sub 2}O emissions. Improvement of greenhouse gas balances could be pursued, e.g., by growing dedicated varieties for energy purposes. However, in a wider perspective, land-use change of native ecosystems to bioenergy cropping systems could compromise the CO{sub 2} savings of bioenergy production and challenge the targets set for biofuel

  10. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  11. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Science.gov (United States)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  12. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...

  13. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  14. Winter wheat optimizes allocation in response to carbon limitation

    Science.gov (United States)

    Huang, Jianbei; Hammerbacher, Almuth; Trumbore, Susan; Hartmann, Henrik

    2016-04-01

    • Plant photosynthesis is not carbon-saturated at current atmospheric CO2 concentration ([CO2]) thus carbon allocation priority is of critical importance in determining plant response to environmental changes, including increasing [CO2]. • We quantified the percentage of daytime net assimilation (A) allocated to whole-plant nighttime respiration (R) and structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during winter wheat (Triticum aestivum) vegetative growth (over 4 weeks) at glacial, ambient, and elevated [CO2] (170, 390 and 680 ppm). • We found that R/A remained relatively constant (11-14%) across [CO2] treatments, whereas plants allocated less C to growth and more C to export at low [CO2] than elevated [CO2]; low [CO2] grown plants tended to invest overall less C into NSC and SMs than to SG due to reduced NSC availability; while leaf SMs/NSC was greater at 170 ppm than at 680 ppm [CO2] this was the opposite for root SMs/NSC; biomass, especially NSC, were preferentially allocated to leaves instead of stems and roots, likely to relieve C limitation induced by low [CO2]. • We conclude that C limitation may force plants to reduce C allocation to long-term survival in order to secure short-term survival. Furthermore, they optimized allocation of the available resource by concentrating biomass and storage to those tissues responsible for assimilation.

  15. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China

    International Nuclear Information System (INIS)

    Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.

    2008-01-01

    An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China

  16. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  17. Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides

    Directory of Open Access Journals (Sweden)

    Tatyana Eugenivna KOPYTCHUK

    2012-05-01

    Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.

  18. Cereal aphid colony turnover and persistence in winter wheat.

    Directory of Open Access Journals (Sweden)

    Linton Winder

    Full Text Available An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot and large (field scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m. At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot and large (field scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion; Colonised (aphids recorded on the second occasion but not the first; Extinction (aphids recorded on the first occasion but not the second; Stable (aphids recorded on both occasions. At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development--by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant.

  19. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  20. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Xue, Shulin; Xu, Feng; Li, Guoqiang; Zhou, Yan; Lin, Musen; Gao, Zhongxia; Su, Xiuhong; Xu, Xiaowu; Jiang, Ge; Zhang, Shuang; Jia, Haiyan; Kong, Zhongxin; Zhang, Lixia; Ma, Zhengqiang

    2013-08-01

    Flag leaf width (FLW) is directly related to photosynthetic capacity and yield potential in wheat. In a previous study, Qflw.nau-5A controlling FLW was detected on chromosome 5A in the interval possessing Fhb5 for type I Fusarium head blight (FHB) resistance using a recombinant inbred line population derived from Nanda2419 × Wangshuibai. Qflw.nau-5A near-isogenic line (NIL) with the background of Mianyang 99-323 and PH691 was developed and evaluated. FLW inheritance was investigated using two F2 populations developed from crossing the Qflw.nau-5A NILs with their recurrent parents. One hundred ten and 28 recombinants, which included 10 and 5 types of recombinants, were identified from 2816 F2 plants with Mianyang 99-323 background and 1277 F2 plants with PH691 background, respectively, and phenotyped in field trials for FLW and type I FHB resistance. Deletion bin mapping was applied to physically map Qflw.nau-5A. The introduction of Wangshuibai Qflw.nau-5A allele reduced the FLW up to 3 mm. In the F2 populations, Qflw.nau-5A was inherited like a semi-dominant gene, and was therefore designated as TaFLW1. The FLW of the recombinant lines displayed a distinct two-peak distribution. Recombinants with wider leaves commonly have Mianyang 99-323 or PH691 chromatin in the 0.2 cM Xwmc492-Xwmc752 interval that resided in the 5AL12-0.35-0.57 deletion bin, and recombinants with narrow leaves were Wangshuibai genotype in this interval. Phenotypic recombination between FLW and type I FHB resistance was identified, implying TaFLW1 was in close linkage with Fhb5. These results should aid wheat breeders to break the linkage drag through marker-assisted selection and assist in the map-based cloning of TaFLW1.

  1. Comparison of winter wheat growth with multi-temporal remote sensing imagery

    International Nuclear Information System (INIS)

    Xiaoyu, Song; Bei, Cui; Guijun, Yang; Haikuan, Feng

    2014-01-01

    Leaf area index (LAI) is an important index for crop growth monitoring. This paper focused on estimation of winter wheat LAI dynamics in different growth stages based on Landsat TM data. In order to retrieve wheat LAI from remote sensing data, LAI measurements were initiated when Landsat satellite pass over the study region. Three Landsat5 TM images were acquired on April 15, May 17, and June 2, 2009, corresponding to jointing stage, flowering stage and milking stage of wheat. LAI was measured at each stage in thirty wheat fields distributed in Beijing suburb. Based on the TM images, spectral indices including NDVI, MSAVI, SAVI, RDVI, SR, ISR, MSR and NLI were calculated. Univariate correlation analysis was then conducted between LAI data and corresponding TM spectral variables. The analysis results indicated that TM ISR on April 15, TM Band4 on May17, and TM ISR on June 2 were very significantly correlated with LAI, and the coefficient values were 0.736, 0.548 and 0.493, respectively. LAI map of winter wheat for whole study area was produced based on optimal non-linear correlation models. The three LAI maps were used to winter wheat growth analysis and comparison of different growth stages. Study results indicated that from April 15 to May 17, LAI value for 14.88% of winter wheat fields (9131ha) increased less than 1, 64.43 % (39421 ha) increased between 1 to 2, 20.67 % (12685 ha) increased more than 2. LAI decreased from May 17 to June 2. 45.34% of winter wheat fields (27828 ha) decreased less than1, 45.20 % (27738 ha) decreased between 1 to 2, 9.33% (5725.42 ha) decreased more than 2

  2. Effect of proquinazid and copper hydroxide on homeostasis of anions in winter wheat plants in generative phase of development

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-03-01

    nitrate form occur in the period of maximum activity of plants during grain maturation, that is why the increase of free nitrates concentration in all trial series may indicate the remobilization of nitrogen from vegetative organs to caryopsis. Analysis of wheat ear of the 1st trial shows increase in concentrations of free nitrates and phosphates in all trial series which may be explained by intensification of metabolic processes that occur in the ear during grain maturation. Comparison of results of 1st and 2nd trials shows the decrease of Cl concentration in plants of the 2nd trial which can be associated with extension of photosynthetic activity of leaves and participation of element in oxidative phosphorylation, as well as its binding with polypeptides belonging to photolysis complex of water of photosystem II. Thus, application of proquinazid and copper hydroxide at tillering stage increases the productive tillering capacity and enhances the pools of N, P, S free anions in winter wheat plants. These changes can be explained by the effect of fungicides on plant metabolic processes associated with remobilization and transport of elements from flag leaves to the ears during grain maturation. Autumn application of fungicides provides an excellent protection level against powdery mildew of winter wheat plants and creates optimal conditions for plants’ development and wintering. Treatment of plants in spring is highly effective against powdery mildew at tillering-booting stage.

  3. [Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].

    Science.gov (United States)

    Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na

    2015-04-01

    Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.

  4. Management Effects On Quality of Organically Grown Winter Wheat

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Schweinzer, A.; Friedel, J. K.

    2013-01-01

    The potential for improving wheat grain quality by management strategies involving crop rotation, catch crops, and organic manure was tested in organic long-term experiments in Denmark and Austria. Growing grass clover in a four-year rotation resulted in a higher wheat yield increase that could n...

  5. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  6. Road verges and winter wheat fields as resources for wild bees in agricultural landscapes

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I; Langer, Vibeke

    2013-01-01

    The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based on the perce......The effects of farming system on plant density and flowering of dicotyledonous herbs of high value for bees were investigated in 14 organic and 14 conventional winter wheat fields and adjacent road verges. The organic and conventional winter wheat fields/road verges were paired based...... on the percentage of semi-natural habitats in the surrounding landscape at 1-km scale. Mean density of high value bee plants per Raunkiaer circle was significantly higher in organic winter wheat fields and their adjacent road verges than in their conventionally farmed counterparts. The effect of organic farming...... was even more pronounced on the flowering stage of high value bee plants, with 10-fold higher mean density of flowering plants in organic fields than in conventional fields and 1.9-fold higher in road verges bordering organic fields than in those bordering conventional fields. In summary, organic farming...

  7. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat

    Directory of Open Access Journals (Sweden)

    Caiyun Lu

    2017-01-01

    Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.

  9. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    Science.gov (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  10. Colour characteristics of winter wheat grits of different grain size

    Directory of Open Access Journals (Sweden)

    Horváth Zs. H.

    2015-01-01

    Full Text Available Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L* of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151; so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.

  11. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  12. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  13. Effect of new lines of winter wheat on microbiological activity in Luvisol

    Science.gov (United States)

    Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.

    2012-02-01

    The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.

  14. Economical effectiveness of fungal diseases control of winter wheat in 2000-2008

    Directory of Open Access Journals (Sweden)

    Anna Jaczewska-Kalicka

    2009-01-01

    Full Text Available Winter wheat is a very susceptible species to infection by pathogenic fungi requires the application of plant protection products. Their effectiveness and profitability of application depend on numerous factors. The most important of them are: weather and environmental conditions, managing and organisation of production, the intensity of oc-currence and harmfulness of occurring pathogenes, the amount of obtained yield, costs of protection and grain selling prices. Presented research results are derived from plot ex-periments conducted in the Field Experimental Station IOR-PIB Grodzisk Mazowiecki, on the fields of Agricultural Experimental Station SGGW Chylice, mazowieckie voivode-ship, in 2000-2008 on winter wheat. A high differentiation was stated in profitability of applying particular fungicides, as well as considerable differences between particular vegetative seasons of winter wheat cultivation. In each year, except 2000, protection treatments were profitable, in spite of high costs being on average 10% of the value of protected crop.

  15. Identification of vernalization responsive genes in the winter wheat ...

    Indian Academy of Sciences (India)

    2National Engineering Research Centre for Wheat, 3Collaborative Innovation Center of ... among the specific genes were selected for validation by quantitative reverse transcription ... expression of TaSnRK2.8 enhanced the tolerance to low.

  16. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.

    Science.gov (United States)

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-05-25

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.

  17. Genetic resources as initial material for developing new soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    В. М. Кір’ян

    2016-12-01

    Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.

  18. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  19. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    Science.gov (United States)

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better

  20. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  1. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    Science.gov (United States)

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  3. Flixweed is more competitive than winter wheat under ozone pollution: evidences from membrane lipid peroxidation, antioxidant enzymes and biomass.

    Directory of Open Access Journals (Sweden)

    Cai-Hong Li

    Full Text Available To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.

  4. Improvement of baking quality traits through a diverse soft winter wheat population

    Science.gov (United States)

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  5. Mass photosynthesis and distribution of photo assimilates of winter wheat varieties with different maturity feature

    International Nuclear Information System (INIS)

    Wang Fahong; Zhao Junshi

    1996-01-01

    The mass photosynthesis rate and distribution of photoassimilates of winter wheat varieties with different maturity feature were studied using GXH-305 portable CO 2 infrared ray analyzer. The mass photosynthesis rate of winter wheat varieties with better maturity feature showed little difference from the varieties with general maturity feature during the early stage of grain filling phase. However, the mass photosynthesis rate of the former was significantly higher than that of the later during the middle and late stage of grain filling. The study with 14 CO 2 -tracing method showed that the relative activity in different organs of varieties with better maturity feature was significantly higher than that of varieties with worse maturity feature during the later growth stage of winter wheat. The rate of photoassimilates distribution in stalk and root system of winter wheat varieties with better maturity was higher than that in the others organs. The physiological mechanism of difference of grain yield and plant decay in varieties with different maturity feature were also discussed

  6. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  7. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  8. Study on the weediness of winter wheat in a long-term fertilization field experiment.

    Science.gov (United States)

    Lehoczky, E; Kismányoky, A; Kismányoky, T

    2006-01-01

    The study was carried out in Keszthely, in the long-term fertilization field experiment in April of 2005. In the experiment we had opportunity to compare the weediness in NPK and NPK + FYM* treatments, and we could study the effect of increasing N dosis on the weeds and winter wheat. The weed survey was made on the 20th of April at the end of tillering. For the weed survey used the Balázs-Ujvárosi method. After that we collected all the weeds from the plots per 1 m2. We counted, measured the fresh and dry matter weight of aerial parts. Winter wheat sampels were taken also from all plots (1 running meter per plot). In the experiment 10 weed species were found, 9 annual: Ambrosia artemisiifolia, Consolida regalis, Galium aparine, Lamiunt amplexicaule, Matricaria inodora, Papaver rhoeas, Stellaria media, Veronica hederifolia, Veronica triphyllos, and 1 perennial: Cirsium arvense. Veronica hederifolia was the dominant species in both fertilized plots, Stellaria media has the second highest weed coverage. The manuring treatments, and the N-dosis has important and significantly effect to the weedeness and the biomass production of winter wheat. On the control plots was the relation of biomass weight of weeds the highest. This relation reduced to the effect of N treatments, wich had an favorable effect on the winter wheat.

  9. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    Science.gov (United States)

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  10. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  11. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.

    Directory of Open Access Journals (Sweden)

    Н. В. Булавка

    2007-12-01

    Full Text Available The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days. Vernalization requierement differences among varieties from different climatic zones were revealed.

  12. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.)

    OpenAIRE

    Н. В. Булавка; Л. М. Голик

    2007-01-01

    The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days). Vernalization requierement differences among varieties from different climatic zones were revealed.

  13. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  14. Biochemical and Physicochemical Background of Mammalian Androgen Activity in Winter Wheat Exposed to Low Temperature

    Czech Academy of Sciences Publication Activity Database

    Janeczko, A.; Biesaga-Koscielniak, J.; Dziurka, M.; Filek, M.; Hura, K.; Jurczyk, B.; Kula, M.; Oklešťková, Jana; Novák, Ondřej; Rudolphi-Skórska, E.; Skoczowski, A.

    2018-01-01

    Roč. 37, č. 1 (2018), s. 199-219 ISSN 0721-7595 Institutional support: RVO:61389030 Keywords : Androstenedione * Frost resistance * Langmuir analysis * Phytohormones * Soluble sugars * Winter wheat Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.073, year: 2016

  15. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  16. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties

    Science.gov (United States)

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  17. Genotyping-by-Sequencing derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat

    Science.gov (United States)

    Hard red winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) was used to develop a recombinant inbred population to identify genomic regions associated with drought and adaptation. To precisely map genomic regions high-density linkage maps are a prerequisite. In this s...

  18. Analysis of grain filling process to the varied meteorological conditions in winter wheat [Triticum aestivum] cultivars

    International Nuclear Information System (INIS)

    Inoue, K.; Nakazono, K.; Wakiyama, Y.

    2005-01-01

    This paper describes effects of varied meteorological conditions on the grain filling periods, stabilities of yield and quality of winter wheat cultivars with different maturity characteristics (cv. Ayahikari, Norin61, Bandowase, and Tsurupikari). In the field experiments, the meteorological treatments were made during the first heading time on 17 April 2001 and the middle heading time on 24 April 2000. Air temperature, global solar radiation and soil moisture were controlled using a rain shelter, cheesecloth and irrigation system. The growth speed and growth period of wheat grains varied among four winter wheat cultivars, depending on meteorological conditions. The growth speed increased within 1 8.4 deg C of mean air temperature over the 30 days after the anthesis. On the other hand, it was found that the growth speed of wheat grains and the maximum number of wheat grains (Ymax) decreased greatly with the 44.4% interception of global solar radiation. Logistic functions were fitted to the relationship between the relative thousand-kernel-weight (Y/Ymax) and the total integrated temperature (sigmaTa) after heading for all treatment conditions. The maximum weight of grains (Ymax) achieved at the harvest time varied somewhat clearly among four winter wheat cultivars and meteorological conditions. Multiple regression analysis showed that the grain yield (Ymax) of four wheat cultivars correlated positively with daily mean solar radiation. It was also found that the cultivar Ayahikari had a highly significant negative correlation between its grain weight and soil moisture. Namely, the grain weight of high soil moisture plot with pF=1.5 was lower by about 9% than that of a control plot with pF=3.5. On the other hand, the grain yield of cultivar Norin61 responded inversely to a wet environment, indicating that its grain weight was higher for high soil moisture and high wet-bulb temperature than for a dry environment. The grain yield of early varieties of Bandowase and

  19. Resistance of Select Winter Wheat (Triticum aestivum) Cultivars to Rhopalosiphum padi (Hemiptera: Aphididae).

    Science.gov (United States)

    Girvin, John; Whitworth, R Jeff; Rojas, Lina Maria Aguirre; Smith, C Michael

    2017-08-01

    The bird cherry-oat aphid (Rhopalosiphum padi L.) is a global pest of wheat and vectors some of the most damaging strains of barley yellow dwarf virus (BYDV). In years of heavy R. padi infestation, R. padi and BYDV together reduce wheat yields by 30-40% in Kansas and other states of the U.S. Great Plains wheat production area. Cultivation of wheat cultivars resistant to R. padi can greatly reduce production costs and mitigate R. padi-BYDV yield losses, and increase producer profits. This study identified cultivars of hard red and soft white winter wheat with R. padi resistance that suppress R. padi populations or tolerate the effects of R. padi feeding damage. 'Pioneer (S) 25R40,' 'MFA (S) 2248,' 'Pioneer (S) 25R77,' and 'Limagrain LCS Mint' significantly reduced R. padi populations. MFA (S) 2248, Pioneer (S) 25R40, and 'Limagrain LS Wizard' exhibited tolerance expressed as significantly greater aboveground biomass. These findings are significant in that they have identified wheat cultivars currently available to producers, enabling the immediate improvement of tactics to manage R. padi and BYDV in heavily infested areas. Secondarily, these results identify cultivars that are good candidates for use in breeding and genetic analyses of arthropod resistance genes in wheat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  1. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  2. Stem base diseases of winter wheat grown after forecrops of the family Brassicaceae

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2012-12-01

    Full Text Available A study into the sanitary state of roots and culm base of winter wheat was carried out in 1999-2002 in the Production and Experimental Station in Bałcyny near Ostróda. Experimental wheat was cultivated after spring cross plants such as spring oilseed rape (Brassica napus ssp. oleiferus Metz., white mustard (Sinapis alba L, chinese mustard (Brassica juncea L., oleiferous radish (Raphanus sativus var. oleiferus L., false flax (Camelina sativa L., crambe (Crambe abbysinica Hoechst. and after oats (Avena sativa L. as a control. The other experimental factor was the method of after-harvest residue management, i.e. ploughing in the stubble, ploughing in the stubble and straw, ploughing in the stubble and straw with nitrogen added. The occurrence of root rot and stem base diseases was affected by weather conditions and forecrop species. Winter wheat roots were attacked to the lowest degree when spring rape and radish were used as forecrops, and to the highest degree - when grown after oat. The culm base was most intensely infected with fusarium foot rot (Fusarium spp.. The remaining root-rot diseases occurred every year but with different intensity. The method of utilization of after-harvest residues did not have a clear effect on the intensity of infection of the roots and culm base of winter wheat.

  3. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    Science.gov (United States)

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  4. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  5. Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells

    Directory of Open Access Journals (Sweden)

    M. M. Nazarenko

    2017-02-01

    Full Text Available In this article we report the results of our investigation into several cytogenetic parameters of variability in mutation induction of modern winter wheat varieties and some connections between the means of cytogenetic indices and different doses of gamma-rays. Analysis of chromosomal aberrations following the action of any kind of mutagen by the anaphases method is one of the most widely investigated and most precise methods which can be used to determine the fact of mutagenic action on plants and identify the nature of the mutagen. We combined in our investigation the sensitivity of genotype to mutagen using cytological analysis of mutagen treated wheat populations with the corresponding different varieties by breeding methods to reveal its connections and differences, specific sensitivity to mutagens action on the cell level. Dry seeds of 8 varieties of winter wheat were subjected to 100, 150, 200, 250 Gy gamma irradiation, which are trivial for winter wheat mutation breeding. We investigated rates and spectra of chromosomal aberrations in the cells of winter wheat primary roots tips. The coefficients of correlations amid the rate of chromosomal aberrations and the dose of gamma-rays were on the level 0.8–0.9. The fragments/bridges ratio is a clear and sufficient index for determining the nature of the mutagen agent. We distinguished the following types of chromosomal rearrangements: chromatid and chromosome bridges, single and double fragments, micronuclei, and delayed chromosomes. The ratio of chromosomal aberrations changes with the change in mutagen; note that bridge-types are characteristic of irradiation. Radiomutants are more resistant to gamma rays. This is apparent in the lower rate of chromosomal aberrations. Varieties obtained by chemical mutagenesis (varieties Sonechko, Kalinova are more sensitive to gamma-irradiation than others. We propose these varieties as objects for a mutation breeding programme and radiation of mutants

  6. Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Qiong, Y.; Yuan, G.; Zhixia, X.; Xiaojing, L.

    2016-01-01

    In monsoon climate regions, the tillering nodes of winter wheat can be stressed by high salt accumulation on the soil surface in spring, thereby leading to salt-induced damage. To understand whether tillering nodes could be stressed by salinity and to estimate its effects on the growth of winter wheat under salt stress, the tillering nodes of two wheat cultivars, H-4589 (salt-sensitive) and J-32 (salt-tolerant), were treated with salinity to investigate the physiological and biochemical changes in seedling growth. The results indicated that salt stress on tillering nodes significantly reduced plant height and shoot dry weight; increased Na+ accumulation, soluble sugar and proline in both H-4589 and J-32; which demonstrated remarkable effects on the growth of winter wheat when the tillering nodes were under salt stress. Furthermore, equivalent Na+ accumulations were discovered in two cultivars when tillering nodes were under salt stress, while remarkably different Na+ accumulations were discovered in two cultivars when roots were under salt stress. Based on the results from anatomic analyses, we speculated that no anatomic differences in tillering nodes between two cultivars could give reason to the equivalent Na+ accumulations in two cultivars when tillering nodes were under salt stress; and more lignified endodermis in primary roots as well as larger reduction of lateral root number in salt-tolerant cultivars which contributed to preventing Na+ influx could explain the remarkably lower Na+ accumulation in salt-tolerant cultivar when roots were under salt stress. All of these results indicated that the tillering nodes could mediate Na+ influx from the environment leading to salt-induced damage to the growth of winter wheat. (author)

  7. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    Science.gov (United States)

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  8. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  9. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  10. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  11. Factors limiting the grain protein content of organic winter wheat in south-eastern France: a mixed-model approach

    NARCIS (Netherlands)

    Casagrande, M.; David, C.; Valantin-Morison, M.; Makowski, D.; Jeuffroy, M.H.

    2009-01-01

    Organic agriculture could achieve the objectives of sustainable agriculture by banning the use of synthetic fertilizers and pesticides. However, organic crops generally show lower performances than conventional ones. In France, organic winter wheat production is characterized by low grain protein

  12. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran

    Directory of Open Access Journals (Sweden)

    Marta S. Lopes

    2018-05-01

    Full Text Available Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years and by defining a probabilistic range of trait variations [phenology and plant height (PH] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions. Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading. Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots was tested against monoculture (if only a single genotype grown in the same area and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny

  13. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    Estimations of evapotranspiration (ET) from natural surfaces are used in a large number of applications such as agricultural water management and water resources planning. Lack of reliable, cheap and easy-to-use instruments, associated with the chaotic and varying nature of the meteorological...... coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...

  14. ECOTOXICITY AND PHYTOTOXICITY OF PLANT PROTECTION PRODUCTS TO RHIZOSPHERE FUNGI AND WINTER WHEAT SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Anna Daria Stasiulewicz-Paluch

    2015-11-01

    Full Text Available Registration of plant protection products involves the analysis of their effects on soil microorganisms. The residues of plant protection products penetrate the soil, but their impact on fungi remains scarcely researched. In this study, the influence of selected plant protection products on the abundance of rhizosphere-dwelling fungi and the growth of winter wheat seedlings was evaluated under greenhouse conditions. The analysed plant protection products had an inhibitory effect on the growth of filamentous fungi in the rhizosphere, whereas yeasts were resistant to those products applied to soil. Tebuconazole exerted the strongest suppressive effect on the growth of filamentous fungi, and propiconazole was characterized by the greatest phytotoxic activity against winter wheat seedlings. Azoxystrobin had the weakest ecotoxic and phytotoxic effects, and its application to soil usually led to a rapid increase in the counts of fungi of the genus Acremonium.

  15. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  16. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  17. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  18. Response change in winter-wheat types to the pathogen complex under chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Budanov, V.E.; Lysenkov, V.I.; Shcherbakov, V.K.

    1975-01-01

    Disease reactions in plants that have been gamma-irradiated are discussed. Damage to different types of soft winter wheat, due to pathogenic fungi, is evaluated. The Mironovski Jubilee variety showed high resistance to the leaf form of powdery mildew, along with the opposite phenomenon of a high susceptibility to the stem form of this disease. Chronic gamma irradiation of plants of this variety increased the susceptibility to this disease

  19. Weed infestation of winter wheat (Triticum aestivum L. under the conditions of application of some retardants

    Directory of Open Access Journals (Sweden)

    Elżbieta Harasim

    2013-07-01

    Full Text Available A field study was conducted in the period 2004–2007 on grey-brown podzolic soil (sandy. This study analysed the relationship between the use of stem shortening in cereals by means of retardants with the following active substances: chlormequat chloride (Antywylegacz Płynny 675 SL, trinexapac-ethyl (Moddus 250 EC, chlormequat chloride + ethephon (Cecefon 465 SL, and weed infestation. The retardants were applied at the 1st node stage (BBCH 31 – Antywylegacz Płynny 675 SL and the 2nd node stage of winter wheat (BBCH 32 – Moddus 250 EC and Cecefon 465 SL, together with the adjuvant Atpolan 80 EC (75% of SN 200 mineral oil or without the adjuvant. Winter wheat, cv. 'Muza', was grown after vetch grown for seed. The whole experiment was sprayed with the herbicides Apyros 75 WG and Starane 250 EC at the full tillering stage (BBCH 29–30. Plots where no growth regulators were used were the control treatment. Weed density and biomass showed great variation between years. In the winter wheat crop, Veronica persica, Viola arvensis, Veronica arvensis, Capsella bursa-pastoris,and Chenopodium album dominated in the dicotyledonous class, whereas Apera spica-venti, Echinochloa crus-galli,and Elymus repens were predominant among monocotyledonous plants. The level of weed infestation of the winter wheat crop, as measured by the number and air-dry weight of weeds, was significantly differentiated by years and retardants used as well as by interactions of these factors. The adjuvant Atpolan 80 EC did not have a significant effect on the above-mentioned weed infestation parameters. .

  20. Relationships between the climate change and the grain filling of winter wheat

    International Nuclear Information System (INIS)

    Shang, Z.; Jiang, D.

    2016-01-01

    The present study is based on the material in a grain filling rate experiment of winter wheat and hourly weather data organised by Xinghua city of Jiangsu Province. The aims are to objectively evaluate the possible influences of the temperature, precipitation, sunshine at the different time of the same day on the grain filling rate of winter wheat. The grain filling rate evaluation model of climate change is firstly developed, and then, the model calculation results are compared with the observed data. The along the changes of the microclimate, changes of the grain filling rate of winter wheat, which is not same in the gradual, rapid and slow increase stages. The changes in grain filling rate of winter wheat, which were caused by variations of temperature, precipitation and sunshine duration, showed periodic fluctuation. Variation in temperature resulted in 1.36 g d/sup -1/(10a)/sup -1/ of grain filling rate change; variation in precipitation resulted in -1.35 g d/sup -1/. (10a)/sup -1/ of grain filling rate change; and variation in sunshine duration resulted in 0.07 g d/sup -1/ (10a)/sup -1/ of grain filling rate change. Three samples showed a grain filling rate change of 0.08 g d/sup -1/(10a)/sup -1/. These findings indicate that the increase in temperature and sunshine duration caused the elevation of grain filling rate, whereas the increase in precipitation decreased the grain filling rate. Therefore, monitoring and predication capability of Meteorological disasters, such as drought caused by high temperature, should be strengthened to ensure the favourable weather condition and improve the grain filling rate through scientific methods such as artificial precipitation. (author)

  1. [Soil respiration characteristics in winter wheat field in North China Plain].

    Science.gov (United States)

    Chen, Shuyue; Li, Jun; Lu, Peiling; Wang, Yinghong; Yu, Qiang

    2004-09-01

    Experiments were conducted at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences during 2002-2003 to investigate the respiration of a pulverous sandstone soil under cultivation of winter wheat over a growth season. The effluent CO2 was collected and analyzed by the static-chamber/gas chromatography (GC) method at a frequency of once a week in spring and autumn, once two weeks in winter, twice a week for straw manure treatment, once a week for no straw manure treatment and nitrogen fertilization treatment in summer. The results indicated that diurnal variation of soil respiration rate showed a single peak in typical winter wheat farmlands in the North China Plain, and reached the highest at about 13 o'clock, and the lowest at about 4 o'clock in the early morning. In winter wheat growth season, the soil respiration rate was 31.23-606.85 mg x m(-2) x h(-1) under straw manure, 28.99-549.66 x m(-2) x h(-1) under no straw manure, 10.46-590.86 mg x m(-2) x h(-1) in N0, 16.11-349.88 mg x m(-2) x h(-1) in N100, 12.25-415.00 mg x m(-2) x h(-1) in N200, and 23.01-410.58 mg x m(-2) x h(-1) in N300, showing a similar seasonal variation tendency with soil temperature. Among all treatments, the straw manure had the most distinct soil respiration, though the soil respiration also increased slightly with increasing nitrogen fertilization. Soil respiration increased exponentially with increasing soil temperature, and the correlation of soil temperature at the depth of 5 cm was the best. This relationship was usually described with the Q10 model, which represented the sensitivity of soil respiration to temperature. Q10 was not a fixed value, which varied with the depth at which the temperature was measured and the depth of the active soil layer and soil temperature. At same time, the Q10 value decreased with increasing soil temperature. Soil water content was another important factor affecting soil respiration rate, but in this region, the relationship

  2. Production and evaluation of dwarf and semi-dwarf winter wheat mutants

    International Nuclear Information System (INIS)

    Barabas, Z.; Kertesz, Z.

    1984-01-01

    A special research programme for evolving and evaluating dwarf wheat forms resistant to lodging was carried out at the Cereal Research Institute, Wheat Division, Szeged, Hungary. Seed lots of the two tall winter wheat varieties Jubilejnaya 50 and Partizanka were exposed to gamma ray of 60 Co. With irradiation of 15000 rad 60 Co all of M 1 plants grown in the field were almost totally destroyed in 1980 and about 50% in 1982. In the greenhouse the number of lost M 1 plants was insignificant. Only a small number of plants died both in the greenhouse and in the field when they were irradiated with 5000 rad. A treatment with this lower dose of irradiation probably may help the breeders in selection for winter hardiness. 97 dwarf wheat lines already established were analysed for height character by a top cross method using the variety Jubilejnaya 50 as a tester. Height data of the simultaneously grown parental as well as the F 1 and F 2 offsprings indicated that the majority of them were recessive, except 3 cases where dominant or semi-dominant dwarfism was observed. Noteworthy is the Mx 158 a new semi-dwarf variety candidate, 60-65 cm in height at normal stand and resistant to all the main diseases here (powdery mildew and rusts). Its grain and protein production per unit area is also very good. Some genetically lesser-known dwarf sources were investigated in a complete crossing diallel test. (author)

  3. A model for making field-based nitrogen recommendations for winter wheat in western oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    A model based on early spring soil and tissue analysis was developed and evaluated for predicting the need for additional nitrogen (N) fertilizer on winter wheat. To develop the model, On-farm trials were' established over three years 1994-95 in grower's fields at three different locations across the Willamette Valley of western Oregon. Two field-scale validation trials were run in 1996-97. Rotations were soft white winter wheat following grass seed, sweet corn or a legume. Four treatments, including a check receiving no nitrogen, were used at each site At the site where wheat followed corn, the predicted optimum N rate was 168 kg N ha/sup -1/ however, the 112 kg N ha/sup -1/ rate was the optimum rate predicted by the developed model. The 84 kgN ha/sup -1/ and 140 kgN ha/sup -1/ rates were selected to bracket the recommended rate (+- 28 kg N ha/sup -1/). Wheat following grass seed had high soil supplied N which depressed the yield even at moderate fertilizer N rates. The model overall accurately assess field-specific optimum fertilizer N status. (author)

  4. 100-year history of the development of bread winter wheat breeding programs

    Directory of Open Access Journals (Sweden)

    М. А. Литвиненко

    2016-05-01

    Full Text Available Purpose. Review of the main achievements of the Wheat Breeding and Seed ProductionDepartment in the Plant Breeding and Genetic Institute – National Centre of Seed and Cultivar Investigation in the developing theoretical principles of breeding and creation of winter wheat varieties of different types during 100-year (1916–2016 period of breeding programs realization. Results. The main theoretical, methodical developments and breeding achievements of Wheat Breeding and Seed Production Department during 100-year (1916–2016 history have been considered. In the course of the Department activity, the research and metho­dology grounds of bread winter wheat breeding and seed production have been laid, 9 stages of breeding programs development have been accomplished. As a result, more than 130 varieties of different types have been created, 87 of them have been released in some periods or registered in the State registers of plants varieties of Ukraine and other countries and grown in the total sowing area about 220 million hectares.

  5. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    Science.gov (United States)

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  6. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  7. Post-heading heat stress and yield impact in winter wheat of China.

    Science.gov (United States)

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  8. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

    NARCIS (Netherlands)

    Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.

    2010-01-01

    In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter

  9. Spatial Variability Analysis of Within-Field Winter Wheat Nitrogen and Grain Quality Using Canopy Fluorescence Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoyu Song

    2017-03-01

    Full Text Available Wheat grain protein content (GPC is a key component when evaluating wheat nutrition. It is also important to determine wheat GPC before harvest for agricultural and food process enterprises in order to optimize the wheat grading process. Wheat GPC across a field is spatially variable due to the inherent variability of soil properties and position in the landscape. The objectives of this field study were: (i to assess the spatial and temporal variability of wheat nitrogen (N attributes related to the grain quality of winter wheat production through canopy fluorescence sensor measurements; and (ii to examine the influence of spatial variability of soil N and moisture across different growth stages on the wheat grain quality. A geostatistical approach was used to analyze data collected from 110 georeferenced locations. In particular, Ordinary Kriging Analysis (OKA was used to produce maps of wheat GPC, GPC yield, and wheat canopy fluorescence parameters, including simple florescence ratio and Nitrogen Balance Indices (NBI. Soil Nitrate-Nitrogen (NO3-N content and soil Time Domain Reflectometry (TDR value in the study field were also interpolated through the OKA method. The fluorescence parameter maps, soil NO3-N and soil TDR maps obtained from the OKA output were compared with the wheat GPC and GPC yield maps in order to assess their relationships. The results of this study indicate that the NBI spatial variability map in the late stage of wheat growth can be used to distinguish areas that produce higher GPC.

  10. Characterization of vegetative and grain filling periods of winter wheat by stepwise regression procedure. II. Grain filling period

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2011-01-01

    Full Text Available In wheat, rate and duration of dry matter accumulation and remobilization depend on genotype and growing conditions. The objective of this study was to determine the most appropriate polynomial regression of stepwise regression procedure for describing grain filling period in three winter wheat cultivars. The stepwise regression procedure showed that grain filling is a complex biological process and that it is difficult to offer a simple and appropriate polynomial equation that fits the pattern of changes in dry matter accumulation during the grain filling period, i.e., from anthesis to maximum grain weight, in winter wheat. If grain filling is to be represented with a high power polynomial, quartic and quintic equations showed to be most appropriate. In spite of certain disadvantages, a cubic equation of stepwise regression could be used for describing the pattern of winter wheat grain filling.

  11. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Jian, Dong

    2011-01-01

    and enhanced cell membrane peroxidation, as exemplified by increased O2-• production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis hightemperature acclimation (HH)showedmuchhigher photosynthetic rates than those without pre...... all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively......, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant...

  12. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    Institute of Scientific and Technical Information of China (English)

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing

    2006-01-01

    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  13. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  14. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  15. Mineral nutrition as a factor of stability of technological quality in winter wheat cultivars

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2005-01-01

    Full Text Available Afield trial was carried out with eight cultivars (Libellula, Drina, Sremica NSR-2, Jugoslavija, Somborka, Lasta and Pobeda of winter wheat (Trticum aestivum L representing several different periods in our country's wheat selection and having different potentials for technological grain quality. Six different rates of nitrogen fertilizer were tested: 0, 60, 90, 120, 150 and 180 kgNha-1. Increasing N fertilizer rates resulted in a linear increase of the direct and indirect indicators of quality. The best results were obtained with the cultivar Sremica and the poorest with Lasta, while Jugoslavija and Pobeda were shown to be of approximately the same quality. The contribution of N fertilizer variance to total variance was the largest for protein content (43.7%. N nutrition had a greater influence on protein content in cultivars from the earlier periods of selection. Its effect on sedimentation value, on the other hand, was greater in the recently released cultivars. The contribution of the genetic factor to total variance was the highest for crumb value number (CVN (58.7% and bread volume yield (44.2% and the lowest for protein content (20.8%. The absence of significant differences in the CVN means at any of the N nutrition levels studied resulted from the variability of the indirect indicators closely linked with the direct indicators of baking quality, showing the importance of N nutrition for maintaining the stability of technological quality in winter wheat cultivars.

  16. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  17. Influence of fungicides on occurence of Fusarium spp. and other stem base diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Václav Sklenář

    2008-01-01

    Full Text Available From 1999 to 2004 the occurence of fungi: Pseudocercosporella herpotrichoides (Fron. and Fusarium spp. was evaluated in small plot field trials on seven varieties of winter wheat. The efficacy of fungicide protection against stem base diseases and influence on yields was monitored in field conditions in Velká Bystřice near Olomouc.For diagnostic of casual fungi two methods were used: 1. Method of coloring mycelium in stems, 2. Method of cultivation of mycelim on agar.Results from detection of casual fungi are following: Pseudocercosporella herpotrichoides (Fron., Fusarium culmorum (W. G. Sm. Sacc. and Fusarium graminearum Schwabe.For high efficacy of protection against roots and stem base disease the following fungicide variants should be applied: Sportak Alpha 1.5 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51, Sportak HF 1 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1, Alert S 1.0 l . ha−1 (BBCH 30/Cerelux Plus 0.7 l . ha−1 (BBCH 51. The application of fungicides positively influenced yields. Yield increased at average by10–20 % after the aplication but the rise in yields was not in total correlation with the efficacy. These results can be possibly used in the system of integral control of winter wheat against stem base disease in wheat.

  18. Effects of the Tillage Technology and the Forecrop on Weeds in Stands of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2015-01-01

    Full Text Available The semipilot-scale field experiment was established in the cadastre of the village Letkovice in the South Moravian Region (Czech Republic. The study area was situated in a warm climatic region T2. Winter wheat was cultivated in two variants of tillage, viz. conventional tillage (CT and minimum tillage (MT and after three different forecrops (fodder beet, late potatoes, and broad (faba bean. Weed infestation of wheat stands was evaluated in spring seasons of 2007 and 2008, always before the application of herbicides. Numbers of weed specimens and their species were defined by means of a calculation method. Recorded data were processed by means of multidimensional analyses of ecological data, viz. Data Correspondence Analysis (DCA and Redundancy Analysis (RDA. Within the study period, altogether 22 weed species were identified in all variants with different tillage technologies and different forecrops. In the MT variant, the degree of winter wheat stand infestation with weeds was lower. As far as the forecrops were concerned, the most and the least intensive degrees of infestation were recorded on plots with faba bean and late potatoes, respectively.

  19. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views

    Directory of Open Access Journals (Sweden)

    Janna Macholdt

    2017-06-01

    Full Text Available Most of the available research studies have focused on the production of high grain yields of wheat and have neglected yield stability. However, yield stability is a relevant factor in agronomic practice and, therefore, is the focus of this comprehensive survey. The aim was to first describe the importance of yield stability as well as currently used practical management strategies that ensure yield stability in wheat production and secondly, to obtain potential research areas supporting yield stability in the complex system of agronomy. The target groups were German farmers with experience in wheat production and advisors with expertise in the field of wheat cultivation or research. A sample size of 615 completed questionnaires formed the data basis of this study. The study itself provides evidence that the yield stability of winter wheat is even more important than the amount of yield for a large proportion of farmers (48% and advisors (47%. Furthermore, in the view of the majority of the surveyed farmers and advisors, yield stability is gaining importance in climate change. Data analysis showed that site adapted cultivar choice, favorable crop rotations and integrated plant protection are ranked as three of the most important agronomic management practices to achieve high yield stability of wheat. Soil tillage and fertilization occupied a middle position, whereas sowing date and sowing density were estimated with lower importance. However, yield stability is affected by many environmental, genetic and agronomic factors, which subsequently makes it a complex matter. Hence, yield stability in farming practice must be analyzed and improved in a systems approach.

  20. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Lucky eMehra

    2016-03-01

    Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early

  1. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  2. Seed rate and nitrogen fertilizer effects on wild mustard (Sinapis arvensis L. and winter wheat (Triticum aestivum L. competition

    Directory of Open Access Journals (Sweden)

    karim moosavi

    2009-06-01

    Full Text Available In order to evaluate wild mustard competitive effect on winter wheat, an additive series experiment was conducted in 2000-2001 at Agricultural Research Station of Mashhad University.The experiment had 3 factor: wheat seed rate (175 , 215 and 255 kg/ha, nitrogen rate (150 and 225 kg/ha, and a range of wild mustard densities. Hyperbolic functions was used to describe yield-weed density relationship. Increasing wild mustard density had a negative , asymptotic – type effect on wheat biomass and grain yield. By increasing wheat seed rate , in optimum nitrogen rate , maximum wheat biomas loss has reduced about 51 %. Maximum yield loss has increased from 42.1 % to 50.4 %, as nitrogen rate incrased from optimum to upper optimum rate of wheat. By increasing of wheat seed rate from 175 to 255 kg/ha, maximum tiller number reduction due to high densities of wild mustard, has decreased by 54 %. Reduction of fertile tiller number was mostly occurred at presence of high nitrogen level, thus, reduction of fertile tiller number compared to control in N1 was 18% , while in N2 has increased to 30%. Wild mustard competition has reduced wheat seed number per ear 30% in compare to weed free control. Results show that wheat 1000 seed weight was more affected by nitrogen rate than plant densities. Apparently, in competition with wheat, wild mustard was better able to utilize the added nitrogen and thus gained a competitive adventage over the wheat.

  3. The response of winter wheat to water stress and nitrogen fertilizer use efficiency

    International Nuclear Information System (INIS)

    Wang, F.; Qi, M.; Wang, H.; Changjiu, Z.

    1995-01-01

    The response of winter wheat to water stress imposed at different crop growth stages by deficit irrigation and fertilizer use under several schemes of irrigation were evaluated on fine sandy soil and sand loam soil. The results showed that according to grain yield response factor K, the order of sensitive growth stages of winter wheat to water stress in decreasing sequence were booting to flowering ( K= 0.90), winter afterward to booting ( K= 0.69), flowering to milking ( K= 0.44) and milking to ripening ( K= 0.25). Field water efficiency would get 16.7 kg/mm.ha when no water stress in growth period, and when water stress has occurred in some growth stages, the value of it decreased by 5 - 20 percent. It was also found that high fertilizer application rate without split application would not significantly influence the yield on fine sandy soil. But schedule of irrigation affected the translocation of nitrogen in the plant. When water stress occurred in later growth stage, the ratio of NUE in gain to straw decreased, and fertilizer was available for crop only about one month after fertilizer application, excessive fertilizer rate would result in decrease of NUE by leaching of nitrogen in sandy soil. Total recovery of fertilizer at harvest was half amount of application. 6 refs; 10 tabs; ( author)

  4. Ecological and Geographical Selection of Winter Wheat (Triticum aestivum L. in Kazakhstan and Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    Р. А. Уразалієв

    2009-10-01

    Full Text Available As a result of the lead long-term selection works wint involving a World' s collection and intertype and intertype hybridization with purposeful selection on economic-biological attributes highly productive • grades of a winter wheat, with stability to various kinds of illnesses and high technological qualities of grain have been allocated. The adapted grades of a winter wheat for a various environment of various zones of the countries of the Central Asia that allows to realize potential opportunities of grades in different environments of cultivation and by that to prevent losses of a crop from biotic and abiotic stresses that allows to stabilize productivity and adaptability of culture in a zon winter husbandry are created. The long-term field experiences lead by us and laboratory analyses on a level of productivity, qualities of grain and stability to stresses allows to conclude, that alongside with a genotype, stabilityenvironmental conditions render strong and significant influence on all complex of selection attributes.

  5. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    Science.gov (United States)

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight

  6. Winter Pea: Promising New Crop for Washington's Dryland Wheat-Fallow Region

    Directory of Open Access Journals (Sweden)

    William F. Schillinger

    2017-05-01

    Full Text Available A 2-year tillage-based winter wheat (Triticum aestivum L.-summer fallow (WW-SF rotation has been practiced by the vast majority of farmers in the low-precipitation (<300 mm annual rainfed cropping region of east-central Washington and north-central Oregon for 140 years. Until recently, alternative crops (i.e., those other than WW so far tested have not been as economically viable or stable as WW-SF. A 6-year field study was conducted near Ritzville, WA (292 mm avg. annual precipitation to determine the yield and rotation benefits of winter pea (Pisum sativum L. (WP. Two 3-year rotations were evaluated: WP-spring wheat (SW-SF vs. WW-SW-SF. Winter pea yields averaged 2,443 vs. 4,878 kg/ha for WW. No fertilizer was applied to WP whereas 56 kg N and 11 kg S/ha were applied to WW. Winter pea used significantly less soil water than WW. Over the winter months, a lesser percentage of precipitation was stored in the soil following WP compared to WW because: (i very little WP residue remained on the soil surface after harvest compared to WW, and (ii the drier the soil, the more precipitation is stored in the soil over winter. However, soil water content in the spring was still greater following WP vs. WW. Soil residual N in the spring (7 months after the harvest of WP and WW was greater in WP plots despite not applying fertilizer to produce WP. Spring wheat grown after both WP and WW received the identical quantity of N, P, and S fertilizer each year. Average yield of SW was 2,298 and 2,011 kg/ha following WP and WW, respectively (P < 0.01. Adjusted gross economic returns for these two rotation systems were similar. Based partially on the results of this study, numerous farmers in the dry WW-SF region have shown keen interest in WP and acreage planted WP in east-central Washington has grown exponentially since 2013. This paper provides the first report of the potential for WP in the typical WW-SF region of the inland Pacific Northwest (PNW.

  7. VARIABILITY OF AMYLOSE AND AMYLOPECTIN IN WINTER WHEAT AND SELECTION FOR SPECIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Nikolina Weg Krstičević

    2015-06-01

    Full Text Available The aim of this study was to investigate the variability of amylose and amylopectin in 24 Croatian and six foreign winter wheat varieties and to detect the potential of these varieties for special purposes. Starch composition analysis was based on the separation of amylose and amylopectin and the determination of their amounts and ratios. Analysis of the amount of amylose and amylopectin determined statistically highly significant differences between the varieties. The tested varieties are mostly bread wheat of different quality which have the usual content of amylose and amylopectin. Some varieties were identified among them with high amylopectin and low amylose content and one variety with high amylose content. They have the potential in future breeding programs and selection for special purposes.

  8. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    Science.gov (United States)

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  9. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh

    2017-11-01

    Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop

  10. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  11. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  12. Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum eastivum)

    DEFF Research Database (Denmark)

    Mansion-Vaquie, Agathe; Ferrante, Marco; Cook, S M

    2017-01-01

    , intraguild predation, hyperparasitism) may complicate the assumption that a higher density of natural enemies would increase the level of biological control. We investigated the natural enemy guild composition and the predation rate along flower vs. grass margins at the edge of winter wheat (Triticum...... to the two margin types: specialists (mostly parasitic wasps) were attracted by the flower margins, while generalists (ground beetles, rove beetles and spiders) were more active in grass margins. The number of artificial caterpillars attacked was significantly greater in grass margins (mean = 48.9%, SD = 24...

  13. The evaluation of winter wheat roots and leaf sheath diseases diagnostic methods

    Directory of Open Access Journals (Sweden)

    Ewa Solarska

    2012-12-01

    Full Text Available The maltose and mineral media for isolation of Gaeumannomyces graminis from roots were assessed. The differences in numbers of obtained isolates were found depending on the medium used and sampling date. Easier identification of pathogen was possible employing maltose medium. The fungi from genus Fusarium occurring on winter wheat leaf sheaths were identified by mycological analysis and PCR, while the fungus Pseudocercosporella herpotrichoides was detected by PCR and ELISA methods. PCR and ELISA methods enabled to detect pathogens also in periods before the disease symptoms on plants occurred.

  14. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Science.gov (United States)

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  15. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    Directory of Open Access Journals (Sweden)

    Paresh Deshpande

    Full Text Available Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear.Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene, and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase, and DMAS (2'-deoxymugineic acid synthase in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement.At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  16. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    Science.gov (United States)

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  17. Estimation of winter wheat canopy nitrogen density at different growth stages based on Multi-LUT approach

    Science.gov (United States)

    Li, Zhenhai; Li, Na; Li, Zhenhong; Wang, Jianwen; Liu, Chang

    2017-10-01

    Rapid real-time monitoring of wheat nitrogen (N) status is crucial for precision N management during wheat growth. In this study, Multi Lookup Table (Multi-LUT) approach based on the N-PROSAIL model parameters setting at different growth stages was constructed to estimating canopy N density (CND) in winter wheat. The results showed that the estimated CND was in line with with measured CND, with the determination coefficient (R2) and the corresponding root mean square error (RMSE) values of 0.80 and 1.16 g m-2, respectively. Time-consuming of one sample estimation was only 6 ms under the test machine with CPU configuration of Intel(R) Core(TM) i5-2430 @2.40GHz quad-core. These results confirmed the potential of using Multi-LUT approach for CND retrieval in winter wheat at different growth stages and under variables climatic conditions.

  18. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei

    2012-01-01

    The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.

  19. Sowing terms of winter bread wheat variety-innovations (Triticum aestivum L. in the conditions of change of climate

    Directory of Open Access Journals (Sweden)

    О. Л. Дергачов

    2010-10-01

    Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.

  20. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  1. Impact of Early Sowing on Winter Wheat Receiving Manure or Mineral Fertilizers

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Jensen, Johannes Lund; Thomsen, Ingrid Kaag

    2017-01-01

    (late September) wheat were tested over two cropping seasons (2011–2012 and 2013–2014) using two contemporary cultivars (Hereford and Mariboss) and increasing rates of N (0–300 kg total N ha–1) with animal manure (AM; cattle slurry) or mineral fertilizers (NPK), surface applied in late March. We....... Early sowing increased grain yields by 0.5 and 1.0 Mg ha–1 for NPK and AM, respectively, regardless of N rate. Grain and straw N concentrations were higher with NPK than with AM, and NPK showed higher N use efficiency (0.48–0.53) than AM (0.15–0.22). Moving sowing of winter wheat from late September...... to late August provided higher grain and straw yields; the increased over-winter N uptake suggests that the beneficial effect of earlier sowing may surpass that of a catch crop. Cattle slurry surface applied in late March gave poor N use efficiency and low grain protein content....

  2. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  3. Use of no-till winter wheat by nesting ducks in North Dakota

    Science.gov (United States)

    Duebbert, H.F.; Kantrud, H.A.

    1987-01-01

    Nesting of dabbling ducks (Anatinae) was studied in fields of no-till winter wheat (Triticum aestivum) in the prairie pothole region of North Dakota during 1984 and 1985. Total area of 59 fields searched in 1984 was 1,135 ha and total area of 70 fields searched in 1985 was 1,175 ha. Field sizes ranged from 3 ha to 110 ha. Nests of five duck species were found: blue-winged teal (Anas discors), 55 nests; northern pintail (A. acuta), 44; mallard (A. platyrhynchos), 29; gadwall (A. strepera), 15; and northern shoveler (A. clypeata), 8. The average number of nests found was 8/100 ha in 1984 and 6/100 ha in 1985. Nest success for all species averaged 26% in 1984 and 29% in 1985. Predation by mammals was the principal cause of nest destruction. No egg or hen mortality could be attributed to pesticide use. Only 6 of 151 nests (4%) were abandoned during the two years. We also found 29 nests of seven other ground-nesting bird species. The trend toward increased planting of no-till winter wheat in the prairie pothole region should benefit production of ducks and other ground-nesting birds.

  4. Sensory, yield and quality differences between organically and conventionally grown winter wheat.

    Science.gov (United States)

    Arncken, Christine M; Mäder, Paul; Mayer, Jochen; Weibel, Franco P

    2012-11-01

    Consumers expect organic produce to have higher environmental, health and sensory related qualities than conventional produce. In order to test sensory differences between bio-dynamically, bio-organically and conventionally grown winter wheat (Triticum aestivum L., cv. Runal), we performed double-blinded triangle tests with two panels on dry wholemeal flour from the harvest years 2006, 2007 and 2009 and from two field replicates of the 'DOK' long-term farming system comparison field trial near Basel, Switzerland. Yield and quality parameters were also assessed. Significant farming system effects were found for yield (up to 42% reduction in the organic system), thousand kernel weight, hectolitre weight and crude protein content across the three years. In the triangle tests one out of 12 pair-wise farming system comparisons (PFSCs) on wholemeal flour made from the different wheat samples showed significant sensory differentiation (between bio-dynamically and conventionally grown wheat). When all data from the three harvest years and two panels were aggregated, a statistically significant effect (P = 0.045) of PFSCs on the number of correct answers became evident. Although testing of dry wholemeal flour was very challenging for panellists, we were able to show that sensory differences between farming systems can occur. Copyright © 2012 Society of Chemical Industry.

  5. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  6. Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Agnieszka Mączyńska

    2012-12-01

    Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.

  7. Effect of Sowing Date on Some Agronomic Characteristics and Seed Yield of Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    A. Ganbari

    2012-08-01

    Full Text Available To evaluate the effect of sowing dates on yield, yield components and some agronomic characteristics of four winter wheat cultivars and also their phenological changes, a factorial experiment based on randomized complete block design with three replications was carried out at the Agriculture Research Station of Ardabil (Iran during 2009 growing season. First factor consisted of four wheat cultivars (Azar2, Sabalan, Sardari and Zagros and second factor consisted of four sowing dates (1st, 10th, 20th and 30th of September. The results showed that sowing date had significant effect on the number of spikes, the number of seed per spike, 1000-seed weight, germination percentage, days to spike appearance, days to ripening, growing degree days, biological yield, seed yield and harvest index. The highest and lowest seed yields of wheat were obtained from sowing date of the September the first (4616 kg/ha and sowing date of September 30th (2197 kg/ha respectively. Delaying planting decreased the number of spikes per m2 and 1000-seed weight. Cultivars had significant effect on all of the traits measured, except leaf number, fertile and non-fertilie tillers. The highest and the lowest seed yields were obtained from Sabalan (4750 kg/ha and Zagros (2757 kg/ha cultivars respectively. Interaction of sowing date and cultivar were significant on all of traits measured, except stem height, the leaf number, the number of spikes, 1000-seed weight and seed yield (P

  8. Bread winter wheat breeding (Triticum aestivum L. using spring varieties genepool in forest-steppe Environments of Ukraine

    Directory of Open Access Journals (Sweden)

    В. С. Кочмарський

    2010-10-01

    Full Text Available It is concluded by investigations that wheat crossing of various development types between themselves cause increase of formbuilding process in hybrid progeny, promoting the selection of practically valuable recombinats. The genotypes which present the practical valuable by complex of adaptive traits and properties have been selected by phenotype stability in the breeding process. The new bread winter wheat variety Pamyati Remesla developed with participation of spring wheat variety Hja 22139 (Finland has been proposed for including it into the Register of Plant varieties of Ukraine adapted for use in Steppe, Forest- Steppe and Woodland of Ukraine since 2010.

  9. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  10. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  11. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  12. Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress

    DEFF Research Database (Denmark)

    Li, Huawei; Cai, Jian; Liu, Fulai

    2012-01-01

    Wheat (Triticum aestivum L.) plants were subjected to combined waterlogging and shading (WS) at 0–7, 8–15, 16–23 and 24–31 days after anthesis (DAA). WS at 0–7, 8–15, 16–23 and 24–31 DAA caused a yield loss of 17.18%, 14.98%, 7.93% and 7.05%, respectively. These losses were related to reductions ...

  13. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Christine D Zanke

    Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.

  14. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France

    Science.gov (United States)

    Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco

    2017-05-01

    Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.

  15. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Science.gov (United States)

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Simulation of Wild oat (Avena ludoviciana L. Competition on Winter Wheat (Triticum astivum Growth and Yield. I: Model Description and Validation

    Directory of Open Access Journals (Sweden)

    F Mondani

    2015-09-01

    Full Text Available Crop growth models could stimulate growth and development based on science principles and mathematical equations. They also able to evaluate effects of climate, soil, water and agronomic management practices on crop yield. In the present study, an eco-physiological simulation model developed to assess wild oat damage to winter wheat growth and yield. The general structure of this model is derived from LINTUL1 model which modified to wild oat competition against winter wheat. LINTUL1 model was developed for simulation of spring wheat potential production level. In this study, first, we added development stage (DVS and vernalization to LINTUL1 for simulation of winter wheat growth and development and then the model calibrated for potential production level. Finally, we incorporate harmful effects of wild oat to winter wheat growth and yield. Weather data used as input were average daily minimum and maximum temperature (°C and daily global radiation (MJ m-2 in Mashhad, Iran. Parameter values were derived from the literature. The model is written in Fortran Simulation Translator (FST programming language and then validated based on an experiment data. For these purposes different wild oat plant densities were arranged. The data of this experiment does not use for calibration. The results showed that this model was in general able to simulate the temporal changes in DVS of winter wheat and wild oat, total dry matter (TDM of winter wheat and wild oat and yield loss of wheat due to wild oat competition in all treatments, satisfactorily. Root mean square error (RMSE for winter wheat DVS, wild oat DVS, average winter wheat TDM, average wild oat TDM, and yield loss of winter wheat was 10.4, 14.5, 5.8, 7.6 and 7.5, respectively.

  17. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    Science.gov (United States)

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  18. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  19. Compounds of natural origin inducing resistance in winter wheat to powdery mildew (Blumeria graminis f.sp. tritici)

    Czech Academy of Sciences Publication Activity Database

    Věchet, L.; Martínková, J.; Šindelářová, Milada; Burketová, Lenka

    2005-01-01

    Roč. 51, č. 10 (2005), s. 469-475 ISSN 1214-1178 R&D Projects: GA ČR GA522/03/0353 Institutional research plan: CEZ:AV0Z50380511 Keywords : winter wheat * inducer of resistence * powdery mildew Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.170, year: 2004

  20. SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT

    NARCIS (Netherlands)

    CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR

    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was

  1. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.

    2013-01-01

    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013

  2. Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Roncossek, Svenja Doreen; Heckrath, Goswin Johann

    2014-01-01

    Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat at shoulder...

  3. Variability in carbon dioxide fluxes among six winter wheat paddocks managed under different tillage and grazing practices

    Science.gov (United States)

    Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...

  4. Forming of productivity of new soft winter wheat varieties (Triticum aestivum L. subject to phyto-virus pressure

    Directory of Open Access Journals (Sweden)

    В. П. Петренкова

    2008-10-01

    Full Text Available The infection by phytoviruses and the productivity formation in the new varieties of winter bread wheat in the different years with virus damage were investigated. There were identified the varieties being more tolerant to the observed diseases, among these - the samples with different constituents of tolerance, which could be used in the breeding programs.

  5. Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature

    Czech Academy of Sciences Publication Activity Database

    Filek, M.; Rudolphi-Skórska, E.; Sieprawska, A.; Kvasnica, Miroslav; Janeczko, A.

    2017-01-01

    Roč. 128, DEC (2017), s. 37-45 ISSN 0039-128X R&D Projects: GA ČR GJ15-08202Y Institutional support: RVO:61389030 Keywords : 24-Epibrassinolide * 24-Epicastasterone * Galactolipids * Phospholipids * Progesterone * Seedlings * Winter wheat Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.282, year: 2016

  6. Adult plant leaf rust resistance derived from the soft red winter wheat cultivar Caldwell maps to chromosome 3BS

    Science.gov (United States)

    'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...

  7. Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. A comparison with other hardiness parameters.

    NARCIS (Netherlands)

    Clement, JMAM; vanHasselt, PR

    1996-01-01

    Frost hardiness of winter wheat leaves (Triticum aestivum L. cv. Urban) was measured during an eight weeks hardening period using chlorophyll fluorescence. Determination of frost induced damage after freezing, measured as the decrease of photochemical capacity of photosystem II (F-V/F-M =

  8. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  9. Genetic Architecture of Main Effect QTL for Heading Date in European Winter Wheat

    Directory of Open Access Journals (Sweden)

    Christine eZanke

    2014-05-01

    Full Text Available A genome-wide association study (GWAS for heading date (HD was performed with a panel of 358 European winter wheat (Triticum aestivum L. varieties and 14 spring wheat varieties through the phenotypic evaluation of HD in field tests in eight environments. Genotyping data consisted of 770 mapped microsatellite loci and 7934 mapped SNP markers derived from the 90K iSelect wheat chip. Best linear unbiased estimations (BLUEs were calculated across all trials and ranged from 142.5 to 159.6 days after the 1st of January with an average value of 151.4 days. Considering only associations with a –log10 (P-value ≥3.0, a total of 340 SSR and 2983 SNP marker-trait associations (MTAs were detected. After Bonferroni correction for multiple testing, a total of 72 SSR and 438 SNP marker-trait associations remained significant. Highly significant MTAs were detected for the photoperiodism gene Ppd-D1, which was genotyped in all varieties. Consistent associations were found on all chromosomes with the highest number of MTAs on chromosome 5B. Linear regression showed a clear dependence of the HD score BLUEs on the number of favourable alleles (decreasing HD and unfavourable alleles (increasing HD per variety meaning that genotypes with a higher number of favourable or a low number of unfavourable alleles showed lower HD and therefore flowered earlier. For the vernalization gene Vrn-A2 co-locating MTAs on chromosome 5A, as well as for the photoperiodism genes Ppd-A1 and Ppd-B1 on chromosomes 2A and 2B were detected. After the construction of an integrated map of the SSR and SNP markers and by exploiting the synteny to sequenced species, such as rice and Brachypodium distachyon, we were able to demonstrate that a marker locus on wheat chromosome 5BL with homology to the rice photoperiodism gene Hd6 played a significant role in the determination of the heading date in wheat.

  10. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  11. Anatomical features of leaves of three cultivars of winter wheat (Triticum aestivum L. and settling the plants by cereal leaf beetles, Oulema spp. (Coleoptera, Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Elżbieta Weryszko-Chmielewska

    2013-12-01

    Full Text Available Investigations of flag leaves anatomy of three winter wheat cultivars: Almari, Gama and Weneda were carried out as it was state that there are great differences in the intensity of cereal leaf beetle feeding on the leaves. In order to determine the features conditioning the differentiated resistance of these cultivars following parameters were measured: the thickness of leaf blade, the length of trichomes and their density in the adaxial epidermis, the number of silicon cells in 1 mm2 epidermis and the thickness of the external cell walls of epidermis. The observations of cross section of the leaves were made in a light microscope and that of surface of the adaxial epidermis in a scanning electron microscope. In this study it was shown that Gama cv. distinguishes of the shortest trichomes with poor density, the lowest number of the silicon cells in 1 mm2 and epidermis cells with the thinest walls. This features indicate a poor resistance of Gama cv. against feeding of the pests and give reasons for the presence a much higher number of the cereal leaf beetle larvae (about 100% than at the extant two cultivars. Dependence between the thickness of leaf blades and the number of larvae of the infesting pests has not been stated.

  12. Synthesis of stress proteins in winter wheat seedlings under gamma-radiation

    International Nuclear Information System (INIS)

    Gudkova, N.V.; Kosakovskaya, I.V.; Major, P.S.

    2001-01-01

    A universal cellular response to a number of diverse stresses is the synthesis of a set of stress proteins. Most of them are heat shock proteins (HSP). We show that both heat shock and gamma-radiation enhance the synthesis of HSP70 in the total protein fractions of winter wheat seedlings. It is found that a dose of 15 Gy induced the synthesis of 35 and 45 kD proteins after 5 h of irradiation in both total and mitochondrial protein fractions. On the second day after exposure, both 35 and 45 kD proteins were not observed, but new total proteins with a molecular weight of 90 and 92 kD appeared. The synthesis of 35 and 45 kD proteins after gamma-irradiation is revealed for the first time, their function being now unknown

  13. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.

    2018-06-01

    Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.

  14. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  15. Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and winter rye

    International Nuclear Information System (INIS)

    Gray, G.R.; Savitch, L.V.; Ivanov, A.G.; Huner, N.P.A.

    1996-01-01

    Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5 degrees C and moderate irradiance (250 micromoles m -2 s -1 ) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20 degrees C and 250 micromoles m -2 s -1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - q p , the coefficient of photochemical quenching. Plants grown at 20 degrees C and a high irradiance (800 micromoles m -2 s -1 ) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrose-phosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance

  16. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  17. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery

    Science.gov (United States)

    Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun

    2014-01-01

    Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435

  18. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    Science.gov (United States)

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P frost temperatures (P frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Dr(min) and Dr/Dr(min) calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.

  19. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    Science.gov (United States)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  20. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    Science.gov (United States)

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  1. Effects of external potassium (k supply on drought tolerances of two contrasting winter wheat cultivars.

    Directory of Open Access Journals (Sweden)

    Jiguang Wei

    Full Text Available BACKGROUND: Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. METHODOLOGY/PRINCIPAL FINDINGS: A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM and two levels of PEG6000 (0, 20% for 7 days. External K2CO3 significantly increased shoot K(+ content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. CONCLUSIONS/SIGNIFICANCE: Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  2. GENETIC DIVERSITY OF WINTER BREAD WHEAT (Triticum aestivum L. ssp. vulgare

    Directory of Open Access Journals (Sweden)

    Sonja Petrović

    2011-06-01

    Full Text Available Diversity was analyzed based on agronomic and morphologic traits and molecular data. The main objectives of this study were: 1. to estimate genetic diversity of wheat germplasm using agronomic and morphologic traits and molecular markers, 2. to investigate the existence of genetic erosion within tested wheat germplasm, 3. to explore potential utilization of combination of agronomic, morphologic and molecular markers in plant breeding. Forty winter bread wheat varieties were used originating from Croatia, Austria, France, Italy and Russia. Field trial was conducted during two vegetation years (2007/2008, 2008/2009 in three replications according to randomized block design. Ten traits were included in agronomic and morphologic analysis. Composition of high molecular weight glutenin subunits (HMW GS was evaluated for 16 varieties, whereas literature data are used for the rest. Starch composition analysis was based on amylose and amylopectin isolation, their quantity and ratio. For the SSR analysis 26 microsatellite primers were used, and for the AFLP analysis four primer combinations. Statistical analysis was performed using SAS Software 9.1.3, NTSYS ver.2.2., Arlequin ver2.0. and Powermarker ver.3.25. Analyzed varieties displayed highly significant differences (p<0,001 for all agronomic traits and for amylose/amylopectin ratio. High variability of HMW GS was found among varieties. Estimation of genetic diversity based on morphologic and molecular data were used to construct dendograms. AMOVA was used to evaluate variability based on molecular data. Genetic diversity was estimated among and within morphologic and molecular data. SSR and AFLP markers showed efficient discrimination power between highly related genotypes. Significant correlation was found out between two molecular methods which showed more accurate estimate of genetic diversity than by agronomic and morphologic data.

  3. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars.

    Science.gov (United States)

    Wei, Jiguang; Li, Caihong; Li, Yong; Jiang, Gaoming; Cheng, Guanglei; Zheng, Yanhai

    2013-01-01

    Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.

  4. Some problems of using irradiated pollen in genetics and selection of winter soft wheat (Triticum acstivum)

    International Nuclear Information System (INIS)

    Bovkis, E.N.

    1978-01-01

    For the first time the mutagenous efficiency of gamma-irradiation of male gametes(pollen) for genetic and selection purposes has been studied using three sorts of winter wheat. It is shown, that a critical irradiation dose for soft wheat in respect of degree of reducing the mass of 1000 grains and survive is 2.0 krad. Application of irradiated pollen results in a wide spectrum of mutagenous changeability, at that, one part of forms remains constant and the other is splitted according to the type of intraspecific hybrids. Pollen irradiation doses are grounded to produce mutants having some important selection features. Irradiation doses from 0.25 to 0.5 krad are most effective to produce mutants with productive ears and from 1.0 to 1.5 krad to produce short-stem ones. More than 80 mutants are studied in respect of productivity and other indications in a control nursery. Combination productivity value of some short-stem mutants has been studied; it is shown, that as a rule it is preserved at the level of initial sorts. The use of historical method for understanding the regularities of mutant appearance is of great theoretical interest during the investigations. It has been established, that mutants relating to different varieties appear with unequal frequency, which, possibly, is due to the species genotype

  5. Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields

    Directory of Open Access Journals (Sweden)

    A Khodashenas

    2011-02-01

    Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems

  6. Changes in the elemental composition of winter wheat plants caused by the action of Megafol and retardants

    Directory of Open Access Journals (Sweden)

    I. M. Miroshnichenko

    2017-08-01

    Full Text Available In the course of field experiments conducted during the 2015–2016 vegetation seasons, retardants Medax Top, 1.0 l/ha (prohexadione-Са and mepiquat-chloride, appeared more effective than Terpal, 1.5 l/ha (mepiquat-chloride and ethephon, on field plots with high-yield varieties. Foliar application of Megafol promoted the productivity of winter wheat varieties Smuglyanka and Podolyanka and reduced the negative influence of retardants on the wheat plants in the vegetation seasons which were characterized by moisture deficit. The influence of modern retardants – prohexadione-Ca + mepiquat-chloride (Medax Top and mepiquat-chloride + etefone (Terpal, both BASF, Germany on the accumulation of some macro- and micronutrients in winter wheat plants was determined. The assays were performed on an ICP-MS Agilent 7700x mass spectrometer (Agilent Technologies, USA with ICP-MS Mass Hunter WorkStation. Samples of winter wheat plants were taken in the phase of flowering and grain ripening. The samples were dried, homogenized, 0.400 gof weight was dissolved in ICP-grade nitric acid in the Milestone Start D (Milestone Inc., USA. All solutions were prepared on 1st class water (18 MΩ cm–1 obtained on the Scholar-UV Nex Up 1000 (Human Corporation, Korea water purification system. The ICP-MS Complete Standard IV-ICPMS-71A was used as the external standard, and the internal standard was Sc, both of Inorganic Ventures, USA. According to the ICP-MS results of plant samples of winter wheat of Smuglylanka and Podolanka, it has been shown that, in conditions of wheat growing on light soils of Polissya, modern compositional retardants affect the ionome of plants during the vegetation season, as well as change the content of inorganic elements in the grain. It was found that winter wheat of the middle-stem intensive Podolyanka type reacted more responsively to retardant treatment than the short-stem highly intensive Smuglyanka type. At the same time, there was an

  7. Impact of Graze-­‐Out in Hard Red Winter Wheat Production

    OpenAIRE

    Neupane, Diwash; Moss, Charles B.

    2014-01-01

    We investigate the relationship between wheat graze-­‐out and cattle-­‐wheat price ratio and moisture level and examine the impact of graze-­‐out on wheat yield in major wheat-­‐producing states in US. Results indicate that cattle-­‐wheat price ratio and moisture level affect farmers’ graze out decision and graze-­‐out have significant impact on wheat yield.

  8. Effects of elevated O3 exposure on nutrient elements and quality of winter wheat and rice grain in Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Zheng, Feixiang; Wang, Xiaoke; Zhang, Weiwei; Hou, Peiqiang; Lu, Fei; Du, Keming; Sun, Zhongfu

    2013-01-01

    With the open-top chambers (OTCs) in situ in Yangtze River Delta, China in 2007 and 2008, the effects of elevated O 3 exposure on nutrient elements and quality of winter wheat and rice grain were investigated. Grain yield per plant of winter wheat and rice declined in both years. The N and S concentrations increased under elevated O 3 exposure in both years and C–N ratios decreased significantly. The concentrations of K, Ca, Mg, P, Mn, Cu and Zn in winter wheat and the concentrations of Mg, K, Mn and Cu in rice increased. The concentrations of protein, amino acid and lysine in winter wheat and rice increased and the concentration of amylose decreased. The increase in the nutrient concentration was less than the reduction of grain yield in both winter wheat and rice, and, hence, the absolute amount of the nutrients was reduced by elevated O 3 . -- Highlights: •The nutrient elements and quality of winter wheat and rice grain response to ozone had been investigated for two years in China. •Grain yield per plant of winter wheat and rice were reduced in both years. •The extent of ozone impact on the nutrient elements concentrations of winter wheat and rice were different. •The concentrations of protein, amino acid and lysine increased but the concentrations of amylose decreased. •The absolute amount of the nutrients was reduced by elevated O 3 . -- The nutrient elements and quality of winter wheat and rice grain were seriously affected under the elevated O 3 exposure

  9. Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice-wheat rotation

    Science.gov (United States)

    Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad

    2017-12-01

    Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.

  10. [Photosynthetic gas exchange and water utilization of flag leaf of spring wheat with bunch sowing and field plastic mulching below soil on semi-arid rain-fed area.

    Science.gov (United States)

    Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng

    2016-07-01

    Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently

  11. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  12. Initial studies of the populations of fungi and bacteria in the soil under the influence of the cuItivation of spring wheat and winter wheat in a growth chamber

    OpenAIRE

    Danuta Pięta

    2013-01-01

    The purpose of the studies was to determine the populations of fungi and bacteria after the cultivation of spring wheat and winter wheat. As a result of the studies it was found out that winter wheat had a stimulating effect on the total number of bacteria, especially Pseudomonas spp. On the other hand, spring wheat had a smaller influence on the growth of bacteria, while stimulating the growth of the number of fungi. Among the bacteria and saprophytic fungi isolated from the soil after the c...

  13. Transfer factor of (90)Sr and (137)Cs to lettuce and winter wheat at different growth stage applications.

    Science.gov (United States)

    Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul

    2015-12-01

    The effect of clay soil contamination time on the transfer factors (Fvs) of (137)Cs and (90)Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The Fvs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg(-1)). Significant difference of log-Fvs was evaluated using one-way Analysis of Variance (ANOVA). Basically, Fvs of (90)Sr were higher than those of (137)Cs, despite of the application stage or crop' variety. Higher Fvs for both radionuclides were observed for lettuce in comparison to winter wheat. Fvs of (90)Sr showed comparable trends for both crops with enhanced Fvs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of Fvs for (137)Cs, soil contaminated at the second stage gave the highest Fvs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in Fv for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to (137)Cs in winter wheat-straw which reflected greater hazard at the latest application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  15. The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara

    OpenAIRE

    Marcela Dragoş; Paul Pîrşan

    2011-01-01

    Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sow...

  16. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    Science.gov (United States)

    Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  17. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    Directory of Open Access Journals (Sweden)

    Xiangying Xu

    Full Text Available Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI. The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June had a closer linkage to the yields than in the seedling stage (October-November and the over-wintering stage (December-February. Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  18. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    Directory of Open Access Journals (Sweden)

    X. R. Wei

    2010-10-01

    Full Text Available Nitrous oxide (N2O is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L. field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK, manure (M, nitrogen (N, nitrogen + phosphorus (NP, and nitrogen + phosphorus + manure (NPM. Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK. Mineral and manure

  19. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation

    Directory of Open Access Journals (Sweden)

    Jianguo Man

    2016-04-01

    Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.

  20. Profitability of Integrated Management of Fusarium Head Blight in North Carolina Winter Wheat.

    Science.gov (United States)

    Cowger, Christina; Weisz, Randy; Arellano, Consuelo; Murphy, Paul

    2016-08-01

    Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time in which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance with FHB-specific fungicide applications; yet, when forecasted risk is intermediate, it is often unclear whether such an application will be profitable. To model the profitability of FHB management under varying conditions, we conducted a 2-year split-plot field experiment having as main plots high-yielding soft red winter wheat cultivars, four moderately resistant (MR) and three susceptible (S) to FHB. Subplots were sprayed at flowering with Prosaro or Caramba, or left untreated. The experiment was planted in seven North Carolina environments (location-year combinations); three were irrigated to promote FHB development and four were not irrigated. Response variables were yield, test weight, disease incidence, disease severity, deoxynivalenol (DON), Fusarium-damaged kernels, and percent infected kernels. Partial profits were compared in two ways: first, across low-, medium-, or high-DON environments; and second, across environment-cultivar combinations divided by risk forecast into "do spray" and "do not spray" categories. After surveying DON and test weight dockage among 21 North Carolina wheat purchasers, three typical market scenarios were used for modeling profitability: feed-wheat, flexible (feed or flour), and the flour market. A major finding was that, on average, MR cultivars were at least as profitable as S cultivars, regardless of epidemic severity or market. Fungicides were profitable in the feed-grain and flexible markets when DON was high, with MR cultivars in the flexible or flour markets when DON was intermediate, and on S cultivars aimed at the flexible market. The flour market was only profitable when FHB was present if DON levels were intermediate and cultivar

  1. The relationship between growth and development of above ground organs with roots of winter wheat using 32P tracer

    International Nuclear Information System (INIS)

    Wang Zhifen; Chen Xueliu; Yu Meiyan

    1997-01-01

    The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively

  2. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    Science.gov (United States)

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  3. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  4. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.

    2017-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  5. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  6. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

    International Nuclear Information System (INIS)

    Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B.

    2008-01-01

    Nitrous oxide (N 2 O) and carbon dioxide (CO 2 ) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N 2 O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N 2 O and CO 2 emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N 2 O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N 2 O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N 2 O and CO 2 were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO 2 levels were higher when the preceding crop was winter wheat. It was concluded that N 2 O and CO 2 emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs

  7. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

    Energy Technology Data Exchange (ETDEWEB)

    Drury, C.F.; Yang, X.M.; Reynolds, W.D. [Agriculture and Agri-Food Canada, Harrow, ON (Canada); McLaughlin, N.B. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada). Eastern Cereal and Oilseed Research Centre

    2008-04-15

    Nitrous oxide (N{sub 2}O) and carbon dioxide (CO{sub 2}) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N{sub 2}O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N{sub 2}O and CO{sub 2} emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N{sub 2}O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N{sub 2}O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N{sub 2}O and CO{sub 2} were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO{sub 2} levels were higher when the preceding crop was winter wheat. It was concluded that N{sub 2}O and CO{sub 2} emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs.

  8. The effect of sowing strategy, row distance and mechanical weed control on weeds and yield in organic winter wheat

    OpenAIRE

    Rasmussen, Ilse A.

    2002-01-01

    A series of field experiments were carried out in winter wheat grown under organic conditions in Denmark on fields with different weed pressure. The treatments were sowing strategy (normal sowing time, late sowing and false seedbed), row distance (12 cm and 24 cm row distance) and weed control method (untreated, mechanical weed control (weed harrowing at 12 cm supplemented with row hoeing at 24 cm), and herbicide weed control). Weed biomass was largest at the normal sowing time and was reduce...

  9. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  10. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  11. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses: A simulation study

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup

    2016-01-01

    The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations....... Inclusion of the oil radish catch crop could offset this loss by 2–3 percentage points. Earlier sowing of wheat increased straw production by 18% and reduced loss of soil C by 3–5 percentage points compared to normal sowing time with full straw export. Catch crops and early sowing also reduced N...

  12. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat.

    Science.gov (United States)

    Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul

    2015-02-01

    A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.

  13. Prediction of winter wheat high yield from remote sensing based model: application in United States and Ukraine

    Science.gov (United States)

    Franch, B.; Vermote, E.; Roger, J. C.; Skakun, S.; Becker-Reshef, I.; Justice, C. O.

    2017-12-01

    Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season and the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data. These methods were applied to MODIS CMG data in Ukraine, the US and China with errors around 10%. However, the NDVI is saturated for yield values higher than 4 MT/ha. As a consequence, the model had to be re-calibrated in each country and the validation of the national yields showed low correlation coefficients. In this study we present a new model based on the extrapolation of the pure wheat signal (100% of wheat within the pixel) from MODIS data at 1km resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national yield of winter wheat in the United States and Ukraine from 2001 to 2016.

  14. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - An econometric approach

    International Nuclear Information System (INIS)

    Kaliakatsou, Evridiki; Bell, J. Nigel B.; Thirtle, Colin; Rose, Daniel; Power, Sally A.

    2010-01-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O 3 , with losses of up to 25%. However, the only British econometric study on O 3 impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O 3 tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. - Econometric study of British winter wheat trial plot data suggests lower economic loss than predicted from experiments.

  15. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  16. Simulation model for longterm management of Avena fatua L. in winter wheat

    Directory of Open Access Journals (Sweden)

    Jäck, Ortrud

    2014-02-01

    Full Text Available Decision support systems (DSS are used for weed control decisions worldwide. Several DSS for weed management have been published. However they mostly rely on full herbicide dosages and do not take weed population dynamics into account. We developed a modular DSS for long-term Avena fatua L. control in winter wheat. The DSS was parameterized with three year field experiment datasets covering yield loss data, densitydependent population dynamics data as well as data on dose dependent herbicide efficacy and dosedependent population dynamics. The DSS aims to control the A. fatua in the long run. Our hypothesis is that the optimized DSS reduces herbicide input while keeping the population density at low level, maintaining high grain yields and net return. The DSS comprises four sub-models calculating crop yield loss, A. fatua population dynamics as well as dose dependent herbicide efficacy and economics of the weed control decision. The economic sub-model calculates net return in dependency of the herbicide dosage and thus the resulting crop yield. First results of a 10-year simulation showed that herbicide input could be reduced by 40% compared to the economic threshold strategy, while the population density of A. fatua is controlled. Up to now the DSS has been parameterized for the herbicides Ralon Super, Axial 50 and Broadway. The results show the great potential of reducing herbicide input and point out the importance of including population dynamics models into DSS.

  17. The transfer of radionuclides from contaminated groundwater into perennial ryegrass and winter wheat

    International Nuclear Information System (INIS)

    Wadey, P.; Shaw, G.; Butler, A. P.; Tompkins, J. A.; Wheater, H. S.

    1996-01-01

    Lysimeter studies of the migration of radionuclides from a contaminated water table and their subsequent uptake by plant roots have been undertaken using two distinct soil types and varying crop regimes. An eight year multi-disciplinary research project (funded by Nirex) has concentrated on the upward migration of contaminants from near-surface water tables, and their uptake by winter wheat and perennial ryegrass crops. Experimental data are presented for the movement and uptake of radiocaesium 137 Cs. These data show significant movement in the unsaturated zone during the first year of dosing, followed by progressively reduced availability in subsequent years. A suite of physically based hydrological and solute transport models has been developed to model radionuclide transport in the unsaturated zone. Model simulations, based on a conventional advection-dispersion representation incorporating linear sorption processes, were unable to describe adequately the distribution of radiocaesium within the soil profile. However, the introduction of root storage and translocation processes provided significantly improved results. (author)

  18. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat

    Science.gov (United States)

    Reichelt, Michael; Chowdhury, Somak; Hammerbacher, Almuth; Hartmann, Henrik

    2017-01-01

    Abstract Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways. PMID:28159987

  19. [Differences in root developmenly of winter wheat cultivars in Huang-Huai Plain, China].

    Science.gov (United States)

    Qiu, Xin-Qiang; Gao, Yang; Li, Xin-Qiang; Huang, Ling; Duan, Ai-Wang

    2012-07-01

    Selecting one presently popularized winter wheat cultivar (Zhengmai 9023) and two cultivars (Abo and Fengchan 3) introduced in the 1950s and 1960s in Huang-Huai Plain as test materials, and by using minirhizotron technique, this paper studied the live root length, root diameter distribution, and net root growth rate of the cultivars. Fine roots with a diameter from 0.05 mm to 0.25 mm occupied the majority of the whole root system, and the fine roots with a diameter less than 0.5 mm accounted for 98% of the live root length. The average root diameter varied with plant growth, the variation range being 0.15 - 0.22 mm, and no significant difference was observe among the cultivars. The live root length was significantly positively correlated root number, suggesting that root number was the main factor for the increase of live root length. The most vigorous growth period of the roots was from reviving to jointing stage, and Abo and Fengchan 3 had a longer period increased root vitality, as compared with Zhengmai 9023. For Zhengmai 9023, its fine roots with a diameter more than 0.1 mm had an increasing proportion after jointing stage, which was helpful for improving plant resistance, root activity, and grain-filling at late growth stages.

  20. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    Science.gov (United States)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  1. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  2. The Effect of Freezing Temperatures on Microdochium majus and M. nivale Seedling Blight of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Ian M. Haigh

    2012-01-01

    Full Text Available Exposure to pre-emergent freezing temperatures significantly delayed the rate of seedling emergence (P<0.05 from an infected and a non-infected winter wheat cv. Equinox seed lot, but significant effects for timing of freezing and duration of freezing on final emergence were only seen for the Microdochium-infested seed lot. Freezing temperatures of −5∘C at post-emergence caused most disease on emerged seedlings. Duration of freezing (12 hours or 24 hours had little effect on disease index but exposure to pre-emergent freezing for 24 hours significantly delayed rate of seedling emergence and reduced final emergence from the infected seed lot. In plate experiments, the calculated base temperature for growth of M. nivale and M. majus was −6.3∘C and −2.2∘C, respectively. These are the first set of experiments to demonstrate the effects of pre-emergent and post-emergent freezing on the severity of Microdochium seedling blight.

  3. Effect of Zinc Deficiency and Excess on the Growth and Photosynthesis of Winter Wheat

    Directory of Open Access Journals (Sweden)

    N.M. Kaznina

    2017-12-01

    Full Text Available Zinc is one of the necessary micronutrients for plants, which performs a number of various functions in their cells. Therefore, the deficiency of this element negatively affects on plants and leads to a significant decrease of their productivity. On the other hand, zinc in high concentrations is toxic to plants, and its accumulation in aerial organs, especially in cereals, represent a real danger to human and animal health. In this investigation the effect of the deficiency (Zn 0 μM and the excess of zinc (Zn 1000 μM on the growth and photosynthesis of the winter wheat (cv. Mironovskaya 39 was studied. As a result, similarities and differences in the response of plants to these two types of stress were revealed. In particular, both with a lack and with an excess of metal in the nutrient solution, shoot growth and photosynthesis rate are inhibited which leads to a decrease in the accumulation of dry biomass. Excess of metal, in contrast to its deficiency, leads to inhibition of root growth, and also a negative impact on pigment content, including light-harvesting complexes, and on maximum quantum yield of PS II. It is assumed that these changes in the photosynthetic apparatus are the main causes of a decrease of photosynthesis rate in plants under these conditions, whereas in the case of zinc deficiency, an inhibition of the process intensity is most likely due to a change in the activity of zinc-containing enzymes involved in the dark reactions of photosynthesis.

  4. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Directory of Open Access Journals (Sweden)

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.

  5. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  6. Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat

    DEFF Research Database (Denmark)

    Li, Yafei; Li, Xiangnan; Yu, Jingjie

    2017-01-01

    Abstract Climate change predicts more frequent drought spells along with an elevation in atmospheric CO2 concentration (e[CO2]). Although the responses of winter wheat (Triticum aestivum L.) plants to drought or a single generation exposure to e[CO2] have been well documented, the transgenerational...... effect of e[CO2] in combination of drought on stomatal behavior, plant water consumption and water use efficiency (WUE) have not been investigated. Seeds harvested from plants after two generations (2014–2015) continuously grown in ambient CO2 (a[CO2], 400 μmol L−1) and e[CO2] (800 μmol L−1) were sown...... in 4 L pots, and the plants were grown separately in greenhouse cells with either a[CO2] or e[CO2]. At stem elongation stage, in each of the cells half of the plants were subjected to progressive drought stress until all the plant available soil water was depleted, and the other half were well-watered...

  7. Combined effects of elevated temperature and CO2 enhance threat from low temperature hazard to winter wheat growth in North China.

    Science.gov (United States)

    Tan, Kaiyan; Zhou, Guangsheng; Lv, Xiaomin; Guo, Jianping; Ren, Sanxue

    2018-03-12

    We examined the growth and yield of winter wheat (Triticum aestivum) in response to the predicted elevated CO 2 concentration and temperature to determine the mechanism of the combined impacts in North China Plain. An elevated treatment (CO 2 : 600 μmol mol -1 , temperature: +2.5~3.0 °C, ECTI) and a control treatment (ambient CO 2 and temperature, CK) were conducted in open-top chambers from October 2013 to June 2016. Post-winter growth stages of winter wheat largely advanced and shifted to a cooler period of nature season under combined impact of elevated CO 2 and temperature during the entire growing season. The mean temperature and accumulated photosynthetic active radiations (PAR) over the post-winter growing period in ECTI decreased by 0.8-1.5 °C and 10-13%, respectively compared with that in CK, negatively impacted winter wheat growth. As a result, winter wheat in ECTI suffered from low temperature hazards during critical period of floret development and anthesis and grain number per ear was reduced by 10-31% in the three years. Although 1000-kernel weight in ECTI increased by 8-9% mainly due to elevated CO 2 , increasing CO 2 concentration from 400 to 600 μmol mol -1 throughout the growth stage was not able to offset the adverse effect of warming on winter wheat growth and yield.

  8. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Science.gov (United States)

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  9. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Directory of Open Access Journals (Sweden)

    Xiubo Wang

    Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  10. Influence of forecrop and chemical seed treatment on the occurrence of take-all (Gaeumannomyces graminis var. tritici on winter wheat

    Directory of Open Access Journals (Sweden)

    Zbigniew Weber

    2013-12-01

    Full Text Available The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.

  11. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  12. Impact of grazing dairy steers on winter rye (Secale cereale versus winter wheat (Triticum aestivum and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    Directory of Open Access Journals (Sweden)

    Hannah N Phillips

    Full Text Available Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN. During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10, crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10, and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10. Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  13. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef.

    Science.gov (United States)

    Phillips, Hannah N; Heins, Bradley J; Delate, Kathleen; Turnbull, Robert

    2017-01-01

    Meat from Holstein and crossbred organic dairy steers finished on winter rye and winter wheat pastures was evaluated and compared for meat quality, fatty acid and amino acid profiles, and consumer acceptability. Two adjacent 4-ha plots were established with winter rye or winter wheat cover crops in September 2015 at the University of Minnesota West Central Research and Outreach Center (Morris, MN). During spring of 2015, 30 steers were assigned to one of three replicate breed groups at birth. Breed groups were comprised of: Holstein (HOL; n = 10), crossbreds comprised of Montbéliarde, Viking Red, and HOL (MVH; n = 10), and crossbreds comprised of Normande, Jersey, and Viking Red (NJV; n = 10). Dairy steers were maintained in their respective replicate breed group from three days of age until harvest. After weaning, steers were fed an organic total mixed ration of organic corn silage, alfalfa silage, corn, soybean meal, and minerals until spring 2016. Breed groups were randomly assigned to winter rye or winter wheat and rotationally grazed from spring until early summer of 2016. For statistical analysis, independent variables were fixed effects of breed, forage, and the interaction of breed and forage, with replicated group as a random effect. Specific contrast statements were used to compare HOL versus crossbred steers. Fat from crossbreds had 13% greater omega-3 fatty acids than HOL steers. Furthermore, the omega-6/3 ratio was 14% lower in fat from crossbreds than HOL steers. For consumer acceptability, steaks from steers grazed on winter wheat had greater overall liking than steers grazed on winter rye. Steak from crossbreeds had greater overall liking than HOL steers. The results suggest improvement in fatty acids and sensory attributes of beef from crossbred dairy steers compared to HOL steers, as well as those finished on winter wheat compared to winter rye.

  14. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  15. Canopy Vegetation Indices from In situ Hyperspectral Data to Assess Plant Water Status of Winter Wheat under Powdery Mildew Stress.

    Science.gov (United States)

    Feng, Wei; Qi, Shuangli; Heng, Yarong; Zhou, Yi; Wu, Yapeng; Liu, Wandai; He, Li; Li, Xiao

    2017-01-01

    Plant disease and pests influence the physiological state and restricts the healthy growth of crops. Physiological measurements are considered the most accurate way of assessing plant health status. In this paper, we researched the use of an in situ hyperspectral remote sensor to detect plant water status in winter wheat infected with powdery mildew. Using a diseased nursery field and artificially inoculated open field experiments, we detected the canopy spectra of wheat at different developmental stages and under different degrees of disease severity. At the same time, destructive sampling was carried out for physical tests to investigate the change of physiological parameters under the condition of disease. Selected vegetation indices (VIs) were mostly comprised of green bands, and correlation coefficients between these common VIs and plant water content (PWC) were generally 0.784-0.902 ( p powdery mildew stress. The Photochemical Reflectance Index (PRI) was sensitive to physiological response influenced by powdery mildew, and the relationships of PRI with chlorophyll content, the maximum quantum efficiency of PSII photochemistry (Fv/Fm), and the potential activity of PSII photochemistry (Fv/Fo) were good with R 2 = 0.639, 0.833, 0.808, respectively. Linear regressions showed PRI demonstrated a steady relationship with PWC across different growth conditions, with R 2 = 0.817 and RMSE = 2.17. The acquired PRI model of wheat under the powdery mildew stress has a good compatibility to different experimental fields from booting stage to filling stage compared with the traditional water signal vegetation indices, WBI, FWBI 1 , and FWBI 2 . The verification results with independent data showed that PRI still performed better with R 2 = 0.819 between measured and predicted, and corresponding RE = 8.26%. Thus, PRI is recommended as a potentially reliable indicator of PWC in winter wheat with powdery mildew stress. The results will help to understand the physical state of

  16. Assesment of winter wheat advanced lines by use of multivariate statistical analyses

    Directory of Open Access Journals (Sweden)

    Boshev Dane

    2016-01-01

    Full Text Available This study was conducted to evaluate 49 advanced lines of winter wheat (Triticum aestivum L. for their morphoagronomic traits and to determine best criteria for selection of lines to be included in future breeding program. The material was assessed in two years experiment at two locations, using RCBD design with three replications. Ten quantitative traits: plant height, number of fertile tillers, spike length, number of spikelets per spike, number of grains per spike, weight of grain per spike and per plant, fertility, biological yield and harvest index were evaluated by PCA and two-way cluster analysis. Three main principal components were determined explaining 71.391% of the total variation among the genotypes. One third of the variation is explained by PC1 which reflects the genotype yield potential. PC2 and PC3 explained 25.22% and 15.49% of the total variance, mostly in relation to the plant height and spike components, respectively. Biplot graph revealed strongest positive association between spike length, number of spikelets and biological yield and between number of tillers, weight of grains per spike and per plant. Two-way cluster analysis resulted with a dendrogram with one solely separated genotype, superior for all traits and two main clusters of genotypes defined with wide genetic diversity especially between the groups within the second cluster. Genotypes with high values for specific traits will be included in the future breeding programmes. Classification of genotypes and the extend of variation among them illustrated on the heatmap has proved to be practical tool for selecting genotypes with desired traits in the early stages of the breeding process.

  17. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat

    Directory of Open Access Journals (Sweden)

    Amber Hoffstetter

    2016-09-01

    Full Text Available Genomic selection (GS is a breeding tool that estimates breeding values (GEBVs of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP. The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the accuracy of GS for grain yield, Fusarium Head Blight (FHB resistance, softness equivalence (SE, and flour yield (FY. Four TP data sampling schemes were tested: (1 use all TP data, (2 use subsets of TP lines with low genotype-by-environment interaction, (3 use subsets of markers significantly associated with quantitative trait loci (QTL, and (4 a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB to 0.62 (FY. On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data. Using subsets of markers selected for significant association with the target trait had the greatest impact on GS accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data.

  18. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  19. Early sowing increases nitrogen uptake and yields of winter wheat grown with cattle slurry or mineral fertilizers

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Rasmussen, Jim; Thomsen, Ingrid Kaag

    2018-01-01

    of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake......The current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers...... (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite...

  20. Differentiation of organic and non-organic winter wheat cultivars from a controlled field trial by crystallization patterns.

    Science.gov (United States)

    Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika

    2015-01-01

    There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.

  1. [Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows].

    Science.gov (United States)

    Shangguan, Yu-Xian; Shi, Ri-Peng; Li, Na; Han, Kun; Li, Hui-Ke; Wang, Lin-Quan

    2012-06-01

    The objective of this experiment was to quantify ammonia volatilization from a winter wheat field with plastic film mulched-ridges and unmulched-furrows (PMRF). The trial was conducted during the 2010-2011 winter wheat growing season at Yangling, Shaanxi Province. Ammonia volatilization from the soil was measured using the closed-chamber method. The results indicated that NH3 emission losses ranged between (1.66 +/- 0.3) and (3.28 +/- 0.51) kg x hm(-2) in the PMRF treatment. In comparison, the NH3 emission loss was (4.68 +/- 0.35) kg x ha(-1) in the conventional tillage treatment (i. e., smooth soil surface). The PMRF treatment reduced NH3 emissions by 29.8 to 63.8% compared with the conventional treatment. The NH3 emission losses were equivalent to 1.9% of the applied N in the conventional practice treatment. In contrast, the losses were equivalent to only 0.3% to 0.8% of the applied N in the PMRF treatment. Ammonia emissions were greatest during the first two weeks after sowing. Emissions before winter accounted for 82% of total NH3 emission in the conventional practice treatment, but only 49% to 61% of the total NH3 emission in the PMRF treatment. The soil NH4+ -N content and the soil moisture content had direct effects on NH3 emission before winter in the conventional treatment. In thePMRF treatment, the soil NH4+ -N content had a direct effect on NH3 emission before winter, whereas soil surface temperature and soil moisture had indirect effects. Ammonia emissions after the greening stage were mainly influenced by the soil NH4+ -N content. Simulation results indicated that logarithmic functions best described cumulative NH3 emission in the PMRF + high N rate treatment and the conventional treatment. A linear function best described cumulative NH3 emission in the PMRF + low N rate treatment and the unfertilized treatment. In conclusion, the PMRF treatment can significantly reduce N losses from winter wheat fields by changing the spatial-temporal dynamics of soil

  2. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    Science.gov (United States)

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  3. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  4. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiuwei Liu

    Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  5. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Science.gov (United States)

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  6. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.

    Science.gov (United States)

    Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K

    2009-10-01

    Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency of bloat in stocker cattle. In

  7. Improving Timeliness of Winter Wheat Production Forecast in United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day

    Science.gov (United States)

    Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.

    2014-12-01

    Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.

  8. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat

    Science.gov (United States)

    Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. It can cause considerable yield losses when epidemics occur. Use of genetic resistance is the most effective approach to control the disease. To determine the genomic regions responsi...

  9. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    Science.gov (United States)

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  10. Migration and health risks of nonylphenol and bisphenol a in soil-winter wheat systems with long-term reclaimed water irrigation.

    Science.gov (United States)

    Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin

    2018-04-12

    Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  12. Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem

    Science.gov (United States)

    GS, K.; Prasad, K. S. H.

    2017-12-01

    The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with

  13. Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat.

    Science.gov (United States)

    Kolmer, James A; Su, Zhenqi; Bernardo, Amy; Bai, Guihua; Chao, Shiaoman

    2018-04-25

    A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77. 'Santa Fe' is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of 'Thatcher' (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F 6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.

  14. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    Science.gov (United States)

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  15. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in northwest China.

    Directory of Open Access Journals (Sweden)

    Yangquanwei Zhong

    Full Text Available Water shortage and nitrogen (N deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L. was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for wheat in China. Using data collected over three consecutive years, commencing five years after the experiment began, the effects of N fertilization on wheat yield, evapotranspiration (ET and water use efficiency (WUE, i.e. the ratio of grain yield to total ET in the crop growing season were examined. In 2010, 2011 and 2012, N increased the yield of wheat cultivar Zhengmai No. 9023 by up to 61.1, 117.9 and 34.7%, respectively, and correspondingly in cultivar Changhan No. 58 by 58.4, 100.8 and 51.7%. N-applied treatments increased water consumption in different layers of 0-200 cm of soil and thus ET was significantly higher in N-applied than in non-N treatments. WUE was in the range of 1.0-2.09 kg/m3 for 2010, 2011 and 2012. N fertilization significantly increased WUE in 2010 and 2011, but not in 2012. The results indicated the following: (1 in this dryland farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic.

  16. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    Science.gov (United States)

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  18. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat.

    Science.gov (United States)

    Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk

    2018-02-21

    Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.

  19. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Thomsen, Ingrid Kaag; Rasmussen, Jim

    2018-01-01

    ) as reference treatments. In the test years, the customary nutrient treatments were withheld and each plot divided into six subplots randomly allocated increasing rates of mineral fertilizer N (0–250 kg N ha−1). The winter wheat yielded more in the first test year due to crop rotational effects and more benign...... climatic conditions, substantiating that more test years are needed when estimating residual N effects. The residual value of N added previously with NPK was negligible. In the first year, grain yields at N optimum were similar for NPK and SLU, but the amount of fertilizer N needed to reach optimum yield...... in cattle slurry (50, 100 and 150 kg total-N ha−1 termed ½, 1 and 1½ SLU), we estimated the residual N value over two consecutive growth periods (2014/2015 and 2015/2016). We used winter wheat as test crop and soils with a history of mineral fertilizers only (1 PK (no N)) and 1 NPK (100 kg N ha−1...

  20. Modeling Root Growth, Crop Growth and N Uptake of Winter Wheat Based on SWMS_2D: Model and Validation

    Directory of Open Access Journals (Sweden)

    Dejun Yang

    Full Text Available ABSTRACT Simulations for root growth, crop growth, and N uptake in agro-hydrological models are of significant concern to researchers. SWMS_2D is one of the most widely used physical hydrologically related models. This model solves equations that govern soil-water movement by the finite element method, and has a public access source code. Incorporating key agricultural components into the SWMS_2D model is of practical importance, especially for modeling some critical cereal crops such as winter wheat. We added root growth, crop growth, and N uptake modules into SWMS_2D. The root growth model had two sub-models, one for root penetration and the other for root length distribution. The crop growth model used was adapted from EU-ROTATE_N, linked to the N uptake model. Soil-water limitation, nitrogen limitation, and temperature effects were all considered in dry-weight modeling. Field experiments for winter wheat in Bouwing, the Netherlands, in 1983-1984 were selected for validation. Good agreements were achieved between simulations and measurements, including soil water content at different depths, normalized root length distribution, dry weight and nitrogen uptake. This indicated that the proposed new modules used in the SWMS_2D model are robust and reliable. In the future, more rigorous validation should be carried out, ideally under 2D situations, and attention should be paid to improve some modules, including the module simulating soil N mineralization.

  1. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - an econometric approach.

    Science.gov (United States)

    Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A

    2010-05-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Cultural Characteristics of Rhizoctonia cerealis Isolated from Diseased Wheat Fields and Evaluation of the Resistance of Korean Winter Cereal Crops

    Directory of Open Access Journals (Sweden)

    Eun-Sook Lee

    2011-04-01

    Full Text Available It was identified as a sharp eyespot (Rhizoctonia cerealis that the isolates from abnormal symptoms in wheat that showed yellowing leaves, necrotic spot on stem base and dead tillers. These isolates have slower growth property and fewer mycelia than Rhizoctonia solani AG-1(1A (KACC 40106. They showed binuclear cell, same media cultural and DNA characteristics to R. cerealis. They caused same symptoms on leaves and stem base appeared in artificial inoculation test, comparing to diseased wheat fields and also affect to maturing of kernels. They have optimal growth temperature and acidity on the artificial media as 20~25℃ and pH 5~7, respectively. In the investigation of varietal resistance of Korean winter cereal crops to sharp eyespot, there was no resistant in wheat cultivars that all materials infected over 20% diseased ratio. 12 cultivars including ``Anbaekmil``, however, considered to moderate resistance with 20 to 30% infection ratio. The others crops using in feeding, whole crop barley, oat, rye and triticale were resistant below 15% diseased degree except the rye that showed over 50% infection rate. It was the first evaluation to sharp eyespot resistance for the Korean feeding crop cultivars. Most tested Korean barley cultivars for malting and food were moderate and susceptible to the sharp eyespot. Only 3 hulled barley, ``Tapgolbori``, ``Albori`` and ``Seodunchalbori``, showed resistance with less than 10% diseased ratio. All tested naked barley cultivars showed susceptible response to the disease.

  3. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    Directory of Open Access Journals (Sweden)

    Albert Kertho

    Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  4. Remotely Estimating Aerial N Uptake in Winter Wheat Using Red-Edge Area Index From Multi-Angular Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bin-Bin Guo

    2018-05-01

    Full Text Available Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat nitrogen (N nutrient status. In the paper, we examined the relationships of canopy multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L. across different growing seasons, locations, years, wheat varieties, and N application rates. Seventeen vegetation indices (VIs selected from the literature were measured for the stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs in the solar principal plane (SPP. In total, the back-scatter angles showed better VI behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial N uptake increased with decreasing VZAs. The best linear relationship was integrated with the optimized common indices DIDA and DDn to examine dynamic changes in aerial N uptake; this led to coefficients of determination (R2 of 0.769 and 0.760 at the −10° viewing angle. Our novel area index, designed the modified right-side peak area index (mRPA, was developed in accordance with exploration of the spectral area calculation and red-edge feature using the equation: mRPA = (R760/R6001/2 × (R760-R718. Investigating the predictive accuracy of mRPA for aerial N uptake across VZAs demonstrated that the best performance was at −10° [R2 = 0.804, p < 0.001, root mean square error (RMSE = 3.615] and that the effect was relatively similar between −20° to +10° (R2 = 0.782, p < 0.001, RMSE = 3.805. This leads us to construct a simple model under wide-angle combinations so as to improve the field operation simplicity and applicability. Fitting independent datasets to the models resulted in relative error (RE, % values of 12.6, 14.1, and 14.9% between estimated and measured aerial N uptake for mRPA, DIDA, and DDn across the range of −20° to +10°, respectively, further confirming the superior test performance of the mRPA index. These results illustrate that the novel index

  5. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  6. Effect of Low Temperature and Wheat Winter-Hardiness on Survival of Puccinia striiformis f. sp. tritici under Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst, is one of the most important diseases of wheat worldwide. Understanding the survival of Pst during the overwintering period is critical for predicting Pst epidemics in the spring. Real-time quantitative PCR (qPCR methods quantifying Pst DNA and RNA (cDNA were developed and compared for the ability to quantify viable Pst in leaf tissues. Both qPCR of DNA and RNA can provide reliable measurement of viable Pst in plant tissues prior to the late sporulation stage for which qPCR of DNA gave a much higher estimate of fungal biomass than qPCR of RNA. The percentage of Pst biomass that was viable in detached and attached leaves under low temperatures decreased over time. Pst survived longer on attached leaves than on detached leaves. The survival of Pst in cultivars with strong winter-hardiness at 0°C and -5°C was greater than those with weak winter-hardiness. However, such differences in Pst survival among cultivars were negligible at -10, -15 and -20°C. Results indicated that Pst mycelia inside green leaves can also be killed by low temperatures rather than through death of green leaves under low temperatures. The relationship of Pst survival in attached leaves with temperature and winter-hardiness was well described by logistic models. Further field evaluation is necessary to assess whether inclusion of other factors such as moisture and snow cover could improve the model performance in predicting Pst overwintering potential, and hence the epidemic in spring.

  7. Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na

    International Nuclear Information System (INIS)

    Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.

    1998-01-01

    The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants

  8. Uptake of and follow-up supply with [benzene ring-U-14C]triademinol via the caryopsis and from dressed zones after seed treatment of winter barley and winter wheat using a dry dressing formula

    International Nuclear Information System (INIS)

    Thielert, W.

    1984-11-01

    The paper on hand studies the following issues: 1) What is the course of uptake of the agent and/or its metabolites into the plant following dry seed treatment of winter barley and winter wheat with [benzene ring-U- 14 C] triadimenol and sowing in the top-soil of a loess-based grey-brown podzolic soil. 2) What is the relevance of uptake and follow-up supply from the dressed zones of plants in neighbouring rows. 3) What is the extent of uptake and follow-up supply via the roots from dressed zones of neighbouring plants within the same row. 4) What is the course of dressed-zone formation following dry treatment of winter barley and winter wheat and sowing in the top-soil of a loess-based grey-brown podzolic soil. 5) What is the quantitative distribution of the agent on the pericarp of winter wheat caryopses following dry seed treatment. 6) Will the 14 C-labelled agent be taken up, too, via the caryopsis and be translocated in scion and root. 7) What are the pathways of the agent from the caryopsis into the embryo. 8) How long will follow-up supply via the scutellum continue. The results concerning issues 1 to 4 were taken from tests with field lysimeters. Experiments concerning issues 6-8 were performed without soil in an climatic chamber. (orig./MG) [de

  9. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperatu......-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants.......Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperature......, viz., 10.0°C) at the Zadoks growth stage 28 (i.e.re-greening stage, starting on 20th of March) for 7d, and after 14d of recovery the plants were subsequently subjected to a 5d low temperature stress (8.4°C lower than the ambient temperature, viz., 14.1°C) at the Zadoks growth stage 31 (i...

  10. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  11. A novel QTL associated with dwarf bunt resistance in Idaho 444 winter wheat

    Science.gov (United States)

    A significant component of Mendel’s legacy has been the ability to discover, map, and utilize genes for resistance to diseases in the crops that the world relies on for food. Dwarf bunt [Tilletia contraversa Kühn (syn. Tilletia controversa)] is a destructive disease of wheat (Triticum aestivum L.) ...

  12. Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat

    Czech Academy of Sciences Publication Activity Database

    Kersebaum, K. C.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, Petr; Trnka, Miroslav; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Marta, A. D.; Luo, Q.; Eitzinger, Josef; Mirschel, W.; Weigel, H-J.; Manderscheid, R.; Hofmann, M.; Nejedlík, P.; Hösch, J.

    2016-01-01

    Roč. 8, č. 12 (2016), č. článku 571. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:67179843 Keywords : water footprint * uncertainty * model ensemble * wheat Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.832, year: 2016

  13. Effect of long-term fertilisation on the weed community of a winter wheat field.

    Science.gov (United States)

    Jiang, Min; Liu, Tao; Huang, Niansheng; Shen, Xinping; Shen, Mingxing; Dai, Qigen

    2018-03-05

    Effects of fertilisation and other management techniques on a weed community were evaluated during wheat growth in a rice-wheat cropping system. Fertiliser treatments were C0 (C means chemical, C0 means zero chemical fertiliser.), CN (N fertiliser), CNK (N plus K fertiliser), CNPK (N plus P and K fertiliser), CNP (N plus P fertiliser), and CPK (P plus K fertiliser). Weed density, biomass, and bio-diversity were determined. Redundancy analysis (RDA) was used to investigate the relationship between fertiliser management, weed species, and weed density. The overall weed densities in the C0 and CPK treatments were the greatest during wheat seeding and ripening periods and were significantly greater than densities in the other treatments. N, P and organic matter in soil were highly correlated with weed species and density, whereas K in soil was not significantly correlated with weed species and weed density. N fertiliser significantly reduced weed density. Balanced fertilisation maintained weed species richness and resulting in a high yield of wheat. CNPK application reduced weed damage and improved the productivity and stability of the farmland ecosystem.

  14. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems

    NARCIS (Netherlands)

    Vasileiadis, V.P.; Dachbrodt-saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; Jørgensen, L.N.; Newton, A.C.; Toque, C.; Dijk, van W.; Lefebvre, M.; Benezit, M.; Sattin, M.

    2017-01-01

    In order to ensure higher sustainability of winter wheat and maize production in Europe, cropping systems featuring different levels of Integrated Pest Management (IPM) need to be tested in the field and validated for their sustainability before being adopted by farmers. However, the sustainability

  15. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China

    NARCIS (Netherlands)

    Dong, J.; Hengsdijk, H.; Dai, T.; Boer, de W.; Qi, J.; Cao, W.

    2006-01-01

    Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the

  16. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xiangfen eZhang

    2015-07-01

    Full Text Available A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.

  17. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.

  18. Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP: Findings from a Case Study in Cangxian County of Hebei Province

    Directory of Open Access Journals (Sweden)

    Xue Wang

    2018-01-01

    Full Text Available The North China Plain (NCP is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence drawn from a case study in Cangxian County, Hebei Province. First-hand data were collected for this study from 350 households in 35 villages, using semistructured one-on-one questionnaires. Five types of irrigation water sources were defined and identified at the level of individual land plots: “ground and surface water”, “just groundwater”, “just rivers”, “just reservoirs”, and “no irrigation”. These levels correspond to a decreasing trend in the overall frequency of irrigation and thus provide a clear proxy indicator for IWA. The results from a series of multilevel multinomial models show that the higher the IWA, the less likely it is for a land plot to abandon winter wheat. Specifically, using “no irrigation” cases as a control group, the results show that land plots with more sources of irrigation water also tend to be characterized by greater IWA, including “ground and surface water” and “just groundwater”, and also have lower probabilities of abandoning winter wheat. In contrast, land plots with less IWA (less irrigation water sources, including “just reservoirs” and “just rivers”, are more likely to abandon winter wheat. The results also show that, in addition to IWA, soil quality and plot size at the plot level, as well as demographic characteristics, farm equipment, and land fragmentation at the household level and irrigation prices at the village level, all play additional significant roles in the cropping

  19. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If

  20. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Balance sheet method assessment for nitrogen fertilization in winter wheat: II. alternative strategies using the CropSyst simulation model

    Directory of Open Access Journals (Sweden)

    Maria Corbellini

    2006-09-01

    Full Text Available It is important, both for farmer profit and for the environment, to correctly dose fertilizer nitrogen (N for winter wheat growth. Balance-sheet methods are often used to calculate the recommended dose of N fertilizer. Other methods are based on the dynamic simulation of cropping systems. Aim of the work was to evaluate the balance-sheet method set up by the Region Emilia-Romagna (DPI, by comparing it with the cropping systems simulation model CropSyst (CS, and with an approach based on fixed supplies of N (T. A 3-year trial was structured as a series of N fertility regimes at 3 sites (Papiano di Marsciano, Ravenna, San Pancrazio. The N-regimes were generated at each site-year as separate trials in which 3 N rates were applied: N1 (DPI, N2 (DPI+50 kg ha-1 N at spike initiation, N3 (DPI + 50 kg ha-1 N at early booting. Above ground biomass and soil data (NO3-N and water were sampled and used to calibrate CS. Doses of fertilizer N were calculated by both DPI and CS for winter wheat included in three typical rotations for Central and Northern Italy. Both these methods and method T were simulated at each site over 50 years, by using daily generated weather data. The long-term simulation allowed evaluating such alternative fertilization strategies. DPI and CS estimated comparable crop yields and N leached amounts, and both resulted better than T. Minor risk of leaching emerged for all N doses. The N2 and N3 rates allowed slightly higher crop yields than N1.

  2. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    Science.gov (United States)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2018-02-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  3. Morphoagrobiological properties and productivity of new soft winter wheat varieties under the conditions of Kirovohrad variety testing station

    Directory of Open Access Journals (Sweden)

    О. Л. Уліч

    2017-03-01

    Full Text Available Purpose. To study morphoagrobiological and adaptive properties, level of yielding capacity of recently registered soft winter wheat varieties of various ecological groups under agroecological conditions of Kirovohrad variety testing station. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. It was established that the yield level of is a key composite indicator of genotype adaptation to agroecological growing conditions. Experimental data indicate significant deviations of yield depending on the genotype and the year of study. During three years of experiments, yield depending of the variety ranged from 4.26 to 9.71 t/ha, such varieties as ‘CN Kombin’, ‘Estivus’, ‘Tradytsiia odeska’, ‘Mudrist odeska’, ‘Lil’ and ‘Fabius’ had higher yields. In case of dry weather conditions and unfavorable agro-ecological factors, the following varieties as ‘Mudrist odeska’, ‘Veteran’, ‘Lil’, ‘Tsentylivka’, ‘Fabius’, ‘Patras’, ‘Montrei’ have demonstrated good adaptive properties. Their yield has decreased by 9,2–19,0%, while in the varieties ‘Mahistral’, ‘Poltavka’, ‘Harantiia odeska’ and ‘Pokrova’ – by 34.4, 42.4, 45.2 and 50.6% accordingly. Conclusions. Investigated soft winter wheat varieties differ in morphoagrobiological characteristics, productivity, height, maturation period, adaptability as well as economic and agronomic value. According to the complex of such indices as productivity, agronomic characters and properties as well as adaptability, in the microzone of Kirovohrad variety testing station it is advisable to grow varie­ties ‘CN Kombi’, ‘Pokrova’, ‘Mudrist odeska’, ‘Veteran’ and ‘Lil’.

  4. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  5. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland

    Directory of Open Access Journals (Sweden)

    Efretuei A.

    2016-06-01

    Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.

  6. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Naruoka, Y; Garland-Campbell, K A; Carter, A H

    2015-06-01

    Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.

  7. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat

    OpenAIRE

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Background Wheat is the staple food for most of the world’s population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Methods/Principle findings Foliar application of Zn-CNP was performed at post anthesis stages in two du...

  8. The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara

    Directory of Open Access Journals (Sweden)

    Marcela Dragoş

    2011-10-01

    Full Text Available Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sowing links on the thousand grain mass and hectoliter mass. The average data obtained after two years of study indicate an increase of about 2 % of the thousand grain mass and hectoliter mass on the second sowing period (16-31 Octoberand a distinctive decrease of 2-3% on the fourth sowing period(16-30 November. During the two years of experience the row distance and the sowing density had a negative impact on both thousand grain mass and hectoliter mass in both variants compared with the control variant, the difference being statistical significant.

  9. Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition.

    Science.gov (United States)

    Feng, Zhaozhong; Calatayud, Vicent; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-04-01

    Five winter wheat cultivars were exposed to ambient (A-O 3 ) and elevated (E-O 3 , 1.5 ambient) O 3 in a fully open-air fumigation system in China. Ozone exposure- and flux based response relationships were established for seven physiological variables related to photosynthesis. The performance of the fitting of the regressions in terms of R 2 increased when second order regressions instead of first order ones were used, suggesting that effects of O 3 were more pronounced towards the last developmental stages of the wheat. The more robust indicators were those related with CO 2 assimilation, Rubisco activity and RuBP regeneration capacity (A sat , J max and Vc max ), and chlorophyll content (Chl). Flux-based metrics (POD y , Phytotoxic O 3 Dose over a threshold ynmolO 3 m -2 s -1 ) predicted slightly better the responses to O 3 than exposure metrics (AOTX, Accumulated O 3 exposure over an hourly Threshold of X ppb) for most of the variables. The best performance was observed for metrics POD 1 ( A sat , J max and Vc max ) and POD 3 (Chl). For this crop, the proposed response functions could be used for O 3 risk assessment based on physiological effects and also to include the influence of O 3 on yield or other variables in models with a photosynthetic component. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  11. Leaf absorption of atmospheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat

    International Nuclear Information System (INIS)

    Gjedde Sommer, S.; Jensen, E.S.; Kofoed Schjoerring, J.

    1993-01-01

    Absorption of volatilized ammonia after application of slurry onto the soil surface (sand) between rows of a wheat crop was studied in two experiments. The slurry was labelled with 15 N-NH 4 . During seven days the accumulated gaseous N loss from the slurry varied from 6.9 to 11.1 g N m -2 . In April ammonia losses from slurry applied beneath a 5 cm high wheat crop were equal to losses from slurry applied to a fallow, but 2.2% of the lost atmospheric ammonia was taken up by the leaves. In May ammonia loss from slurry applied between the rows of a 43 cm high crop was reduced by 6% compared to the loss from fallow, because of a reduced transfer of ammonia from the slurry to the air. Of the emitted ammonia 3.3% was absorbed by the canopy. (au)

  12. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.

    2004-01-01

    Roč. 77, - (2004), s. 229-249 ISSN 0177-798X R&D Projects: GA ČR GA521/02/0827 Grant - others:Mendel University of Agriculture and Forestry Brno(CZ) J 08/98:432100001 Institutional research plan: CEZ:AV0Z3042911 Keywords : climate change scenarios * wheat yields Subject RIV: GC - Agronomy Impact factor: 0.964, year: 2004

  13. Downy Brome (Bromus tectorum L. and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides

    Directory of Open Access Journals (Sweden)

    Patrick W. Geier

    2013-04-01

    Full Text Available A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS-inhibiting herbicides for downy brome (Bromus tectorum L. and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, propoxycarbazone-Na at 44 g ai ha−1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha−1, and sulfosulfuron at 35 g ai ha−1. The herbicides were applied postemergence in fall and spring seasons. Averaged over time of application, no herbicide controlled downy brome more than 78% in any year. When downy brome densities were high, control was less than 60%. Pyroxsulam controlled downy brome greater than or similar to other herbicides tested. Flixweed (Descurainia sophia L., blue mustard [Chorispora tenella (Pallas DC.], and henbit (Lamium amplexicaule L. control did not differ among herbicide treatments. All herbicides tested controlled flixweed and blue mustard at least 87% and 94%, respectively. However, none of the herbicides controlled henbit more than 73%. Fall herbicide applications improved weed control compared to early spring applications; improvement ranged from 3% to 31% depending on the weed species. Henbit control was greatly decreased by delaying herbicide applications until spring compared to fall applications (49% vs. 80% control. Herbicide injury was observed in only two instances. The injury was ≤13% with no difference between herbicides and the injury did not impact final plant height or grain yield.

  14. Response of soft winter wheat (Triticum aestivum L. to longtime enforced dormancy and time of spring vegetation recommencing

    Directory of Open Access Journals (Sweden)

    В. С. Хахула

    2013-05-01

    Full Text Available The article highlights the results of studying the soft winter wheat response to the duration of enforced winter dormancy and the time of vegetation recommencing, their impact on growth, development and the survival of the crops. It is found that the impact of those factors in the conditions of central Forest-Steppe of Ukraine is essential, which is to be taken into consideration when scheduling the measures of spring and summer care over the cultivated crops, in particular, where the spring extra nutrition takes place, pesticides and growth regulators are applied, the spaced planting resowing or partial resowing issues are to be settled down. The ecological effect of spring vegetation recommencing dates does not expose annually, therefore it is not always possible to predict the plant development type, but it is possible, nevertheless, to influence the processes of growth, development and survival of plants throughout spring-summer period and the development of their production capacity by means of introducing the intense technologies, optimization of mineral nutrition and the use of plant growth regulators, protection from rogues, diseases, pests.

  15. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen E

    2013-01-01

    per m2. This suggests that the wheat yield loss may be related to reduction of spike number, which was affected by decreased soil water content under warming. Warming tended to give larger yield reductions at higher nitrogen fertilizer rates, and this may be related to larger water consumption...... with both higher nitrogen and temperature leading to water shortages. These effects indicate that wheat yield loss from warming was primarily associated with more severe water shortage from greater evapotranspiration under warming. The large crop canopy in the fertilized plot may further have enhanced......). The volumetric water content decreased significantly before heading by 9.3, 3.9, 2.4 and 1.2 vol% in the soil depth of 0.10, 0.20, 0.40, 0.60 m in N2 and by 5.9, 1.4, 1.3 and 1.2 vol% in N1 from heating compared with no heating. The duration of the entire growth period was shortened by on average 7 days...

  16. Dissecting the genetic architecture of frost tolerance in Central European winter wheat.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Würschum, Tobias; Longin, C Friedrich H; Korzun, Viktor; Kollers, Sonja; Schachschneider, Ralf; Zeng, Jian; Fernando, Rohan; Dubcovsky, Jorge; Reif, Jochen C

    2013-11-01

    Abiotic stress tolerance in plants is pivotal to increase yield stability, but its genetic basis is still poorly understood. To gain insight into the genetic architecture of frost tolerance, this work evaluated a large mapping population of 1739 wheat (Triticum aestivum L.) lines and hybrids adapted to Central Europe in field trials in Germany and fingerprinted the lines with a 9000 single-nucleotide polymorphism array. Additive effects prevailed over dominance effects. A two-dimensional genome scan revealed the presence of epistatic effects. Genome-wide association mapping in combination with a robust cross-validation strategy identified one frost tolerance locus with a major effect located on chromosome 5B. This locus was not in linkage disequilibrium with the known frost loci Fr-B1 and Fr-B2. The use of the detected diagnostic markers on chromosome 5B, however, does not allow prediction of frost tolerance with high accuracy. Application of genome-wide selection approaches that take into account also loci with small effect sizes considerably improved prediction of the genetic variation of frost tolerance in wheat. The developed prediction model is valuable for improving frost tolerance because this trait displays a wide variation in occurrence across years and is therefore a difficult target for conventional phenotypic selection.

  17. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  18. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Directory of Open Access Journals (Sweden)

    Shaoxia Wang

    Full Text Available Although application of Zn combined with macronutrients (K, P, and N can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn were investigated in wheat grown under different soil N rates at two sites with (Sanyuan or without (Yangling employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan and K (at Yangling, but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1 due to these interactions was much less than the average increases following Zn+K (31.3, Zn+P (18.7, and Zn+N (26.5 mg kg-1 treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three

  19. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality.

    Science.gov (United States)

    Wang, Shaoxia; Li, Meng; Liu, Ke; Tian, Xiaohong; Li, Shuo; Chen, Yanlong; Jia, Zhou

    2017-01-01

    Although application of Zn combined with macronutrients (K, P, and N) can be used to fortify wheat grain with Zn, little is known about their interactions when foliar application is employed or the influences of common soil fertility management practices (e.g. N and straw management) on their efficiency. Therefore, the effects of foliar-applied Zn and N, P, or K on grain nutritional quality (especially Zn) were investigated in wheat grown under different soil N rates at two sites with (Sanyuan) or without (Yangling) employing straw return. A 4-year-long field experiment was also conducted to evaluate the environmental stability of the foliar formulations. Across 6 site-years, foliar Zn application alone or combined with N, P, or K fertilizers resulted in 95.7%, 101%, 67.9% and 121% increases in grain Zn concentration, respectively. In terms of increasing grain Zn concentration, foliar-applied Zn positively interacted with N (at Sanyuan) and K (at Yangling), but negatively interacted with P at any condition tested, suggesting depressive effects of foliarly-applied P on physiological availability of Zn. Although these interaction effects were the major factor that governing the efficiency of foliar-applied Zn combined with N, P, or K on grain Zn concentration, the magnitude of the increase/decrease in grain Zn (-3.96~5.71 mg kg-1) due to these interactions was much less than the average increases following Zn+K (31.3), Zn+P (18.7), and Zn+N (26.5 mg kg-1) treatments relative to that observed in foliar Zn-only treatment. The combined foliar application of Zn with N, P, or K did not cause any adverse impact on grain yield and other nutritional quality and in some cases slightly increased grain yield and macronutrient concentrations. Grain phytic acid:Zn molar ratios were respectively 52.0%, 53.1%, 43.4% and 63.5% lower in the foliar Zn, Zn+N, Zn+P and Zn+K treatments than in the control treatment. These effects were consistent over four years and across three soil N

  20. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  1. Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the years 2006-2008 in the Bezek Experimental Farm (University of Life Sciences in Lublin. A two-factor field experiment was set up according to a randomized block design, in three replications. The experimental field was situated on medium heavy mixed rendzina developed from chalk rock with medium dusty loam granulometric composition. The soil was characterised by neutral pH, a very high content of P (342.1 and K (278.9 along with a very low level of magnesium (16.0 mg × kg-1 of soil and organic carbon (over 3.5%. The aim of this research was to compare the effect of three herbicide doses and two foliar fertilizers applied in a winter wheat canopy on weed infestation. The herbicides Mustang 306 SE 0.4 l × ha-1 and Attribut 70 WG 60 g × ha-1 were applied at full recommended doses as well as at doses reduced to 75% and 50%. Foliar fertilizers Insol 3 (1 1 × ha-1 and FoliCare (20 kg × ha-1 were applied at full recommended doses twice in the growing season BBCH* development stage 23-25* and 33-35*. The control was not treated with the herbicides and foliar fertilizers. The weed infestation level was determined by means of the quantitative gravimetric method at two dates: the first one 6 weeks after herbicide application and the second one - before harvest. The number of weed individuals was counted; species composition and air-dry biomass of aboveground parts were estimated from randomly selected areas of 1 m × 0.25 m at four sites on each plot. Galium aparine and Apera spica-venti plants were sampled for molecular analysis 6 weeks after herbicide application (the treatments with the full herbicide dose, a 50% dose and the control without herbicides. The density of weeds and weed air-dry weight were statistically analysed by means of variance analysis, and the mean values were estimated with Tukey's confidence intervals (p=0.05. It was found that the number of weeds and air-dry weight of weeds in the

  2. Analysis of Yield and Yield Related Traits Variability of Winter Wheat (Triticum aestivum L. Cv. Izolda and Double Haploid Lines

    Directory of Open Access Journals (Sweden)

    Kozdój Janusz

    2015-12-01

    Full Text Available The yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI, located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively. The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively. The grain yield per winter wheat plant (both DH lines and standard Izolda was significantly correlated with the number of productive tillers per plant (r = 0.80. The grain yield per winter wheat spike (both DH lines and Izolda cultivar was significantly and highly correlated with the number of grains per spike (r = 0.96, number of fertile spikelets per spike (r = 0.87 and the spike length (r = 0.80. Variation of spike and plant structural yield-forming factors

  3. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  4. DSSHerbicide: Herbicide field trials in winter wheat. How to come to a decision

    Directory of Open Access Journals (Sweden)

    Sefzat, David

    2014-02-01

    Full Text Available Herbicide decision support systems can calculate efficient, economically optimized herbicide mixtures with reduced dosages, if field specific weed data are given. Thus, they can be a sensible tool for integrated weed control. However, advises of decision support systems have to be tested before introducing them into practical farming. In Mecklenburg-Vorpommern two herbicide field trials were installed with four different prototypes of decision support systems. An untreated plot and three expert advices, private advisors, official advisory service and a farmer decision, were included as additional test variables. Herbicide efficacies in autumn, weed dry matter after spring applications, herbicide costs and wheat yield were measured to evaluate the decision support system prototypes. In one field trial with low weed density before treatments efficacies were at least 85%. In two prototypes efficacies were lower than in the expert plots. No significant differences between decision variables were found regarding weed dry matter after spraying in spring. On this site, herbicide costs were higher when expert advises were used compared to decision support system advises. No significant differences were detected in yield. Even yield in “untreated” was not significantly different. The second field trial carried higher weed densities. Here herbicide efficacies were lower in all treatments. Poa annua and Matricaria recutita were significantly affected by the treatments resulting from the decision tools. However, these differences did not result in statistically different weed dry matter or wheat yield. Three of the prototypes advised solutions with very low herbicide costs in autumn, but high costs in spring. As a result, total weed costs in these plots were higher than in the plots advised by experts. It is concluded from the field trials, that different prototypes of decision support systems are giving sensible herbicide advice. In fields with low

  5. Effect of Cu2+ and pH on intracellular calcium content and lipid peroxidation in winter wheat roots

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-06-01

    Full Text Available The study investigates the effect of copper ions and pH of external solution on intracellular calcium homeostasis and lipid peroxidation in winter wheat roots. Experiment was carried out with winter wheat. Sterile seeds were germinated in Petri dishes on the filter paper soaked with acetic buffer (pH 4.7 and 6.2 at 20 °Cin the dark for 48 hours. Copper was added as CuSO4. It’s concentrations varied from 0 to 50 µM. The Ca2+-fluorescent dye Fluo-3/AM ester was loaded on 60 hour. Root fluorescence with Fluo-3 loading was detected using X-Cite Series 120 Q unit attached to microscope Olympus BX53 with camera Olympus DP72. Imaging of root cells was achieved after exciting with 488 nm laser and collection of emission signals above 512 nm. Preliminary analysis of the images was performed using software LabSens; brightness (fluorescence intensity analysis was carried out by means of ImageJ. Peroxidation of lipids was determined according to Kumar and Knowles method. It was found that pH of solution had effect on release of calcium from intracellular stores. Low pH provokes an increase of [Ca2+]cyt which may be reaction of roots to acidic medium. Copper induces increase in non-selective permeability of plasma membrane and leads to its faster depolarization. This probably initiates Ca-dependent depolarization channels which are responsible for the influx of calcium from apoplast into the cell. Changing of the membrane permeability may occur due to interaction between Cu2+ ions and Ca-binding sites on plasma membrane or may be due to binding of copper with sulfhydryl groups and increasing of POL. Copper may also damage lipid bilayer and change the activity of some non-selective channels and transporters. Reactive oxygen species which are formed under some types of stress factors, especially the effect of heavy metals, can be activators of Ca-channels. Cu2+ ions rise MDA content and promote the oxidative stress. Low medium pH also induces its

  6. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Science.gov (United States)

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  7. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    Directory of Open Access Journals (Sweden)

    Jingxin Xu

    Full Text Available Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L. at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb, Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb, and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb, with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system. These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2 = 0.85 & T2: R(2 = 0.89 of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2 of cumulative ozone uptake. At the regional level, dry matter

  8. Effects of tillage system and forecrop type on frequency of Fusarium culmorum and F. avenaceum occurrence on culm base of some winter wheat (Triticum aestivum L.) cultivars

    OpenAIRE

    Ryszard Weber; Włodzimierz Kita

    2012-01-01

    In the years 2001 - 2003, there were analyzed relations between the number of Fusarium culmorum and F. avenaceum, fungi found on culm base parts of stalks of seven winter wheat cultivars, and preceding crop type as well as the cultivation system. The research was carried out in Poland, on light soil plots of a Lower Silesia-based experimental station subordinate to the Institute of Soil Science and Plant Cultivation (IUNG). The loglinear and correspondence analyses proved varying immunity of ...

  9. Quantitative Research on the Relationship between Yield of Winter Wheat and Agroclimatological Resources—the Case Study from Yanzhou District, Shandong Province, China

    Science.gov (United States)

    Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui

    2018-01-01

    Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural

  10. Evalution of the healthiness of winter wheat cultivated in conventional tillage, direct sowing and direct sowing with underplant crop of white clover

    Directory of Open Access Journals (Sweden)

    Ewa Moszczyńska

    2012-12-01

    Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.

  11. Life Cycle Assessment on Carbon Footprint of Winter Wheat-Summer Maize Cropping System Based on Survey Data of Gaomi in Shandong Province, China

    Directory of Open Access Journals (Sweden)

    ZHU Yong-chang

    2017-08-01

    Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.

  12. Productivity performance of bread winter wheat genotypes of local and foreign origin

    Directory of Open Access Journals (Sweden)

    P. Chamurliyski

    2016-12-01

    Full Text Available Abstract. The proper choice of parental forms is the basis for developing superior varieties with valuable agronomic properties. A priority in modern breeding is increased productivity. The aim of this study was to establish the relative contribution of the yield traits to the productivity of common wheat accessions of different geographical origin. The trial was conducted during 2012 – 2014 at Dobrudzha Agricultural Institute, General Toshevo. The study included 118 varieties and lines originating from Europe, Asia and North America. The tested materials were grown in a randomized block design in three replications, the 2 plot size being 7.5 m . Six cultivars were used as standards: Aglika, Pobeda, Enola, Sadovo 1, Antonovka and Pryaspa. Number of grains per spike, number of 2 grains per m and thousand kernel weight had the highest positive influence on grain yield. The highest levels of productivity were reported in cultivars PKB -1 Vizelika, PKB Rodika, Joana and Midas averaged for the two years of the study, cultivar Vizelika with origin from PKB - Serbia realizing a yield of 9.03 t.ha . Despite environmental effect and interaction, significant genotypic modality on the investigated traits was observed and analysed. All studied accessions can be successfully included in a breeding program to increase productivity.

  13. The effects of irradiation on grain coat color and grain texture in winter wheat

    International Nuclear Information System (INIS)

    Miao Bingliang; Liu Xueyu

    1989-01-01

    Dry seeds of the variety ''Yangmai 5'' with red grain coat, semihard grain texture, and the variety ''Ningmai 3'' with red grain coat, soft grain texture were irradiated with Y-rays at various doses.The effect on M1 grain coat color was different between two varieties, the higher doses made grain coat color of ''Yangmai 5'' redder, but had hardly effect on ''Ningmai 3''.The effect on M1 grain texture showed that the grain texture became softer with doses increased.It was found that there were 0.6% of positive ( red to white ) grain coat color mutants and 2.0% of negative(hard to soft) grain texture mutants in M2 of ''Yangmai 5'', and there were 0.7% of negative ( white to red ) grain coat color mutants and 3.6% of positive ( soft to hard ) grain texture mutants in M2 of ''Ningmai 3''. It seemed that the positive mutants selected in M3 were stable in M4. The results showed that γ-rays can be used to improve the grain coat color andgrain texture of wheat varieties

  14. Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter Wheat

    Directory of Open Access Journals (Sweden)

    Kurt Christian Kersebaum

    2016-12-01

    Full Text Available Crop productivity and water consumption form the basis to calculate the water footprint (WF of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.

  15. Role of Changes in Cell Fatty Acids Composition in the Increasing of Frost Resistance of Winter Wheat Suspension Culture

    Directory of Open Access Journals (Sweden)

    I.V. Lyubushkina

    2013-11-01

    Full Text Available Influences of low temperatures (4 and 8 ° С on the frost tolerance and fatty acid compositions of cells in a winter wheat suspension culture have been studied. It has been found that treatment of the culture with 4 °C (7 days did not protect cells from subsequent freezing temperature action (-8 °С, 6 h and was not accompanied significant changes in the fatty acid composition. On the contrary, the treatment of the culture with the temperature 8 °C (7 days prevented the death caused by freezing temperature and the content of saturated fatty acids decreased: pentadecanoic acid (by 35,0%, palmitic acid (by 19,9% and stearic acid (by 65,4%, and the content of α-linolenic acid increased by 94%. That was the cause of the double bond index (DBI increase by 16%. The role of fatty acids composition changes in the process of increasing frost tolerance in plants are discussed.

  16. Effect of Drought Stress at Pre and Post-anthesis on Dry Matter Accumulation of Grains in Irrigated Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sh. Elyasi

    2011-01-01

    Full Text Available Investigating assimilate contribution and grain filling pattern in winter wheat is importance under drought stress condition. This study was conducted to evaluate the relationship between drought stress on grain filling and yield of 4 cultivars including MV17 (dwarf, Alvand, Shahryar (semi-dwarf and Toos (tall. Experimental design was randomized complete block with three replications. Drought stress assigned to main plots and cultivars to sub plots. Growth curve sampling started at 7 days after anthesis with 4 days interval. In pre-anthesis drought stress Alvand produced highest yield, while it was 29.14% less than control treatment. The yield of Toos cultivar was lowest at pre-anthesis drought stress. Rate of grain filling of Toos cultivar did not change at pre-anthesis drought stress. Drought stress treatment at post-anthesis decreased rate of grain filling in all cultivars as compared to control, but it was significant only Toos c.v. In pre-anthesis drought stress grain filling duration increased in Alvand but decreased in Toos. Alvand with higher rate of grain filling produced highest grain yield (3850 kg/ha. It can be concluded that, drought stress decreases grain filling duration and rate of grain filling.

  17. Assessing the impact of time of spring vegetation renewal on growth, development and productivity of soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    О. Л. Уліч

    2014-12-01

    Full Text Available Results of study focusing on impact of environmental factor – time of spring vegetation renewal (TSVR of soft winter wheat on growth and development of plants, crop productivity and modern varieties response are presented. It is found that in the central part of the Right-Bank of Forest-Steppe of Ukraine this factor is important and it should be considered in planning of spring and summer care techniques, fertilizer system, especially at spring fertilizing, use of pesticides and growth regulators, in taking a decision on reseeding or underseeding of space plants. At the same time, it was determined that the environmental effect of TSVR was not occurred every year, thus it is not always possible to forecast the type of plant development. But in such years it is possible to influence the processes of plants growth, development and survival in spring and summer periods and the formation of their productivity by introducing such intensive technologies as differential crop tending, mineral nutrition optimization, the use of plant growth regulators, trace nutrients, weed, pest and disease control agents.

  18. Ecosystem function and service quantification and valuation in a conventional winter wheat production system with DAISY model in Denmark

    DEFF Research Database (Denmark)

    Ghaley, Bhim Bahadur; Porter, John Roy

    2014-01-01

    and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY...... model. At 2.6% SOM, the food and fodder production was 6.49 and 6.86tha-1year-1 respectively whereas carbon sequestration and soil water storage was 9.73tha-1year-1 and 684mmha-1year-1 respectively and nitrogen mineralisation was 83.58kgha-1year-1. At 2.6% SOM, the two EF and three ES values were US......$ 177 and US$ 2542ha-1year-1 respectively equivalent to US$ 96 and US$1370 millionyear-1 respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the EF and ES...

  19. Evolutionary Effects on Morphology and Agronomic Performance of Three Winter Wheat Composite Cross Populations Maintained for Six Years under Organic and Conventional Conditions

    Directory of Open Access Journals (Sweden)

    Sarah Brumlop

    2017-02-01

    Full Text Available Three winter wheat (Triticum aestivum L. composite cross populations (CCPs that had been maintained in repeated parallel populations under organic and conventional conditions from the F5 to the F10 were compared in a two-year replicated field trial under organic conditions. The populations were compared to each other, to a mixture of the parental varieties used to establish the CCPs, and to three winter wheat varieties currently popular in organic farming. Foot and foliar diseases, straw length, ear length, yield parameters, and baking quality parameters were assessed. The overall performance of the CCPs differed clearly from each other due to differences in their parental genetics and not because of their conventional or organic history. The CCPs with high yielding background (YCCPs also yielded higher than the CCPs with a high baking quality background (QCCPs; in the absence of extreme winter stress. The QCCPs performed equally well in comparison to the reference varieties, which were also of high baking quality. Compared to the parental mixture the CCPs proved to be highly resilient, recovering much better from winter kill in winter 2011/12. Nevertheless, they were out yielded by the references in that year. No such differences were seen in 2013, indicating that the CCPs are comparable with modern cultivars in yielding ability under organic conditions. We conclude that—especially when focusing on traits that are not directly influenced by natural selection (e.g. quality traits—the choice of parents to establish a CCP is crucial. In the case of the QCCPs the establishment of a reliable high-quality population worked very well and quality traits were successfully maintained over time. However, in the YCCPs lack of winter hardiness in the YCCP parents also became clearly visible under relevant winter conditions.

  20. An evaluation of soil water outlooks for winter wheat in south-eastern Australia

    Science.gov (United States)

    Western, A. W.; Dassanayake, K. B.; Perera, K. C.; Alves, O.; Young, G.; Argent, R.

    2015-12-01

    Abstract: Soil moisture is a key limiting resource for rain-fed cropping in Australian broad-acre cropping zones. Seasonal rainfall and temperature outlooks are standard operational services offered by the Australian Bureau of Meteorology and are routinely used to support agricultural decisions. This presentation examines the performance of proposed soil water seasonal outlooks in the context of wheat cropping in south-eastern Australia (autumn planting, late spring harvest). We used weather ensembles simulated by the Predictive Ocean-Atmosphere Model for Australia (POAMA), as input to the Agricultural Production Simulator (APSIM) to construct ensemble soil water "outlooks" at twenty sites. Hindcasts were made over a 33 year period using the 33 POAMA ensemble members. The overall modelling flow involved: 1. Downscaling of the daily weather series (rainfall, minimum and maximum temperature, humidity, radiation) from the ~250km POAMA grid scale to a local weather station using quantile-quantile correction. This was based on a 33 year observation record extracted from the SILO data drill product. 2. Using APSIM to produce soil water ensembles from the downscaled weather ensembles. A warm up period of 5 years of observed weather was followed by a 9 month hindcast period based on each ensemble member. 3. The soil water ensembles were summarized by estimating the proportion of outlook ensembles in each climatological tercile, where the climatology was constructed using APSIM and observed weather from the 33 years of hindcasts at the relevant site. 4. The soil water outlooks were evaluated for different lead times and months using a "truth" run of APSIM based on observed weather. Outlooks generally have useful some forecast skill for lead times of up to two-three months, except late spring; in line with current useful lead times for rainfall outlooks. Better performance was found in summer and autumn when vegetation cover and water use is low.

  1. Transfer factor of "9"0Sr and "1"3"7Cs to lettuce and winter wheat at different growth stage applications

    International Nuclear Information System (INIS)

    Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul

    2015-01-01

    The effect of clay soil contamination time on the transfer factors (F_vs) of "1"3"7Cs and "9"0Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The F_vs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg"−"1). Significant difference of log-F_vs was evaluated using one-way Analysis of Variance (ANOVA). Basically, F_vs of "9"0Sr were higher than those of "1"3"7Cs, despite of the application stage or crop' variety. Higher F_vs for both radionuclides were observed for lettuce in comparison to winter wheat. F_vs of "9"0Sr showed comparable trends for both crops with enhanced F_vs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of F_vs for "1"3"7Cs, soil contaminated at the second stage gave the highest F_vs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in F_v for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to "1"3"7Cs in winter wheat-straw which reflected greater hazard at the latest application. - Highlights: • Higher TFs for both radionuclides were observed for leafy plant in comparison to cereals. • Despite the growth stages & plants' variety, TFs of "9"0Sr were always higher than those of "1"3"7Cs. • TFs of "9"0Sr showed comparable trends in both crops and were higher at earlier growth stages. • Fluctuation noted in TFs for "1"3"7Cs in lettuce with higher TFs at second contamination-stage. • High TFs for "1"3"7Cs when contamination occurred at the latest growth stage of wheat vegetative.

  2. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg in winter wheat I. Content of macronutrients

    Directory of Open Access Journals (Sweden)

    Renata GAJ

    2014-12-01

    Full Text Available The aim of the study carried out under field conditions was to evaluate the effect of differentiated phosphorus and potassium fertilization level on nutritional status of winter wheat at stem elongation (BBCH 31 and flowering (BBCH 65 development stages as well as on macronutrient contents in yield obtained (grain and straw. The research was conducted in 2007-2010, within an individual agricultural holding, on lessive soil with medium and high richness in potassium and phosphorus, respectively. The contents of nitrogen, phosphorus, potassium, magnesium and calcium in wheat changed depending on the organ assessed and plant development stage. At BBCH 31, regardless fertilization level, the plants observed were malnourished with potassium, phosphorus and calcium and at the control site also with nitrogen. Furthermore, there were found significant correlation relationships among the contents of nutrient pairs: nitrogen-potassium, nitrogen-phosphorus, nitrogen-magnesium and nitrogen-calcium. The content of nitrogen in wheat grain and straw differed mainly due to weather conditions during the study. Irrespective of the years of observation, differentiated rates of P and K applied had no significant effect on N accumulation in wheat at full ripening stage. In contrast to nitrogen, the level of P and K fertilization significantly differentiated the contents of phosphorus, potassium and magnesium in wheat grain and straw. In case of calcium, the effect of fertilization factor was indicated only as regards the content of this nutrient in grain.

  3. FLIP for FLAG model visualization

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-15

    A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.

  4. Sustainability Assessment of Plant Protection Strategies in Swiss Winter Wheat and Potato Production

    Directory of Open Access Journals (Sweden)

    Patrik Mouron

    2016-01-01

    Full Text Available Production of arable crops in Switzerland is subsidized for services performed within the Proof of Ecological Performance (PEP program, the crop protection part of which is based on IPM principles. Within PEP, chemical insect control must rely on those approved insecticides that are deemed harmless for beneficial arthropods. Approved insecticides potentially impacting beneficial arthropods may also be applied, but only if unavoidable and with an official permit. In order to assess the ecological and economic sustainability of this PEP program, a reference insecticide strategy illustrating the current PEP requirements was compared with other strategies. For this purpose, a sustainability assessment taking account of ecotoxicological risks and economic viability in addition to the preservation of beneficial arthropods was performed according to the SustainOS methodology. The results show that the one-off use of Audienz (spinosad to control cereal leaf beetle (Oulema melanopus—a key pest in winter wheat—would significantly improve sustainability vis-à-vis the reference (Nomolt (teflubenzuron plus Biscaya (thiacloprid. However, in the case of the Colorado potato beetle (Leptinotarsa decemlineata, in potato crops, where Audienz is considered the reference, no alternative would exhibit better sustainability. Moreover, the study shows that strategies using Novodor (Bacillus thuringiensis protect beneficial species well but have the drawbacks of increased yield risk and higher costs. The conclusions drawn from these analyses allow recommendations for modifications of the PEP requirements for these two pest insects. The SustainOS methodology, a multi-step process combining expert knowledge with quantitative assessments including a sensitivity analysis of key target parameters and a rule-based aggregation of assessment results, yielded valuable insights into the sustainability of different crop protection strategies.

  5. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  6. The Effect of Nitrogen Fertilizer Application on Wild Oat (Avena ludoviciana L. Competition Ability with Winter Wheat (Triticum asetivum L. in Kermanshah Climate Condition

    Directory of Open Access Journals (Sweden)

    A Jalilian

    2017-12-01

    Full Text Available Introduction Cereals are the main agricultural production. Wheat is an annual crop, which plays an important role in human’s source of food. Wheat grains have various nutrients such as carbohydrates, proteins and various amino acids. The annual per capita consumption of wheat is about 232 in Iran, which is about double time of the world capita consumption. Weed interference decrease the quality and quantity of wheat production. Weed management in wheat farms is one of the main cost and time-consuming practices. Wheat yield decrease significantly by weed competition. Therefore, effective weed management dependents on knowledge about the effect of competition on yield and yield components. Response of the yield and yield components to weeds competition is different in crop species during the growth period. Yield components in development stages show the maximum sensitivity to weed competition. Wild Oat is the most important weed in wheat fields. Synchrony in development stages of wild oat with development stages of wheat is much more important reason in reducing of wheat yield and yield component. On the other hand, wild oat damage on wheat yield and yield components depends on several factors including species, plant density, wheat cultivars, nutrients consumption, sowing date, row spacing, and other ecological conditions. Moreover, leaf area index, plant height, leaf area density in canopy determine competitiveness of wild oat among wheat. Therefore, the objective of the present study was to evaluate the effect of wild oat competition in different plant densities and levels of Nitrogen fertilizer consumption on yield and yield components of wheat under Kermanshah climate. Materials and Methods This study was conducted to evaluate the competition of wild oat and winter wheat at the Research Farm of Campus of Agricultural and Natural Resources of Razi University during 2014-2015. The experiment was arranged in a split plots based on randomized

  7. Yield response of winter wheat cultivars to environments modeled by different variance-covariance structures in linear mixed models

    Energy Technology Data Exchange (ETDEWEB)

    Studnicki, M.; Mądry, W.; Noras, K.; Wójcik-Gront, E.; Gacek, E.

    2016-11-01

    The main objectives of multi-environmental trials (METs) are to assess cultivar adaptation patterns under different environmental conditions and to investigate genotype by environment (G×E) interactions. Linear mixed models (LMMs) with more complex variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covariance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified possible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009-2010/2011) from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpretation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on environments, and it can be successfully used in METs data after determining the optimal component number for each dataset. (Author)

  8. Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiaojuan Tong

    Full Text Available To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE, CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P max was 46.6 ± 4.0 µmol CO2 m(-2 s(-1 and initial light use efficiency (α 0.059 ± 0.006 µmol µmol(-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P max increased with the increase in leaf area index (LAI, canopy conductance (g c and air temperature (T a but declined with increasing vapor pressure deficit (VPD (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in T a and VPD (P<0.001, indicating that temperature and water stress occurred. When g c was more than 14 mm s(-1 in March and May and 26 mm s(-1 in April, the NEE residuals decline disappeared, or even turned into an increase in g c (P<0.01, implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.

  9. [Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves].

    Science.gov (United States)

    Shangguan, Zhou-Ping

    2007-07-01

    In this paper, the effects of different nitrogen application rates on the nitrate reductase (NR) activity, nitric oxide (NO) content and gas exchange parameters in winter wheat (Triticum aestivum L.) leaves from tillering stage to heading stage and on grain yield were studied. The results showed that the photosynthetic rate (P(n)), transpiration rate (T(r)) and instantaneous water use efficiency (IWUE) of leaves as well as the grain yield were increased with increasing nitrogen application rate first but decreased then, with the values of all these parameters reached the highest in treatment N180. The NR activity increased with increasing nitrogen application rate, and there was a significant linear correlation between NR activity and NO content at tillering and jointing stages (R2 > or = 0.68, n = 15). NO content had a quadratic positive correlation with stomatal conductance (G(s)) (R2 > or = 0.43, n = 15). The lower NO content produced by lower NR activity under lower nitrogen application rate promoted the stoma opened, while the higher NO content produced by higher NR activity under higher nitrogen application rate induced the stoma closed. Although the leaf NO content had a quadratic positive correlation with stomatal conductance (R2 > or = 0.36, n = 15), no remarkable correlation was observed between NR activity and NO content at heading stage, suggesting that nitrogen fertilization could not affect leaf NO content through promoting NR activity, and further more, regulate the stomatal action. Under appropriate nitrogen application the leaf NR activity and NO content were lower, G(s), T(r) and IWUE were higher, and thus, the crop had a better drought-resistant ability, higher P(n), and higher grain yield.

  10. Optimizing of Nitrogen, Phosphorus and Cattle Manure Fertilizers Application in Winter Wheat Production Using Response-Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    M. jahan

    2016-02-01

    Full Text Available Introduction It is estimated that up to 50 percent of applied nitrogen would drift from agricultural systems as gaseous compounds and other types of activated nitrogen (27 and 46. When applied in high amounts, up to 90% of phosphorous fertilizers could be fixed in soil together with metallic elements as insoluble forms leading to further phosphorus pollution (1. In many crops, low absorption efficiency of fertilizers is the main reason of losses through leaching, volatilization and diffusion of soluble chemical fertilizers which easily released to soil and air. It has been reported that between 18-41 percent of applied nitrogen retain in soil after crop harvesting (Fageria, 2014. Nitrogen losses happens in different ways as ammonium volatilization in lime soils (10-70%, denitrification (9-22% and leaching (14-40% (13. Chemical fertilizers are widely used by farmers due to low costs, easy availability and easy applicability. Chemical fertilizers increase the rate of organic matter decomposition in soil, thus increase the amount of greenhouse gasses such as N, CO2 released in air which aggravate global warning and climate change (2 This research was aimed to emphasize on optimizing of chemical and organic fertilizer use in winter wheat production in Iran, study the trend of change in different N, P and cattle manure levels and their effects on wheat characteristics and its changes trend also, comparison of the effectiveness of manure by chemical fertilizer related to NUE and yield increase of wheat. Materials and Methods By conducting Box-Behnken design, it is possible to obtain the most information from the least operational practices due to distribution of experimental points through treatments confined. The design points were defined based on low and high levels of N (0, 300 kg ha-1, P (0, 200 kg ha-1 and manure (0, 30 tones ha-1 as shown in Table 2. Manure was analyzed for N, P and K content (1.18% of N, 0.29% of P and 1.04% of K. The high and

  11. Hard Winter Wheat and Flour Properties in Relation to Breadmaking Quality of Straight-dough Bread: Flour Particle Size and Bread Crumb Grain

    Institute of Scientific and Technical Information of China (English)

    S H Park; O K Chung; P A Seib

    2006-01-01

    Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage,swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%~ 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p < 0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38μ m in size and representing 9.6%~ 19.3% of the flour weights was correlated positively (r =0.78, p < 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p<0.05) with crumb grain score.

  12. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Directory of Open Access Journals (Sweden)

    Gh. Lixandru

    2005-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of sewage sludge as phosphorus and nitrogen amendment for cambic chernozem soils in comparison with inorganic fertilizers (NH4NO3 and KCl. The experiment reported here were conducted during 10 years in two rotation: 1 potato – winter wheat – maize, and 2 maize – potato – winter wheat. Sewage sludge rates applied in potato was 65, 130 and 195 t/ha respectively, and in maize 30, 60 and 90 t/ha, sewage sludge rates applied alone or in combination with N and K as mineral fertilizers. The results led to the following conclusions: 1 The air-dried sewage sludge from plot Iaşi contained about 200 kg organic matter, 6 kg N, 8 kg P, 2 kg K, 30 kg Ca and 10 kg soluble salts in 1000 kg. The heavy metals content was under the maximum limits allowable, excepting Zn which was found between 4140 and 5378 ppm Zn. 2 At potato crops resulted in an yield increase of 100 kg tubers for one ton sewage sludge in case of rate of 65 t/ha, at higher rates the yield increase being lower. Annual rainfall had a significant influence on yield increase. 3 The nitrogen utilization from sewage sludge was of 8.5 % at a rate of 65 t/ha and 2.5 % at a rate of 195 t/ha. From 100 kg N as mineral fertilizer, potato used 30 % and produced 60 kg tubers/1 kg N applied in soil. The yield increase at 1 kg N from sewage sludge was of 17 kg tubers at a rate of 65 t/ha. Therefore, the nitrogen efficiency from mineral fertilizer was about three times higher compared to N from sewage sludge. 4 Applied in maize crop, resulted an yield increase of 23.2 kg grains for 1 ton sewage sludge at a rate of 30 t/ha and only 13.2 kg/1 t at a rates 90 t/ha. By comparing to manure, the yield increased was lower. The nitrogen utilization from sewage sludge by maize was of 11 % at 3o t/ha and 6.6 % at 90 t/ha. From mineral fertilizer, maize used 25.9 % of 100 kg N/ha. 5 Residual effect of sewage sludge in second year in wheat crop was of 7

  13. Training warning flags

    International Nuclear Information System (INIS)

    Miller, Richard C.

    2003-01-01

    Problems in accredited training programmes at US nuclear stations have resulted in several programmes having their accreditation status designated as probationary. A limited probationary period allows time for problem resolution before the programmes are again reviewed by the National Nuclear Accrediting Board. A careful study of these problems has resulted in the identification of several 'Training Warning Flags' that singularly, or in concert, may indicate or predict degraded training programme effectiveness. These training warning flags have been used by several US nuclear stations as a framework for self-assessments, as a reference in making changes to training programmes, and as a tool in considering student and management feedback on training activities. Further analysis and consideration of the training warning flags has developed precursors for each of the training warning flags. Although more subjective than the training warning flags, the precursors may represent early indicators of factors that may lead to or contribute to degraded training programme effectiveness. Used as evaluative tools, the training warning flags and the precursors may help identify areas for improvements in training programmes and help prioritize training programme improvement efforts. (author)

  14. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    Science.gov (United States)

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  15. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    Science.gov (United States)

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2  = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  16. Response of vegetation to carbon dioxide - effect of elevated levels of CO{sub 2} on winter wheat under two moisture regimes

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, U.N.; Burnett, R.B.; Kanemasu, E.T.; Kirkham, M.B.

    1987-12-31

    This report deals with the second-year (1985-86) findings of an on going experiment with winter wheat (Triticum aestivum L.) at different carbon dioxide (CO{sub 2}) levels and under two moisture regimes. The results for the first year are given in the U.S. Department of Energy, Carbon Dioxide Research Division Response of Vegetation to Carbon Dioxide. The purpose of the second year`s experiment was to verify the results of 1984-85. However, based on the performance and the results of 1984-85 experiments, a few modifications were made.

  17. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Thaler, S.; Eitzinger, Josef; Trnka, Miroslav; Dubrovský, Martin

    2012-01-01

    Roč. 150, č. 5 (2012), s. 537-555 ISSN 0021-8596 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : climate change * weather generator * winter wheat * adaptation options * Central Europe Subject RIV: EH - Ecology, Behaviour; DG - Athmosphere Sciences, Meteorology (UFA-U) Impact factor: 2.878, year: 2012 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8678290

  18. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  19. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Directory of Open Access Journals (Sweden)

    G. Cai

    2018-04-01

    Full Text Available How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil–plant–atmosphere system. Physically based root water uptake (RWU models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes–Jarvis (FJ model and the physically based Couvreur (C model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC, water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities

  20. Effect of different forms of nitrogen fertlizers applied in the end of tillering on yield and quality of winter wheat grain

    Directory of Open Access Journals (Sweden)

    Ladislav Ducsay

    2005-01-01

    Full Text Available In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L., variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29. Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1 caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390 to +0.69 t.ha–1 (applied of DASA according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.

  1. Effect of inoculation and nitrogen top-dressing on yields and fodder value of winter pea cv. Maksimirski ozimi in wheat cv. Sana mixture

    Directory of Open Access Journals (Sweden)

    Darko Uher

    2007-06-01

    Full Text Available Two year field trials (1999 - 2001 were performed to determine theinoculation seed winter pea and nitrogen top-dressing effect on number and active nodules of pea root and also on the green mass and dry matter yield of winter pea cv. Maksimirski ozimi and wheat cv. Sana mixture. Immediately before sowing the inoculation of pea seeds was accomplished by the indigenous variety of Rhizobium leguminosarum bv. viciae which belongs to the collection of Department of Microbiology at the Faculty of Agriculture University of Zagreb. The highest total nodule number on pea root (159 was determined on the inoculated variant as well as active nodule 144. Average mixture green mass yield were ranging from 24,65 t ha-1 (control up to 35,50 t ha-1 (inoculation. Total dry matter yields were ranging from 3,93 t ha-1 (control up to 5,66 t ha-1 (inoculation. Yields crude proteins pea in 2001 were ranging from 692 kg ha-1 (control up to 1058 kg ha-1 (inoculation and for wheat, those values ranged from 199 kg ha-1 (control up to 454 kg ha-1 (nitrogen top-dressing. Total crude proteins mixture yields were in range from 891 kg ha-1 (control up to 1360 kg ha-1 (inoculation.

  2. Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data

    Science.gov (United States)

    Shi, Yue; Huang, Wenjiang; Zhou, Xianfeng

    2017-04-01

    Hyperspectral absorption features are important indicators of characterizing plant biophysical variables for the automatic diagnosis of crop diseases. Continuous wavelet analysis has proven to be an advanced hyperspectral analysis technique for extracting absorption features; however, specific wavelet features (WFs) and their relationship with pathological characteristics induced by different infestations have rarely been summarized. The aim of this research is to determine the most sensitive WFs for identifying specific pathological lesions from yellow rust and powdery mildew in winter wheat, based on 314 hyperspectral samples measured in field experiments in China in 2002, 2003, 2005, and 2012. The resultant WFs could be used as proxies to capture the major spectral absorption features caused by infestation of yellow rust or powdery mildew. Multivariate regression analysis based on these WFs outperformed conventional spectral features in disease detection; meanwhile, a Fisher discrimination model exhibited considerable potential for generating separable clusters for each infestation. Optimal classification returned an overall accuracy of 91.9% with a Kappa of 0.89. This paper also emphasizes the WFs and their relationship with pathological characteristics in order to provide a foundation for the further application of this approach in monitoring winter wheat diseases at the regional scale.

  3. Origin of Analytical Breeding of Winter Wheat (Triticum aestivum L. in the Tsar’s Russia, and in Ukraine in particular (End of XIX– Beginning of XX centuries

    Directory of Open Access Journals (Sweden)

    Х. М. Піпан

    2009-12-01

    Full Text Available This article discusses the main factors of origin and development of analytical selection of winter wheat in Ukraine in late XIX - early XX century .. In particular highlight the role of scientific works of Charles Darwin, W. Rimpau, AL Sempolovskуу, IS Korzhinskуу and research institutions to increase attention to the study of local varieties of winter wheat and their improvement. Especially analyze values of Russia's first benefit from the breeding "Guide to Seed for the Advancement of cultivated plants", in which the author proposes methods for improving and creating new varieties. Since the end of XIX century selection were mainly involved in private owners on their own initiative, already in the beginning of XX century this trend more interested in the agricultural society, local and state authorities. Thanks to their support in the country organized congresses, meetings and conferences, set up research and field stations. It was during this period of transition took place in the national selection analysis.

  4. The effect of nitrogen fertilizing and fungicide application on the yield and selected parameters of grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Alena Bezdíčková

    2007-01-01

    Full Text Available In 2001–2004 an influence of gradually increased portions of nitrogen (100–130–160 kg/N.ha–1 applied on the wheat variety Ebi in combination with the modified fungicidal protection in the yield and the selected quality grain parameters were observed within the small-plot field trials. Nitrogenous fertilizers according to the amount of nitrogen contained were applied in 2–4 terms during vegetation in regeneration (55kg/N.ha–1, 1st production (45kg/N.ha–1, 2nd production (30kg/N.ha–1 and qualitative portion (30kg/N.ha–1. The fungicidal protection was based on the equal treatment in the phase of BBCH 37 and with regard to the varieties different treatment in the phase of BBCH 55. The dependence on the year was proved at all observed parameters. Higher intensity of nitrogenous fertilization had no decisive impact on the yields. From the point of view of increased yields, the second production nitrogenous fertilization had the strongest impact; it increased the grain yields by 0.084–0.461 t./ha–1. Higher intensity of nitrogenous fertilization positively influenced the baker’s grain quality. The increased portions of nitrogen decisively increased the volume of N-substances in all trial years. The second production nitrogenous fertilization increased the N-substances volume from 0.1 to 0.8%. Qualitative additional fertilization increased their volume from 0.26 to 1.38%. Higher N portions increased sedimentation in most cases. The falling number was not considerably influenced. The mechanical grain qualities (volume weight, number full grains, and GTW were relatively less influenced than the baker’s quality by the nitrogenous fertilization. The application of fungicides positively influenced not only the yields but also mechanical qualities of the grain, i.e. volume weight, thousand grains weight and portion of Full grains. On the contrary the baker’s quality was not decisively influenced. It was proved that the decisive

  5. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    Science.gov (United States)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  6. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2012-03-01

    Full Text Available Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for determined environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of most productive areas of Italy (i.e. Capitanata, Puglia, using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i a single dataset (50 km x 50 km provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060 and +5°C (centred over 2070-2099, respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG. No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.

  7. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat.

    Science.gov (United States)

    Min, B R; Pinchak, W E; Anderson, R C; Fulford, J D; Puchala, R

    2006-09-01

    Research was conducted to determine the effects of level of supplementation with quebracho condensed tannins (CT) on in vitro ruminal fluid gas production, in vivo ruminal fluid protein fractions, bloat dynamics, and ADG of steers grazing winter wheat. Two experiments were conducted to 1) enumerate the effect of ruminal fluid from steers fed quebracho CT (0, 1, and 2% CT/kg of DMI) on in vitro gas and methane production from minced fresh wheat forage; and 2) quantify the influence of CT supplementation on ruminal protein characteristics, biofilm complexes, bloat potential, and ADG of steers grazing wheat pasture. Eighteen ruminally cannulated steers (386 +/- 36 kg of BW) were randomly allocated to 1 of 3 treatments that included a control (water infusion) and 2 CT treatment levels (1 or 2% CT/kg of DMI). Treatments were administered daily (63 d) through the rumen cannula as pre-mixes with warm water (approximately 30 degrees C). Rumen contents were collected 2 h postinfusion (at 1030 to 1130) on d 0, 20, 40, 50, and 60. Bloat was visually scored daily for 5 d each wk. In Exp. 1, supplementation of CT decreased the rate of in vitro gas production in a dose-dependent response. In Exp. 2, ADG increased (P bloat score across stage of growth and replicates decreased linearly with increasing CT supplementation; bloat scores were greater (P rumen fluid protein fractions varied among CT treatments and stage of growth. Addition of CT reduced the severity of bloat, principally through reducing microbial activities, biofilm production, and ruminal gas production. Quebracho CT is potentially a value-added supplement that can decrease the impacts of frothy bloat and increase BW gains in stocker cattle-wheat systems.

  8. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Science.gov (United States)

    Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang

    2018-01-01

    The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840

  9. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Lucía Quebrajo

    2015-03-01

    Full Text Available Regardless of the crop production system, nutrients inputs must be controlled at or below a certain economic threshold to achieve an acceptable level of profitability. The use of management zones and variable-rate fertilizer applications is gaining popularity in precision agriculture. Many researchers have evaluated the application of final yield maps and geo-referenced geophysical measurements (e.g., apparent soil electrical conductivity-ECa as a method of establishing relatively homogeneous management zones within the same plot. Yield estimation models based on crop conditions at certain growth stages, soil nutrient statuses, agronomic factors, moisture statuses, and weed/pest pressures are a primary goal in precision agriculture. This study attempted to achieve the following objectives: (1 to investigate the potential for predicting winter wheat yields using vegetation measurements (the Normalized Difference Vegetation Index—NDVI at the beginning of the season, thereby allowing for a yield response to nitrogen (N fertilizer; and (2 evaluate the feasibility of using inexpensive optical sensor measurements in a Mediterranean environment. A field experiment was conducted in two commercial wheat fields near Seville, in southwestern Spain. Yield data were collected at harvest using a yield monitoring system (RDS Ceres II-volumetric meter installed on a combine. Wheat yield and NDVI values of 3498 ± 481 kg ha−1 and 0.67 ± 0.04 nm nm−1 (field 1 and 3221 ± 531 kg ha−1 and 0.68 ± 0.05 nm nm−1 (field 2 were obtained. In both fields, the yield and NDVI exhibited a strong Pearson correlation, with rxy = 0.64 and p < 10−4 in field 1 and rxy = 0.78 and p < 10−4 in field 2. The preliminary results indicate that hand-held crop sensor-based N management can be applied to wheat production in Spain and has the potential to increase agronomic N-use efficiency on a long-term basis.

  10. Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data

    Directory of Open Access Journals (Sweden)

    Xiuliang Jin

    2015-10-01

    Full Text Available Leaf area index (LAI and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ and RADARSAT-2. The objectives of this study were (1 to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs and radar polarimetric parameters (RPPs, (2 to estimate LAI and biomass with combined OSVIs and RPPs (the product of OSVIs and RPPs (COSVI-RPPs, (3 to use multiple stepwise regression (MSR and partial least squares regression (PLSR to test and compare the estimations of LAI and biomass in winter wheat, respectively. The results showed that LAI and biomass were highly correlated with several OSVIs (the enhanced vegetation index (EVI and modified triangular vegetation index 2 (MTVI2 and RPPs (the radar vegetation index (RVI and double-bounce eigenvalue relative difference (DERD. The product of MTVI2 and DERD (R2 = 0.67 and RMSE = 0.68, p < 0.01 and that of MTVI2 and RVI (R2 = 0. 68 and RMSE = 0.65, p < 0.01 were strongly related to LAI, and the product of the optimized soil adjusted vegetation index (OSAVI and DERD (R2 = 0.79 and RMSE = 148.65 g/m2, p < 0.01 and that of EVI and RVI (R2 = 0. 80 and RMSE = 146.33 g/m2, p < 0.01 were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat

  11. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin.

    Science.gov (United States)

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L

    2018-06-01

    The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally. © 2018 John Wiley & Sons Ltd.

  12. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat

    NARCIS (Netherlands)

    Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.

    2006-01-01

    The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are

  13. Standardized ileal digestibility of amino acids in eight genotypes of soft winter wheat fed to growing pigs

    DEFF Research Database (Denmark)

    Rosenfelder, P; Mosenthin, R; Spindler, H K

    2015-01-01

    such as fiber fractions are not suitable due to low variation among the 8 genotypes. The present study provides a comprehensive database on nutritional composition and SID of CP and AA of 8 wheat genotypes grown under identical conditions. Because the SID values in these genotypes are lower when compared...

  14. [Clarification of Rht8 and Ppd-D1 gene linkage on the 2D chromosome of winter bread wheat].

    Science.gov (United States)

    Chebotar, H O; Chebotar, S V; Motsnyĭ, I I; Syvolap, Iu M

    2013-01-01

    In the south part of Ukraine the haplotype of Rht8c and Ppd-D1a genes is highly distributed among modern bread wheat varieties. During the time of breeding program it has been selected as one of the most important adaptive complex for plants of this region. Genetic distance between Rht8c and Ppd-D1a was clarified.

  15. Elasticities for U.S. Wheat Food Use by Class

    OpenAIRE

    Marsh, Thomas L.

    2003-01-01

    We conceptualize wheat for food use as an input into flour production and derive demand functions to quantify price responsiveness and economic substitutability across wheat classes. Cost, price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft white winter, and durum wheat. In general, hard red winter and spring wheat varieties are much more responsive to their own price than are soft wheat varieties and durum wheat. Morishima elasticitie...

  16. Interactions between crop biomass and development of foliar diseases in winter wheat and the potential to graduate the fungicide dose according to crop biomass

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger; Jørgensen, Lise Nistrup

    2016-01-01

    dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each...... biomass level, an untreated control, and 75%, 50% and 33% of the recommended fungicide dose rate and the experiments were replicated for three years. Crop biomass had a significant influence on occurrence of septoria and yellow rust with greater disease severity at increasing crop biomass. In two of three...... years, the interaction of crop biomass and fungicide dose rate had a significant influence on disease severity indicating a biomassdependent dose response. The interaction occurred in the two years with high yield potential in combination with severe disease attack. If the variation in crop density...

  17. The use of PCR assay for quality testing of grain of winter wheat cultivated in organic, integrated, conventional system and monoculture in phytopathological aspect

    Directory of Open Access Journals (Sweden)

    Aleksander Łukanowski

    2012-12-01

    Full Text Available The aim of experiments was to evaluate the occurrence of fungi on grain of winter wheat cv. Roma cultivated in four systems on the experimental fields owned by the Institute of Soil Science and Plant Cultivation. Among pathogenic species, fungi from genus Fusarium dominated. Their number was the lowest on grain harvested in organic system and the highest in integrated one. Saprotrophic species were represented mainly by Alternaria alternata, which occurred the most often in organic system. Determination of F. avenaceum, F. culmorum and F. poae with microscope was confirmed with a PCR assay. All isolates of F. culmorum and F. poae gave an amplification product of Tri 5 gene coding the possibility of trichocene production, while none of isolates of F. avenaceum.

  18. Effects of some benzoxazinoids on in vitro growth of Cephalosporium gramineum and other fungi pathogenic to cereals and on Cephalosporium stripe of winter wheat.

    Science.gov (United States)

    Martyniuk, Stefan; Stochmal, Anna; Macías, Francisco A; Marín, David; Oleszek, Wieslaw

    2006-02-22

    The benzoxazolinones benzoxazolin-2(3H)-one (BOA) and 6-methoxybenzoxazolin-2(3H)-one (MBOA) and selected degradation products of these compounds were examined for their in vitro antifungal activity against Cephalosporium gramineum, Gaeumannomyces graminis var. graminis, and Fusarium culmorum. BOA was also applied to the soil-incorporated inoculum of C. gramineum to test its capability of reducing Cephalosporium stripe disease in winter wheat. MBOA reduced the mycelial growth of G. graminis var. tritici, C. gramineum, and F. culmorum by 50% (EC50) at the concentrations of 77, 134, and 271 microg/mL of corn meal agar, respectively, and the corresponding BOA EC50 values for the fungi were 11, 189, and 456 microg/mL. BOA degradation products 2-amino-3H-phenoxazin-3-one (APO), 2-acetylamino-3H-phenoxazin-3-one (AAPO), and o-aminophenol (o-AP) were much more inhibitory to the growth of C. gramineum and G. graminis var. tritici than the parent compounds. APO, AAPO, and o-AP EC50 values were found to be as low as 0.58, 4.57, and 1.4 microg/mL, respectively, for C. gramineum and 0.78, 2.18, and 0.80 microg/mL for G. graminis var. tritici. These compounds applied at the corresponding concentrations did not significantly affect the mycelial growth of F. culmorum. The treatment of C. gramineum inoculum with a 1% water solution of BOA resulted in a significant reduction infection of winter wheat with C. gramineum as compared to the control with the untreated inoculum,but this treatment was not as effective as the application of a commercial fungicide.

  19. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat.

    Science.gov (United States)

    Elbasyoni, Ibrahim S; Lorenz, A J; Guttieri, M; Frels, K; Baenziger, P S; Poland, J; Akhunov, E

    2018-05-01

    The utilization of DNA molecular markers in plant breeding to maximize selection response via marker-assisted selection (MAS) and genomic selection (GS) has revolutionized plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotyping-by-sequencing scored SNPs (GBS-scored SNPs) provides a large number of markers, albeit with high rates of missing data. Array scored SNPs are of high quality, but the cost per sample is substantially higher. The objectives of this study were 1) compare GBS-scored SNPs, and array scored SNPs for genomic selection applications, and 2) compare estimates of genomic kinship and population structure calculated using the two marker platforms. SNPs were compared in a diversity panel consisting of 299 hard winter wheat (Triticum aestivum L.) accessions that were part of a multi-year, multi-environments association mapping study. The panel was phenotyped in Ithaca, Nebraska for heading date, plant height, days to physiological maturity and grain yield in 2012 and 2013. The panel was genotyped using GBS-scored SNPs, and array scored SNPs. Results indicate that GBS-scored SNPs is comparable to or better than Array-scored SNPs for genomic prediction application. Both platforms identified the same genetic patterns in the panel where 90% of the lines were classified to common genetic groups. Overall, we concluded that GBS-scored SNPs have the potential to be the marker platform of choice for genetic diversity and genomic selection in winter wheat. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Understanding long-term (1982-2013) patterns and trends in winter wheat spring green-up date over the North China Plain

    Science.gov (United States)

    Wang, Sisi; Mo, Xingguo; Liu, Zhengjia; Baig, Muhammad Hasan Ali; Chi, Wenfeng

    2017-05-01

    Monitoring the spring green-up date (GUD) has grown in importance for crop management and food security. However, most satellite-based GUD models are associated with a high degree of uncertainty when applied to croplands. In this study, we introduced an improved GUD algorithm to extract GUD data for 32 years (1982-2013) for the winter wheat croplands on the North China Plain (NCP), using the third-generation normalized difference vegetation index form Global Inventory Modeling and Mapping Studies (GIMMS3g NDVI). The spatial and temporal variations in GUD with the effects of the pre-season climate and soil moisture conditions on GUD were comprehensively investigated. Our results showed that a higher correlation coefficient (r = 0.44, p the improved algorithm relative to GUD from the MCD12Q2 phenology product. In spatial terms, GUD increased from the southwest (less than day of year (DOY) 60) to the northeast (more than DOY 90) of the NCP, which corresponded to spatial reductions in temperature and precipitation. GUD advanced in most (78%) of the winter wheat area on the NCP, with significant advances in 37.8% of the area (p the interannual scale, the average GUD advanced from DOY 76.9 in the 1980s (average 1982-1989) to DOY 73.2 in the 1990s (average 1991-1999), and to DOY 70.3 after 2000 (average 2000-2013), indicating an average advance of 1.8 days/decade (r = 0.35, p the pre-season temperature, our findings underline that the effect of the pre-season soil moisture on GUD should also be considered. The improved GUD algorithm and satellite-based long-term GUD data are helpful for improving the representation of GUD in terrestrial ecosystem models and enhancing crop management efficiency.

  1. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions

    International Nuclear Information System (INIS)

    Feng Zhaozhong; Pang Jing; Nouchi, Isamu; Kobayashi, Kazuhiko; Yamakawa, Takashi; Zhu Jianguo

    2010-01-01

    We studied leaf apoplastic ascorbates in relation to ozone (O 3 ) sensitivity in two winter wheat (Triticum aestivum L.) varieties: Yangfumai 2 (Y2) and Yangmai 16 (Y16). The plants were exposed to elevated O 3 concentration 27% higher than the ambient O 3 concentration in a fully open-air field from tillering stage until final maturity. The less sensitive variety Y16 had higher concentration of reduced ascorbate in the apoplast and leaf tissue by 33.5% and 12.0%, respectively, than those in the more sensitive variety Y2, whereas no varietal difference was detected in the decline of reduced ascorbate concentration in response to elevated O 3 . No effects of O 3 or variety were detected in either oxidized ascorbate or the redox state of ascorbate in the apoplast and leaf tissue. The lower ascorbate concentrations in both apoplast and leaf tissue should have contributed to the higher O 3 sensitivity in variety Y2. - Apoplastic ascorbate contributes to varietal difference in wheat tolerance to O 3 .

  2. Effects on Glomus mosseae Root Colonization by Paenibacillus polymyxa and Paenibacillus brasilensis Strains as Related to Soil P-Availability in Winter Wheat

    International Nuclear Information System (INIS)

    Arthurson, V; Granhall, U; Derlund, L; Hjort, K; Muleta, D

    2011-01-01

    Greenhouse experiments were conducted to assess the effects of inoculating winter wheat (Triticum aestivum) with plant growth promoting rhizobacteria (PGPR) of the genus Paenibacillus under phosphate P-limited soil conditions in the presence or absence of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. Four P. polymyxa strains and one P. brasilensis strain were compared at two cell concentrations (10 6 and 10 8 cells g -1 seeds) of inoculation, and surface sterilized AMF spores were added to pots. Mycorrhizal root colonization, plant growth, and plant uptake of phosphorus were analyzed. Bacterial phosphate solubilization was examined separately in vitro. Most P. polymyxa strains, isolated from wheat, had dramatic effects per se on root growth and root P-content. No treatment gave significant effect on shoot growth. AMF root colonization levels and total plant uptake of P were much stimulated by the addition of most P. polymyxa strains. The AM fungus alone and the P. brasilensis, alone or in combination with the fungus, did not affect total plant P-levels. Our results indicate that practical application of inoculation with plant host-specific rhizobacteria (i.e., P. polymyxa) could positively influence uptake of phosphorus in P-

  3. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Duan, Jianfeng; Tian, Hui; Drijber, Rhae A; Gao, Yajun

    2015-11-01

    Previous studies have reported that the expression of phosphate (Pi) or nitrogen (N) transporter genes in roots of plants could be regulated by arbuscular mycorrhizal (AM) fungi, but little is known whether the regulation is systemic or not. The present study investigated the systemic and local regulation of multiple phosphate and nitrogen transporter genes by four AM fungal species belonging to four genera in the roots of winter wheat. A split-root culture system with AM inoculated (MR) and non-inoculated root compartments (NR) was used to investigate the systemic or local responses of phosphate and nitrogen transporter genes to colonization by four AM fungi in the roots of wheat. The expression of four Pi transporter, five nitrate transporter, and three ammonium transporter genes was quantified using real-time PCR. Of the four AM fungi tested, all locally increased expression of the AM-inducible Pi transporter genes, and most locally decreased expression of a Pi-starvation inducible Pi transporter gene. The addition of N in soil increased the expression of either Pi starvation inducible Pi transporters or AM inducible Pi transporters. Inoculation with AM fungi either had no effect, or could locally or systemically down-regulate expression of nitrogen transporter genes depending on gene type and AM fungal species. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing.

    Science.gov (United States)

    Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.

  5. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2018-05-01

    Full Text Available The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems, Fusarium pseudograminearum (14.9% from roots; 27.8% from stems, Rhizoctonia cerealis (1.7% from roots; 4.4% from stems, and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems. We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01 in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01 were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum. In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4% or in individual plants (11.6% was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing

  6. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat.

    Science.gov (United States)

    Hýsek, Josef; Vavera, Radek; Růžek, Pavel

    2017-06-01

    In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).

  7. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément

    2015-01-01

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components...... are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during...

  8. 75 FR 34309 - Flag Day and National Flag Week, 2010

    Science.gov (United States)

    2010-06-16

    ... Nation to confront tyranny and oppression still flies today as an unequivocal emblem of freedom and... gatherings to private memorials, we gathered to salute our flag, and in doing so, renewed the eternal promise... recognize the American flag as a symbol of hope and inspiration to people at home and around the world--as a...

  9. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany

    Science.gov (United States)

    Lüttger, Andrea B.; Feike, Til

    2018-04-01

    Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901-1930, 1931-1960, 1961-1990 to 2001-2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991-2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981-1990, 1991-2000, and 2001-2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong

  10. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    Science.gov (United States)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  11. Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    Tai M. Maaz

    2017-05-01

    Full Text Available Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among strategies proposed to mitigate and adapt to climate shifts in the inland Pacific Northwest (iPNW. Our objectives were to assess these strategies across iPNW agroecological zones and time for their impacts on (1 winter wheat (WW (Triticum aestivum L. productivity, (2 crop sequence productivity, and (3 N fertilizer use efficiency. Region-wide analysis indicated that WW yields increased with increasing annual precipitation, prior to maximizing at 520 mm yr−1 and subsequently declining when annual precipitation was not adjusted for available soil water holding capacity. While fallow periods were effective at mitigating low nitrogen (N fertilization efficiencies under low precipitation, efficiencies declined as annual precipitation exceeded 500 mm yr−1. Variability in the response of WW yields to annual precipitation and N fertilization among locations and within sites supports precision N management implementation across the region. In years receiving <350 mm precipitation yr−1, WW yields declined when preceded by crops rather than summer fallow. Nevertheless, WW yields were greater when preceded by pulses and oilseeds rather than wheat across a range of yield potentials, and when under conservation tillage practices at low yield potentials. Despite the yield penalty associated with eliminating fallow prior to WW, cropping system level productivity was not affected by intensification, diversification, or conservation tillage. However, increased fertilizer N inputs, lower fertilizer N use efficiencies, and more yield variance may offset and limit the economic feasibility of intensified and diversified cropping systems.

  12. Genome-Wide Association Studies and Comparison of Models and Cross-Validation Strategies for Genomic Prediction of Quality Traits in Advanced Winter Wheat Breeding Lines

    Directory of Open Access Journals (Sweden)

    Peter S. Kristensen

    2018-02-01

    Full Text Available The aim of the this study was to identify SNP markers associated with five important wheat quality traits (grain protein content, Zeleny sedimentation, test weight, thousand-kernel weight, and falling number, and to investigate the predictive abilities of GBLUP and Bayesian Power Lasso models for genomic prediction of these traits. In total, 635 winter wheat lines from two breeding cycles in the Danish plant breeding company Nordic Seed A/S were phenotyped for the quality traits and genotyped for 10,802 SNPs. GWAS were performed using single marker regression and Bayesian Power Lasso models. SNPs with large effects on Zeleny sedimentation were found on chromosome 1B, 1D, and 5D. However, GWAS failed to identify single SNPs with significant effects on the other traits, indicating that these traits were controlled by many QTL with small effects. The predictive abilities of the models for genomic prediction were studied using different cross-validation strategies. Leave-One-Out cross-validations resulted in correlations between observed phenotypes corrected for fixed effects and genomic estimated breeding values of 0.50 for grain protein content, 0.66 for thousand-kernel weight, 0.70 for falling number, 0.71 for test weight, and 0.79 for Zeleny sedimentation. Alternative cross-validations showed that the genetic relationship between lines in training and validation sets had a bigger impact on predictive abilities than the number of lines included in the training set. Using Bayesian Power Lasso instead of GBLUP models, gave similar or slightly higher predictive abilities. Genomic prediction based on all SNPs was more effective than prediction based on few associated SNPs.

  13. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  14. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    Science.gov (United States)

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  15. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  16. Effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat

    Directory of Open Access Journals (Sweden)

    mehdi rastgoo

    2009-06-01

    Full Text Available In order to study the effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat, an experiment was conducted in 2001 at Research station of college of agriculture, Ferdowsi University of Mashhad. A Split plot design with three replications were used with factorial combination of weed density (0, 8, 16, and 32 plant/m2 and nitrogen (low=100, optimum= 150, and high= 225 Kg/ha as main plots.The sub plot factor included nitrogen splitting pattern (P1=1/3 at planting time+2/3 at tillering, P2= 1/3 at planting time + 1/3 at tillering + 1/3 at shooting. According to the results, wild mustard seed production increased with increasing wild mustard density and nitrogen rates, due to high wild mustard biomass production. Seed production of wild mustard was 161, 311, and 488 million/ha in low, optimum and high nitrogen rates, respectively. In the other hand, density and nitrogen rates had a significant effect on wild mustard fecundity. However, nitrogen splitting pattern showed no significant effect on wild mustard seed production.

  17. Estimating economic thresholds for site-specific weed control using manual weed counts and sensor technology: an example based on three winter wheat trials.

    Science.gov (United States)

    Keller, Martina; Gutjahr, Christoph; Möhring, Jens; Weis, Martin; Sökefeld, Markus; Gerhards, Roland

    2014-02-01

    Precision experimental design uses the natural heterogeneity of agricultural fields and combines sensor technology with linear mixed models to estimate the effect of weeds, soil properties and herbicide on yield. These estimates can be used to derive economic thresholds. Three field trials are presented using the precision experimental design in winter wheat. Weed densities were determined by manual sampling and bi-spectral cameras, yield and soil properties were mapped. Galium aparine, other broad-leaved weeds and Alopecurus myosuroides reduced yield by 17.5, 1.2 and 12.4 kg ha(-1) plant(-1)  m(2) in one trial. The determined thresholds for site-specific weed control with independently applied herbicides were 4, 48 and 12 plants m(-2), respectively. Spring drought reduced yield effects of weeds considerably in one trial, since water became yield limiting. A negative herbicide effect on the crop was negligible, except in one trial, in which the herbicide mixture tended to reduce yield by 0.6 t ha(-1). Bi-spectral cameras for weed counting were of limited use and still need improvement. Nevertheless, large weed patches were correctly identified. The current paper presents a new approach to conducting field trials and deriving decision rules for weed control in farmers' fields. © 2013 Society of Chemical Industry.

  18. The usefulness of fungicide mixtures and alternation for delaying the selection for resistance in populations of Mycosphaerella graminicola on winter wheat: a modeling analysis.

    Science.gov (United States)

    Hobbelen, P H F; Paveley, N D; Oliver, R P; van den Bosch, F

    2013-07-01

    A fungicide resistance model (reported and tested previously) was amended to describe the development of resistance in Mycosphaerella graminicola populations in winter wheat (Triticum aestivum) crops in two sets of fields, connected by spore dispersal. The model was used to evaluate the usefulness of concurrent, alternating, or mixture use of two high-resistance-risk fungicides as resistance management strategies. We determined the effect on the usefulness of each strategy of (i) fitness costs of resistance, (ii) partial resistance to fungicides, (iii) differences in the dose-response curves and decay rates between fungicides, and (iv) different frequencies of the double-resistant strain at the start of a treatment strategy. Parameter values for the quinine outside inhibitor pyraclostrobin were used to represent two fungicides with differing modes of action. The effectiveness of each strategy was quantified as the maximum number of growing seasons that disease was effectively controlled in both sets of fields. For all scenarios, the maximum effective lives achieved by the use of the strategies were in the order mixtures ≥ alternation ≥ concurrent use. Mixtures were of particular benefit where the pathogen strain resistant to both modes of action incurred a fitness penalty or was present at a low initial frequency.

  19. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  20. Impact of Fertilizer N Application on the Grey Water Footprint of Winter Wheat in a NW-European Temperate Climate

    Directory of Open Access Journals (Sweden)

    Holger Brueck

    2016-08-01

    Full Text Available Nutrient management is central in water footprint analyses as it exerts strong control over crop yield and potentially contributes to pollution of freshwater, the so-called grey water footprint. In the frame of grey water footprint accounting, two methods are suggested, the constant leaching fraction approach (10% of applied fertilizer N and the N surplus approach. We compared both approaches and expected that the N surplus approach gives lower estimates of N leaching (and fertilizer-induced freshwater pollution when the N surplus is small and higher N leaching estimates when the N surplus is high. We compared N fertilizer application at which the N balance = 0 with the N application at which profit is highest. We further expect pronounced differences in N surplus between farm sites and years, due to yield and soil fertility differences. N response trials were conducted at several locations over three years in Germany. Fertilizer-induced N surplus was calculated from the difference between applied N fertilizer and grain N removal. N fertilizer application at which N balance = 0 (NBal = 0 was lower than economic optimum N application rates (NEcon. N surplus at NEcon was linearly correlated with the additional N applied. Pooled over years and sites the median N surplus was 39 kg N ha−1. Differences between sites rather than between years dominated variation in fertilizer-induced N surplus. Estimated N leaching at NEcon was on average 9% of applied fertilizer N. The product water footprint was on average 180 m3 per ton of grain, but differences between sites were substantial with values varying between 0 and >400 m3 per ton. Yield and protein contents were lower at NBal = 0 compared to NEcon indicating a trade-off between freshwater protection, yield, wheat grain quality and economic optimum N application. Site-specific fertilizer strategies which consider soil type, crop development, annual field water balance, in-season nutrient dynamics and

  1. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun

    2017-01-01

    Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.

  2. Romania's flag raised at CERN

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony was held for the raising of the Romanian flag alongside the flags of CERN’s 21 other Member States.   The Romanian flag is raised alongside the flags of CERN’s other Member States, in the presence of the Romanian President, CERN’s Director-General, the President of the CERN Council and a large Romanian delegation. (Image: Maximilien Brice/ Sophia Bennett/CERN) On Monday, 5 September, the Romanian flag was raised in front of CERN for the first time, marking the country’s accession to Membership of the Organization. The blue, yellow and red flag joined those of the other 21 Member States of CERN in a ceremony attended by the President of Romania, Klaus Iohannis, the Romanian Minister for Education and Scientific Research, Mircea Dumitru, and several other members of the President’s office, the government and academia in Romania. The country officially became a CERN Member State on 17 July 2016, after 25 years of collaboration between the...

  3. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  4. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    Full Text Available The production and consumption of the greenhouse gases (GHGs methane (CH4, carbon dioxide (CO2 and nitrous oxide (N2O in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1 year(-1 in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS. The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.

  5. Effects of increased CO[sub 2] concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.A.C.; Mitchell, V.J.; Driscoll, S.P.; Franklin, J.; Lawlor, D.W. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    Winter wheat was grown in chambers under light and temperature conditions similar to the UK field environment for the 1990/1991 growing season at two levels each of atmospheric CO[sub 2] concentration (seasonal means: 361 nd 692 [mu]mol mol[sup -1]), temperature (tracking ambient and ambient +4[degree]C) and nitrogen application (equivalent to 87 and 489 kg ha[sub -1] total N applied). Total dry matter productivity through the season, the maximum number of shoots and final ear number were stimulated by CO[sub 2] enrichment at both levels of the temperature and N treatments. At high N, there was a CO[sub 2]-induced stimulation of grain yield (+15%) similar to that for total crop dry mass (+12%), and there was no significant interaction with temperature. Temperature had a direct, negative effect on yield at both levels of the N and CO[sub 2] treatments. This could be explained by the temperature-dependent shortening of the phenological stages, and therefore, the time available for accumulating resources for grain formation. At high N, there was also a reduction in grain set at ambient +4[degree]C temperature, but the overall negative effect of warmer temperature was greater on the number of grains (-37%) than on yield (-18%), due to a compensating increase in average grain mass. At low N, despite increasing total crop dry mass and the number of ears, elevated CO[sub 2] did not increase grain yield and caused a significant decrease under ambient temperature conditions. This can be explained in terms of a stimulation of early vegetative growth by CO[sub 2] enrichment leading to a reduction in the amount of N available later for the formation and filling of grain.

  6. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  7. Assessing Effect of Manure and Chemical Fertilizer on Net Primary Production, Soil Respiration and Carbon Budget in Winter Wheat (Triticum aestivum L. Ecosystem under Mashhad Climatic Condition

    Directory of Open Access Journals (Sweden)

    Y alizade

    2018-02-01

    Full Text Available Introduction The imbalance between anthropogenic emissions of CO2 and the sequestration of CO2 from the atmosphere by ecosystems has led to an increase in the average concentration of this greenhouse gas (GHG in the atmosphere. Enhancing carbon sequestration in soil is an important issue to reduce net flux of carbon dioxide to the atmosphere. Soil organic carbon content is obtained from the difference between carbon input resulting from plant biomass and carbon losses the soil through different ways including soil respiration. CO2 emission varies largely during the year and is considerably affected by management type. The goal of this investigation was to study the effects of application of manure and chemical fertilizer on CO2 flux and carbon balance in agricultural system. Materials and Methods In order to evaluate the carbon dynamics and effect of fertilizer and manure management on soil respiration and carbon budget for winter wheat, an experiment was conducted as a randomized complete block design with three replications in research field of Faculty of Agriculture of Ferdowsi University of Mashhad for two years of 2010-2011 and 2011-2012 . The experimental treatments were 150 and 250 kg chemical nitrogen (N1 and N2, manure (M, manure plus chemical nitrogen (F-M and control (C. CO2 emission was measured six times during growth season and to minimize daily temperature variation error, the measurement was performed between 8 to 11 am. Chambers length and diameter were 50 cm and 30 cm respectively and their edges were held down 3 cm in soil in time of sampling so that no plant live mass was present in the chamber. Carbon budgets were estimated for two years using an ecological technique. Results and Discussion The net primary production (NPP was significantly higher in the F2 and F-M treatments with 6467 and 6294kg ha-1 in the first year and 6260 and 6410 kg ha-1 in the second year, respectively. The highest shoot to root ratio was obtained in

  8. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  9. 76 FR 35087 - Flag Day and National Flag Week, 2011

    Science.gov (United States)

    2011-06-15

    ... flag with thirteen stripes and thirteen stars to represent our Nation, one star for each of our founding colonies. The stars were set upon a blue field, in the words of the Congress's resolution, ``representing a new constellation'' in the night sky. What was then a fledgling democracy has flourished and...

  10. Quantifying the non-fungicidal effects of foliar applications of fluxapyroxad (Xemium) on stomatal conductance, water use efficiency and yield in winter wheat.

    Science.gov (United States)

    Smith, J; Grimmer, M; Waterhouse, S; Paveley, N

    2013-01-01

    The active ingredient fluxapyroxad belongs to the chemical group of carboxamides and is a new generation succinate dehydrogenase inhibitor (SDHI) in complex II of the mitochondrial respiratory chain. It has strong efficacy against the key foliar diseases of winter wheat in the UK: Septoria leaf blotch, yellow stripe rust and brown rust. Fluxapyroxad is marketed under the brand name of Xemium, was launched in 2012 and is available in the UK as a solo product (Imtrex) for co-application with triazoles, in co-formulation with epoxiconazole (Adexar), or in a three way formulation with epoxiconazole and pyraclostrobin (Ceriax). The objective of the study was to quantify the direct effects of Xemium on stomatal conductance and yield, mediated through stimulation of host physiology. Three field experiments and two controlled environment (CE) experiments were conducted across three cropping seasons (2010-2012) in Herefordshire and Cambridge, in the UK. Xemium was evaluated against boscalid, pyraclostrobin (F500), epoxiconazole and an untreated control. Across site-seasons, disease severity was significantly reduced when Xemium was applied as a foliar spray. Healthy canopy size and duration was increased by Xemium and canopy greening effects were seen shortly after application. Stomatal conductance was found to be consistently lower in Xemium treated plants but reduced stomatal opening was not found to be detrimental to yield in these experiments. Large, beneficial effects of Xemium on water use efficiency were found at the canopy level and this finding was supported by measurements of instantaneous water use efficiency at the leaf level. Effects on season long water use efficiency were largely driven by improvements in yield for a given amount of water uptake. Foliar applications of Xemium reduced the water required to produce 1.0 t grain per hectare by 82,330 L(82 t) when compared with an untreated crop. Yield was significantly higher in Xemium treatments and this was

  11. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    simulation of soil salinity. In general, the model accuracy for simulation yield and WP was better than simulation of biomass. The d (index of agreement values were very close to one for both varieties, which means that simulated reduction in grain yield and biomass was similar to those of measured ones. In most cases the R2 values were about one, confirming a good correlation between simulated and measured values. The NRMSE values in most cases were lower than 10% which seems to be good. The CRM values were close to zero (under- and over-estimation were negligible. Based on higher WP under deficit irrigation treatments (e.g. I3 compared to full irrigation treatments (e.g. I1 and I2, it seems logical to adopt I3 treatment, especially in Birjand as a water-short region, assigning the remaining 25% to another piece of land. By such strategy, WP would be optimized at the regional scale. Conclusion: The AquaCrop was separately and simultaneously nested calibrated and validated for all salinity treatments. The model accuracy under simultaneous case was slightly lower than that for separate case. According to the results, if the model is well calibrated for minimum and maximum irrigation treatments (full irrigation and maximum deficit irrigation, it could simulate grain yield for any other irrigation treatment in between these two limits. Adopting this approach may reduce the cost of field studies for calibrating the model, since only two irrigation treatments should be conducted in the field. AquaCrop model can be a valuable tool for modelling winter wheat grain yield, WP and biomass. The simplicity of AquaCrop, as it is less data dependent, made it to be user-friendly. Nevertheless, the performance of the model has to be evaluated, validated and fine-tuned under a wider range of conditions and crops. Keywords: Biomass, Plant modeling, Sensitivity analysis

  12. The International Atomic Energy Agency Flag Code

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of the IAEA Flag Code which was promulgated by the Director General on 15 September 1999, pursuant to the decision of the Board of Governors on 10 June 1999 to adopt an Agency flag as described in document GOV/1999/41 and its use in accordance with a flag code to be promulgated by the Director General

  13. The International Atomic Energy Agency Flag Code

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-17

    The document reproduces the text of the IAEA Flag Code which was promulgated by the Director General on 15 September 1999, pursuant to the decision of the Board of Governors on 10 June 1999 to adopt an Agency flag as described in document GOV/1999/41 and its use in accordance with a flag code to be promulgated by the Director General.

  14. Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind

    2012-01-01

    Sensitivity of wheat yield and soil nitrogen (N) losses to stepwise changes in means and variances of climatic variables were determined using the FASSET model. The LARS-WG was used to generate climate scenarios using observed climate data (1961–90) from two sites in Denmark, which differed...... loam. This study illustrates the importance of considering effects of changes to mean climatic factors, climatic variability and soil types on both crop yield and soil N losses....

  15. Proteome Analysis of Cold Response in Spring and Winter Wheat (Triticum aestivum) Crowns Reveals Similarities in Stress Adaptation and Differences in Regulatory Processes between the Growth Habits

    Czech Academy of Sciences Publication Activity Database

    Kosová, K.; Vítámvás, P.; Planchon, S.; Renaut, J.; Vaňková, Radomíra; Prášil, I.T.

    2013-01-01

    Roč. 12, č. 11 (2013), s. 4830-4845 ISSN 1535-3893 R&D Projects: GA ČR GA522/09/2058 Institutional research plan: CEZ:AV0Z50380511 Keywords : 2D-DIGE analysis * cold stress * spring and winter growth habit Subject RIV: ED - Physiology Impact factor: 5.001, year: 2013

  16. Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) cultivars

    DEFF Research Database (Denmark)

    Ytting, Nanna Karkov; Andersen, Sven Bode; Thorup-Kristensen, Kristian

    2014-01-01

    Deeper plant root systems are desired for improved water and nitrogen uptake in leaching environments. However, phenotyping for deep roots requires methods that enable plants to develop deep roots under realistic conditions. Winter cereals raise further complications as early growth occurs under ...

  17. 49 CFR 218.37 - Flag protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flag protection. 218.37 Section 218.37..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Trains and Locomotives § 218.37 Flag protection. (a) After August 1, 1977, each railroad must have in effect an operating rule which complies with...

  18. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background

    Science.gov (United States)

    Kalapos, Balázs; Novák, Aliz; Dobrev, Petre; Vítámvás, Pavel; Marincs, Ferenc; Galiba, Gábor; Vanková, Radomira

    2017-01-01

    The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties. PMID:29238355

  19. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    Science.gov (United States)

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  20. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging.

    Science.gov (United States)

    Qi, Yuan-Hong; Mao, Fang-Fang; Zhou, Zhu-Qing; Liu, Dong-Cheng; Min-Yu; Deng, Xiang-Yi; Li, Ji-Wei; Mei, Fang-Zhu

    2018-05-02

    It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that

  1. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L. collection.

    Directory of Open Access Journals (Sweden)

    István Monostori

    Full Text Available To satisfy future demands, the increase of wheat (Triticum aestivum L. yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE, are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat

  2. Worker flag. Independent Electrical Policy

    International Nuclear Information System (INIS)

    Bahen, D.

    2000-01-01

    This work analyses the initiative of privatization of the Mexican Electric Industry and also it is showed the incoherence of this mistaken proposal. Along the same line is analysed tthe situation of the National Electric Sector and the working process for the distinct types of electric generation just as the syndical and labor situations. In consequence it is proposed an Independent Electrical Policy, which includes the integration of the Nationalized Electric Industry, the syndical union and the Unique Collective Contract. The purpose of this work is to contribute to the success of the electrical and nuclear struggle always maintaining in rising position the red flag of the proletariat. The author considers that the privatization means mercantilization of the human necessities. The privatization is not inevitable at condition of to exercise consequently the political actions necessary through alternatives includes: the worker control of production, research, and the National Electric strike. (Author)

  3. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat

    Czech Academy of Sciences Publication Activity Database

    Hlaváčová, Marcela; Klem, Karel; Rapantová, Barbora; Novotná, Kateřina; Urban, Otmar; Hlavinka, Petr; Smutná, P.; Horáková, V.; Škarpa, P.; Pohanková, Eva; Wimmerová, Markéta; Orság, Matěj; Jurečka, František; Trnka, Miroslav

    2018-01-01

    Roč. 221, MAY (2018), s. 182-195 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061; GA MŠk(CZ) EF16_013/0001609 Institutional support: RVO:86652079 Keywords : carbon-isotope discrimination * triticum-aestivum-l. * heat-stress * climate-change * reproductive growth * leaf senescence * gas-exchange * water -stress * durum-wheat * responses * Drought stress * Heat stress * Photosynthesis * Triticum aestivum * Yield formation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.048, year: 2016

  4. Registration of 'Tiger' wheat

    Science.gov (United States)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  5. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs.

    Directory of Open Access Journals (Sweden)

    Silvano O Assanga

    Full Text Available Stable quantitative trait loci (QTL are important for deployment in marker assisted selection in wheat (Triticum aestivum L. and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading and yield related traits (test weight, thousand kernel weight, harvest index. The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1

  6. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2016-01-01

    Nitrous oxide (N2O) emissions from agricultural soils play an important role in the global greenhouse gas budget. However, the response of N2O emissions from nitrogen fertilized agricultural soils to climate warming is not yet well understood. A field experiment with simulated warming (T) using...... infrared heaters and its control (C) combined with a nitrogen (N1) fertilization treatment (315 kg N ha−1 y−1) and no nitrogen treatment (N0) was conducted over five years at an agricultural research station in the North China Plain in a winter wheat–soybean double cropping system. N2O fluxes were measured...

  7. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens.

    Science.gov (United States)

    Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann

    2014-09-01

    We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.

  8. Pseudo-Kaehler quantization on flag manifolds

    International Nuclear Information System (INIS)

    Karabegov, A.V.

    1997-07-01

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kaehler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols. (author). 16 refs

  9. Cyber Flag: A Realistic Cyberspace Training Construct

    National Research Council Canada - National Science Library

    Hansen, Andrew P

    2008-01-01

    .... Red Flag provides dominant training within the air domain and now with the evolution of cyberspace, a comprehensive training environment is necessary to meet this growing and broadening threat...

  10. 46 CFR 282.11 - Ranking of flags.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Ranking of flags. 282.11 Section 282.11 Shipping... COMMERCE OF THE UNITED STATES Foreign-Flag Competition § 282.11 Ranking of flags. The operators under each... priority of costs which are representative of the flag. For liner cargo vessels, the ranking of operators...

  11. [The differences of the effects of Vrd1 and Ppd-D1 gene alleles on winterhardiness, frost resistance, and yield in winter wheat].

    Science.gov (United States)

    Mokanu, N V; Faĭt, V I

    2008-01-01

    The influence of allelic differences of Vrd1 and Ppd-D1 genes on winterhardiness, frost resistance, yield and its components was studied in recombinant-inbred F5 lines of Odesskaya 16/Bezostaya 1. From 9 to 15% differences in the resistance of recombinant-inbred lines were determined by alternative alleles of Vrd1 gene and 10-16% of Ppd-D1 gene. Interaction of vrd1 and Ppd-D1a alleles led to the higher winterhardiness and frost resistance of tillered plants during the winter. At the same time the significant increase of the period to heading, plant height and the tendency of yield reduction were revealed for vrd1 vrd1 Ppd-D1a Ppd-D1a lines when compared to the lines of Vrd1 Vrd1 Ppd-D1a Ppd-D1a genotype.

  12. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  13. Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in on-farm stored winter wheat from the Canadian Great Lakes Region.

    Directory of Open Access Journals (Sweden)

    Victor Limay-Rios

    Full Text Available The occurrence of P. verrucosum and ochratoxin A (OTA were surveyed for 3 and 4 years, respectively. A total of 250 samples was collected from an average of 30 farms during the 2011, 2012, 2013 and 2014 winter seasons. Most storage bins surveyed were typically 11 m high round bins made of corrugated, galvanized steel, with flat-bottoms and conical roofs. Samples of clumped grain contained the most P. verrucosum (p<0.05, n = 10 followed by samples taken from the first load (n = 24, mean = 147±87 CFU/g and last load (n = 17, mean = 101±77 CFU/g. Five grain samples (2.2% tested positive for OTA, citrinin and OTB at concentrations of 14.7±7.9, 4.9±1.9 and 1.2±0.7 ng/g, with only three samples exceeding 5 ng/g. Grain samples positive for OTA were related to moisture resulting from either condensation or migrating moist warm air in the bin or areas where precipitation including snow entered the bin. Bins containing grain and clumps contaminated with OTA were studied in detail. A number of statistically-significant risk factors for OTA contamination were identified. These included 1 grain clumps accumulated around or directly under manhole openings, 2 debris and residue of old grain or grain clumps collected from the bin walls or left on storage floor and augers and 3 grain clumps accumulated around side doors. Even when grain enters storage below the 14.5% threshold of moisture, condensation and moisture migration occurs in hotspots in modern corrugated steel storage bins. Hot spots of OTA contamination were most often in areas affected by moisture migration due to inadequate aeration and exposure to moisture from precipitation or condensation. Further, we found that the nature of the condensation affects the nature and distribution of small and isolated areas with high incidence of toxin contamination and/or P. verrucosum prevalence in the grain bins examined.

  14. On national flags and language tags: Effects of flag-language congruency in bilingual word recognition.

    Science.gov (United States)

    Grainger, Jonathan; Declerck, Mathieu; Marzouki, Yousri

    2017-07-01

    French-English bilinguals performed a generalized lexical decision experiment with mixed lists of French and English words and pseudo-words. In Experiment 1, each word/pseudo-word was superimposed on the picture of the French or UK flag, and flag-word congruency was manipulated. The flag was not informative with respect to either the lexical decision response or the language of the word. Nevertheless, lexical decisions to word stimuli were faster following the congruent flag compared with the incongruent flag, but only for French (L1) words. Experiment 2 replicated this flag-language congruency effect in a priming paradigm, where the word and pseudo-word targets followed the brief presentation of the flag prime, and this time effects were seen in both languages. We take these findings as evidence for a mechanism that automatically processes linguistic and non-linguistic information concerning the presence or not of a given language. Language membership information can then modulate lexical processing, in line with the architecture of the BIA model, but not the BIA+ model. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Genetic Progress in Winter Wheat Cultivars released in Chile from 1920 to 2000 Progreso Genético en Cultivares de Trigo de Invierno Liberados en Chile desde 1920 a 2000

    Directory of Open Access Journals (Sweden)

    Iván Matus

    2012-09-01

    Full Text Available Wheat (Triticum aestivum L. is the major crop in terms of planted area and presents the largest distribution in the country covering a wide range of climatic regions. This study assesses the changes of various agronomic traits of winter wheat cultivars released in Chile between 1920 and 2000. A total of 117 winter accessions, representing 45 old and 72 modern cultivars were tested in a humid Mediterranean-type climate, with irrigation, in 2003. Old cultivars were those released before 1960 and modern ones were those released after 1960. Principal component (PC analysis using 10 agronomic traits clearly separate modern from old cultivars of winter wheat. Comparing modern cultivars with old ones, plant height have been reduced by 25.6%, but others traits have increased, like harvest index (21.1%, number of grains per ear (42.6%, sedimentation value (103%, and grain hardness (32.0%. The variation in plant height was negatively correlated with harvest index (r = -0.30, p El trigo (Triticum aestivum L. es el cultivo más importante en Chile en términos de superficie sembrada y áreas geográficas en las cuales se siembra, cubriendo una gran diversidad de condiciones climáticas. Este estudio evaluó los cambios de varias características agronómicas de variedades de trigo de invierno liberadas en el país entre 1920 y 2000. Un total de 117 genotipos de trigos de invierno, que representa 45 cultivares antiguos y 72 cultivares modernos, se evaluaron en un clima húmedo de tipo mediterráneo, en condiciones de riego, en el año 2003. Los cultivares antiguos corresponden a aquellos liberados antes del año 1960 y los modernos a los liberados después del año 1960. Mediante un análisis de componentes principales (CP usando 10 características agronómicas, permitió separar claramente los cultivares modernos de los antiguos. Al comparar los cultivares modernos con los antiguos se determinó que la altura de la planta se ha reducido un 25,6%, pero en

  16. Race Discourse and the US Confederate Flag

    Science.gov (United States)

    Holyfield, Lori; Moltz, Matthew Ryan; Bradley, Mindy S.

    2009-01-01

    Research reveals that racial hierarchies and "color-blind" racism is maintained through discourse. The current study utilizes exploratory data from focus groups in a predominantly white southern university in the United States to examine race talk, the Confederate Flag, and the construction of southern white identity. Drawing from…

  17. Canola versus Wheat Rotation Effects on Subsequent Wheat Yield

    Science.gov (United States)

    Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...

  18. Wheat Allergy

    Science.gov (United States)

    ... of reactions. Learn more here. Milk Egg Peanut Tree Nuts Soy Wheat Fish Shellfish Sesame Other Food ... federal law. Download our resource on how to identify wheat on food labels. Avoid foods that contain ...

  19. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat

    OpenAIRE

    Pitta, D. W.; Pinchak, W. E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J. D.

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bl...

  20. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and Plainsman V wheat cultivars

    Directory of Open Access Journals (Sweden)

    Kenny Paul

    2016-02-01

    Full Text Available We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L. cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI and performance (PI indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves

  1. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  2. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    Science.gov (United States)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  3. Equivelar toroids with few flag-orbits

    OpenAIRE

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  4. Winter wheat stimulation experiment with irradiation

    International Nuclear Information System (INIS)

    Bozo, J.

    1979-01-01

    With respect to the conclusions drawn from this research it is necessary to emphasize that the results relate to one year, and even the statistically proved positive results are insufficient to establish tendencies without considering the aggregated results of one year and other effects. Tha analysis of crop yield shows that a dose of 500 rad is insufficient to induce higher yield. A dose of 1500 rad gave a definite response, and it would be desirable to observe the effects of larger doses, too. The reduction in internal fusarium infection of the grain yield was striking when the seed had been exposed to a dose of 1500 rad. The internal fusarium infection of the grain is a very important factor for both human nutrition and animal feeding. The maximum irradiation dose provided reliable immunity against fusarium infection. (author)

  5. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  6. Effect of split n fertilizer application on physio-agronomic traits of wheat (triticum aestivum l.) under rainfed conditions

    International Nuclear Information System (INIS)

    Sohail, M.; Hussain, I.; Din, R.U.; Haider, S.; Abbas, A.; Qamar, M.; Noman, M.

    2013-01-01

    Low soil fertility is one of the main wheat yield limiting factors under rainfed conditions. Farmers usually apply full N dose at seeding. However, winter showers during vegetative growth period provide an opportunity to apply N in split doses. Study was conducted to find out appropriate N rate and application method to enhance wheat productivity. -1 Three N rates i.e., 60, 90, and 120 kg ha and three application methods i.e. full basal N dose at planting and N application in two and three equal split doses at tiller formation and stem elongation stages. Maximum grain yield (5.20 t ha/sup -1/) was achieved when N was applied at the rate 120 kg ha in three equal split doses at planting, tiller formation and stem elongation stages. N application in 2 and 3 split doses resulted in 25 - 50% grain yield advantage at all N rates as compared to single basal N dose. Split N application was associated with significant increase (P<0.05) in spikes m, 1000 grain weight and dry matter production. Split N application was also linked with better flag leaf chlorophyll retention and cooler crop canopies during grain filling stages which showed positive association with grain yield. (author)

  7. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  8. And another thing - flags of convenience

    International Nuclear Information System (INIS)

    Flatern, R. von

    2002-01-01

    Crude oil being shipped around the world, when spilled, is a threat to the environment unlike any other commodity, save perhaps for radioactive materials. Therefore, if the oil industry expects to be taken seriously in its role of protecting the environment, it must assume responsibility for its product from wellhead to consumer. Whilst there are many operators paying considerable attention to transportation issues - the largest of them using their own double-hulled tanker fleets - there still too many using ships unsuitable for the purpose, either because of age or the fact that they are single hulled vessels. These derelicts are kept in business by owners who have registered them in country's where inspections are a local joke, registration requires only a fraction of the fee charged by more conscientious nations, and taxes are low. Ships flying flags of convenience have no ties to any country, including the ones in which they are registered. The author says that it is up to the oil industry to clean up their act, for instance they could refuse to use ships that sail under a flag of convenience or single hulled vessels to move their product. The major and large independent companies learned some time ago that taking care of the environment is very much in their interest, and further that only they can do it effectively

  9. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  10. Hepatitis C virus expressing flag-tagged envelope protein 2 has unaltered infectivity and density, is specifically neutralized by flag antibodies and can be purified by affinity chromatography

    DEFF Research Database (Denmark)

    Prentø, Jannick Cornelius; Bukh, Jens

    2011-01-01

    to the original virus. Flag-tagged virus was susceptible to flag-specific antibody neutralization, and infected cells could be immuno-stained by anti-flag antibodies. Using affinity chromatography with anti-flag resin we repeatedly obtained ~30% recovery of infectious particles. The full viability and unaltered...

  11. FIRE! A Red Flag Tap in Reclaiming Intervention

    Science.gov (United States)

    Bodnar, Brian

    2007-01-01

    "Red Flag Interventions" address problems which are imported from elsewhere and acted out towards persons who are in effect innocent bystanders. This is commonly seen as students "carry in" problems from the home or street to school, or they "carry over" conflicts from one class to the next. A third variation of Red Flag intervention is when a…

  12. Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance.

    Science.gov (United States)

    Frederiks, T M; Christopher, J T; Sutherland, M W; Borrell, A K

    2015-06-01

    Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Quality characteristics of U.S. soft white and club wheat

    Science.gov (United States)

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  14. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    Science.gov (United States)

    Wu, Huixia; Doherty, Angela; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  15. Nitrogen economy in relay intercropping systems of wheat and cotton

    NARCIS (Netherlands)

    Zhang, L.Z.; Spiertz, J.H.J.; Zhang, S.; Li, B.; Werf, van der W.

    2008-01-01

    Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are

  16. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts.

    Science.gov (United States)

    Fogarasi, Attila-Levente; Kun, Szilárd; Tankó, Gabriella; Stefanovits-Bányai, Eva; Hegyesné-Vecseri, Beáta

    2015-01-15

    Two einkorn wheat, one barley, three optional winter cultivation wheat and five winter cultivation wheat samples harvested in Hungary in 2011, and their malts were evaluated for their DPPH radical and ABTS radical cation scavenging activity, ferric reduction capacity (FRAP) and total phenolic content (TPC). All einkorn and barley samples exhibited significant antioxidant activities determined by DPPH and ABTS radical scavenging activities. The einkorn samples show higher polyphenol content than the other wheat samples. In all cases the barley sample had the highest antioxidant potential and polyphenol content. The einkorn malts had high DPPH and ABTS radical cation scavenging activities, but the phenolic content was lower against wheat samples. There was significant difference between the antioxidant potential of optional and winter cultivation wheat samples except on ABTS scavenging activities. Einkorn wheat is potentially a new raw material to produce organic beer that might have beneficial effects with its increased antioxidant potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Soap films burst like flapping flags.

    Science.gov (United States)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-31

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  18. Integrated weed management in wheat

    International Nuclear Information System (INIS)

    Marwat, K.B.; Khan, M.A.; Nawab, K.; Khattak, A.M.

    2011-01-01

    The paper summarizes the results of an experiment conducted on wheat at Kohat, Khyber Pakhtunkhwa, Pakistan during winter 2004-05. Randomized complete block design with split-split-plot arrangement was used where wheat line and broadcast sowing were kept in main plots. Seed rates (100 and 150 kg ha-1) were assigned as sub-plots, while four herbicides (Topik, Isoproturon, Puma super and Buctril super) and weed check were assigned to sub-sub-plots. Results revealed that higher biological yield was recorded in line sowing. However, higher wheat seed rate decreased weed biomass and increased biological yield. Herbicides proved to be effective in decreasing weed biomass and enhancing grain yield and its contributing traits. It was suggested that line sowing in combination with higher seeding rate and Buctril super should be used in an integrated weed management fashion. However further studies are required to investigate various ranges of seeding rate and herbicides doses. (author)

  19. Adaptability of Wheat Cultivars to a Late-Planted No-Till Fallow Production System

    OpenAIRE

    Arron H. Carter; Stephen S. Jones; Ryan W. Higginbotham

    2011-01-01

    In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to ev...

  20. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  1. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  2. RFI flagging implications for short-duration transients

    Science.gov (United States)

    Cendes, Y.; Prasad, P.; Rowlinson, A.; Wijers, R. A. M. J.; Swinbank, J. D.; Law, C. J.; van der Horst, A. J.; Carbone, D.; Broderick, J. W.; Staley, T. D.; Stewart, A. J.; Huizinga, F.; Molenaar, G.; Alexov, A.; Bell, M. E.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Grießmeier, J.-M.; Jonker, P.; Kramer, M.; Kuniyoshi, M.; Pietka, M.; Stappers, B.; Wise, M.; Zarka, P.

    2018-04-01

    With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Interference (RFI) can show up in the data stream in similar ways to such transients, and thus the normal pre-treatment of filtering RFI (flagging) may also remove astrophysical transients from the data stream before imaging. In this paper we investigate how standard flagging affects the detectability of such transients by examining the case of transient detection in an observing mode used for Low Frequency Array (LOFAR; van Haarlem et al., 2013) surveys. We quantify the fluence range of transients that would be detected, and the reduction of their SNR due to partial flagging. We find that transients with a duration close to the integration sampling time, as well as bright transients with durations on the order of tens of seconds, are completely flagged. For longer transients on the order of several tens of seconds to minutes, the flagging effects are not as severe, although part of the signal is lost. For these transients, we present a modified flagging strategy which mitigates the effect of flagging on transient signals. We also present a script which uses the differences between the two strategies, and known differences between transient RFI and astrophysical transients, to notify the observer when a potential transient is in the data stream.

  3. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  4. Flags of the night sky when astronomy meets national pride

    CERN Document Server

    Bordeleau, André G

    2014-01-01

    Many national flags display astronomical features–Sun, Moon, stars–but are they really based on existing astronomical objects? The United States flag sports 50 stars, one for each state, however none of them are linked to real stars. Further, the lunar crescent is often shaped like the Sun being eclipsed by the Moon. At times, stars are seen right next to the crescent, where the darkened disc of the moon should be! This book will present true astronomical objects and patterns highlighted on national flags and link informative capsules about these objects to the political reasons why they were chosen to adorn such an important symbol.

  5. Freezing tolerance of wheat cultivars at the early growing season ...

    African Journals Online (AJOL)

    Cold stress is a worldwide abiotic stress in temperate regions that affects plant development and yield of winter wheat (Triticum aestivum L.) cultivars and other winter crops. This study was conducted to evaluate the effect of freezing stress at the early growing season on survival and also the relationship between resistances ...

  6. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  7. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  8. Pseudo-Kähler Quantization on Flag Manifolds

    Science.gov (United States)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  9. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  10. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  11. Sensitivity of European wheat to extreme weather

    DEFF Research Database (Denmark)

    Mäkinen, H; Kaseva, J; Trnka, M

    2018-01-01

    The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme...... weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21° to 61.34° and longitudes −6.02° to 26.24°) during the period 1991–2014. All the observed agro-climatic extremes (≥31 °C...... wheat cultivars that responded positively (+10%) to drought after sowing, or frost during winter (−15 °C and −20 °C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently...

  12. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    Science.gov (United States)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  13. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    Science.gov (United States)

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Lægdsmand, Mette; Olesen, Jørgen E

    2010-01-01

    The rise in mean annual temperatures under the projected climate change will affect both soil organic matter turnover and cropping patterns in agriculture. Nitrogen (N) mineralization may be higher during autumn and winter and may increase the risk of nitrate leaching. Our study tested whether...... before the late sowing of wheat caused generally higher levels of inorganic N to accumulate in soil. Despite the higher mineralization under the raised temperatures, at T+8 the late-sown winter wheat was able to reduce soil inorganic N to a lower level than late-sown wheat at the two lower temperatures...

  15. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  16. Testing ALE code FLAG with analytical self-similar solutions of 2D magnetized implosion

    Energy Technology Data Exchange (ETDEWEB)

    Bereznyak, Andrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gianakon, Thomas Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooley, James Hamilton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States)

    2018-01-04

    The goal of this collaboration was to provide a mechanism to verify the MHD implementation in FLAG and improve the FLAG MHD packages as need to meet broader LANL institutional goals. These three Magnetic Noh problems are proving immensely useful.

  17. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Halitligil, M. B.; Akin, A.; Aydin, M.

    1996-01-01

    In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  18. Knowledge and Utilization of Red Flags by Physiotherapists in the ...

    African Journals Online (AJOL)

    DR. BASHIR BELLO

    majority of the physiotherapists 44 (88%) had knowledge of red flags but only 14 (28%) ... documented, while medical history of cancer, HIV status, as well as history of fever were .... The main objective of this study was to determine the level.

  19. THE STATE PRESIDENT'S FLAG SINCE 4 SEPTEMBER 1984

    African Journals Online (AJOL)

    The heraldic description of the flag reads as follows: a rectangular tricolour, ratio three by two, with three triangular fields (top to bottom) in orange, white and blue. The white charged in the hoist with the coat of arms of the Republic of. South Africa. Above the coat of arms the letter. 'SP' are ensigned in gold with black ...

  20. General and Flag Officer Careers: Consequences of Increased Tenure

    National Research Council Canada - National Science Library

    Thie, Harry

    2001-01-01

    .... As a result of these concerns, Congress asked the Secretary of Defense to review the career patterns of flag-rank officers. It requested specific data about average time-in-grade both when selected and when promoted as well as the length of tours. It also asked the Secretary to assess the appropriateness of mandatory retirement at 35 years.

  1. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags</