WorldWideScience

Sample records for winter snow accumulation

  1. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    Science.gov (United States)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  2. Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter

    Science.gov (United States)

    Ibuki, R.; Harada, K.

    2017-12-01

    Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.

  3. Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps)

    Science.gov (United States)

    Förster, Kristian; Hanzer, Florian; Stoll, Elena; Scaife, Adam A.; MacLachlan, Craig; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich

    2018-02-01

    This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months' lead time from two coupled atmosphere-ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5) drive the Alpine Water balance and Runoff Estimation model (AWARE) in order to predict mid-winter snow accumulation in the Inn headwaters. As snowpack is hydrological storage that evolves during the winter season, it is strongly dependent on precipitation totals of the previous months. Climate model (CM) predictions of precipitation totals integrated from November to February (NDJF) compare reasonably well with observations. Even though predictions for precipitation may not be significantly more skilful than for temperature, the predictive skill achieved for precipitation is retained in subsequent water balance simulations when snow water equivalent (SWE) in February is considered. Given the AWARE simulations driven by observed meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is r = 0.57. The tendency of SWE anomalies (i.e. the sign of anomalies) is correctly predicted in 11 of 13 years. For CFSv2-AWARE, the corresponding values are r = 0.28 and 7 of 13 years. The results suggest that some seasonal prediction of hydrological model storage tendencies in parts of Europe is possible.

  4. Snow as an accumulator of air pollutants

    Science.gov (United States)

    Robert T. Brown

    1976-01-01

    Using simple analytical techniques, the amounts of air pollutants accumulated in winter snow were determined and the results correlated with lichen survival on trees. Pollutants measured were particulate matter, sulfate, and chloride. An inverse relationship was found between amounts of each of these pollutants and the abundance of various lichens.

  5. Relationship of deer and moose populations to previous winters' snow

    Science.gov (United States)

    Mech, L.D.; McRoberts, R.E.; Peterson, R.O.; Page, R.E.

    1987-01-01

    (1) Linear regression was used to relate snow accumulation during single and consecutive winters with white-tailed deer (Odocoileus virginianus) fawn:doe ratios, mosse (Alces alces) twinning rates and calf:cow ratios, and annual changes in deer and moose populations. Significant relationships were found between snow accumulation during individual winters and these dependent variables during the following year. However, the strongest relationships were between the dependent variables and the sums of the snow accumulations over the previous three winters. The percentage of the variability explained was 36 to 51. (2) Significant relationships were also found between winter vulnerability of moose calves and the sum of the snow accumulations in the current, and up to seven previous, winters, with about 49% of the variability explained. (3) No relationship was found between wolf numbers and the above dependent variables. (4) These relationships imply that winter influences on maternal nutrition can accumulate for several years and that this cumulative effect strongly determines fecundity and/or calf and fawn survivability. Although wolf (Canis lupus L.) predation is the main direct mortality agent on fawns and calves, wolf density itself appears to be secondary to winter weather in influencing the deer and moose populations.

  6. Can GRACE detect winter snows in Japan?

    Science.gov (United States)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  7. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    Science.gov (United States)

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  8. Winter survival of Scots pine seedlings under different snow conditions.

    Science.gov (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi

    2018-04-01

    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  9. Modeling snow accumulation and ablation processes in forested environments

    Science.gov (United States)

    Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.

    2009-05-01

    The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.

  10. Storing snow for the next winter: Two case studies on the application of snow farming.

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian

    2016-04-01

    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  11. Effects of dirty snow in nuclear winter simulations

    International Nuclear Information System (INIS)

    Vogelmann, A.M.; Robock, A.; Ellingson, R.G.

    1988-01-01

    A large-scale nuclear war would inject smoke into the atmosphere from burning forests, cities, and industries in targeted areas. This smoke could fall out onto snow and ice and would lower cryospheric albedos by as much as 50%. A global energy balance climate model is used to investigate the maximum effect these ''dirty snow'' albedos have on the surface temperature in nuclear winter simulations which span several years. These effects are investigated for different nuclear winter scenarios, snow precipitation rates, latitudinal distributions of smoke, and seasonal timings. We find that dirty snow, in general, would have a small temperature effect at mid- and low latitudes but could have a large temperature effect at polar latitudes, particularly if the soot is able to reappear significantly in later summers. Factors which limit the climatic importance of the dirty snow are (1) the dirty snow albedo is lowest when the atmosphere still contains a large amount of light-absorbing smoke; (2) even with dirty snow, sea ice areas can still increase, which helps maintain colder temperatures through the sea ice thermal inertial feedback; (3) the snow and ice areas affected by the dirty snow albedos are largest when there is little seasonal solar insolation; and (4) the area affected by the dirty snow is relatively small under all circumstances. copyright American Geophysical Union 1988

  12. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  13. SNOW CLEARING SERVICE WINTER 2001-2002

    CERN Multimedia

    ST-HM Group; Tel. 72202

    2001-01-01

    As usual at this time of the year, the snowing clearing service, which comes under the control of the Transport Group (ST-HM), is preparing for the start of snow-clearing operations (timetable, stand-by service, personnel responsible for driving vehicles and machines, preparation of useful and necessary equipment, work instructions, etc.) in collaboration with the Cleaning Service (ST-TFM) and the Fire Brigade (TIS-FB). The main difficulty for the snow-clearing service is the car parks, which cannot be properly cleared because of the presence of CERN and private vehicles parked there overnight in different parts of the parking areas. The ST-HM Transport Group would therefore like to invite you to park vehicles together in order to facilitate the access of the snow ploughs, thus allowing the car parks to be cleared more efficiently before the personnel arrives for work in the mornings.

  14. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  15. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva

    2011-07-01

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  16. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva (Geosigma AB (Sweden))

    2011-07-15

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  17. The effects of changes in snow depth on winter recreation

    Czech Academy of Sciences Publication Activity Database

    Zahradníček, Pavel; Rožnovský, J.; Štěpánek, Petr; Farda, Aleš; Brzezina, J.

    2016-01-01

    Roč. 7, č. 1 (2016), s. 44-54 ISSN 1804-2821 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-04291S; GA ČR(CZ) GA14-12262S Institutional support: RVO:67179843 Keywords : new snow * total snow depth * climate change * climate models * winter recreations Subject RIV: EH - Ecology, Behaviour

  18. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    Science.gov (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  19. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    Science.gov (United States)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  20. How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study

    Science.gov (United States)

    Luo, Xiao; Wang, Bin

    2018-03-01

    Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be

  1. Why on the snow? Winter emergence strategies of snow-active Chironomidae (Diptera) in Poland.

    Science.gov (United States)

    Soszyńska-Maj, Agnieszka; Paasivirta, Lauri; Giłka, Wojciech

    2016-10-01

    A long-term study of adult non-biting midges (Chironomidae) active in winter on the snow in mountain areas and lowlands in Poland yielded 35 species. The lowland and mountain communities differed significantly in their specific composition. The mountain assemblage was found to be more diverse and abundant, with a substantial contribution from the subfamily Diamesinae, whereas Orthocladiinae predominated in the lowlands. Orthocladius wetterensis Brundin was the most characteristic and superdominant species in the winter-active chironomid communities in both areas. Only a few specimens and species of snow-active chironomids were recorded in late autumn and early winter. The abundance of chironomids peaked in late February in the mountain and lowland areas with an additional peak in the mountain areas in early April. However, this second peak of activity consisted mainly of Orthocladiinae, as Diamesinae emerged earliest in the season. Most snow-active species emerged in mid- and late winter, but their seasonal patterns differed between the 2 regions as a result of the different species composition and the duration of snow cover in these regions. Spearman's rank correlation coefficient tests yielded positive results between each season and the number of chironomid individuals recorded in the mountain area. A positive correlation between air temperature, rising to +3.5 °C, and the number of specimens recorded on the snow in the mountain community was statistically significant. The winter emergence and mate-searching strategies of chironomids are discussed in the light of global warming, and a brief compilation of most important published data on the phenomena studied is provided. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  2. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  3. Hydrological Implications of Covering Wind-Blown Snow Accumulations with Geotextiles on Mount Aragats, Armenia

    Directory of Open Access Journals (Sweden)

    Alexander Nestler

    2014-07-01

    Full Text Available Snow is an excellent water reservoir, naturally storing large quantities of water at time scales from a few days to several months. In summer-dry countries, like Armenia, runoff due to snow melt from mountain regions is highly important for a sustained water supply (irrigation, hydropower. Snow fields on Mount Aragats, Armenia’s highest peak, often persist until July, providing vital amounts of melt water. Artificially managing these wind-driven snow accumulations as a natural water reservoir might have considerable potential. In the context of the Swiss-Armenian joint venture, Freezwater, snow fields are covered with geotextiles in order to delay snow melt long enough to provide additional melt water in the dry season of the year. In this study, we analyze the hydrological effectiveness of the artificial management of the natural snow cover on Mount Aragats based on various field measurements acquired over a three-year period and numerical modeling. Over the winter season, partly more than five meter-thick snow deposits are formed supported by snow redistribution by strong wind. Repeated mappings of snow fields indicate that snow cover patterns remain highly consistent over time. Measurements of ablation below manually applied geotextiles show a considerable reduction of melt rates by more than 50%. Simulations with an energy-balance model and a distributed temperature-index model allow assessing the hydrological effect of artificial snow management for different initial snow depths and elevations and suggest that coverage is needed at a large scale in order to generate a significant impact on discharge.

  4. The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.

    2011-12-01

    Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of

  5. Regional Antarctic snow accumulation over the past 1000 years

    Directory of Open Access Journals (Sweden)

    E. R. Thomas

    2017-11-01

    Full Text Available Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 % where the annual average SMB during the most recent decade (2001–2010 is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.

  6. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold

    2016-02-01

    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  7. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    International Nuclear Information System (INIS)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P

    2008-01-01

    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  8. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P [Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna (Austria)], E-mail: philipp.stanzel@boku.ac.at

    2008-11-01

    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  9. Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function.

    Science.gov (United States)

    Gavazov, Konstantin; Ingrisch, Johannes; Hasibeder, Roland; Mills, Robert T E; Buttler, Alexandre; Gleixner, Gerd; Pumpanen, Jukka; Bahn, Michael

    2017-07-15

    Seasonal snow cover provides essential insulation for mountain ecosystems, but expected changes in precipitation patterns and snow cover duration due to global warming can influence the activity of soil microbial communities. In turn, these changes have the potential to create new dynamics of soil organic matter cycling. To assess the effects of experimental snow removal and advanced spring conditions on soil carbon (C) and nitrogen (N) dynamics, and on the biomass and structure of soil microbial communities, we performed an in situ study in a subalpine grassland in the Austrian Alps, in conjunction with soil incubations under controlled conditions. We found substantial winter C-mineralisation and high accumulation of inorganic and organic N in the topsoil, peaking at snowmelt. Soil microbial biomass doubled under the snow, paralleled by a fivefold increase in its C:N ratio, but no apparent change in its bacteria-dominated community structure. Snow removal led to a series of mild freeze-thaw cycles, which had minor effects on in situ soil CO 2 production and N mineralisation. Incubated soil under advanced spring conditions, however, revealed an impaired microbial metabolism shortly after snow removal, characterised by a limited capacity for C-mineralisation of both fresh plant-derived substrates and existing soil organic matter (SOM), leading to reduced priming effects. This effect was transient and the observed recovery in microbial respiration and SOM priming towards the end of the winter season indicated microbial resilience to short-lived freeze-thaw disturbance under field conditions. Bacteria showed a higher potential for uptake of plant-derived C substrates during this recovery phase. The observed temporary loss in microbial C-mineralisation capacity and the promotion of bacteria over fungi can likely impede winter SOM cycling in mountain grasslands under recurrent winter climate change events, with plausible implications for soil nutrient availability and

  10. Indicative properties on snow cover based on the results of experimental studies in the winter 2011/12 in the central part of the East European Plain

    Directory of Open Access Journals (Sweden)

    L. M. Kitaev

    2013-01-01

    Full Text Available Local and regional differences in the snow formation were studied in different landscapes of the central part of the East European Plain – within reserves in the Moscow and Tver’ regions (south-north direction; the study period is the winter 2011/12. The observed increase of snow storage in 1.3–1.5 times in the direction south-north is connected, apparently. The difference in the five-day appearance of snow cover maximum is related to differences in regional winter air temperature. Throughout the snow depth and snow storage in spruce are smaller than in deciduous forest – in the ratio of 0.81 in south area and 0.93 in north area; in spruce the large part of solid precipitation is intercepted by the crowns pine trees. Snow stratigraphy at south areas has four layers, six layers at the north area are more variable in snow density and snow storage. Perhaps, gravitational conversion is more noticeable due to larger snow depth. Snow density and snow storage at the open areas are more heterogeneous than in the forest. This is due to sharp fluctuations in air temperature, wind transport and compaction of snow, evaporation from the snow surface. The stratigraphy of snow also reflects the history of winter changes of air temperature and snow accumulation. Common feature for reserves at south and north is the availability of layers with maximum snow storage in the middle of the snow thickness, which were formed during the air temperature drops to the lowest seasonal values in period with increase of snow depth to maximum. Formation of depth hoar in snow thickness are touched everywhere the bottom and middle layers, respectively, it was formed both before and during the period with minimal air temperature. Thus, the results of experimental studies confirm the significance of the differences of individual components of the landscape setting. Analytical conclusions are largely qualitative in nature due to the lack to date of initial information, and

  11. Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese

    Science.gov (United States)

    Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.

    2009-01-01

    Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.

  12. The cumulative effect of consecutive winters' snow depth on moose and deer populations: a defence

    Science.gov (United States)

    McRoberts, R.E.; Mech, L.D.; Peterson, R.O.

    1995-01-01

    1. L. D. Mech et al. presented evidence that moose Alces alces and deer Odocoileus virginianus population parameters re influenced by a cumulative effect of three winters' snow depth. They postulated that snow depth affects adult ungulates cumulatively from winter to winter and results in measurable offspring effects after the third winter. 2. F. Messier challenged those findings and claimed that the population parameters studied were instead affected by ungulate density and wolf indexes. 3. This paper refutes Messier's claims by demonstrating that his results were an artifact of two methodological errors. The first was that, in his main analyses, Messier used only the first previous winter's snow depth rather than the sum of the previous three winters' snow depth, which was the primary point of Mech et al. Secondly, Messier smoothed the ungulate population data, which removed 22-51% of the variability from the raw data. 4. When we repeated Messier's analyses on the raw data and using the sum of the previous three winter's snow depth, his findings did not hold up.

  13. Establishing Winter Origins of Migrating Lesser Snow Geese Using Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux

    2012-06-01

    Full Text Available Increases in Snow Goose (Chen caerulescens populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C, nitrogen (δ15N, and hydrogen (δ2H isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management

  14. Effects of sowing time on pink snow mould, leaf rust and winter damage in winter rye varieties in Finland

    Directory of Open Access Journals (Sweden)

    M. SERENIUS

    2008-12-01

    Full Text Available Disease infection in relation to sowing time of winter rye (Secale cereale was studied in southern Finland in order to compare overwintering capacity of modern rye varieties and to give recommendations for rye cultivation. This was done by using three sowing times and four rye varieties in field trials conducted at three locations in 1999–2001. The early sown rye (beginning of August was severely affected by diseases caused by Puccinia recondita and Microdochium nivale, whereas postponing sowing for two weeks after the recommended sowing time resulted in considerably less infection. The infection levels of diseases differed among rye varieties. Finnish rye varieties Anna and Bor 7068 were more resistant to snow mould and more winter hardy than the Polish variety Amilo, or the German hybrid varieties Picasso and Esprit. However, Amilo was the most resistant to leaf rust. In the first year snow mould appeared to be the primary cause of winter damage, but in the second year the winter damage was positively correlated with leaf rust. No significant correlation between frit fly infestation and winter damage or disease incidence of snow mould or leaf rust was established. The late sowing of rye (in the beginning of September is recommended in Finland, particularly with hybrid varieties, to minimize the need for chemical plant protection in autumn.;

  15. Influence of winter season climate variability on snow-precipitation ratio in the western United States

    Science.gov (United States)

    Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin

    2015-01-01

    In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...

  16. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Directory of Open Access Journals (Sweden)

    Christian Gabriel Sommer

    2015-12-01

    Full Text Available Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°. The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically and by consistently applying Multi Station Adjustment to improve the registration.More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  17. Winter fidelity and apparent survival of lesser snow goose populations in the Pacific flyway

    Science.gov (United States)

    Williams, C.K.; Samuel, M.D.; Baranyuk, Vasily V.; Cooch, E.G.; Kraege, Donald K.

    2008-01-01

    The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern

  18. Snow Based Winter Tourism and Kinds of Adaptations to Climate Change

    Science.gov (United States)

    Breiling, M.

    2009-04-01

    Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.

  19. Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results

    Science.gov (United States)

    Andres Varhola; Nicholas C. Coops; Markus Weiler; R. Dan Moore

    2010-01-01

    The past century has seen significant research comparing snow accumulation and ablation in forested and open sites. In this review we compile and standardize the results of previous empirical studies to generate statistical relations between changes in forest cover and the associated changes in snow accumulation and ablation rate. The analysis drew upon 33 articles...

  20. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    Science.gov (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  1. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  2. Seasonal snow accumulation in the mid-latitude forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1562-1569 ISSN 0006-3088 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : snow depth * snow water equivalent * forested catchment Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  3. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of

  4. The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling

    OpenAIRE

    Taurisano, Andrea; Schuler, Thomas V.; Hagen, Jon Ove; Eiken, Trond; Loe, Even; Melvold, Kjetil; Kohler, Jack

    2007-01-01

    We present an analysis of the spatial variability in the snow accumulation on the Austfonna ice cap in Svalbard, Norway, based on the results of field investigations conducted in the spring of 1999, 2004 and 2005. During the campaigns ground penetrating radar measurements at 500 and 800 MHz were collected along profiles, along with additional manual snow sounding and pit stratigraphy work. The analysis of the data reveals a consistent pattern in the spatial distribution of the snow accumulati...

  5. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  6. Modeling blowing snow accumulation downwind of an obstruction: The Ohara Eulerian particle distribution equation

    Science.gov (United States)

    Kinar, N. J.

    2017-05-01

    An equation was proposed to model the height of blowing snow accumulation downwind of an obstacle such as vegetation, a snow fence, a building, or a topographic feature. The equation does not require aerodynamic flow condition parameters such as wind speed, allowing for the spatial distribution of snow to be determined at locations where meteorological data is not available. However, snow particle diffusion, drift, and erosion coefficients must be estimated for application of the equation. These coefficients can be used to provide insight into the relative magnitude of blowing snow processes at a field location. Further research is required to determine efficient methods for coefficient estimation. The equation could be used with other models of wind-transported snow to predict snow accumulation downwind of an obstacle without the need for wind speed adjustments or correction equations. Applications for this equation include the design of snow fences, and the use of this equation with other hydrological models to predict snow distribution, climate change, drought, flooding, and avalanches.

  7. Optimizing winter/snow removal operations in MoDOT St. Louis district : includes outcome based evaluation of operations.

    Science.gov (United States)

    2011-10-01

    The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...

  8. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  9. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack

    Science.gov (United States)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.

    2017-12-01

    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  10. A simple algorithm for identifying periods of snow accumulation on a radiometer

    Science.gov (United States)

    Lapo, Karl E.; Hinkelman, Laura M.; Landry, Christopher C.; Massmann, Adam K.; Lundquist, Jessica D.

    2015-09-01

    Downwelling solar, Qsi, and longwave, Qli, irradiances at the earth's surface are the primary energy inputs for many hydrologic processes, and uncertainties in measurements of these two terms confound evaluations of estimated irradiances and negatively impact hydrologic modeling. Observations of Qsi and Qli in cold environments are subject to conditions that create additional uncertainties not encountered in other climates, specifically the accumulation of snow on uplooking radiometers. To address this issue, we present an automated method for estimating these periods of snow accumulation. Our method is based on forest interception of snow and uses common meteorological observations. In this algorithm, snow accumulation must exceed a threshold to obscure the sensor and is only removed through scouring by wind or melting. The algorithm is evaluated at two sites representing different mountain climates: (1) Snoqualmie Pass, Washington (maritime) and (2) the Senator Beck Basin Study Area, Colorado (continental). The algorithm agrees well with time-lapse camera observations at the Washington site and with multiple measurements at the Colorado site, with 70-80% of observed snow accumulation events correctly identified. We suggest using the method for quality controlling irradiance observations in snow-dominated climates where regular, daily maintenance is not possible.

  11. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)

    2012-10-15

    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  12. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.

    2013-01-01

    octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme...... winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering...... events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas...

  13. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  14. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment

    Science.gov (United States)

    Roth, Travis R.; Nolin, Anne W.

    2017-11-01

    Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of

  15. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO

    OpenAIRE

    Ingo Sasgen; Henryk Dobslaw; Z. Martinec; Maik Thomas

    2010-01-01

    Interannual ice-mass variations along the Antarctic Peninsula (AP) and in the Amundsen Sea Sector (AS) are obtained for the years 2002 until 2009 using satellite data of the Gravity Recovery and Climate Experiment, that correlate well (r ≈ 0.7) with accumulation variations based on the net precipitation from the European Centre for Medium Range Weather Forecasts. Moreover, mass signals for AP and AS are anti-correlated in time (r ≈ − 0.4) and contain El Niño Southern Oscillation signatures re...

  16. Collaborative Research: Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains snow depth, Snow Water Equivalent (SWE), and forest cover characteristics for sites at the Hubbard Brook Experimental Forest in northern New...

  17. Altitudinal gradients, midwinter melt, and wind effects on snow accumulation in semiarid midlatitude Andes under La Niña conditions

    Science.gov (United States)

    Ayala, A.; McPhee, J.; Vargas, X.

    2014-04-01

    The Andes Cordillera remains a sparsely monitored and studied snow hydrology environment in comparison to similar mountain ranges in the Northern Hemisphere. In order to uncover some of the key processes driving snow water equivalent (SWE) spatial variability, we present and analyze a distributed SWE data set, sampled at the end of accumulation season 2011. Three representative catchments across the region were monitored, obtaining measurements in an elevation range spanning 2000 to 3900 m asl and from 32.4° to 34.0°S in latitude. Climatic conditions during this season corresponded to a moderate La Niña phenomenon, which is generally correlated with lower-than normal accumulation. Collected measurements can be described at the regional and watershed extents by altitudinal gradients that imply an increase by a factor of two in snow depth between 2200 and 3000 m asl, though with significant variability at the upper sites. In these upper sites, we found north-facing, wind-sheltered slopes showing 25% less average SWE values than south-facing, wind-exposed ones. This suggests that under these conditions, solar radiation dominated wind transport effects in controlling end-of-winter variability. Nevertheless, we found clusters of snow depth measurements above 3000 m asl that can be explained by wind exposure differences. This is the first documented snow depth data set of this spatial extent for this region, and it is framed within an ongoing research effort aimed at improving understanding and modeling of snow hydrology in the extratropical Andes Cordillera.

  18. Performances of the snow accumulation melting model SAMM: results in the Northern Apennines test area

    Science.gov (United States)

    Lagomarsino, Daniela; Martelloni, Gianluca; Segoni, Samuele; Catani, Filippo; Fanti, Riccardo

    2013-04-01

    In this work we propose a snow accumulation-melting model (SAMM) to forecast the snowpack height and we compare the results with a simple temperature index model and an improved version of the latter.For this purpose we used rainfall, temperature and snowpack thickness 5-years data series from 7 weather stations in the Northern Apennines (Emilia Romagna Region, Italy). SAMM is based on two modules modelling the snow accumulation and the snowmelt processes. Each module is composed by two equations: a mass conservation equation is solved to model snowpack thickness and an empirical equation is used for the snow density. The processes linked to the accumulation/depletion of the snowpack (e.g. compression of the snowpack due to newly fallen snow and effects of rainfall) are modelled identifying limiting and inhibitory factors according to a kinetic approach. The model depends on 13 empirical parameters, whose optimal values were defined with an optimization algorithm (simplex flexible) using calibration measures of snowpack thickness. From an operational point of view, SAMM uses as input data only temperature and rainfall measurements, bringing the additional advantage of a relatively easy implementation. In order to verify the improvement of SAMM with respect to a temperature-index model, the latter was applied considering, for the amount of snow melt, the following equation: M = fm(T-T0), where M is hourly melt, fm is the melting factor and T0 is a threshold temperature. In this case the calculation of the depth of the snowpack requires the use of 3 parameters: fm, T0 and ?0 (the mean density of the snowpack). We also performed a simulation by replacing the SAMM melting module with the above equation and leaving unchanged the accumulation module: in this way we obtained a model with 9 parameters. The simulations results suggest that any further extension of the simple temperature index model brings some improvements with a consequent decrease of the mean error

  19. Variations of snow accumulation rate in Central Antarctica over the last 250 years

    Directory of Open Access Journals (Sweden)

    A. A. Ekaykin

    2017-01-01

    Full Text Available The present-day global climate changes, very likely caused by anthropogenic activity, may potentially present a serious threat to the whole human civilization in a near future. In order to develop a plan of measures aimed at elimination of these threats and adaptation to these undesirable changes, one should deeply understand the mechanism of past and present (and thus, future climatic changes of our planet. In this study we compare the present-day data of instrumental observations of the air temperature and snow accumulation rate performed in Central Antarctica (the Vostok station with the reconstructed paleogeographic data on a variability of these parameters in the past. First of all, the Vostok station is shown to be differing from other East Antarctic stations due to relatively higher rate of warming (1.6 °C per 100 years since 1958. At the same time, according to paleogeographic data, from the late eighteenth century to early twenty-first one the total warming amounted to about 1 °C, which is consistent with data from other Antarctic regions. So, we can make a conclusion with high probability that the 30-year period of 1985–2015 was the warmest over the last 2.5 centuries. As for the snow accumulation rate, the paleogeographic data on this contain a certain part of noise that does not allow reliable concluding. However, we found a statistically significant relationship between the rate of snow accumulation and air temperature. This means that with further rise of temperature in Central Antarctica, the rate of solid precipitation accumulation will increase there, thus partially compensating increasing of the sea level.

  20. Continuous Estimates of Surface Density and Annual Snow Accumulation with Multi-Channel Snow/Firn Penetrating Radar in the Percolation Zone, Western Greenland Ice Sheet

    Science.gov (United States)

    Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.

    2017-12-01

    A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.

  1. Unexpected Patterns in Snow and Dirt

    Science.gov (United States)

    Ackerson, Bruce J.

    2018-01-01

    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This snow comes from the final clearing of sidewalks and driveways. The patterns observed in these piles defied my intuition. This melting snow develops edges where dirt accumulates, in contrast to ice cubes, which lose sharp edges and become more spherical upon melting. Furthermore, dirt absorbs more radiation than snow and yet doesn't melt and round the sharp edges of snow, where dirt accumulates.

  2. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  3. rboricultural aspects of snow-damage in the citz of Ljubljana in the winter 1999

    OpenAIRE

    Marion, Leon; Torelli, Niko; Oven, Primož

    2005-01-01

    As a result of heavy snow in February 1999, trees were damaged in the City of Ljubljana, Slovenia. Of the investigated 624 trees, 195 (31%) were damaged by snow. On average, 1.7 branch and top per tree were broken. Snow damaged 17 tree species, affecting particularly Aesculus hippocastanum L. and, to a lesser extent, Betula pendula ROTH. and Salix x sepulcralis SIMONK. Decay was the most frequent defect at the failure location and was often associated withincluded bark and vicinity of old mec...

  4. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Directory of Open Access Journals (Sweden)

    H. J. Punge

    2012-11-01

    Full Text Available Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP and the Eemian (126 kyr BP. While being limited by the low resolution of the general circulation model (GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.

  5. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  6. Sustainable Block Design Process for High-Rise and High-Density Districts with Snow and Wind Simulations for Winter Cities

    Directory of Open Access Journals (Sweden)

    Norihiro Watanabe

    2017-11-01

    Full Text Available Urban designs that consider regional climatic conditions are one of the most important approaches for developing sustainable cities. In cities that suffer from heavy snow and cold winds in winter, an urban design approach different than that used for warm cities should be used. This study presents a scientific design process (the sustainable design approach that incorporates environmental and energy assessments that use snow and wind simulations to establish guidelines for the design of urban blocks in high-rise and high-density districts so that the impact of snow and wind can be minimized in these cities. A city block in downtown Sapporo, Japan, was used as a case study, and we evaluated four conceptual models. The four models were evaluated for how they impacted the snow and wind conditions in the block as well as the snow removal energy. Based on the results, we were able to identify the design guidelines in downtown Sapporo: an urban block design with higher building height ratio without the mid-rise part can reduce the snowdrifts and lower the snow removal energy. The proposed sustainable urban design approach would be effective in improving the quality of public spaces and reducing snow removal energy in winter cities.

  7. Assessment of the Performance of Several Roadway Mixes under Rain, Snow, and Winter Maintenance Activities

    OpenAIRE

    Flintsch, Gerardo W.

    2004-01-01

    The purpose of this study was to assess the relative functional performance, including skid resistance and splash and spray, of five hot-mix-asphalt (HMA) surfaces and a tinned portland cement concrete highway surface during controlled wet and wintry weather events. The study compared the way that these surfaces respond to various deicing and anti-icing snow removal and ice control techniques under artificial wintry conditions. In addition, the splash and spray characteristics of the surfaces...

  8. Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment

    Directory of Open Access Journals (Sweden)

    T. R. Roth

    2017-11-01

    Full Text Available Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow–forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4–26 and 11–33 days, respectively. However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15–29 days relative to the nearby Open site. Canopy interception efficiency (CIE values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These

  9. Evaluation of probable maximum snow accumulation: Development of a methodology for climate change studies

    Science.gov (United States)

    Klein, Iris M.; Rousseau, Alain N.; Frigon, Anne; Freudiger, Daphné; Gagnon, Patrick

    2016-06-01

    Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.

  10. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  11. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects...... of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing...

  12. Sampling in the Snow: High School Winter Field Experiences Provide Relevant, Real World Connections Between Scientific Practices and Disciplinary Core Ideas

    Science.gov (United States)

    Hanson, E. W.; Burakowski, E. A.

    2014-12-01

    For much of the northern United States, the months surrounding the winter solstice are times of increased darkness, low temperatures, and frozen landscapes. It's a time when many high school science educators, who otherwise would venture outside with their classes, hunker down and are wary of the outdoors. However, a plethora of learning opportunities lies just beyond the classroom. Working collaboratively, a high school science teacher and a snow scientist have developed multiple activities to engage students in the scientific process of collecting, analyzing and interpreting the winter world using snow data to (1) learn about the insulative properties of snow, and (2) to learn about the role of snow cover on winter climate through its reflective properties while participating in a volunteer network that collects snow depth, albedo (reflectivity), and density data. These outdoor field-based snow investigations incorporate Next Generation Science Standards (NGSS) and disciplinary core ideas, including ESS2.C: The roles of water in Earth's surface processes and ESS2.D: Weather and Climate. Additionally, the lesson plans presented address Common Core State Standards (CCSS) in Mathematics, including the creation and analysis of bar graphs and time series plots (CCSS.Math.HSS-ID.A.1) and xy scatter plots (CCSS.Math.HSS-ID.B.6). High school students participating in the 2013/2014 snow sampling season described their outdoor learning experience as "authentic" and "hands-on" as compared to traditional class indoors. They emphasized that learning outdoors was essential to their understanding of underlying content and concepts because they "learn through actual experience."

  13. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    Science.gov (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  14. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms.

    Science.gov (United States)

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-12-22

    This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. RESULTS indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced.

  15. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  16. Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERA-20C Reanalysis

    Science.gov (United States)

    Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun

    2017-11-01

    This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.

  17. Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations

    Science.gov (United States)

    Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.

    2009-01-01

    Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud

  18. Snow accumulation and ablation in different canopy structures at a plot scale: using degree-day approach and measured shortwave radiation

    Directory of Open Access Journals (Sweden)

    Michal Jeníček

    2017-02-01

    The measured SWE in the plot with healthy forest was on average by 41% lower than in open area during snow accumulation period. The disturbed forest caused the SWE reduction by 22% compared to open area indicating increasing snow storage after forest defoliation. The snow ablation in healthy forest was by 32% slower compared to open area. On the contrary, the snow ablation in disturbed forest (due to the bark beetle was on average only by 7% slower than in open area. The relative decrease in incoming solar radiation in the forest compared to open area was much bigger compared to the relative decrease in snowmelt rates. This indicated that the decrease in snowmelt rates cannot be explained only by the decrease in incoming solar radiation. The model simulated best in open area and slightly worse in healthy forest. The model showed faster snowmelt after forest defoliation which also resulted in earlier snow melt-out in the disturbed forest.

  19. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  20. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia

    International Nuclear Information System (INIS)

    Walker, T.R.; Crittenden, P.D.; Young, S.D.

    2003-01-01

    The chemistry of winter snow pack and terricolous lichens indicate pollution distribution in Arctic Russia. - The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g -1 at 90 km south to 0.43 mmol N g -1 at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha -1 at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO 4 2- , Ca 2+ , K + ) and pH of snow, and modified N concentration and the concentration ratios K + :Mg 2+ and K + : (Mg 2+ +Ca 2+ ) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 μmol l -1 at remote sites to ca. 19 μmol l -1 near Vorkuta. Nitrate concentration in snow (typically ca. 9 μmol l -1 ) did not vary with proximity to perceived pollution sources

  1. Snow chemistry of high altitude glaciers in the French Alps

    OpenAIRE

    MAUPETIT, FRANÇOIS; DELMAS, ROBERT J.

    2011-01-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980–3540 m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (∼ May), before the onset of late spring–summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, ...

  2. Water losses during technical snow production

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian

    2017-04-01

    These days, the production of technical snow can be seen as a prerequisite for winter tourism. Huge amounts of water are used for technical snow production by ski resorts, especially in the beginning of the winter season. The aim is to guarantee an appropriate amount of snow to reliably provide optimal ski runs until the date of season opening in early December. Technical snow is generated by pumping pressurized water through the nozzles of a snow machine and dispersing the resulting spray of small water droplets which freeze during their travel to the ground. Cooling and freezing of the droplets can only happen if energy is emitted to the air mass surrounding the droplets. This heat transfer is happening through convective cooling and though evaporation and sublimation of water droplets and ice particles. This means that also mass is lost from the droplets and added in form of vapor to the air. It is important to note that not all water that is pumped through the snow machine is converted to snow distributed on the ground. Significant amounts of water are lost due to wind drift, sublimation and evaporation while droplets are traveling through the air or to draining of water which is not fully frozen when arriving at the ground. Studies addressing this question are sparse and the quantity of the water losses is still unclear. In order to assess this question in more detail, we obtained several systematic field observations at a test site near Davos, Switzerland. About a dozen of snow making tests had been performed during the last winter seasons. We compare the amount of water measured at the intake of the snow machine with the amount of snow accumulating at the ground during a night of snow production. The snow mass was calculated from highly detailed repeated terrestrial laser scanning measurements in combination with manually gathered snow densities. In addition a meteorological station had been set up in the vicinity observing all relevant meteorological

  3. Linking Changes in Snow Cover with Nitrogen Cycling and Microbial Abundance and Functional Gene Expression in Agricultural Soils

    Science.gov (United States)

    Goyer, C.; Brin, L.; Zebarth, B.; Burton, D.; Wertz, S.; Chantigny, M.

    2016-12-01

    In eastern Canada, climate change-related warming and increased precipitation may alter winter snow cover, with potential consequences for soil conditions, microbes, and N2O fluxes. We conducted a two-year field study with snow removal, passive snow addition, and ambient treatments in a potato-barley crop system. We measured in situ greenhouse gas (N2O and CO2) fluxes and belowground gas accumulation, and quantified abundance and expression of denitrifier (nirS, nirK, nosZ) and nitrifier (ammonium oxidizing archaeal (AOA) and bacterial (AOB) amoA) genes. Soil gas accumulated throughout winter, and surface fluxes were greatest during spring thaw. Greatest mid-winter soil N2O accumulation and spring thaw N2O fluxes were associated with snow removal in winter 1 and ambient snow in winter 2. High N2O accumulation and fluxes may have been due to increased substrate availability with increased frost intensity in removal plots in winter 1, but with greatest water content in ambient plots in winter 2. In each winter, greatest abundances of nirS, nirK gene denitrifiers and/or amoA gene of AOA were observed in the treatments with the greatest N2O accumulation and fluxes. Gene expression did not vary with treatment, but highest expression of amoA gene of AOA and AOB, and nosZ gene was measured near 0ºC, indicating activity during periods of stable snow cover and spring thaw. Results suggest that the magnitude of fluxes during spring thaw were related to soil conditions and microbial communities present during the prior winter, and not solely those during thaw. Furthermore, the effects of changing snow cover on microbes and N2O fluxes were not a straightforward effect of snow depth, but were likely mediated by temperature and moisture.

  4. Summertime Minimum Streamflow Elasticity to Antecendent Winter Precipitation, Peak Snow Water Equivalent and Summertime Evaporative Demand in the Western US Maritime Mountains

    Science.gov (United States)

    Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.

    2017-12-01

    As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.

  5. Was the extreme and widespread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    NARCIS (Netherlands)

    Vonk, S.M.; Hollander, D.J.; Murk, A.J.

    2015-01-01

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates

  6. Effect of clear cutting on snow accumulation and water outflow at Fraser, Colorado

    Directory of Open Access Journals (Sweden)

    C. A. Troendle

    1997-01-01

    Full Text Available This paper compares of snowpack accumulation and ablation, evapotranspiration, and water outflow from clearcut and forested plots within a high elevation (2900 m mixed conifer forest at the Fraser Experimental Forest near Fraser, Colorado, USA. Also presented is a method for defining contributing area where outflow is measured from unbounded plots. Plots were monitored from 1980 to 1990 and again in 1993. The clearcut plot was harvested in late 1984. Evapotranspiration (ET of the forested plot at zero discharge (ETo was estimated at 426 mm while the ET was 500 mm at the mean precipitation of 596 mm. ET was dependent on precipitation with about 28% of precipitation input in excess of 426 mm contributing to increased ET, while the remainder contributed to increased outflow. During the six monitored post-harvest years, Peak Water Equivalent of the snowpack averaged 36% higher on the cut plot than on the control, and the mean discharge increased from 85 mm to 356 mm. Area estimates were obtained from the slopes of the regression of outflow on precipitation inputs. Hydrologic parameters corresponded closely to those previously determined at Fraser Experimental Forest using other methods, lending credence to the validity of the area estimates.

  7. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.

    2014-01-01

    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de

  8. Snow reliability in ski resorts considering artificial snowmaking

    Science.gov (United States)

    Hofstätter, M.; Formayer, H.; Haas, P.

    2009-04-01

    Snow reliability is the key factor to make skiing on slopes possible and to ensure added value in winter tourism. In this context snow reliability is defined by the duration of a snowpack on the ski runs of at least 50 mm snow water equivalent (SWE), within the main season (Dec-Mar). Furthermore the snowpack should form every winter and be existent early enough in season. In our work we investigate the snow reliability of six Austrian ski resorts. Because nearly all Austrian resorts rely on artificial snowmaking it is of big importance to consider man made snow in the snowpack accumulation and ablation in addition to natural snow. For each study region observed weather data including temperature, precipitation and snow height are used. In addition we differentiate up to three elevations on each site (valley, intermediate, mountain top), being aware of the typical local winter inversion height. Time periods suitable for artificial snow production, for several temperature threshold (-6,-4 or -1 degree Celsius) are calculated on an hourly base. Depending on the actual snowpack height, man made snow can be added in the model with different defined capacities, considering different technologies or the usage of additives. To simulate natural snowpack accumulation and ablation we a simple snow model, based on daily precipitation and temperature. This snow model is optimized at each site separately through certain parameterization factors. Based on the local observations and the monthly climate change signals from the climate model REMO-UBA, we generate long term time series of temperature and precipitation, using the weather generator LARS. Thereby we are not only able to simulate the snow reliability under current, but also under future climate conditions. Our results show significant changes in snow reliability, like an increase of days with insufficient snow heights, especially at mid and low altitudes under natural snow conditions. Artificial snowmaking can partly

  9. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  10. Extraordinary blowing snow transport events in East Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Scarchilli, Claudio; Agnoletto, Lucia [ENEA, Rome (Italy); Universita di Siena, Dipartimento di Scienze della Terra, Siena (Italy); Frezzotti, Massimo; Grigioni, Paolo; Silvestri, Lorenzo de [ENEA, Rome (Italy); Dolci, Stefano [CNR, Rome (Italy); Consorzio P.N.R.A. S.C.r.l., Rome (Italy)

    2010-06-15

    In the convergence slope/coastal areas of Antarctica, a large fraction of snow is continuously eroded and exported by wind to the atmosphere and into the ocean. Snow transport observations from instruments and satellite images were acquired at the wind convergence zone of Terra Nova Bay (East Antarctica) throughout 2006 and 2007. Snow transport features are well-distinguished in satellite images and can extend vertically up to 200 m as first-order quantitatively estimated by driftometer sensor FlowCapt trademark. Maximum snow transportation occurs in the fall and winter seasons. Snow transportation (drift/blowing) was recorded for {proportional_to}80% of the time, and 20% of time recorded, the flux is >10{sup -2} kg m{sup -2} s{sup -1} with particle density increasing with height. Cumulative snow transportation is {proportional_to}4 orders of magnitude higher than snow precipitation at the site. An increase in wind speed and transportation ({proportional_to}30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation. Extensive presence of ablation surface (blue ice and wind crust) upwind and downwind of the measurement site suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. The observed wind-driven ablation explains the inconsistency between atmospheric model precipitation and measured snow accumulation value. (orig.)

  11. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    Science.gov (United States)

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  12. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses

    International Nuclear Information System (INIS)

    Bucko, Michal S.; Magiera, Tadeusz; Johanson, Bo; Petrovsky, Eduard; Pesonen, Lauri J.

    2011-01-01

    The aim of this study is to test the applicability of snow surveying in the collection and detailed characterization of vehicle-derived magnetic particles. Road dust extracted from snow, collected near a busy urban highway and a low traffic road in a rural environment (southern Finland), was studied using magnetic, geochemical and micro-morphological analyses. Significant differences in horizontal distribution of mass specific magnetic susceptibility (χ) were noticed for both roads. Multi-domain (MD) magnetite was identified as the primary magnetic mineral. Scanning electron microscope (SEM) analyses of road dust from both roads revealed: (1) angular-shaped particles (diameter ∼1-300 μm) mostly composed of Fe, Cr and Ni, derived from circulation of motor vehicles and (2) iron-rich spherules (d ∼ 2-70 μm). Tungsten-rich particles (d < 2 μm), derived from tyre stud abrasion were also identified. Additionally, a decreasing trend in χ and selected trace elements was observed with increasing distance from the road edge. - Highlights: → Snow surveying is an effective method in studies of vehicle-derived particles. → Multi-domain (MD) magnetite was identified as the primary magnetic mineral. → Particles mostly composed of Fe, Cr and Ni were identified in the roadside snow. → Snow located near the road is contaminated by heavy metals. - Snow surveying is an effective method in detailed studies of vehicle-derived magnetic particles.

  13. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  14. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.

    Science.gov (United States)

    Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus

    2013-01-01

    The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  15. Accumulation of Cs, Sr into leaves and grain of winter wheat under act of N, Zn, Li, Na

    International Nuclear Information System (INIS)

    Grodzinsky, D.; Tkatchuk, K.; Zhmurko, N.; Bogdan, T.; Guralchuk, Zh.

    1998-01-01

    The experiments were carried out on cv Lutencens 7 winter wheat grown on grey forest soil. In order to study the influence of nitrogen on Cs and Sr accumulation, a background of P60 K60 added in autumn different doses of nitrogen (30, 60, 120 kg/ha) were applied in spring. The influence of micronutrients on Cs and Sr accumulation was studied by adding 3 kg/ha Zn and 2 kg/ha Li to the soil under ploughing on background of N60 P60 K60. Besides the foliar application with 0.05% Na 2 SO 4 was carried out. Cation content (Cs, Sn, Zn, Li, Na) in soil and plant organs was determined by atomic absorption spectrophotometry. The Cs, Sr content in control plant leaves made up 15.0 and 21.0 mg per g of dry matter at the early stages of plant development. As the plants aged, the content of those elements in the leaves decreased strongly (3-4 times). At early stages of plant development, nitrogen caused an 8.9-11% increase in the Cs content of the leaves. At the stages of heading to grain filling, the Cs content increase was only observed at a high nitrogen dose, whereas low nitrogen doses had no effected on Cs accumulation in leaves. In should be noted that nitrogen (N60 and N120) decreased the Cs content in grain by 32-33%. As for the Sr content of grain, this was 3 to 4-fold less than that of Cs. Nitrogen had no effected on the Sr content of grain. Zn and Li addition to soil as well as foliar nutrition with Na had a different effect on the Cs and Sr content of winter wheat leaves and grain. Addition of Li decreased the Cs and Sr content of old leaves by 13% and 25% respectively. Addition of Zn and Na decreased the Sr content of old leaves but had no effect on the Cs content. Zn, Na and Li reduced the Sr content in grain also, viz. by 16,11 and 7% respectively. Thus the research has demonstrated the possibility of regulating Cs and Sr accumulation in the above-ground organs of winter wheat plants

  16. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses

    Czech Academy of Sciences Publication Activity Database

    Bućko, M. S.; Magiera, T.; Johanson, B.; Petrovský, Eduard; Pesonen, L. J.

    2011-01-01

    Roč. 159, č. 5 (2011), s. 1266-1276 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z30120515 Keywords : road dust * vehicle emissions * magnetic properties * snow * geochemical analyses Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.746, year: 2011

  17. Unexpected Patterns in Snow and Dirt

    Science.gov (United States)

    Ackerson, Bruce J.

    2018-01-01

    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This…

  18. Snow Climatology of Arctic Sea Ice: Comparison of Reanalysis and Climate Model Data with In Situ Measurements

    Science.gov (United States)

    Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.

    2015-12-01

    Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.

  19. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014

    Science.gov (United States)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard

    2018-02-01

    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  20. A Distributed Snow Evolution Modeling System (SnowModel)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  1. Distributed snow modeling suitable for use with operational data for the American River watershed.

    Science.gov (United States)

    Shamir, E.; Georgakakos, K. P.

    2004-12-01

    The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the

  2. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat

    Directory of Open Access Journals (Sweden)

    Nunun eBarunawati

    2013-08-01

    Full Text Available The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA in green leaves, while 2’-deoxymugineic acid (DMA remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approx. one third of the total Fe, Zn or Cu content in leaves. The significant increase in the accumulation of Fe, Zn and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.

  3. The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Science.gov (United States)

    Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin

    2018-02-01

    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  4. The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Directory of Open Access Journals (Sweden)

    N. A. N. Bertler

    2018-02-01

    Full Text Available High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons, with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  5. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula.

    Science.gov (United States)

    Ratkin, N E; Asming, V E; Koshkin, V V

    2001-01-01

    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  6. Constraining the Spatial Extent of Marine Oil Snow Sedimentation and Flocculent Accumulation Following the Deepwater Horizon Event Using an Excess 210Pb Flux Approach.

    Science.gov (United States)

    Schwing, P T; Brooks, G R; Larson, R A; Holmes, C W; O'Malley, B J; Hollander, D J

    2017-06-06

    Following the Deepwater Horizon (DWH) event in 2010, there were several lines of evidence indicating the presence of marine oil snow sedimentation and flocculent accumulation (MOSSFA). A significant amount of marine oil snow formed in the water column of the northern Gulf of Mexico (nGoM), settled rapidly, and ultimately accumulated in the sediments of the nGoM. This study utilized a commonly used radioisotope tracer (excess 210 Pb, 210 Pb xs ) from 32 sediment cores collected from 2010 to 2013 to characterize the spatial extent of MOSSFA on the seafloor. Relative to pre-DWH conditions, an increase in 210 Pb xs flux occurred in two distinct regions: (1) in the western portion of the study area on an east-northeast to west-southwest axis, stretching 230 km southwest and 140 km northeast of the DWH wellhead, and (2) in the eastern portion of the study area on a 70 km northeast to southwest axis near the DeSoto Canyon. The total sedimentary spatial extent of MOSSFA, as calculated by increased 210 Pb xs flux after 2010, ranged from 12 805 to 35 425 km 2 . 210 Pb xs flux provides a valuable tool for documenting the spatial extent of MOSSFA following DWH and will continue to aid in the determination of advective transport and ultimate depocenters of MOSSFA material.

  7. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    Science.gov (United States)

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    Science.gov (United States)

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water

  9. Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016

    Science.gov (United States)

    Evangeliou, Nikolaos; Shevchenko, Vladimir P.; Espen Yttri, Karl; Eckhardt, Sabine; Sollum, Espen; Pokrovsky, Oleg S.; Kobelev, Vasily O.; Korobov, Vladimir B.; Lobanov, Andrey A.; Starodymova, Dina P.; Vorobiev, Sergey N.; Thompson, Rona L.; Stohl, Andreas

    2018-01-01

    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53-0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE = 49 ng g-1) in 2014, 48 % (RMSE = 37 ng g-1) in 2015 and 27 % (RMSE = 43 ng g-1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB > -100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB < -100 %). There, the sources included emissions from gas flaring as a major contributor to snow BC. The accuracy of the model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in

  10. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  11. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  12. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    Science.gov (United States)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential

  13. Relocation of major ions in snow along the tundra-taiga ecotone

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, J.W.; Marsh, P. (Environment Canada, Saskatoon (Canada)); Lesack, L. (Simon Fraser Univeristy, Burnaby, (Canada))

    1993-01-01

    The chemistry of seasonal snowcovers north of Unuvik, Northwest Territories, Canada was stratified by biophysical landscape. In this region, deposition of ions in winter occurs largely through the redistribution of wind-blown snow with accumulations in forest-edges and valley sides 8 to 12 times that of the open tundra. While dominated by this snow redistribution, the loading of most ions, except for SO[sub 4][sup 2-], does not scale exactly with that of snow, there being several mechanisms by which ion concentrations become relatively enriched or depleted in various landscape units. Vaporisation during temperature-gradient metamorphism in shallow-snow and uptake during either photochemical reactions or gaseous scavenging to well-exposed snow transformed concentrations of NO[sub 3][sup -] by 50%. Dry deposition of aerosols to forested terrain and valley bottoms enriched Cl[sup -], Na[sup +], Mg[sup 2]-[sup +], K[sup +] and Ca[sup 2+] concentrations up to more than two-fold, however scavenging of aerosols to blowing snow particles contributed an additional 40% to the sea-salt enrichment and 20% to the Ca[sup 2+] enrichment in wind-blown treeline forests. It is concluded that central measurements of snow chemistry in the Arctic cannot be reliably extrapolated without reference to changes caused by over-winter physical and chemical metamorphic processes. Associating the physical/chemical changes with readily identifiable Arctic landscape units suggests a simple and robust method for spatial extrapolation. (au) (26 refs.)

  14. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  15. Spatio-Temporal Variability of Recent Snow Accumulation Across the West Antarctic Ice Sheet Divide Using Ultra-High Frequency Radar and Shallow Firn Cores

    Science.gov (United States)

    Keeler, D. G.; Rupper, S.; Forster, R. R.; Miège, C.; Brewer, S.; Koenig, L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) could be a substantial source of future sea level rise, with 3+ meters of potential increase stored in the ice sheet. Adequate predictions of WAIS contributions, however, depend on well-constrained surface mass balance estimates for the region. Given the sparsity of available data, such estimates are tenuous. Although new data are periodically added, further research (both to collect more data and better utilize existing data) is critical to addressing these issues. Here we present accumulation data from 9 shallow firn cores and 600 km of Ku band radar traces collected as part of the Satellite Era Antarctic Traverse (SEAT) 2011/2012 field season. Using these data, combined with similar data collected during the SEAT 2010/2011 field season, we investigate the spatial variability in accumulation across the WAIS Divide and surrounding regions. We utilize seismic interpretation and 3D visualization tools to investigate the extent and variations of laterally continuous internal horizons in the radar profiles, and compare the results to nearby firn cores. Previous results show that clearly visible, laterally continuous horizons in radar returns in this area do not always represent annual accumulation isochrones, but can instead represent multi-year or sub-annual events. The automated application of Bayesian inference techniques to averaged estimates of multiple adjacent radar traces, however, can estimate annually-resolved independent age-depth scales for these radar data. We use these same automated techniques on firn core isotopic records to infer past snow accumulation rates, allowing a direct comparison with the radar-derived results. Age-depth scales based on manual annual-layer counting of geochemical and isotopic species from these same cores provide validation for the automated approaches. Such techniques could theoretically be applied to additional radar/core data sets in polar regions (e.g. Operation IceBridge), thereby

  16. Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2011-12-01

    An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE

  17. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  18. Regime shift of snow days in Switzerland

    Science.gov (United States)

    Marty, Christoph

    2008-06-01

    The number of days with a snow depth above a certain threshold is the key factor for winter tourism in an Alpine country like Switzerland. An investigation of 34 long-term stations between 200 and 1800 m asl (above sea level) going back for at least the last 60 years (1948-2007) shows an unprecedented series of low snow winters in the last 20 years. The signal is uniform despite high regional differences. A shift detection analysis revealed a significant step-like decrease in snow days at the end of the 1980's with no clear trend since then. This abrupt change resulted in a loss of 20% to 60% of the total snow days. The stepwise increase of the mean winter temperature at the end of the 1980's and its close correlation with the snow day anomalies corroborate the sensitivity of the mid-latitude winter to the climate change induced temperature increase.

  19. The value of snow cover

    Science.gov (United States)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  20. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters

    Science.gov (United States)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.

    2017-12-01

    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  1. NOAA's National Snow Analyses

    Science.gov (United States)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  2. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  3. Hydrologic response across a snow persistence gradient on the west and east slopes of the Rocky Mountains in Colorado

    Science.gov (United States)

    Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.

    2017-12-01

    Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope

  4. Snow cover and temperature relationships in North America and Eurasia

    Science.gov (United States)

    Foster, J.; Owe, M.; Rango, A.

    1983-01-01

    In this study the snow cover extent during the autumn months in both North America and Eurasia has been related to the ensuing winter temperature as measured at several locations near the center of each continent. The relationship between autumn snow cover and the ensuing winter temperatures was found to be much better for Eurasia than for North America. For Eurasia the average snow cover extent during the autumn explained as much as 52 percent of the variance in the winter (December-February) temperatures compared to only 12 percent for North America. However, when the average winter snow cover was correlated with the average winter temperature it was found that the relationship was better for North America than for Eurasia. As much as 46 percent of the variance in the winter temperature was explained by the winter snow cover in North America compared to only 12 percent in Eurasia.

  5. Food, energy, and water in an era of disappearing snow

    Science.gov (United States)

    Mote, P.; Lettenmaier, D. P.; Li, S.; Xiao, M.

    2017-12-01

    Mountain snowpack stores a significant quantity of water in the western US, accumulating during the wet season and melting during the dry summers and supplying more than 65% of the water used for irrigated agriculture, energy production (both hydropower and thermal), and municipal and industrial uses. The importance of snow to western agriculture is demonstrated by the fact that most snow monitoring is performed by the US Department of Agriculture. In a paper published in 2005, we showed that roughly 70% of monitoring sites showed decreasing trends through 2002. Now, with 14 additional years of data, over 90% of snow monitoring sites with long records across the western US show declines through 2016, of which 33% are significant (vs 5% expected by chance) and 2% are significant and positive (vs 5% expected by chance). Declining trends are observed across all months, states, and climates, but are largest in spring, in the Pacific states, and in locations with mild winter climate. We corroborate and extend these observations using a gridded hydrology model, which also allows a robust estimate of total western snowpack and its decline. Averaged across the western US, the decline in total April 1 snow water equivalent since mid-century is roughly 15-30% or 25-50 km3, comparable in volume to the West's largest man-made reservoir, Lake Mead. In the absence of rapid reductions in emissions of greenhouse gases, these losses will accelerate; snow losses on this scale demonstrate the necessity of rethinking water storage, policy, and usage.

  6. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Frédérique C. Pivot

    2012-07-01

    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  7. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    Science.gov (United States)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  8. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg

    2018-01-01

    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps......This chapter explores the performative potential of snow for Alpine tourism, by drawing attention to its material and nonrepresentational significance for tourism practices. European imagination has been preoccupied with snow since medieval times and even today, snow features as the sine que non...

  9. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter

    2017-07-01

    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  10. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat.

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-10-18

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.

  11. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat †

    Science.gov (United States)

    Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota

    2016-01-01

    Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547

  12. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode

    2015-01-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...... and did not decrease below -12. °C. Those under deep snow were even more stable and did not decline below -2. °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid...

  13. Effect of Drought Stress at Pre and Post-anthesis on Dry Matter Accumulation of Grains in Irrigated Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sh. Elyasi

    2011-01-01

    Full Text Available Investigating assimilate contribution and grain filling pattern in winter wheat is importance under drought stress condition. This study was conducted to evaluate the relationship between drought stress on grain filling and yield of 4 cultivars including MV17 (dwarf, Alvand, Shahryar (semi-dwarf and Toos (tall. Experimental design was randomized complete block with three replications. Drought stress assigned to main plots and cultivars to sub plots. Growth curve sampling started at 7 days after anthesis with 4 days interval. In pre-anthesis drought stress Alvand produced highest yield, while it was 29.14% less than control treatment. The yield of Toos cultivar was lowest at pre-anthesis drought stress. Rate of grain filling of Toos cultivar did not change at pre-anthesis drought stress. Drought stress treatment at post-anthesis decreased rate of grain filling in all cultivars as compared to control, but it was significant only Toos c.v. In pre-anthesis drought stress grain filling duration increased in Alvand but decreased in Toos. Alvand with higher rate of grain filling produced highest grain yield (3850 kg/ha. It can be concluded that, drought stress decreases grain filling duration and rate of grain filling.

  14. Quantifying forest mortality with the remote sensing of snow

    Science.gov (United States)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and

  15. Impacts of Recent Climatic Wetting on Distributed Snow and Streamflow Responses in a Terminal Lake Basin.

    Science.gov (United States)

    Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.

    2017-12-01

    The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We

  16. Estimation of the condition of snow cover in Voronezh according to the chemical analysis of water from melted snow

    OpenAIRE

    Prozhorina Tatyana Ivanovna; Bespalova Elena Vladimirovna; Yakunina Nadezhda

    2014-01-01

    Snow cover possesses high sorption ability and represents informative object to identify technogenic pollution of an urban environment. In this article the investigation data of a chemical composition of snow fallen in Voronezh during the winter period of 2014 are given. Relationships between existence of pollutants in snow and the level of technogenic effect are analyzed.

  17. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    Science.gov (United States)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  18. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.

    2013-03-01

    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  19. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.; Westra, Seth; Evans, Jason P.; McCabe, Matthew

    2013-01-01

    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  20. Snow Leopard

    Indian Academy of Sciences (India)

    adult females (dimorphic); a male on average weighing between. 45–55 kg, while a .... performance of wild prey, eventually leading to a decline in their population. Research .... working towards enhancing knowledge on snow leopard ecology.

  1. Past and future of the Austrian snow cover - results from the CC-Snow project

    Science.gov (United States)

    Strasser, Ulrich; Marke, Thomas; Hanzer, Florian; Ragg, Hansjörg; Kleindienst, Hannes; Wilcke, Renate; Gobiet, Andreas

    2013-04-01

    This study has the goal to simulate the evolution of the Austrian snow cover from 1971 to 2050 by means of a coupled modelling scheme, and to estimate the effect of climate change on the evolution of the natural snow cover. The model outcomes are interepreted with focus on both the future natural snow conditions, and the effects on winter skiing tourism. Therefore the regional temperature-index snow model SNOWREG is applied, providing snow maps with a spatial resolution of 250 m. The model is trained by means of assimilating local measurements and observed natural snow cover patterns. Meteorological forcing consists of the output of four realizations of the ENSEMBLES project for the A1B emission scenario. The meteorological variables are downscaled and error corrected with a quantile based empirical-statistical method on a daily time basis. The control simulation is 1971-2000, and the scenario simulation 2021-2050. Spatial interpolation is performed on the basis of parameter-elevation relations. We compare the four different global/regional climate model combinations and their effect on the snow modelling, and we explain the patterns of the resulting snow cover by means of regional climatological characteristics. The provinces Tirol and Styria serve as test regions, being typical examples for the two climatic subregions of Austria. To support the interpretation of the simulation results we apply indicators which enable to define meaningful measures for the comparison of the different periods and regions. Results show that the mean duration of the snow cover will decrease by 15 to 30 days per winter season, mostly in elevations between 2000 and 2500 m. Above 3000 m the higher winter precipitation can compensate this effect, and mean snow cover duration may even slightly increase. We also investigate the local scale by application of the physically based mountain snow model AMUNDSEN. This model is capable of producing 50 m resolution output maps for indicators

  2. Drivers and environmental responses to the changing annual snow cycle of northern Alaska

    Science.gov (United States)

    Cox, Christopher J.; Stone, Robert S.; Douglas, David C.; Stanitski, Diane; Divoky, George J.; Dutton, Geoff S.; Sweeney, Colm; George, J. Craig; Longenecker, David U.

    2017-01-01

    On the North Slope of Alaska, earlier spring snowmelt and later onset of autumn snow accumulation are tied to atmospheric dynamics and sea ice conditions, and result in environmental responses.Linkages between atmospheric, ecological and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation and cloud cover, as well as the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik due mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-year snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid- 1970s (-2.86 days/decade, 1975-2016). At nearby Cooper Island, where a colony of seabirds, Black Guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-year record. Ice-out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend towards later dates (+4.6 days/decade, 1975-2016), with 2016 the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales, and to anticipate coupled environmental responses.

  3. Metal accumulation in a potential winter vegetable mustard (Brassica campestris L.) irrigated with different types of waters in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, Z. I.; Ahmad, K.; Yasmeen, S.; Ashfaq, A.

    2016-01-01

    Considering the harmful effects of metal-enriched vegetables a comprehensive study was conducted to appraise the extent of accumulation of different metals in mustard (Brassica campestris L.). The vegetable was treated with ground water, sewage water and canal water irrigation in areas of Punjab, Pakistan. Metals and metalloids observed in all three sites treated with sewage, canal and ground water were As, Cu, Fe, Ni, Pb, Mo, Se and Zn were observed in the sites treated with ground, sewage and canal waters as well as the vegetable grown therein. The metal concentration observed in water samples was: Fe>Zn >Pb> Ni> Mo> Cu> As> Se, the order in the soil was: As >Pb> Fe > Ni > Mo > Cu > Zn > Se, while the order in the vegetable was: Zn > Fe> Cu> Ni> Mo>Pb> As> Se. The values of bio-concentration factor varied from 0.09-15.47 mg kg-1. Correlation was positively significant for Brassica campestris and soil except Ni and Se which showed positive non significant correlation. Pollution load index was observed to be in the following order: As >Pb> Ni > Mo >Fe > Cu > Se > Zn in the sites GWI, CWI and CWI. Fe and Zn (0.169) showed highest value of daily intake of metal (DIM), while Se (0.003) showed lowest value in crop of all three sites GWI, CWI and CWI. The health risk index and EF ranged from 0.24-69.86 mg day/sup -1/and 0.134-14.12 mg day/sup -1/, respectively. Overall, the vegetable treated with sewage water may have considerable impact on food quality and in turn on the health of people consuming it. (author)

  4. Monitoring of carbon isotope composition of snow cover for Tomsk region

    Science.gov (United States)

    Akulov, P. A.; Volkov, Y. V.; Kalashnikova, D. A.; Markelova, A. N.; Melkov, V. N.; Simonova, G. V.; Tartakovskiy, V. A.

    2016-11-01

    This article shows the potential of using δ13C values of pollutants in snow pack to study the human impact on the environment of Tomsk and its surroundings. We believe that it is possible to use a relation between the isotope compositions of a fuel and black carbon for establishing the origin of the latter. The main object of our investigation was dust accumulated by the snow pack in the winter of 2015-2016. The study of dust samples included the following steps: determination of the total carbon content in snow pack samples of Tomsk and its surroundings, extraction of black carbon from the dust, as well as the determination of δ13C values of the total and black carbon accumulated in the snow pack. A snow survey was carried out on the 26th of January and on the 18th of March. The relative carbon content in the dust samples was determined by using an EA Flash 2000 element analyzer. It varied from 3 to 24%. The maximum carbon content was in the dust samples from areas of cottage building with individual heating systems. The δ13C values of the total and black carbon were determined by using a DELTA V Advantage isotope mass spectrometer (TomTsKP SB RAS). The isotope composition of black carbon corresponded to that of the original fuel. This fact allowed identifying the origin of black carbon in some areas of Tomsk.

  5. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  6. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  7. Snow clearance

    CERN Multimedia

    Mauro Nonis

    2005-01-01

    In reply to the numerous questions received, we should like to inform you of the actions and measures taken in an effort to maintain the movements of vehicles and pedestrians since the heavy snow fall on Sunday 23 January. Our contractor's employees began clearing the snow during the morning of Sunday 23 January on the main CERN sites (Meyrin, Prévessin), but an accident prevented them from continuing. The vehicle in question was repaired by Monday morning when two other vehicles joined it to resume snow clearing; priority was given to access points to the main sites and the LHC sites, as well as to the main roads inside the sites. The salt sprinklers were also brought into action that same day; the very low temperature during the night from Monday to Tuesday prevented the snow from melting and compacted the ice; the continuing cold during the day on Tuesday (-6°C at 10:00 on the Meyrin site) meant that all efforts to remove the ice were doomed to failure. In order to ensure more efficie...

  8. Environmental problems related to winter traffic safety conditions

    OpenAIRE

    Hääl, Maire-Liis; Sürje, Peep

    2006-01-01

    The changeable Nordic climate has added problems to road maintenance and the environment to ensure traffic safety under winter conditions. The widespread use of salt (NaCl) for snow and ice removal from roads has resulted in environmental impacts in many areas. Some of the problems associated with the use of NaCl are the corrosion of bridges, road surfaces and vehicles and damage to roadside vegetation and aquatic system that are affected by water from de-iced roads. Accumulation of hard meta...

  9. Snowscape Ecology: Linking Snow Properties to Wildlife Movements and Demography

    Science.gov (United States)

    Prugh, L.; Verbyla, D.; van de Kerk, M.; Mahoney, P.; Sivy, K. J.; Liston, G. E.; Nolin, A. W.

    2017-12-01

    Snow enshrouds up to one third of the global land mass annually and exerts a major influence on animals that reside in these "snowscapes," (landscapes covered in snow). Dynamic snowscapes may have especially strong effects in arctic and boreal regions where dry snow persists for much of the year. Changes in temperature and hydrology are transforming northern regions, with profound implications for wildlife that are not well understood. We report initial findings from a NASA ABoVE project examining effects of snow properties on Dall sheep (Ovis dalli dalli). We used the MODSCAG snow fraction product to map spring snowline elevations and snow-off dates from 2000-2015 throughout the global range of Dall sheep in Alaska and northwestern Canada. We found a negative effect of spring snow cover on Dall sheep recruitment that increased with latitude. Using meteorological data and a daily freeze/thaw status product derived from passive microwave remote sensing from 1983-2012, we found that sheep survival rates increased in years with higher temperatures, less winter precipitation, fewer spring freeze-thaw events, and more winter freeze-thaw events. To examine the effects of snow depth and density on sheep movements, we used location data from GPS-collared sheep and a snowpack evolution model (SnowModel). We found that sheep selected for shallow, fluffy snow at high elevations, but they selected for denser snow as depth increased. Our field measurements identified a critical snow density threshold of 329 (± 18 SE) kg/m3 to support the weight of Dall sheep. Thus, sheep may require areas of shallow, fluffy snow for foraging, while relying on hard-packed snow for winter travel. These findings highlight the importance of multiple snowscape properties on wildlife movements and demography. The integrated study of snow properties and ecological processes, which we call snowscape ecology, will greatly improve global change forecasting.

  10. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    Science.gov (United States)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  11. Snow Drift Management: Summit Station Greenland

    Science.gov (United States)

    2016-05-01

    management Snow surveys Transport analysis Winds -- Speed 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...that about 25% of the estimated snow that the wind transports to Summit each winter is deposited and forms drifts, mostly in close proxim- ity to...the structures. This analysis demonstrates that weather data ( wind speed and direction) and a transport analysis can aid in estimating the vol- ume of

  12. Acid Rain and Snow in Kashiwazaki City.

    OpenAIRE

    小野寺, 正幸; 富永, 禎秀; 竹園, 恵; 大金, 一二; Onodera, Masayuki; Tominaga, Yoshihide; Takesono, Satoshi; Oogane, Katsuji

    2002-01-01

    This paper described the actual condition of acid rain and snow and their influence of a winter monsoon in Kashiwazaki city. For 7 months from September in 2001 to March in 2002, the pH value was measured in rain or snow. The minimum of pH value observed was 3.9 for the 7 months. The day which observed pH

  13. Assessing the ability of operational snow models to predict snowmelt runoff extremes (Invited)

    Science.gov (United States)

    Wood, A. W.; Restrepo, P. J.; Clark, M. P.

    2013-12-01

    In the western US, the snow accumulation and melt cycle of winter and spring plays a critical role in the region's water management strategies. Consequently, the ability to predict snowmelt runoff at time scales from days to seasons is a key input for decisions in reservoir management, whether for avoiding flood hazards or supporting environmental flows through the scheduling of releases in spring, or for allocating releases for multi-state water distribution in dry seasons of year (using reservoir systems to provide an invaluable buffer for many sectors against drought). Runoff forecasts thus have important benefits at both wet and dry extremes of the climatological spectrum. The importance of the prediction of the snow cycle motivates an assessment of the strengths and weaknesses of the US's central operational snow model, SNOW17, in contrast to process-modeling alternatives, as they relate to simulating observed snowmelt variability and extremes. To this end, we use a flexible modeling approach that enables an investigation of different choices in model structure, including model physics, parameterization and degree of spatiotemporal discretization. We draw from examples of recent extreme events in western US watersheds and an overall assessment of retrospective model performance to identify fruitful avenues for advancing the modeling basis for the operational prediction of snow-related runoff extremes.

  14. Water and life from snow: A trillion dollar science question

    Science.gov (United States)

    Sturm, Matthew; Goldstein, Michael A.; Parr, Charles

    2017-05-01

    Snow provides essential resources/services in the form of water for human use, and climate regulation in the form of enhanced cooling of the Earth. In addition, it supports a thriving winter outdoor recreation industry. To date, the financial evaluation of the importance of snow is incomplete and hence the need for accelerated snow research is not as clear as it could be. With snow cover changing worldwide in several worrisome ways, there is pressing need to determine global, regional, and local rates of snow cover change, and to link these to financial analyses that allow for rational decision making, as risks related to those decisions involve trillions of dollars.

  15. Eco-geochemical peculiarities of mercury content in solid residue of snow in the industrial enterprises impacted areas of Tomsk

    Science.gov (United States)

    Filimonenko, E. A.; Lyapina, E. E.; Talovskaya, A. V.; Parygina, I. A.

    2014-11-01

    Snow, as short-term consignation Wednesday, has several properties that lead to its widespread use in ecologicalgeochemical and geological research. By studying the chemical composition of the dust fallout you can indirectly assess the condition of atmospheric air.1-2. Determining the content of mercury in snow cover, you can define its contribution for the longest period of the year in our region, with the most intensive use of various types of fuel (coal, gas, firewood), that puts a strain on urban ecosystems in terms of ecology.3-4. In addition, snow cleans the atmosphere of mercury, but it accumulates in the snow, and during the spring melting of snow hits the ground and rivers, polluting them. Part of the mercury back into the atmosphere. It should also be note the special nature of the circulation of air masses over the city in winter, creating a heat CAP, which contributes to air pollution of the city. 5-6-7. The high load areas of industrial impact were detected during the eco-geochemical investigations of mercury load index in the impacted areas of enterprises of Tomsk. It was found out, that aerosol particles of industrial emissions in Tomsk contain mercury. The contamination transfer character of mercury sources and occurrence modes of pollutants in snow solid residue were detected during the researches of industrial impact.

  16. Measurement of the reduction of terrestrial gamma-ray dose rates by the snow cover using TL-dosimeters

    International Nuclear Information System (INIS)

    Sakamoto, Ryuichi; Saito, Kimiaki; Nagaoka, Toshi; Tsutsumi, Masahiro; Moriuchi, Shigeru

    1990-12-01

    The objective of the investigation is to make clear the effect of the snow cover on environmental gamma-ray field. The reduction in the natural terrestrial gamma-ray dose rate due to snow cover was measured by TL-dosimeters. The measurements were performed in autumn before snowfall and in winter from September 1987 through March 1988 in Nagaoka city, Niigata prefecture. The dosimeters were set at four points, both outside and inside of the houses, for three months. The penetration factors (ratios of terrestrial gamma-ray dose accumulated during snow covered period to those during snow free period) were 0.54-0.67 in the open field, and 0.73-0.95 in the houses. According to theoretical calculation by the Monte Carlo method and the published snowfall data, the corresponding penetration factor was estimated at 0.54 in an ideal open field. As a result, the measured penetration factors were larger than calculated one by 24 % at maximum. The variation of dose rate inside houses by the difference of the amount of snow fall has been investigated. In general, though the amount of snow fall changes every year, dose rates inside the house were proved to be affected little by them. And, the optimum value of snow density which adapted for inference of penetration factor was found to be 0.3 g/cm 3 . The penetration factors inferred from snowdepth data for the year distributed between 0.6 and 1.0 in winter from November 1985 through April 1986 in Niigata prefecture. (author)

  17. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    Science.gov (United States)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  18. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    Science.gov (United States)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  19. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    Science.gov (United States)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  20. Analysis of the Lake Superior Watershed Seasonal Snow Cover

    National Research Council Canada - National Science Library

    Daly, Steven F; Baldwin, Timothy B; Weyrick, Patricia

    2007-01-01

    Daily estimates of the snow water equivalent (SWE) distribution for the period from 1 December through 30 April for each winter season from 1979 80 through 2002 03 were calculated for the entire Lake Superior watershed...

  1. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland.

    Science.gov (United States)

    Siudek, Patrycja

    2016-12-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  2. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches

    Directory of Open Access Journals (Sweden)

    Stefan Kern

    2016-05-01

    Full Text Available Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow freeboard and snow depth, which we use to compute snow depth on sea ice from Ice, Cloud, and land Elevation Satellite (ICESat total freeboard observations. We compare ICESat snow depth for early winter and spring of the years 2004 through 2006 with the Advanced Scanning Microwave Radiometer aboard EOS (AMSR-E snow depth product. We find ICESat snow depths agree more closely with ship-based visual and air-borne snow radar observations than AMSR-E snow depths. We obtain average modal and mean ICESat snow depths, which exceed AMSR-E snow depths by 5–10 cm in winter and 10–15 cm in spring. We observe an increase in ICESat snow depth from winter to spring for most Antarctic regions in accordance with ground-based observations, in contrast to AMSR-E snow depths, which we find to stay constant or to decrease. We suggest satellite laser altimetry as an alternative method to derive snow depth on Antarctic sea ice, which is independent of snow physical properties.

  3. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  4. Sublimation From Snow in Northern Environments

    Science.gov (United States)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  5. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  6. Physical activity levels of community-dwelling older adults are influenced by winter weather variables.

    Science.gov (United States)

    Jones, G R; Brandon, C; Gill, D P

    2017-07-01

    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Use Of Snow And Ice Melting Heating Cables On Roofs Of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Metin ONAL

    2017-12-01

    Full Text Available Roofs are construction elements which form the upper part of a building and protect it from the all kinds of fall wind and sun lights. They are made as inclined or terrace shaped according to the climatic characteristics of the area they are located and their intended use. Inclined type roofs are preferred for aesthetic and or functionality. It is in interest of mechanical engineering that falling snow on long and effective regions of winter conditions accumulate on the roof surfaces with low inclination due to adhesion force between snowflakes and the roof covering. The mass of snow that turns into ice due to cold weather and wind creates stalactites in the eaves due to gravity. This snow mass leavesbreaks off from inclined surfaces due to the effect of the sun or any vibration and can damage to people or other objects around the building. Falling snow and ice masses from rooftops in urban areas where winter months are intense are also a matter for engineering applications of landscape architecture. In order to prevent snow and icing on the roofs of the buildings located especially in busy human and vehicle traffic routes the use of heating cables is a practical method. The icing can be prevented by means of the heating cables selected according to the installed power to be calculated based on the type of roof and the current country. The purpose of this study is to introduce heating systems to be mounted on the roofs with a lesser workmanship in a short period instead of difficulties and costs that would occur by increasing the roof inclination in present buildings as well as explaining their working principles.

  8. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Directory of Open Access Journals (Sweden)

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  9. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Science.gov (United States)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  10. Evaluation of alternative snow plow cutting edges.

    Science.gov (United States)

    2009-05-01

    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  11. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  12. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia

    Science.gov (United States)

    Zhang, Yinsheng; Ma, Ning

    2018-04-01

    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE

  13. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution.

    Science.gov (United States)

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni

    2016-03-01

    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. Copyright © 2015. Published by Elsevier B.V.

  14. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    Science.gov (United States)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass

  15. Effect of shading from jointing to maturity on high molecular weight glutenin subunit accumulation and glutenin macropolymer concentration in grain of winter wheat

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Li, H.

    2012-01-01

    the accumulation and concentration of HMW-GS in the grains. Consequently, S1 reduced falling number and SDS-sedimentation volume, while shortened dough development time (DDT) and dough stability time (DST). In contrast, S2 and S3 increased falling number, wet-gluten concentration and SDS-sedimentation volume......, and lengthened the DDT and DST. In addition, the fluctuations in accumulations of HMW-GS and GMP and most quality traits because of shading in Yangmai 158 were less than Yangmai 11. The interrelations between HMW-GS accumulation, GMP concentration and quality of grain and dough were further discussed....

  16. Deriving Snow Cover Metrics for Alaska from MODIS

    Directory of Open Access Journals (Sweden)

    Chuck Lindsay

    2015-09-01

    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at http://static.gina.alaska.edu/NPS_products/MODIS_snow/.

  17. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  18. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  19. ESA GlobSnow Snow Water Equivalent (SWE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The European Space Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) snow water equivalent (SWE) v2.0 data record contains snow information derived...

  20. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    Directory of Open Access Journals (Sweden)

    C. Vera Valero

    2018-03-01

    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  1. A distributed snow-evolution modeling system (SnowModel)

    Science.gov (United States)

    Glen E. Liston; Kelly. Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  2. The Snowcloud System: Architecture and Algorithms for Snow Hydrology Studies

    Science.gov (United States)

    Skalka, C.; Brown, I.; Frolik, J.

    2013-12-01

    Snowcloud is an embedded data collection system for snow hydrology field research campaigns conducted in harsh climates and remote areas. The system combines distributed wireless sensor network technology and computational techniques to provide data at lower cost and higher spatio-temporal resolution than ground-based systems using traditional methods. Snowcloud has seen multiple Winter deployments in settings ranging from high desert to arctic, resulting in over a dozen node-years of practical experience. The Snowcloud system architecture consists of multiple TinyOS mesh-networked sensor stations collecting environmental data above and, in some deployments, below the snowpack. Monitored data modalities include snow depth, ground and air temperature, PAR and leaf-area index (LAI), and soil moisture. To enable power cycling and control of multiple sensors a custom power and sensor conditioning board was developed. The electronics and structural systems for individual stations have been designed and tested (in the lab and in situ) for ease of assembly and robustness to harsh winter conditions. Battery systems and solar chargers enable seasonal operation even under low/no light arctic conditions. Station costs range between 500 and 1000 depending on the instrumentation suite. For remote field locations, a custom designed hand-held device and data retrieval protocol serves as the primary data collection method. We are also developing and testing a Gateway device that will report data in near-real-time (NRT) over a cellular connection. Data is made available to users via web interfaces that also provide basic data analysis and visualization tools. For applications to snow hydrology studies, the better spatiotemporal resolution of snowpack data provided by Snowcloud is beneficial in several aspects. It provides insight into snowpack evolution, and allows us to investigate differences across different spatial and temporal scales in deployment areas. It enables the

  3. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  4. Influence of beech and spruce sub-montane forests on snow cover in Poľana Biosphere Reserve

    Czech Academy of Sciences Publication Activity Database

    Šatala, T.; Tesař, Miroslav; Hanzelová, M.; Bartík, M.; Šípek, Václav; Škvarenina, J.; Minďáš, J.; Waldhauserová, P.D.

    2017-01-01

    Roč. 72, č. 8 (2017), s. 854-861 ISSN 0006-3088 R&D Projects: GA ČR GA16-05665S Institutional support: RVO:67985874 Keywords : snow water equivalent * snow depth * snow accumulation * snow melting Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 0.759, year: 2016

  5. Snow snake performance monitoring.

    Science.gov (United States)

    2008-12-01

    A recent study, Three-Dimensional Roughness Elements for Snow Retention (FHWA-WY-06/04F) (Tabler 2006), demonstrated : positive evidence for the effectiveness of Snow Snakes, a new type of snow fence suitable for use within the highway right-of...

  6. Modelling of snow exceedances

    Science.gov (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan

    2017-07-01

    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  7. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    Science.gov (United States)

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. © 2014

  8. Integration of snow management practices into a detailed snow pack model

    Science.gov (United States)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle

    2016-04-01

    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  9. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  10. Snow management practices in French ski resorts

    Science.gov (United States)

    Spandre, Pierre; Francois, Hugues; George-Marcelpoil, Emmanuelle; Morin, Samuel

    2016-04-01

    Winter tourism plays a fundamental role in the economy of French mountain regions but also in other countries such as Austria, USA or Canada. Ski operators originally developed grooming methods to provide comfortable and safe skiing conditions. The interannual variability of snow conditions and the competition with international destinations and alternative tourism activities encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However some regions may not be able to produce machine made snow due to inadequate conditions and low altitude resorts are still negatively impacted by low snow seasons. In the meantime, even though the operations of high altitude resorts do not show any dependency to the snow conditions they invest in snowmaking facilities. Such developments of snowmaking facilities may be related to a confused and contradictory perception of climate change resulting in individualistic evolutions of snowmaking facilities, also depending on ski resorts main features such as their altitude and size. Concurrently with the expansion of snowmaking facilities, a large range of indicators have been used to discuss the vulnerability of ski resorts such as the so-called "100 days rule" which was widely used with specific thresholds (i.e. minimum snow depth, dates) and constraints (i.e. snowmaking capacity). The present study aims to provide a detailed description of snow management practices and major priorities in French ski resorts with respect to their characteristics. We set up a survey in autumn 2014, collecting data from 56 French ski operators. We identify the priorities of ski operators and describe their snowmaking and grooming practices and facilities. The operators also provided their perception of the ski resort vulnerability to snow and economic challenges which we could compare with the actual snow conditions and ski lift tickets sales during the period from 2001 to 2012.

  11. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  12. A snow cover climatology for the Pyrenees from MODIS snow products

    Science.gov (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  13. Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches

    Directory of Open Access Journals (Sweden)

    Jenicek Michal

    2018-03-01

    Full Text Available The knowledge of snowpack distribution at a catchment scale is important to predict the snowmelt runoff. The objective of this study is to select and quantify the most important factors governing the snowpack distribution, with special interest in the role of different canopy structure. We applied a simple distributed sampling design with measurement of snow depth and snow water equivalent (SWE at a catchment scale. We selected eleven predictors related to character of specific localities (such as elevation, slope orientation and leaf area index and to winter meteorological conditions (such as irradiance, sum of positive air temperature and sum of new snow depth. The forest canopy structure was described using parameters calculated from hemispherical photographs. A degree-day approach was used to calculate melt factors. Principal component analysis, cluster analysis and Spearman rank correlation were applied to reduce the number of predictors and to analyze measured data. The SWE in forest sites was by 40% lower than in open areas, but this value depended on the canopy structure. The snow ablation in large openings was on average almost two times faster compared to forest sites. The snow ablation in the forest was by 18% faster after forest defoliation (due to the bark beetle. The results from multivariate analyses showed that the leaf area index was a better predictor to explain the SWE distribution during accumulation period, while irradiance was better predictor during snowmelt period. Despite some uncertainty, parameters derived from hemispherical photographs may replace measured incoming solar radiation if this meteorological variable is not available.

  14. Snow loads in a changing climate: new risks?

    Directory of Open Access Journals (Sweden)

    U. Strasser

    2008-01-01

    Full Text Available In January/February 2006, heavy snowfalls in Bavaria (Germany lead to a series of infrastructural damage of catastrophic nature. Since on many collapsed roofs the total snow load was not exceptional, serious engineering deficiencies in roof construction and a sudden rise in the total snow load were considered to be the trigger of the events. An analysis of the then meteorological conditions reveals, that the early winter of 2005/2006 was characterised by an exceptional continuous snow cover, temperatures remained around the freezing point and no significant snowmelt was evident. The frequent freezing/thawing cycles were followed by a general compaction of the snow load. This resulted in a re-distribution and a new concentration of the snow load on specific locations on roofs. With respect to climate change, the question arises as to whether the risks relating to snow loads will increase. The future probability of a continuous snow cover occurrence with frequent freezing/thawing cycles will probably decline due to predicted higher temperatures. However, where temperatures remain low, an increase in winter precipitation will result in increased snow loads. Furthermore, the variability of extremes is predicted to increase. If heavy snowfall events are more frequent, the risk of a trigger event will likely increase. Finally, an attempt will be made here in this paper to outline a concept for an operational warning system for the Bavarian region. This system envisages to predict the development and risk of critical snow loads for a 3-day time period, utilising a combination of climate and snow modelling data and using this together with a snow pillow device (located on roofs and the results of which.

  15. Impact of climate change in Switzerland on socioeconomic snow indices

    Science.gov (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael

    2017-02-01

    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  16. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  17. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    Science.gov (United States)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  18. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient

    Science.gov (United States)

    Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.

    2017-11-01

    In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.

  19. Combining snow depth and innovative skier flow measurements in order to improve snow grooming techniques

    Science.gov (United States)

    Carmagnola, Carlo Maria; Albrecht, Stéphane; Hargoaa, Olivier

    2017-04-01

    In the last decades, ski resort managers have massively improved their snow management practices, in order to adapt their strategies to the inter-annual variability in snow conditions and to the effects of climate change. New real-time informations, such as snow depth measurements carried out on the ski slopes by grooming machines during their daily operations, have become available, allowing high saving, efficiency and optimization gains (reducing for instance the groomer fuel consumption and operation time and the need for machine-made snow production). In order to take a step forward in improving the grooming techniques, it would be necessary to keep into account also the snow erosion by skiers, which depends mostly on the snow surface properties and on the skier attendance. Today, however, most ski resort managers have only a vague idea of the evolution of the skier flows on each slope during the winter season. In this context, we have developed a new sensor (named Skiflux) able to measure the skier attendance using an infrared beam crossing the slopes. Ten Skiflux sensors have been deployed during the 2016/17 winter season at Val Thorens ski area (French Alps), covering a whole sector of the resort. A dedicated software showing the number of skier passages in real time as been developed as well. Combining this new Skiflux dataset with the snow depth measurements from grooming machines (Snowsat System) and the snow and meteorological conditions measured in-situ (Liberty System from Technoalpin), we were able to create a "real-time skiability index" accounting for the quality of the surface snow and its evolution during the day. Moreover, this new framework allowed us to improve the preparation of ski slopes, suggesting new strategies for adapting the grooming working schedule to the snow quality and the skier attendance. In the near future, this work will benefit from the advances made within the H2020 PROSNOW project ("Provision of a prediction system allowing

  20. Effect of snow cover on soil frost penetration

    Science.gov (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  1. Scales of snow depth variability in high elevation rangeland sagebrush

    Science.gov (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  2. Chemical elements contamination of snow cover in region of coal production 'Karazhyra'

    International Nuclear Information System (INIS)

    Evlampieva, E.P.; Panin, M.S.

    2008-01-01

    Peculiarities of space distribution of chemical elements in hardphase and water-soluble falls of snow cover in region of coal deposit 'Karazhyra' are investigated. The maximal, minimal and background areas of elements accumulation in the snow of this region and distribution of their cumulative rates are determined. The main pollutants of snow cover unto background level are revealed.

  3. A Tri-National program for estimating the link between snow resources and hydrological droughts

    Directory of Open Access Journals (Sweden)

    M. Zappa

    2015-06-01

    Full Text Available To evaluate how summer low flows and droughts are affected by the winter snowpack, a Tri-National effort will analyse data from three catchments: Alpbach (Prealps, central Switzerland, Gudjaretis-Tskali (Little Caucasus, central Georgia, and Kamenice (Jizera Mountains, northern Czech Republic. Two GIS-based rainfall-runoff models will simulate over 10 years of runoff in streams based on rain and snowfall measurements, and further meteorological variables. The models use information on the geographical settings of the catchments together with knowledge of the hydrological processes of runoff generation from rainfall, looking particularly at the relationship between spring snowmelt and summer droughts. These processes include snow accumulation and melt, evapotranspiration, groundwater recharge in spring that contributes to (the summer runoff, and will be studied by means of the environmental isotopes 18O and 2H. Knowledge about the isotopic composition of the different water sources will allow to identify the flow paths and estimate the residence time of snow meltwater in the subsurface and its contribution to the stream. The application of the models in different nested or neighbouring catchments will explore their potential for further development and allow a better early prediction of low-flow periods in various mountainous zones across Europe. The paper presents the planned activities including a first analysis of already available dataset of environmental isotopes, discharge, snow water equivalent and modelling experiments of the (already available datasets.

  4. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  5. Resilience to Changing Snow Depth in a Shrubland Ecosystem.

    Science.gov (United States)

    Loik, M. E.

    2008-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  6. Validation of MODIS snow cover images over Austria

    Directory of Open Access Journals (Sweden)

    J. Parajka

    2006-01-01

    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  7. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN

    Science.gov (United States)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.

    2012-04-01

    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy

  8. Surveying wolves without snow: a critical review of the methods used in Spain

    OpenAIRE

    Blanco, Juan Carlos; Cortés, Yolanda

    2011-01-01

    Wolves (Canis lupus) are difficult to survey, and in most countries, snow is used for identifying the species, counting individuals, recording movements and determining social position. However, in the Iberian peninsula and other southern regions of its gobal range, snow is very scarce in winter, so wolves must be surveyed without snow. In Spain and Portugal, wolves are surveyed through estimating number of wolf packs in summer by means of locating litters of pups when they are at rendezvous ...

  9. Snow cover distribution over elevation zones in a mountainous catchment

    Science.gov (United States)

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  10. Small scale variability of snow properties on Antarctic sea ice

    Science.gov (United States)

    Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael

    2016-04-01

    Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.

  11. Improving automated disturbance maps using snow-covered landsat time series stacks

    Science.gov (United States)

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2012-01-01

    Snow-covered winter Landsat time series stacks are used to develop a nonforest mask to enhance automated disturbance maps produced by the Vegetation Change Tracker (VCT). This method exploits the enhanced spectral separability between forested and nonforested areas that occurs with sufficient snow cover. This method resulted in significant improvements in Vegetation...

  12. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    Science.gov (United States)

    Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang

    2016-10-01

    By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  13. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-10-01

    Full Text Available By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1 the mean snow-covered area (SCA in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2 the snow-covered days (SCDs showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3 the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4 the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5 the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  14. Loropetalum chinense 'Snow Panda'

    Science.gov (United States)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  15. Occurrence of blowing snow events at an alpine site over a 10-year period: Observations and modelling

    Science.gov (United States)

    Vionnet, V.; Guyomarc'h, G.; Naaim Bouvet, F.; Martin, E.; Durand, Y.; Bellot, H.; Bel, C.; Puglièse, P.

    2013-05-01

    Blowing snow events control the evolution of the snow pack in mountainous areas and cause inhomogeneous snow distribution. The goal of this study is to identify the main features of blowing snow events at an alpine site and assess the ability of the detailed snowpack model Crocus to reproduce the occurrence of these events in a 1D configuration. We created a database of blowing snow events observed over 10 years at our experimental site. Occurrences of blowing snow events were divided into cases with and without concurrent falling snow. Overall, snow transport is observed during 10.5% of the time in winter and occurs with concurrent falling snow 37.3% of the time. Wind speed and snow age control the frequency of occurrence. Model results illustrate the necessity of taking the wind-dependence of falling snow grain characteristics into account to simulate periods of snow transport and mass fluxes satisfactorily during those periods. The high rate of false alarms produced by the model is investigated in detail for winter 2010/2011 using measurements from snow particle counters.

  16. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  17. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and

  18. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    Science.gov (United States)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  19. The engineering approach to winter sports

    CERN Document Server

    Cheli, Federico; Maldifassi, Stefano; Melzi, Stefano; Sabbioni, Edoardo

    2016-01-01

    The Engineering Approach to Winter Sports presents the state-of-the-art research in the field of winter sports in a harmonized and comprehensive way for a diverse audience of engineers, equipment and facilities designers, and materials scientists. The book examines the physics and chemistry of snow and ice with particular focus on the interaction (friction) between sports equipment and snow/ice, how it is influenced by environmental factors, such as temperature and pressure, as well as by contaminants and how it can be modified through the use of ski waxes or the microtextures of blades or ski soles. The authors also cover, in turn, the different disciplines in winter sports:  skiing (both alpine and cross country), skating and jumping, bob sledding and skeleton, hockey and curling, with attention given to both equipment design and on the simulation of gesture and  track optimization.

  20. The Modification of Orographic Snow Growth Processes by Cloud Nucleating Aerosols

    Science.gov (United States)

    Cotton, W. R.; Saleeby, S.

    2011-12-01

    Cloud nucleating aerosols have been found to modify the amount and spatial distribution of snowfall in mountainous areas where riming growth of snow crystals is known to contribute substantially to the total snow water equivalent precipitation. In the Park Range of Colorado, a 2km deep supercooled liquid water orographic cloud frequently enshrouds the mountaintop during snowfall events. This leads to a seeder-feeder growth regime in which snow falls through the orographic cloud and collects cloud water prior to surface deposition. The addition of higher concentrations of cloud condensation nuclei (CCN) modifies the cloud droplet spectrum toward smaller size droplets and suppresses riming growth. Without rime growth, the density of snow crystals remains low and horizontal trajectories carry them further downwind due to slower vertical fall speeds. This leads to a downwind shift in snowfall accumulation at high CCN concentrations. Cloud resolving model simulations were performed (at 600m horizontal grid spacing) for six snowfall events over the Park Range. The chosen events were well simulated and occurred during intensive observations periods as part of two winter field campaigns in 2007 and 2010 based at Storm Peak Laboratory in Steamboat Springs, CO. For each event, sensitivity simulations were run with various initial CCN concentration vertical profiles that represent clean to polluted aerosol environments. Microphysical budget analyses were performed for these simulations in order to determine the relative importance of the various cloud properties and growth processes that contribute to precipitation production. Observations and modeling results indicate that initial vapor depositional growth of snow tends to be maximized within about 1km of mountaintop above the windward slope while the majority of riming growth occurs within 500m of mountaintop. This suggests that precipitation production is predominantly driven by locally enhanced orography. The large scale

  1. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  2. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    Science.gov (United States)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  3. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S during the years 2000–2016

    Directory of Open Access Journals (Sweden)

    A. Stehr

    2017-10-01

    Full Text Available Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability. Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA and snow cover dynamic (SCD. With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño–Southern Oscillation (ENSO events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000–2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing

  4. Snow cover dynamics in Andean watersheds of Chile (32.0-39.5° S) during the years 2000-2016

    Science.gov (United States)

    Stehr, Alejandra; Aguayo, Mauricio

    2017-10-01

    Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño-Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000-2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in

  5. Analyses of newly digitised and reconstructed snow series over the last 100+ years in Switzerland

    Science.gov (United States)

    Scherrer, S. C.; Wüthrich, C.; Croci-Maspoli, M.; Appenzeller, C.

    2010-09-01

    Snow is an important socio-economic factor in the Swiss Alpine region (tourism, hydro-electricity, drinking water) and responsible for considerable natural hazards such as avalanches. In addition, high-quality long-term snow series can be used as an excellent indicator of climate change. The objectives of this study are threefold. First, suitable long-term snow series from different altitudes and regions in Switzerland have been selected, missing data digitized and the entire series quality checked. Second, the long-term snow series have been used for trend analyses over a time period >100 years. Third, snow depth series have been reconstructed using daily new snow, temperature and precipitation as input variables. This made it possible to analyse snow depth related variables such as days with snow pack. Results show that the snow cover is varying substantially on seasonal and decadal time scales. The analyses of the decadal new snow trends during the last 100 years shows unprecedented low new snow sums in the winter seasons (DJF) of the 1990s. The 100 year trend of days with snow pack reveals a significant decrease for stations below 800 m asl in the winter season (DJF) and for stations around 1800 m asl in spring (MAM). Similar results were found for seasonal new snow sums. The results of the trend analyses are also discussed with respect to temperature and precipitation trends. Finally we will also shortly discuss how especially "precious" snow measurements have been identified and incorporated in a National Basic Climatological Network (NBCN) as well as in the Global Climate Observing System (GCOS).

  6. Impacts of +2 °C global warming on winter tourism demand in Europe

    NARCIS (Netherlands)

    Damm, Andrea; Greuell, Wouter; Landgren, Oskar; Prettenthaler, Franz

    2017-01-01

    Increasing temperatures and snow scarce winter seasons challenge the winter tourism industry. In this study the impacts of +2 °C global warming on winter tourism demand in Europe's ski tourism related NUTS-3 regions are quantified. Using time series regression models, the relationship between

  7. Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China.

    Science.gov (United States)

    Zhang, Hao; Tang, Jie; Liang, Shuang; Li, Zhaoyang; Wang, Jingjing; Wang, Sining

    2018-03-01

    Variations in soil organic carbon (SOC) have implications for atmospheric CO 2 concentrations and the greenhouse effect. However, the effects of snow cover and straw mulching on the variations in SOC fractions across winter remain largely unknown. In this study, soil samples were collected during different stages of winter from an in situ experiment comprising three treatments: 1) snow removal with no straw mulching (Sn-SM-); 2) snow cover with no straw mulching (SC), and; 3) snow cover with straw mulching (SC + SM+). Results showed that labile organic carbon, semi-labile organic carbon, recalcitrant organic carbon (ROC), the light fraction of organic carbon (LFOC), and easily oxidized organic carbon (EOC) contents did not vary significantly (P > .05) during the unfrozen to hard frost stages. Compared to the unfrozen stage, microbial biomass carbon (MBC) contents decreased by 519.03 mg kg -1 , 325.21 mg kg -1 , and 244.09 mg kg -1 and dissolved organic carbon (DOC) contents increased by 473.36 mg kg -1 , 348.10 mg kg -1 , and 258.89 mg kg -1  at the hard frost stage in Sn-SM-, SC, and SC + SM + treatments, respectively. Throughout all thawing stages, > 61% and 59% of SOC and ROC accumulation, respectively in the three treatments were observed in thawing stage II, indicating that higher temperatures and microbial activities in thawing stage II accelerated the inputs of SOC and ROC. ROC accumulation accounted for >65% of the SOC accumulation and the proportions of ROC in SOC increased in the three treatments during the thawing stages. SC + SM + treatment maintained lower EOC contents during thawing stages than other treatments. The observation of lowest SOC and LFOC accumulation and contents in the SC + SM + treatment during thawing stages showed that SC + SM + experienced the least inputs of SOC in the soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Application of the MODIS “snow cover” product for identification of the snow cover pattern in Gis-Baikal region

    Directory of Open Access Journals (Sweden)

    E. A. Istomina

    2014-01-01

    Full Text Available Validation of remote sensing data MODIS «snow cover» in the period from September to May 2000/01, 2007/08, 2008/09 is realized on the base of weather stations data. Good repeatability of weather stations data and snow cover data is shown (more than 80% when snow depth is exceeds 2 cm. The minimum accuracy is in May and October for the variety of snowfall winters. Remote sensing data give possibility to extend the dot information of hydrometeorological stations network on the spatial snow distribution to the mountainous area of Predbajkalje where ground-based observations are absent. According to remote sensing earlier appearance and later melting of snow in mountain areas were identified. The plains and basins areas are characterized by later appearance and earlier melting of snow.

  9. Use of gamma surveys from the aircraft for hydrological forecasts on the area with irregular snow pack

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, L K

    1979-01-01

    Gamma snow surveys from the aircraft based on the measurements of the attenuation of gamma-radiation of soils by the snow pack are discussed. Radiation rate depends on the amount of water on the soil surface and in the top layer 30 to 40 cm deep. Therefore, if measurements are made twice (without snow and with snow pack available) water equivalent of snow cover may be determined only when soil moisture content changes do not occur during the period between the dates of gamma surveys. In the areas with frequent winter thaws, standard land snow surveys do not provide snow storage evaluation with the accuracy sufficient for spring flow prediction. It is shown that when gamma-radiation of absolutely dry soils determined at the laboratory is known as well as of naturally moistened soils during the periods of gamma surveys of the snow pack from the aircraft, and when data is available on soil moisture content obtained from the measurements at the base land network, then a reliable estimation of snow storage on the watershed surfaces in the regions with irregular snow cover is quite possible. This ensures a significant accuracy increase of spring snow melt flood forecasting, particularly concerning winters with little snow.

  10. Use of gamma surveys from the airraft for hydrological forecasts on the area with irregular snow pack

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, L K [State Hydrological Institute, Leningrad (USSR)

    1979-01-01

    Gamma snow surveys from aircraft based on the measurement of the attenuation of gamma-radiation of soils by the snow pack are discussed. Radiation rate depends on the amount of water on the soil surface and in the top layer 30 to 40 cm deep. Therefore, if measurements are made twice (without snow and with snow pack available) the water equivalent of the snow cover may be determined only in cases when soil moisture content changes do not occur during the period between the dates of gamma surveys. In areas with frequent winter thaws standard land snow surveys do not provide snow storage evaluation with accuracy sufficient for spring flow prediction. It is shown that when gamma-radiation of absolutely dry soils determined at the laboratory is known, as well as of naturally moistened soils during the periods of gamma surveys of the snow pack from aircraft, and when data is available on soil moisture content obtained from measurements at the base land network, then a reliable estimation of snow storage on the watershed surfaces in regions with irregular snow cover is quite possible. This ensures a significant accuracy increase in spring snow melt flood forecasting, in particular during winters with little snow.

  11. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  12. Snow model analysis.

    Science.gov (United States)

    2014-01-01

    This study developed a new snow model and a database which warehouses geometric, weather and traffic : data on New Jersey highways. The complexity of the model development lies in considering variable road : width, different spreading/plowing pattern...

  13. Anoxia in the snow

    Science.gov (United States)

    Bristow, Laura A.

    2018-04-01

    Substantial amounts of denitrification and other anaerobic metabolisms can occur in anoxic microenvironments within marine snow particles, according to model simulations. This microbial activity may have a global impact on nitrogen cycling.

  14. Sentinels for snow science

    Science.gov (United States)

    Gascoin, S.; Grizonnet, M.; Baba, W. M.; Hagolle, O.; Fayad, A.; Mermoz, S.; Kinnard, C.; Fatima, K.; Jarlan, L.; Hanich, L.

    2017-12-01

    Current spaceborne sensors do not allow retrieving the snow water equivalent in mountain regions, "the most important unsolved problem in snow hydrology" (Dozier, 2016). While the NASA is operating an airborne mission to survey the SWE in the western USA, elsewhere, however, snow scientists and water managers do not have access to routine SWE measurements at the scale of a mountain range. In this presentation we suggest that the advent of the Copernicus Earth Observation programme opens new perspectives to address this issue in mountain regions worldwide. The Sentinel-2 mission will provide global-scale multispectral observations at 20 m resolution every 5-days (cloud permitting). The Sentinel-1 mission is already imaging the global land surface with a C-band radar at 10 m resolution every 6 days. These observations are unprecedented in terms of spatial and temporal resolution. However, the nature of the observation (radiometry, wavelength) is in the continuity of previous and ongoing missions. As a result, it is relatively straightforward to re-use algorithms that were developed by the remote sensing community over the last decades. For instance, Sentinel-2 data can be used to derive maps of the snow cover extent from the normalized difference snow index, which was initially proposed for Landsat. In addition, the 5-days repeat cycle allows the application of gap-filling algorithms, which were developed for MODIS based on the temporal dimension. The Sentinel-1 data can be used to detect the wet snow cover and track melting areas as proposed for ERS in the early 1990's. Eventually, we show an example where Sentinel-2-like data improved the simulation of the SWE in the data-scarce region of the High Atlas in Morocco through assimilation in a distributed snowpack model. We encourage snow scientists to embrace Sentinel-1 and Sentinel-2 data to enhance our knowledge on the snow cover dynamics in mountain regions.

  15. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  16. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    International Nuclear Information System (INIS)

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  17. SNOW THICKNESS ON AUSTRE GRØNFJORDBREEN, SVALBARD, FROM RADAR MEASUREMENTS AND STANDARD SNOW SURVEYS

    Directory of Open Access Journals (Sweden)

    I. I. Lavrentiev

    2018-01-01

    Full Text Available Summary Comparison of two methods of measurements of snow cover thickness on the glacier Austre Grønfjordbreen, Svalbard was performed in the spring of 2014. These methods were the radar (500 MHz observations and standard snow surveys. Measurements were conducted in 77 different points on the surface of the glacier. A good correlation (R2 = 0.98 was revealed. In comparison with the data of snow surveys, the radar measurements show a similar but more detailed pattern of the distribution of the snow cover depth. The discrepancy between the depths of snow cover on maps plotted from data of both methods did not exceed 30 cm in most parts of the glacier. The standard error of interpolation of the radar data onto the entire glacier surface amounts, on average, to 18 cm. This corresponds to the error of radar measurements of 18.8% when an average snow depth is about 160 cm and 9.4% at its maximum thickness of 320 cm. The distance between the measurement points at which the spatial covariance of the snow depth disappears falls between 236 and 283 m along the glacier, and between 117 and 165 m across its position. We compared the results of radar measurements of the pulse-delay time of reflections from the base of the snow cover with the data of manual probe measurements at 10 points and direct measurements of snow depth and average density in 12 snow pits. The average speed of radio waves propagation in the snow was determined as Vcr = 23.4±0.2 cm ns−1. This magnitude and the Looyenga and Kovacs formulas allowed estimating the average density of snow cover ρL = 353.1±13.1 kg m−3 and ρK = 337.4±12.9 kg m−3. The difference from average density measured in 12 pits ρav.meas = 387.4±12.9 kg m−3 amounts to −10.8% and −14.8%. In 2014, according to snow and radar measurements, altitudinal gradient of snow accumulation on the glacier Austre Grønfjordbreen was equal to 0.21 m/100 m, which is smaller than the

  18. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  19. Investigation of some regularities of the contamination of the surface snow in the ChAPP region in January-February 1987

    International Nuclear Information System (INIS)

    Glazunov, V.O.; Amosov, M.M.; Eldashev, V.V.; Draj, O.N.; Pashevich, V.I.

    1989-01-01

    The data on the surface snow radioactivity inspection obtained in winter 1987 are analyzed. A share of individual radionuclides in the general pollution of surface snow is considered. Changes in general and individual nuclide contamination dependent of the azimuth and distance are presented. A disperse content of contaminants in the surface snow is analyzed. The sampling techniques and snow sample preparation for γ-spectrometry are reported. 5 refs., 8 figs., 7 tabs

  20. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

    Science.gov (United States)

    Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

    2018-03-01

    Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

  1. Prevalence of Pure Versus Mixed Snow Cover Pixels across Spatial Resolutions in Alpine Environments

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz

    2014-12-01

    Full Text Available Remote sensing of snow-covered area (SCA can be binary (indicating the presence/absence of snow cover at each pixel or fractional (indicating the fraction of each pixel covered by snow. Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days

  2. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    Science.gov (United States)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm

  3. MODIS Snow Cover Recovery Using Variational Interpolation

    Science.gov (United States)

    Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  4. Ice fishing by wintering Bald Eagles in Arizona

    Science.gov (United States)

    Teryl G. Grubb; Roy G. Lopez

    1997-01-01

    Northern Arizona winters vary within and between years with occasional heavy snows (up to 0.6 m) and extreme cold (overnight lows -18 to -29°C) interspersed with dry periods, mild temperatures (daytime highs reaching 10°C), and general loss of snow cover at all but highest elevations. Lakes in the area may freeze and thaw partially or totally several times during a...

  5. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    Science.gov (United States)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  6. Obtaining sub-daily new snow density from automated measurements in high mountain regions

    Science.gov (United States)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc

    2018-05-01

    The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow

  7. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    Science.gov (United States)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development

  8. Seasonal snow of arctic Alaska R4D investigations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.S.

    1993-02-01

    Seasonal snow is present on the Arctic Slope of Alaska for nine months each year. Its presence or absence determines whether 80% of the solar radiation is reflected or absorbed, respectively. Although life on the Arctic Slope is adapted to, and in some cases dependent upon seasonal snow, little is known about it from a scientific point of view. Its quantity has been grossly underestimated, and knowledge of its distribution and the extent of wind transport and redistribution is very limited. This research project dealt with the amount, regional distribution and physical properties of wind blown snow and its biological role in the R4D area of the Arctic Slope. Physical processes which operate within the snow that were studied included the flux of heat and vapor and the fractionation of stable isotopes through it during fall and winter, and the complex heat and mass transfer within the snow and between snow, its substrate and the overlying atmosphere during the melt period.

  9. Tow plows could help Michigan save time and money on winter maintenance : research spotlight.

    Science.gov (United States)

    2016-11-01

    As winter maintenance costs rise, MDOT is looking into innovative approaches to increase snow removal efficiency. As part of this effort, the department recently estimated the costs and benefits of incorporating tow plows into its equipment fleet. Re...

  10. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.

    Science.gov (United States)

    2017-09-19

    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  11. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  12. The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.

    Directory of Open Access Journals (Sweden)

    Eric M Gese

    Full Text Available Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis remains controversial due to the concern of coyote (Canis latrans use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep, radio-collared coyotes persisted at high elevations (>2,500 m year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13% for a mean distance of 149 m (random: 59 m. Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced

  13. The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.

    Science.gov (United States)

    Gese, Eric M; Dowd, Jennifer L B; Aubry, Lise M

    2013-01-01

    Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote

  14. Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction

    Directory of Open Access Journals (Sweden)

    C. Mitterer

    2013-02-01

    Full Text Available Wet-snow avalanches are notoriously difficult to predict; their formation mechanism is poorly understood since in situ measurements representing the thermal and mechanical evolution are difficult to perform. Instead, air temperature is commonly used as a predictor variable for days with high wet-snow avalanche danger – often with limited success. As melt water is a major driver of wet-snow instability and snow melt depends on the energy input into the snow cover, we computed the energy balance for predicting periods with high wet-snow avalanche activity. The energy balance was partly measured and partly modelled for virtual slopes at different elevations for the aspects south and north using the 1-D snow cover model SNOWPACK. We used measured meteorological variables and computed energy balance and its components to compare wet-snow avalanche days to non-avalanche days for four consecutive winter seasons in the surroundings of Davos, Switzerland. Air temperature, the net shortwave radiation and the energy input integrated over 3 or 5 days showed best results in discriminating event from non-event days. Multivariate statistics, however, revealed that for better predicting avalanche days, information on the cold content of the snowpack is necessary. Wet-snow avalanche activity was closely related to periods when large parts of the snowpack reached an isothermal state (0 °C and energy input exceeded a maximum value of 200 kJ m−2 in one day, or the 3-day sum of positive energy input was larger than 1.2 MJ m−2. Prediction accuracy with measured meteorological variables was as good as with computed energy balance parameters, but simulated energy balance variables accounted better for different aspects, slopes and elevations than meteorological data.

  15. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss

    Directory of Open Access Journals (Sweden)

    Yurong Cui

    2016-06-01

    Full Text Available Snow water equivalent (SWE is a key parameter in the Earth’s energy budget and water cycle. It has been demonstrated that SWE can be retrieved using active microwave remote sensing from space. This necessitates the development of forward models that are capable of simulating the interactions of microwaves and the snow medium. Several proposed models have described snow as a collection of sphere- or ellipsoid-shaped ice particles embedded in air, while the microstructure of snow is, in reality, more complex. Natural snow usually forms a sintered structure following mechanical and thermal metamorphism processes. In this research, the bi-continuous vector radiative transfer (bi-continuous-VRT model, which firstly constructs snow microstructure more similar to real snow and then simulates the snow backscattering signal, is used as the forward model for SWE estimation. Based on this forward model, a parameterization scheme of snow volume backscattering is proposed. A relationship between snow optical thickness and single scattering albedo at X and Ku bands is established by analyzing the database generated from the bi-continuous-VRT model. A cost function with constraints is used to solve effective albedo and optical thickness, while the absorption part of optical thickness is obtained from these two parameters. SWE is estimated after a correction for physical temperature. The estimated SWE is correlated with the measured SWE with an acceptable accuracy. Validation against two-year measurements, using the SnowScat instrument from the Nordic Snow Radar Experiment (NoSREx, shows that the estimated SWE using the presented algorithm has a root mean square error (RMSE of 16.59 mm for the winter of 2009–2010 and 19.70 mm for the winter of 2010–2011.

  16. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    CERN Document Server

    Singh, G P

    2003-01-01

    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons f...

  17. Endolithic Microbial Life in Extreme Cold Climate: Snow Is Required, but Perhaps Less Is More

    Directory of Open Access Journals (Sweden)

    Henry J. Sun

    2013-04-01

    Full Text Available Cyanobacteria and lichens living under sandstone surfaces in the McMurdo Dry Valleys require snow for moisture. Snow accumulated beyond a thin layer, however, is counterproductive, interfering with rock insolation, snow melting, and photosynthetic access to light. With this in mind, the facts that rock slope and direction control colonization, and that climate change results in regional extinctions, can be explained. Vertical cliffs, which lack snow cover and are perpetually dry, are devoid of organisms. Boulder tops and edges can trap snow, but gravity and wind prevent excessive buildup. There, the organisms flourish. In places where snow-thinning cannot occur and snow drifts collect, rocks may contain living or dead communities. In light of these observations, the possibility of finding extraterrestrial endolithic communities on Mars cannot be eliminated.

  18. Simulation of snow distribution and melt under cloudy conditions in an Alpine watershed

    Directory of Open Access Journals (Sweden)

    H.-Y. Li

    2011-07-01

    Full Text Available An energy balance method and remote-sensing data were used to simulate snow distribution and melt in an alpine watershed in northwestern China within a complete snow accumulation-melt period. The spatial energy budgets were simulated using meteorological observations and a digital elevation model of the watershed. A linear interpolation method was used to estimate the daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer (MODIS data. Hourly snow distribution and melt, snow cover extent and daily discharge were included in the simulated results. The root mean square error between the measured snow-water equivalent samplings and the simulated results is 3.2 cm. The Nash and Sutcliffe efficiency statistic (NSE between the measured and simulated discharges is 0.673, and the volume difference (Dv is 3.9 %. Using the method introduced in this article, modelling spatial snow distribution and melt runoff will become relatively convenient.

  19. Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2010-03-01

    Full Text Available This paper presents the results of snow cover monitoring studies in Liaoning Province, northeastern China, using MODIS data. Snow cover plays an important role in both the regional water balance and soil moisture properties during the early spring in northeastern China. In addition, heavy snowfalls commonly trigger hazards such as flooding, caused by rapid snow melt, or crop failure, resulting from fluctuations in soil temperature associated with changes in the snow cover. The latter is a function of both regional, or global, climatic changes, as well as fluctuations in the albedo resulting from variations in the Snow Covered Area (SCA. These impacts are crucial to human activities, especially to those living in middle-latitude areas such as Liaoning Province. Thus, SCA monitoring is currently an important tool in studies of global climate change, particularly because satellite remote sensing data provide timely and efficient snow cover information for large areas. In this study, MODIS L1B data, MODIS Daily Snow Products (MOD10A1 and MODIS 8-day Snow Products (MOD10A2 were used to monitor the SCA of Liaoning Province over the winter months of November–April, 2006–2008. The effects of cloud masking and forest masking on the snow monitoring results were also assessed. The results show that the SCA percentage derived from MODIS L1B data is relatively consistent, but slightly higher than that obtained from MODIS Snow Products. In situ data from 25 snow stations were used to assess the accuracy of snow cover monitoring from the SCA compared to the results from MODIS Snow Products. The studies found that the SCA results were more reliable than MODIS Snow Products in the study area.

  20. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  1. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    International Nuclear Information System (INIS)

    Wang Huajun; Zhao Jun; Chen Zhihao

    2008-01-01

    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  2. Snow deposition and melt under different vegetative covers in central New York

    Science.gov (United States)

    A. R. Eschner; D. R. Satterlund

    1963-01-01

    Two-thirds of the annual runoff from watersheds in the Allegheny Plateau of central New York comes from the snow-or snow and rain that falls in December through April. Although the amounts of precipitation in this period are fairly uniform from year to year, the proportion that falls as snow varies; so does the amount that accumulates on the ground, and its duration...

  3. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  4. Carbon dioxide evolution from snow-covered agricultural ecosystems in Finland

    Directory of Open Access Journals (Sweden)

    Hiroshi Koizumi

    1996-07-01

    Full Text Available The release of CO2 from the snow surface in winter and the soil surface in summer was directly or indirectly measured in three different soil types (peat, sand and clay in agricultural ecosystems in Finland. The closed chamber (CC method was used for the direct and Pick’s diffusion model (DM method for the indirect measurements. The winter soil temperatures at 2-cm depth were between 0 and 1°C for each soil type. The concentration of CO2 within the snowpack increased linearly with snow depth. The average fluxes of CO2 calculated from the gradients of CO2 concentration in the snow using the DM method ranged from 10 to 27 mg CO2 m2h-1 and with the CC method from 18 to 27 mg CO2 m2h-1. These results suggest that the snow insulates the soil thermally, allowing CO2 production to continue at soil temperatures slightly above freezing in the winter. Carbon dioxide formed in the soil can move across the snowpack up to the atmosphere. The winter/summer ratio of CO2 evolution was estimated to exceed 4%. Therefore, the snow-covered crop soil served as a source of CO2 in winter, and CO2 evolution constitutes an important part of the annual CO2 budget in snowy regions.

  5. Snow-clearing operations

    CERN Multimedia

    EN Department

    2010-01-01

    To facilitate snow clearing operations, which commence at 4.30 in the morning, all drivers of CERN cars are kindly requested to park them together in groups. This will help us greatly assist us in our work. Thank-you for your help. Transport Group / EN-HE Tel. 72202

  6. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz

    2015-01-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100years long Betulanana ring-width chronology from Disko Island in western Greenland that demonstrates...... a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betulanana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming....... Data also reveal a clear shift within the last 20years from a period with thick snow depths (1991-1996) and a positive effect on Betulanana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter...

  7. Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK

    Science.gov (United States)

    Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.

    2017-12-01

    Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate

  8. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  9. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  10. Temperate forest impacts on maritime snowpacks across an elevation gradient: An assessment of the snow surface energy balance and airborne lidar derived forest structure

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2016-12-01

    Temperate forests modify snow evolution patterns both spatially and temporally relative to open areas. Dense, warm forests both impede snow accumulation through increased canopy snow interception and increase sub-canopy longwave energy inputs onto the snow surface. These process modifications vary in magnitude and duration depending on climatic, topographic and forest characteristics. Here we present results from a four year study of paired forested and open sites at three elevations, Low - 1150 m, Mid - 1325 m and High - 1465 m. Snowpacks are deeper and last up to 3-4 weeks longer at the Low and Mid elevation Open sites relative to the adjacent Forest sites. Conversely, at the High Forest site, snow is retained 2-4 weeks longer than the Open site. This change in snowpack depth and persistence is attributed to deposition patterns at higher elevations and forest structure differences that alter the canopy interception efficiency and the sub-canopy energy balance. Canopy interception efficiency (CIE) in the Low and Mid Forest sites, over the duration of the study were 79% and 76% of the total event snowfall, whereas CIE was 31% at the High Forest site. Longwave radiation in forested environments is the primary energy component across each elevation band due to the warm winter environment and forest presence, accounting for 82%, 88%, and 59% of the energy balance at the Low, Mid, and High Forest sites, respectively. High wind speeds in the High elevation Open site significantly increases the turbulent energy and creates preferential snowfall deposition in the nearby Forest site. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.

  11. Diurnal variations in the UV albedo of arctic snow

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-11-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  12. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Directory of Open Access Journals (Sweden)

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  13. Long-term analyses of snow dynamics within the french Alps on the 1900-2100 period. Analyses of historical snow water equivalent observations, modelisations and projections of a hundred of snow courses.

    Science.gov (United States)

    Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.

    2017-12-01

    The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south

  14. Studies of diffuse and direct solar radiation over snow

    International Nuclear Information System (INIS)

    Wesely, M.L.; Everett, R.G.

    1976-01-01

    Two interesting questions can be addressed by examination of solar radiation records obtained while the surface is covered with snow. One concerns the extent to which airborne particulate matter affects solar radiation received at the surface during winter conditions that are typical of those in the northeastern quarter of the United States. The other relates to the importance of complicated light scatterng in the earth-atmosphere system when the surface albedo is large. With the snow surface reflecting 50% or more of the incident radiation, it is likely that a significant addition to diffuse radiation would result from light that is reflected from the surface and then scattered back to the earth by the atmosphere. Preliminary data from measurements made during the winter of 1975 to 1976 are reported

  15. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  16. Run-off of strontium with melting snow in spring

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1986-09-01

    When assessing the consequences of atmospheric releases caused by a large reactor accident, one usually finds that the major contributions to the dose are via nutrition and from exposure to radiation from radioactive materials deposited on ground. The experiment described is concerned with run-off from agricultural surface which has been contaminated with strontiom while covered with snow. Migration experiments show a significant difference between summer and winter conditions. Roughly 54% of the strontium with which the experimental area was contaminated, ran off with the melt-water. Under winter conditions, portions of the contaminant will flow with the melt-water without coming in contact with the soil

  17. Identification and evaluation of slip and fall risk on ice and snow

    OpenAIRE

    Gao, Chuansi

    2001-01-01

    Roads and pavements covered with ice and snow during winter in the Nordic and other cold regions are slippery, which result in the prevalence of slip and fall accidents among not only the public, but also outdoor workers. Literature and injury statistics revealed that the most frequently specified contributory factor for occupational slip, trip and fall accidents in Sweden is snow and ice. Road accident research showed that the largest numbers of traffic casualties occurred during walking, fo...

  18. Reindeer (Rangifer tarandus and climate change: Importance of winter forage

    Directory of Open Access Journals (Sweden)

    Thrine Moen Heggberget

    2002-06-01

    Full Text Available As a consequence of increasing greenhouse gas concentrations, climate change is predicted to be particularly pronounced, although regionally variable, in the vast arctic, sub-arctic and alpine tundra areas of the northern hemisphere. Here, we review winter foraging conditions for reindeer and caribou (Rangifer tarandus living in these areas, and consider diet, forage quality and distribution, accessibility due to snow variation, and effects of snow condition on reindeer and caribou populations. Finally, we hypothesise how global warming may affect wild mountain reindeer herds in South Norway. Energy-rich lichens often dominate reindeer and caribou diets. The animals also prefer lichens, and their productivity has been shown to be higher on lichen-rich than on lichen-poor ranges. Nevertheless, this energy source appears to be neither sufficient as winter diet for reindeer or caribou (at least for pregnant females nor necessary. Some reindeer and caribou populations seem to be better adapted to a non-lichen winter diet, e.g. by a larger alimentary tract. Shrubs appear to be the most common alternative winter forage, while some grasses appear to represent a good, nutritionally-balanced winter diet. Reindeer/caribou make good use of a wide variety of plants in winter, including dead and dry parts that are digested more than expected based on their fibre content. The diversity of winter forage is probably important for the mineral content of the diet. A lichen-dominated winter diet may be deficient in essential dietary elements, e.g. minerals. Sodium in particular may be marginal in inland winter ranges. Our review indicates that most Rangifer populations with lichen-dominated winter diets are either periodically or continuously heavily harvested by humans or predators. However, when population size is mainly limited by food, accessible lichen resources are often depleted. Plant studies simulating climatic change indicate that a warmer, wetter

  19. Drones application on snow and ice surveys in alpine areas

    Science.gov (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    scientific point of view. All flight was performed by remote controlled aero models with high resolution camera. Aero models were able to take off and to ground on snow covered or icy surfaces since the specific aerodynamic configuration and specific engine used to. All winter surveys were executed flying low to obtain a tridimensional reconstruction of an High resolution Digital Elevation Model (DEM) of snow cover and ice cover and on summer as been developed the DEM were snow amass in the maximum avalanche risk period. The difference between winter and summer DEM (difference between two point clouds) let to individuate the snow depth, and it was used as input data for the snow avalanche model for the Aprica site (Bergamo - Italy).

  20. Introduction to snow rheology

    International Nuclear Information System (INIS)

    Montmollin, Vincent de

    1978-01-01

    The tests described in the thesis are rotating shearing tests, with rotational constant speed ranging between 0.00075 rpm and 0.75 rpm. The results obtained are similar to those observed with compression tests at constant speed, except that shearing tests are carried out with densities nearly constant. So, we show three different domains when the rotation speed increases: 1) viscous (without failure) 2) brittle of first type (cycles of brittle failures) and 3) brittle of second type (only one brittle failure and solid friction). These results show clearly that the fundamental mechanism that rules the mechanisms of snow, is fast metamorphosis of bonds, binding ice grains: this metamorphosis is important when solicitation speeds are low (permanent rate of shearing in viscous domain, regeneration of the failure surfaces in the brittle domain of the first type) and this metamorphosis does not exist when speed increases (only one failure and solid friction in the brittle domain of second type). It is also included an important bibliographic analysis of the snow mechanics, and an experimental and theoretical study about shock wave propagation in natural snow covers. (author) [fr

  1. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predi...... will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling....... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  2. Evaluation of NVE's snow station network; Subreport in R et D project 302H15 Good snow data; Evaluering av NVE sitt snoestasjonsnettverk

    Energy Technology Data Exchange (ETDEWEB)

    Ree, Bjoerg Lirhus; Landroe, Hilde; Trondsen, Elise; Moeen, Knut M.

    2011-03-15

    NVE has measured snow water equivalent of snow pillow in forty years. Our snow station network has risen since 1997 from 6 to 25 stations. It was therefore absolutely necessary to do a review and quality assurance of NVE's snow data. This report discusses the snow data measured continuously - snow water equivalent and snow depth. Each station and the parameters it measures are described and evaluated. It is concluded in relation to whether stations should be continued or not. Stations technical solutions are well described, both of NVE's standard stations and the two test stations, Filefjell and Svarttjoernbekken. It has been o importance to bring out what problems the instruments have or may have and provide suggestions for solutions to them. Problems related to measure the water equivalent under Norwegian conditions, with the challenges and winter rain and re-freezing provides, is also reviewed. Alternatives to water equivalent measurements with a snow pillow, which is the traditional way in this country, are presented. Some of the alternative methods NVE tests out, for the others only description and our opinion is given. (Author)

  3. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  4. Evaluation of the Viking-Cives towplow for winter maintenance.

    Science.gov (United States)

    2014-01-01

    To maximize efficiency while minimizing costs within ODOTs winter maintenance budget, ODOT is : evaluating new methods of snow and ice removal. One method is the use of the Viking-Cives TowPlow. The : TowPlow is pulled behind a tandem axle truck a...

  5. Travel in adverse winter weather conditions by blind pedestrians.

    Science.gov (United States)

    2015-08-31

    Winter weather creates many orientation and mobility (O&M) challenges for people who are visually impaired. Getting the cane tip stuck is one of the noticeable challenges when traveling in snow, particularly when the walking surface is covered in dee...

  6. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the

  7. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Snow cover and snowfall impact corticosterone and immunoglobulin a levels in a threatened steppe bird.

    Science.gov (United States)

    Liu, Gang; Hu, Xiaolong; Kessler, Aimee Elizabeth; Gong, Minghao; Wang, Yihua; Li, Huixin; Dong, Yuqiu; Yang, Yuhui; Li, Linhai

    2018-05-15

    Birds use both the corticosterone stress response and immune system to meet physiological challenges during exposure to adverse climatic conditions. To assess the stress level and immune response of the Asian Great Bustard during conditions of severe winter weather, we measured fecal corticosterone (CORT) and Immunoglobulin A (IgA) before and after snowfall in a low snow cover year (2014) and a high snow cover year (2015). A total of 239 fecal samples were gathered from individuals in Tumuji Nature Reserve, located in eastern Inner Mongolia, China. We observed high CORT levels that rose further after snowfall both in high and low snow cover years. IgA levels increased significantly after snowfall in the low snow cover year, but decreased after snowfall in the high snow cover year. These results suggest that overwintering Asian Great Bustards are subjected to climatic stress during severe winter weather, and the hypothalamic-pituitary-adrenal axis and immune system react to this challenge. Extreme levels of stress, such as snowfall in already prolonged and high snow cover conditions may decrease immune function. Supplemental feeding should be considered under severe winter weather conditions for this endangered subspecies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Characteristics of Heavy Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in Korea

    Science.gov (United States)

    Koh, D.

    2016-12-01

    The Yeongdong region in Korea has frequent heavy snowfall in winter, which usually results in societal and economic damages such as collapses of the greenhouse and the temporary building due to heavy snowfall weights and traffic accidents due to snow-slippery road condition. Therefore we have conducted an intensive measurement campaign of `Experiment on Snow Storms At Yeongdong (ESSAY)' using radiosonde soundings, several remote sensors and a digital camera with a magnifier for taking a photograph of snowfall crystals in the region. The analysis period is mainly limited to every winter from 2014 to 2016The typical synoptic situation for the heavy snowfall is Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, leading to the northeasterly or easterly flows frequently accompanied by the long-lasting snowfall in the Yeongdong region. The snow crystal habits observed in the ESSAY campaign are mainly dendrite, consisting of about 70% of the entire habits, indicative of relatively warmer East Sea effect. Meanwhile, the rimed habits are frequently captured specifically when two-layered clouds are observed. The homogeneous habit such as dendrite is shown in case of shallow clouds with its thickness below 500 m, whereas various habits are captured such as graupel, dendrites, rimed dendrites, etc in the thicker cloud with its thickness greater than 1.5 km. The association of snow crystal habits with temperature and supersaturation in the cloud will be more discussed.

  10. Alpine snow cover in a changing climate: a regional climate model perspective

    Science.gov (United States)

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph

    2013-08-01

    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  11. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017

    Science.gov (United States)

    Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio

    2017-12-01

    This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a

  12. Snow and Ice Crust Changes over Northern Eurasia since 1966

    Science.gov (United States)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    When temperature of snow cover reaches zero Celsius first time since its establishment, snowmelt starts. In many parts of the world this process can be lengthy. The initial amount of heat that “arrives” to the snowpack might be insufficient for complete snowmelt, during the colder nights re-freeze of the melted snow may occur (thus creating the ice crust layers), and a new cold front (or the departure of the warm front that initiated melt) can decrease temperatures below the freezing point again and stop the snowmelt completely. It well can be that first such snowmelt occurs in winter (thaw day) and for several months thereafter snowpack stays on the ground. However, even the first such melt initiates a process of snow metamorphosis on its surface changing snow albedo and generating snow crust as well as on its bottom generating ice crust. Once emerged, the crusts will not disappear until the complete snowmelt. Furthermore, these crusts have numerous pathways of impact on the wild birds and animals in the Arctic environment as well as on domesticated reindeers. In extreme cases, the crusts may kill some wild species and prevent reindeers’ migration and feeding. Ongoing warming in high latitudes created situations when in the western half of Eurasian continent days with thaw became more frequent. Keeping in mind potential detrimental impacts of winter thaws and associated with them snow/ice crust development, it is worthwhile to study directly what are the major features of snow and ice crust over Eurasia and what is their dynamics. For the purpose of this study, we employed the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of

  13. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    Science.gov (United States)

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  14. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  15. Modelling the snowmelt and the snow water equivalent by creating a simplified energy balance conceptual snow model

    Science.gov (United States)

    Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre

    2016-04-01

    A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the

  16. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    Science.gov (United States)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  17. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  18. Canadian snow and sea ice: historical trends and projections

    Science.gov (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  19. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  20. A Comparison of the SNICAR Radiative Transfer Model to In Situ Snow Characterization Measurements at Sites in New England, USA

    Science.gov (United States)

    Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.

    2016-12-01

    As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.

  1. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    Science.gov (United States)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter

  2. Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    J. Bock

    2016-10-01

    Full Text Available Snowpack is a multiphase (photochemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photochemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air–snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95, with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early

  3. Antarctic snow and global climate

    International Nuclear Information System (INIS)

    Granberg, H.B.

    2001-01-01

    Global circulation models (GCM) indicate that global warming will be most pronounced at polar regions and high latitudes, causing concern about the stability of the Antarctic ice cap. A project entitled the Seasonal Snow in Antarctica examined the properties of the near surface snow to determine the current conditions that influence snow cover development. The goal was to assess the response of the snow cover in Queen Maud Land (QML) to an increased atmospheric carbon dioxide content. The Antarctic snow cover in QML was examined as part of the FINNARP expeditions in 1999 and 2000 which examined the processes that influence the snow cover. Its energy and mass balance were also assessed by examining the near surface snow strata in shallow (1-2 m) pits and by taking measurements of environmental variables. This made it possible to determine if the glacier is in danger of melting at this northerly location in the Antarctic. The study also made it possible to determine which variables need to change and by how much, for significant melting to occur. It was shown that the Antarctic anticyclone creates particular conditions that protect the snow cover from melting. The anticyclone brings dry air from the stratosphere during most of the year and is exempt from the water vapour feedback. It was concluded that even a doubling of atmospheric carbon dioxide will not produce major snow melt runoff. 8 refs

  4. J-SEx : The Jollie Snow Experiment, New Zealand

    Science.gov (United States)

    Kerr, T.; Singh, S.; Kees, L.; Webster, C.; Clark, M.; Hendrikx, J.; Woods, R.

    2012-04-01

    Intensive snow observations have been collected in a steep alpine catchment (the Jollie Valley) in the Southern Alps of New Zealand for four years at the time of maximum snow storage. The campaign, called the Jollie Snow Experiment (J-SEx), was undertaken to improve understanding of snow variability in a steep alpine landscape. Observation methods included manual depth-probing at hundreds of locations with associated snowpit-digging, and surface and air-borne ground penetrating radar. In addition, repeat (daily) oblique photography was carried out on a subcatchment for two of the years. Analysis of the observations, in conjunction with similar observations from around the world has enabled direction to be given for selecting optimal modelling scales, and an indication of what processes need to be resolved at the different scales. For instance, if models are to operate at sub-100 m horizontal scales, they need to resolve drifting, sloughing and avalanching processes. Binary regression tree methods have been applied to identify terrain variables which explain the observed snow mass variability. This has enabled an assessment of total catchment snow storage to be established for each year. This assessment showed that the controlling variables change from year to year, so that no single terrain-based interpolation method may be generally applied. The change in the terrain relationships each year has been taken as an indication that the different frequencies of snowfall-related climate types from one year to the next affects which terrain characteristics have the greatest impact on snow variability. Assessment of terrain effects at the slope scale indicates that slope angle has the potential to be a strong influence on snow variability in that steep slopes do not build up large accumulations, and that low-angled regions below steep areas become areas of large snow build-up. This "slope" effect is clearly evident from the repeat photography, with the last areas to melt

  5. Global Precipitation Measurement (GPM) Core Observatory Falling Snow Estimates

    Science.gov (United States)

    Skofronick Jackson, G.; Kulie, M.; Milani, L.; Munchak, S. J.; Wood, N.; Levizzani, V.

    2017-12-01

    Retrievals of falling snow from space represent an important data set for understanding and linking the Earth's atmospheric, hydrological, and energy cycles. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. This work focuses on comparing the first stable falling snow retrieval products (released May 2017) for the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO), which was launched February 2014, and carries both an active dual frequency (Ku- and Ka-band) precipitation radar (DPR) and a passive microwave radiometer (GPM Microwave Imager-GMI). Five separate GPM-CO falling snow retrieval algorithm products are analyzed including those from DPR Matched (Ka+Ku) Scan, DPR Normal Scan (Ku), DPR High Sensitivity Scan (Ka), combined DPR+GMI, and GMI. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new, the different on-orbit instruments don't capture all snow rates equally, and retrieval algorithms differ. Thus a detailed comparison among the GPM-CO products elucidates advantages and disadvantages of the retrievals. GPM and CloudSat global snowfall evaluation exercises are natural investigative pathways to explore, but caution must be undertaken when analyzing these datasets for comparative purposes. This work includes outlining the challenges associated with comparing GPM-CO to CloudSat satellite snow estimates due to the different sampling, algorithms, and instrument capabilities. We will highlight some factors and assumptions that can be altered or statistically normalized and applied in an effort to make comparisons between GPM and CloudSat global satellite falling snow products as equitable as possible.

  6. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation

    Science.gov (United States)

    Forman, Bart; Reichle, Rofl; Rodell, Matt

    2011-01-01

    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  7. Snow and SMOW

    International Nuclear Information System (INIS)

    1967-01-01

    In the midst of Vienna's hottest weather spell this year, members of the Agency's headquarters laboratory staff found themselves unpacking a consignment of fresh snow from the Antarctic. It had been sent by air through Los Angeles, not for cooling purposes, but to assist in making more accurate measurements as part of the study of the world's water distribution and movement. The same research also involves SMOW (Standard Mean Ocean Water) and samples of water from the mid-Pacific will also soon arrive for scientific examination

  8. Sampling in the Snow

    Science.gov (United States)

    Hanson, Eric; Burakowski, Elizabeth

    2015-01-01

    For much of the northern United States, the months surrounding the winter solstice are a time of increased darkness, low temperatures, and frozen landscapes. Each year, the ubiquitous white ice crystals that blanket regions of the north go uninvestigated. Instead of hunkering down indoors with their classes, however, teachers can take advantage of…

  9. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century

    Directory of Open Access Journals (Sweden)

    M. Ménégoz

    2013-03-01

    Full Text Available We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover north of 30° N both for the present-day and for the middle of the 21st century. Black carbon (BC deposition over continents induces a reduction in the mean number of days with snow at the surface (MNDWS that ranges from 0 to 10 days over large areas of Eurasia and Northern America for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is exposed to both strong solar radiation and a large amount of aerosol deposition induced themselves by a high level of transport of particles from polluted areas. North of 30° N, this deposition flux represents 222 Gg BC month−1 on average from April to June in our simulation. A large reduction in BC emissions is expected in the future in all of the Representative Concentration Pathway (RCP scenarios. In particular, considering the RCP8.5 in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month−1 in the 2050s. However, despite the reduction of the aerosol impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 days from present-day values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic by the mid-21st century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening effects associated with these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated

  10. Cold, Ice, and Snow Safety (For Parents)

    Science.gov (United States)

    ... to mention a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions ... re going to get the family outside to shovel the snow? Fine, but take care. Snow shoveling ...

  11. Aerial view of CERN under the snow

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    In this photograph taken in the winter of 1963, CERN still looks quite bare under its mantle of snow. The Proton Synchrotron (PS), resembling a bicycle wheel in shape, had been in operation since the summer of 1959. A proposal had just been made for the site of CERN's second large project, the Intersecting Storage Rings (ISR): France was to house the world's first proton-proton collider. In September 1965, the French authorities signed an agreement making more than 40 hectares of land available for the extension of the CERN site established in Switzerland into French territory. The ISR project received final approval from the CERN Council in December 1965. The civil engineering work on the French part began in November 196

  12. Addressing challenges for youths with mobility devices in winter conditions.

    Science.gov (United States)

    Morales, Ernesto; Lindsay, Sally; Edwards, Geoffrey; Howell, Lori; Vincent, Claude; Yantzi, Nicole; Gauthier, Véronique

    2018-01-01

    Winter-related research about the experience of navigating in the urban context has mostly focused on the elderly population with physical disabilities. The aim of this project was to explore potential design solutions to enhance young people's mobility devices and the built environment to improve accessibility and participation in winter. A multi-method qualitative design process included the following steps: (1) in-depth interviews; (2) photo elicitation; (3) individual co-design sessions; and (4) group co-design sessions (i.e., focus group). The participants were 13 youths (nine males and four females), aged 12-21, who used a wheelchair (12 power chair users and one manual wheelchair), for some with their parents, others without their parents, according to the parents' willingness to participate or not in the study (n = 13). The first two authors conducted group co-design sessions with mechanical engineers and therapists/clinicians in two Canadian cities to discuss the feasibility of the designs. Results (findings): The youths and their parents reported different winter-related challenges and proposed specific design solutions to enhance their participation and inclusion in winter activities. Seven of these designs were presented at two group co-design sessions of therapists/clinicians and engineers. Two designs were found to be feasible: (1) a traction device for wheelchairs in snow and (2) a mat made of rollers to clean snow and dirt from tires. The results of this research highlight the frustrations and challenges youths who use wheelchairs encounter in winter and a need for new solutions to ensure greater accessibility in winter. Therapists/clinicians and designers should address winter-related accessibility problems in areas with abundant snow. Implications for Rehabilitation Several studies show that current urban contexts do not necessarily respond accurately to the needs of individuals with limited mobility. Winter-related research about the

  13. Report on a feasibility survey of the cold accumulated heat use energy system in Hokkaido; Hokkaido ni okeru reichikunetsu riyo energy system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted of various systems which use in summer cold heat from the snow stored in winter. A model of the cold accumulated heat system of the type which has a high possibility of the introduction was built to study a possibility of the realization. Types of the model system were selected assuming the utilization of cold heat energy of snow in Sapporo, a typical large city in the cold heavy-snow area. Studies were made on each model of urban type commercial facilities, urban type offices, suburban type shopping center, and suburban type hospitals. For each model, more than one systems were studied according to types and forms of the storage tank, and heat recovery methods. As a result, it was found that cold heat energy of snow can be utilized almost effectively by making an appropriate study of the energy balance like the possible supply of cold heat exceeded the demand in two models of an urban type office building and an suburban type hospital. Further, operating expenses of typical models were roughly calculated. 51 figs., 20 figs.

  14. Vancouver winters: Environmental influences on inpatient adult orthopaedic trauma demographics

    International Nuclear Information System (INIS)

    Noordin, S.; Masri, B. A.

    2014-01-01

    Objective: To compare the pattern of adult inpatient orthopaedic injuries admitted at three Vancouver hospitals following one of the worst winter snowstorms in the region with the preceding control winter period. Methods: The surveillance study was conducted at the University of British Columbia, Vancouver, Canada, 2007 to 2010. Inpatient adult admissions for orthopaedic injuries at three hospitals were recorded, including age, gender, anatomic location of injury, type of fracture (open or closed), fixation method (internal versus external fixation), and length of acute care hospital stay. Comparisons between admissions during this weather pattern and admission during a previous winter with minimal snow were made. SPSS 19 was used for statistical analysis. Results: Of the 511 patients admitted under Orthopaedic trauma service during the significant winter snowstorms of December 2008 - January 2009, 100 (19.6%) (CI: 16.2%-23.2%) were due to ice and snow, whereas in the preceding mild winter only 18 of 415 (4.3%) (CI: 2.5%-6.8%) cases were related to snow (p<0.05). Ankle and wrist fractures were the most frequent injuries during the index snow storm period (p<0.05). At all the three institutions, 97 (96.5%) fractures were closed during the snowstorm as opposed to 17 (95%) during the control winter period. Internal fixation in 06 (89%) fractures as opposed to external fixation in 12 (11%) patients was the predominant mode of fixation across the board during both time periods. Conclusion: The study demonstrated a significantly higher inpatient orthopaedic trauma volume during the snowstorm more rigorous prospective studies need to be designed to gain further insight to solving these problems from a public health perspective. (author)

  15. Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions

    Directory of Open Access Journals (Sweden)

    R. Juras

    2017-09-01

    Full Text Available The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS events are still insufficiently known. Understanding storage and transport of liquid water in natural snowpacks is crucial, especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, propagation of rainwater through snow was investigated by sprinkling experiments with deuterium-enriched water and applying an alternative hydrograph separation technique on samples collected from the snowpack runoff. This allowed us to quantify the contribution of rainwater, snowmelt and initial liquid water released from the snowpack. Four field experiments were carried out during winter 2015 in the vicinity of Davos, Switzerland. Blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water and were exposed to artificial rainfall using deuterium-enriched water. The experiments were composed of four 30 min periods of sprinkling, separated by three 30 min breaks. The snowpack runoff was continuously gauged and sampled periodically for the deuterium signature. At the onset of each experiment antecedent liquid water was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a non-ripe snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. In contrast, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50 % of the rain input.

  16. Barriers to wheelchair use in the winter.

    Science.gov (United States)

    Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D

    2015-06-01

    To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo; Kobayashi, Sadayoshi

    1988-01-01

    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  18. New Perspectives on Blowing Snow Transport, Sublimation, and Layer Thermodynamic Structure over Antarctica

    Science.gov (United States)

    Palm, Steve; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca M.

    2017-01-01

    Blowing snow over Antarctica is a widespread and frequent event. Satellite remote sensing using lidar has shown that blowing snow occurs over 70% of the time over large areas of Antarctica in winter. The transport and sublimation of blowing snow are important terms in the ice sheet mass balance equation and the latter is also an important part of the hydrological cycle. Until now the only way to estimate the magnitude of these processes was through model parameterization. We present a technique that uses direct satellite observations of blowing snow and model (MERRA-2) temperature and humidity fields to compute both transport and sublimation of blowing snow over Antarctica for the period 2006 to 2016. The results show a larger annual continent-wide integrated sublimation than current published estimates and a significant transport of snow from continent to ocean. The talk will also include the lidar backscatter structure of blowing snow layers that often reach heights of 200 to 300 m as well as the first dropsonde measurements of temperature, moisture and wind through blowing snow layers.

  19. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    Science.gov (United States)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  20. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012

    Science.gov (United States)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan

    2018-01-01

    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  1. Intercomparison and validation of snow albedo parameterization schemes in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Christina A.; Winther, Jan-Gunnar [Norwegian Polar Institute, Tromsoe (Norway)

    2005-09-01

    Snow albedo is known to be crucial for heat exchange at high latitudes and high altitudes, and is also an important parameter in General Circulation Models (GCMs) because of its strong positive feedback properties. In this study, seven GCM snow albedo schemes and a multiple linear regression model were intercompared and validated against 59 years of in situ data from Svalbard, the French Alps and six stations in the former Soviet Union. For each site, the significant meteorological parameters for modeling the snow albedo were identified by constructing the 95% confidence intervals. The significant parameters were found to be: temperature, snow depth, positive degree day and a dummy of snow depth, and the multiple linear regression model was constructed to include these. Overall, the intercomparison showed that the modeled snow albedo varied more than the observed albedo for all models, and that the albedo was often underestimated. In addition, for several of the models, the snow albedo decreased at a faster rate or by a greater magnitude during the winter snow metamorphosis than the observed albedo. Both the temperature dependent schemes and the prognostic schemes showed shortcomings. (orig.)

  2. Polycyclic Aromatic Hydrocarbons In Aerosol and Snow Cover of Siberian Towns (east Siberia)

    Science.gov (United States)

    Gorshkov, A.; Marinayte, I.

    Contamination of the atmosphere above Siberian towns has a few peculiarities: (i) level of pollution is presumably determined by discharges of large enterprises sur- rounded by company towns; (ii) long (up to 150 days) winter is characterized by the highest concentrations of pollutants within the near-ground atmospheric layer due to pronounced anti-cyclonic circulation of the atmosphere; (iii) polycyclic aromatic hydrocarbons (PAH) are specific minor components of the aerosols. Relatively high PAH concentrations in aerosol of Siberian towns are caused by the presence of ad- ditional intensive sources of PAH (besides those traditional: gas discharges of met- allurgy, heat-and-power engineering enterprises, and motor transport). These are the discharges of low power (produc- ing plant (50000 residents) - are presented in the report. Daily and seasonal dynamics of aerosol pollution and level of PAH accumulation in snow covers during 1996 U 2001 are estimated. The highest PAH concentrations (total concentrations of identi- fied compounds) are up to 300 ng/m3 in aerosol and up to 16 mg/m2 in snow cover. At day and night temperatures lowering up to -30 oe -40 01057;, the maximum of PAH concentration is observed in the daytime due to displacement of the tempera-ture in- version. When temperature increases, two SclassicalT maximums are observed during & cedil;the morning and the evening hours. It was shown that the effect of Scity air circula- & cedil;tionT caused by air masses transportation above a city from its center to out-skirts (within the near-ground air layer U to its center) does not contribute to efficient level- ing of PAH concentrations. The level of PAH accumulation in snow cover in different citySs sites and within one citySs region is ranging up to 10 times during a season. Calculated benz[a]pyren fluxes allow us to conclude that contamination of the atmo- sphere above Irkutsk (2.5 mkg/m2 per week) is comparable with that above large cities of Western

  3. Seasonal Accumulation and Depletion of Local Sediment Stores of Four Headwater Catchments

    Directory of Open Access Journals (Sweden)

    Sarah E. Martin

    2014-07-01

    Full Text Available Seasonal turbidity patterns and event-level hysteresis analysis of turbidity verses discharge in four 1 km2 headwater catchments in California’s Sierra Nevada indicate localized in-channel sediment sources and seasonal accumulation-depletion patterns of stream sediments. Turbidity signals were analyzed for three years in order to look at the relationships between seasonal turbidity trends, event turbidity patterns, and precipitation type to stream sediment production and transport. Seasonal patterns showed more turbidity events associated with fall and early to mid- winter events than with peak snow-melt. No significant turbidity patterns emerged for periods of snow melt vs. rain. Single event hysteresis loops showed clockwise patterns were dominant suggesting local sediment sources. In successive discharge events, the largest turbidity spike was often associated with the first but not necessarily the largest discharge event-indicating seasonal depletion of local sediment stores. In multi-peaked discharge events, hysteresis loops shifted from clockwise to linear or random patterns suggesting that localized sediment stores are being used up and sufficient flow energy must be reached to start entraining the more consolidated bank/bed sediment or that dominant sediment sources may be shifting to less localized areas such as hill slopes. A conceptual model with phases of accumulation and transport is proposed.

  4. Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming

    NARCIS (Netherlands)

    Bjerke, J.W.; Bokhorst, S.F.; Callaghan, T.V.; Phoenix, G.K.

    2017-01-01

    Winter is a period of dormancy for plants of cold environments. However, winter climate is changing, leading to an increasing frequency of stochastic warm periods (winter warming events) and concomitant reductions in snow cover. These conditions can break dormancy for some plants and expose them to

  5. Changes in snow cover over Northern Eurasia in the last few decades

    International Nuclear Information System (INIS)

    Bulygina, O N; Razuvaev, V N; Korshunova, N N

    2009-01-01

    Daily snow depth (SD) and snow cover extent around 820 stations are used to analyse variations in snow cover characteristics in Northern Eurasia, a region that encompasses the Russian Federation. These analyses employ nearly five times more stations than in the previous studies and temporally span forty years. A representative judgement on the changes of snow depth over most of Russia is presented here for the first time. The number of days with greater than 50% of the near-station territory covered with snow, and the number of days with the snow depth greater than 1.0 cm, are used to characterize the duration of snow cover (SCD) season. Linear trends of the number of days and snow depth are calculated for each station from 1966 to 2007. This investigation reveals regional features in the change of snow cover characteristics. A decrease in the duration of snow cover is demonstrated in the northern regions of European Russia and in the mountainous regions of southern Siberia. An increase in SCD is found in Yakutia and in the Far East. In the western half of the Russian Federation, the winter-averaged SD is shown to increase, with the maximum trends being observed in Northern West Siberia. In contrast, in the mountainous regions of southern Siberia, the maximum SD decreases as the SCD decreases. While both snow cover characteristics (SCD and SD) play an important role in the hydrological cycle, ecosystems dynamics and societal wellbeing are quite different roles and the differences in their systematic changes (up to differences in the signs of changes) deserve further attention.

  6. Winter Ground Temperatures Control Snowmelt DOC Export From a Discontinuous Permafrost Watershed: A Multi-Year Perspective

    Science.gov (United States)

    Carey, S. K.

    2006-12-01

    For discontinuous and continuous permafrost watersheds, the largest mass flux of dissolved organic carbon (DOC) occurs during the snowmelt period. During this time, available allochtonous organic carbon that has accumulated over the winter in frozen organic soils is rapidly flushed to the basin outlet. While this process has been observed now in many river systems of different size and location, there have been few inter-annual reports on the mass of DOC loss and the factors controlling its variability during freshet. Hydrological and DOC fluxes were recorded for the 2002, 2003 and 2006 snowmelt season with supplementary over-winter data for an 8 square kilometer sub-basin (Granger Basin) of the Wolf Creek Research Basin, Yukon Territory, Canada. Granger Basin is an alpine catchment above treeline underlain with discontinuous permafrost (approximately 70 %) and has widespread surface organic soils up to 0.4 m in thickness. Pre-melt snow water equivalent varied widely throughout the basin, yet was greatest in 2006, followed by 2002 and 2003. Ground temperatures were notably colder throughout the 2003 winter compared with 2006 and 2002. For all years, discharge began in mid-May, and was a continuous event in 2002 and 2006. In 2003 four distinct melt-periods were observed due to rising and falling temperatures. During freshet, stream DOC concentration increased rapidly from 15 mg C/L on the first ascending limb of the hydrograph in each year. In 2003, DOC was largely flushed from the catchment several weeks prior to peak freshet. DOC concentration in wells and piezometers followed a similar pattern to streamflow DOC, with 2003 groundwater DOC concentrations less than 2002 and 2006. The total mass flux of DOC during freshet was 0.85, 0.45 and 1.01 g C/m2 for 2002, 2003 and 2006 respectively. Despite differences in pre-melt snow accumulation, the timing of melt and the volume of discharge, it appears that spring DOC export is largely controlled by over-winter ground

  7. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  8. Response of snow-dependent hydrologic extremes to continued global warming

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah [Stanford University; Scherer, Martin [Stanford University; Ashfaq, Moetasim [ORNL

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  9. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  10. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China].

    Science.gov (United States)

    Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan

    2014-05-01

    This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.

  11. Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA

    Science.gov (United States)

    Martin, Kael A.; Van Stan, John T.; Dickerson-Lange, Susan E.; Lutz, James A.; Berman, Jeffrey W.; Gersonde, Rolf; Lundquist, Jessica D.

    2013-06-01

    Tree canopy snow interception is a significant hydrological process, capable of removing up to 60% of snow from the ground snowpack. Our understanding of canopy interception has been limited by our ability to measure whole canopy water storage in an undisturbed forest setting. This study presents a relatively inexpensive technique for directly measuring snow canopy water storage using an interceptometer, adapted from Friesen et al. (2008). The interceptometer is composed of four linear motion position sensors distributed evenly around the tree trunk. We incorporate a trunk laser-mapping installation method for precise sensor placement to reduce signal error due to sensor misalignment. Through calibration techniques, the amount of canopy snow required to produce the measured displacements can be calculated. We demonstrate instrument performance on a western hemlock (Tsuga heterophylla) for a snow interception event in November 2011. We find a snow capture efficiency of 83 ± 15% of accumulated ground snowfall with a maximum storage capacity of 50 ± 8 mm snow water equivalent (SWE). The observed interception event is compared to simulated interception, represented by the variable infiltration capacity (VIC) hydrologic model. The model generally underreported interception magnitude by 33% using a leaf area index (LAI) of 5 and 16% using an LAI of 10. The interceptometer captured intrastorm accumulation and melt rates up to 3 and 0.75 mm SWE h-1, respectively, which the model failed to represent. While further implementation and validation is necessary, our preliminary results indicate that forest interception magnitude may be underestimated in maritime areas.

  12. "no snow - no skiing excursion - consequences of climatic change?"

    Science.gov (United States)

    Neunzig, Thilo

    2014-05-01

    Climatology and climate change have become central topics in Geography at our school. Because of that we set up a climatological station at our school. The data are an important basis to observe sudden changes in the weather. The present winter (2013/2014) shows the importance of climate change in Alzey / Germany. In winter many students think of the yearly skiing trip to Schwaz / Austria which is part of our school programme. Due to that the following questions arise: Will skiing still be possible if climate change accelerates? How are the skiing regions in the Alpes going to change? What will happen in about 20 years? How does artificial snow change the landscape and the skiing sport? Students have to be aware of the ecological damage of skiing trips. Each class has to come up with a concept how these trips can be as environmentally friendly as possible. - the trip is for a restricted number of students only (year 8 only) - a small skiing region is chosen which is not overcrowded - snow has to be guaranteed in the ski area to avoid the production of artificial snow (avoidance of high water consumption) - the bus arrives with a class and returns with the one that had been there before These are but a few ideas of students in order to make their trip as environmentally friendly as possible. What is missing is only what is going to happen in the future. What will be the effect of climate change for skiing regions in the secondary mountains? How is the average temperature for winter going to develop? Are there possibilities for summer tourism (e.g. hiking) instead of skiing in winter? The students are going to try to find answers to these questions which are going to be presented on a poster on the GIFT-Workshop in Vienna.

  13. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events

    Science.gov (United States)

    Wyard, Coraline; Fettweis, Xavier

    2016-04-01

    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  14. Snow farming: conserving snow over the summer season

    Science.gov (United States)

    Grünewald, Thomas; Wolfsperger, Fabian; Lehning, Michael

    2018-01-01

    Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides sufficient protection for mid

  15. Observational evidence of changes in global snow and ice cover

    International Nuclear Information System (INIS)

    Barry, R.G.

    1990-01-01

    Sources of observational data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in areas of permafrost are briefly reviewed. Recent evidence of changes in these variables is then examined. The extent of seasonal snow cover in the Northern hemisphere and of sea ice in both hemispheres has fluctuated irregularly over the last 15-20 years with a range of about 10-15% in each case. There is no clear evidence of any recent trends, despite general global warming. In contrast, most glaciers retreated and thinned from before the turn of the century until the 1960s and alaskan permafrost temperatures have risen 2-4 C per century. Recently, glacier advances have been noted, perhaps in response to increased accumulation. Problems of linking climate forcing and snow/ice responses are discussed

  16. Effect assessment of Future Climate Change on Water Resource and Snow Quality in cold snowy regions in Japan

    Science.gov (United States)

    Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.

    2017-12-01

    It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular

  17. Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem

    NARCIS (Netherlands)

    Wipf, Sonja; Sommerkorn, Martin; Stutter, Marc I.; Wubs, E. R. Jasper; van der Wal, René

    2015-01-01

    As the climate warms, winters with less snow and therefore more soil freeze-thaw cycles are likely to become more frequent in oceanic mountain areas. It is a concern that this might impair the soil's ability to store carbon and nutrients, and lead to increased leaching losses of dissolved C and

  18. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    Science.gov (United States)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  19. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  20. Snow measurement Using P-Band Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.

    2017-12-01

    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  1. Role of Marine Snows in Microplastic Fate and Bioavailability.

    Science.gov (United States)

    Porter, Adam; Lyons, Brett P; Galloway, Tamara S; Lewis, Ceri

    2018-06-01

    Microplastics contaminate global oceans and are accumulating in sediments at levels thought sufficient to leave a permanent layer in the fossil record. Despite this, the processes that vertically transport buoyant polymers from surface waters to the benthos are poorly understood. Here we demonstrate that laboratory generated marine snows can transport microplastics of different shapes, sizes, and polymers away from the water surface and enhance their bioavailability to benthic organisms. Sinking rates of all tested microplastics increased when incorporated into snows, with large changes observed for the buoyant polymer polyethylene with an increase in sinking rate of 818 m day -1 and for denser polyamide fragments of 916 m day -1 . Incorporation into snows increased microplastic bioavailability for mussels, where uptake increased from zero to 340 microplastics individual -1 for free microplastics to up to 1.6 × 10 5 microplastics individual -1 when incorporated into snows. We therefore propose that marine snow formation and fate has the potential to play a key role in the biogeochemical processing of microplastic pollution.

  2. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  3. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  4. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  5. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    NARCIS (Netherlands)

    Stigter, Emmy E.; Wanders, Niko; Saloranta, Tuomo M.; Shea, Joseph M.; Bierkens, M.F.P.; Immerzeel, W.W.

    2017-01-01

    Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water

  6. The stepwise discriminant algorithm for snow cover mapping based on FY-3/MERSI data

    Science.gov (United States)

    Han, Tao; Wang, Dawei; Jiang, Youyan; Wang, Xiaowei

    2013-10-01

    supervise-classified and expert-verified snow cover maps derived from integrated MERSI and MODIS images, we found FY-3A/MERSI has higher accuracy and stability not only for nearly cloud-free scenes but also the cloud scenes, namely, FY-3A/MERSI data can objectively reflect finer spatial distribution of snow and its dynamic development process, and the snow identification model perform better in snow/cloud discrimination. However, the ability of the FY-3A/MERSI model to discriminate thin snow and thin cloud need to be refined. And the limitation, error sources of FY-3A/MERSI snow products would be assessed based on the accumulation of large amounts of data in the future.

  7. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    temperature relationships of the bacterial community from winter-warmed plots and plots with ambient soil temperatures were compared. No change in optimum temperature for growth could be detected, indicating that the microbial community has not been warm-adapted. This fits with what was seen also in the laboratory experiment where no changes in temperature response occurred when exposing bacteria to temperatures below 10 °C within two months. The increase in activity measured during winter should thereby be due to changes in environmental factors, which will be further investigated. One big difference between heated and control plots was that heated plots were snow free during the entire winter, while control plots were covered by a 10 cm snow cover. The plant community composition and flowering time also differed in the warmed and ambient plot.

  8. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  9. The origin of sea salt in snow on Arctic sea ice and in coastal regions

    Directory of Open Access Journals (Sweden)

    F. Domine

    2004-01-01

    Full Text Available Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds that originate from sea salt bromide. Bromide may be supplied to the snow surface by upward migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosol generated by sea spray. We investigate here the relative importance of these processes by analyzing ions in snow near Alert and Ny-Ålesund (Canadian and European high Arctic in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt to heights of at least 17cm was observed in winter snow, leading to Cl- concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl- concentrations of several hundred µM, so that both diffusion from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it comes from sea spray rather than frost flowers. Estimations based on our results suggest that the marine snowpack contains about 10 times more Na+ than the frost flowers, so that both the marine snowpack and frost flowers need to be considered as sea salt sources. Our data suggest that ozone depletion chemistry can significantly enhance the Br- content of snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters

  10. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    Science.gov (United States)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and

  11. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  12. Nuclear medicine solutions in winter sports problems

    International Nuclear Information System (INIS)

    Hoeflin, F.G.

    2002-01-01

    Full text: The diagnostic workup of acute Winter Sports injuries is done by Conventional X Ray, CT and MRI. Chronic injuries as stress reactions are best investigated by Nuclear Medicine procedures: Snow Boarding: In Snow-Boarding chronic injuries are mostly seen as local increased uptake laterally in the lower third of the Fibula of the front leg together with Tibial increase medially in the other leg. Skiing: Chronic Skiing injuries are less asymmetrical and mostly seen on the apex of the patella. Chronic Feet Problems: A different chronic problem is the reduced blood perfusion in the feet if hard, tightened boots are used for longer time by professional ski instructors and racers. Flow difference between the foot in the boot and the other without boot are dramatic as measured by Nuclear Medicine Procedures and MRI. Pulmonary Embolism: Acute pulmonary embolism caused by thrombi originating at the site of constant pressure on the back rim of ski boots is not uncommon in older skiers (seek and you will find), but never seen in the younger group of Snow-Boarders. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Blowing snow detection in Antarctica, from space borne and ground-based remote sensing

    Science.gov (United States)

    Gossart, A.; Souverijns, N.; Lhermitte, S.; Lenaerts, J.; Gorodetskaya, I.; Schween, J. H.; Van Lipzig, N. P. M.

    2017-12-01

    Surface mass balance (SMB) strongly controls spatial and temporal variations in the Antarctic Ice Sheet (AIS) mass balance and its contribution to sea level rise. Currently, the scarcity of observational data and the challenges of climate modelling over the ice sheet limit our understanding of the processes controlling AIS SMB. Particularly, the impact of blowing snow on local SMB is not yet constrained and is subject to large uncertainties. To assess the impact of blowing snow on local SMB, we investigate the attenuated backscatter profiles from ceilometers at two East Antarctic locations in Dronning Maud Land. Ceilometers are robust ground-based remote sensing instruments that yield information on cloud base height and vertical structure, but also provide information on the particles present in the boundary layer. We developed a new algorithm to detect blowing snow (snow particles lifted by the wind from the surface to substantial height) from the ceilometer attenuated backscatter. The algorithm successfully allows to detect strong blowing snow signal from layers thicker than 15 m at the Princess Elisabeth (PE, (72°S, 23°E)) and Neumayer (70°S, 8° W) stations. Applying the algorithm to PE, we retrieve the frequency and annual cycle of blowing snow as well as discriminate between clear sky and overcast conditions during blowing snow. We further apply the blowing snow algorithm at PE to evaluate the blowing snow events detection by satellite imagery (Palm et al., 2011): the near-surface blowing snow layers are apparent in lidar backscatter profiles and enable snowdrift events detection (spatial and temporal frequency, height and optical depth). These data are processed from CALIPSO, at a high resolution (1x1 km digital elevation model). However, the remote sensing detection of blowing snow events by satellite is limited to layers of a minimal thickness of 20-30 m. In addition, thick clouds, mostly occurring during winter storms, can impede drifting snow

  14. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  15. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  16. Cloud-based Computing and Applications of New Snow Metrics for Societal Benefit

    Science.gov (United States)

    Nolin, A. W.; Sproles, E. A.; Crumley, R. L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L.

    2017-12-01

    Seasonal and interannual variability in snow cover affects socio-environmental systems including water resources, forest ecology, freshwater and terrestrial habitat, and winter recreation. We have developed two new seasonal snow metrics: snow cover frequency (SCF) and snow disappearance date (SDD). These metrics are calculated at 500-m resolution using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10A1). SCF is the number of times snow is observed in a pixel over the user-defined observation period. SDD is the last date of observed snow in a water year. These pixel-level metrics are calculated rapidly and globally in the Google Earth Engine cloud-based environment. SCF and SDD can be interactively visualized in a map-based interface, allowing users to explore spatial and temporal snowcover patterns from 2000-present. These metrics are especially valuable in regions where snow data are sparse or non-existent. We have used these metrics in several ongoing projects. When SCF was linked with a simple hydrologic model in the La Laguna watershed in northern Chile, it successfully predicted summer low flows with a Nash-Sutcliffe value of 0.86. SCF has also been used to help explain changes in Dall sheep populations in Alaska where sheep populations are negatively impacted by late snow cover and low snowline elevation during the spring lambing season. In forest management, SCF and SDD appear to be valuable predictors of post-wildfire vegetation growth. We see a positive relationship between winter SCF and subsequent summer greening for several years post-fire. For western US winter recreation, we are exploring trends in SDD and SCF for regions where snow sports are economically important. In a world with declining snowpacks and increasing uncertainty, these metrics extend across elevations and fill data gaps to provide valuable information for decision-making. SCF and SDD are being produced so that anyone with Internet access and a Google

  17. User Oriented Climatic Information for Planning a Snow Removal Budget.

    Science.gov (United States)

    Cohen, Stewart J.

    1981-12-01

    Many activities associated with the transportation sector are weather sensitive. This study is concerned with highway maintenance activities, specifically snow removal, and the budgeting of same by the Illinois Department of Transportation (IDOT). During the 1978-79 winter, IDOT's snow removal budget was exhausted by the end of January, thereby necessitating the procurement of emergency funds. The following year, the Illinois State Water Survey (ISWS) was asked to provide specialized climatic design information that could be used to assist IDOT in its budget planning for snow removal.Snow removal is often accomplished by spreading road salt over snow- and ice-covered roads, thus improving traction and reducing the risk of vehicles skidding along slippery surfaces. This study demonstrates the computation of `salt days,' a user-oriented climatic variable that indicates the number of days when road salt is required. This variable is defined using certain temperature and snowfall criteria. Results of a pilot study indicate that it is possible to provide statistical outlooks for salt days two months in advance, using correlation analysis. The analysis for several Illinois stations indicates that at various intervals in the data records, November and December temperatures are significantly correlated with February salt days if short periods of record (5-20 years) are used.IDOT originally requested a `2- to 3-month projection.' However, it became clear that only projections of 12 months or longer could benefit annual budget preparation. Confusion existed between the user and the supplier of climatic information regarding the user's needs, and the applicability of the supplier's `climate products' to the user's budget planning procedure. This demonstrates the need for a prolonged effort by the supplier to fully acquaint the user with the various forms of climatic information available. This gap in communication must be overcome so that applied climatology can be integrated

  18. Physiochemical characterization of insoluble residues in California Sierra Nevada snow

    Science.gov (United States)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew

    2015-04-01

    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  19. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  20. Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983-2014)

    Science.gov (United States)

    Greilinger, Marion; Schöner, Wolfgang; Winiwarter, Wilfried; Kasper-Giebl, Anne

    2016-05-01

    A long-term record of inorganic ion concentrations in wet and dry deposition sampled from snow packs at two high altitude glaciers was used to assess impacts of air pollution on remote sites in central Europe. Sampling points were located at Wurtenkees and Goldbergkees near the Sonnblick Observatory (3106 m above sea level), a background site for measuring the status of the atmosphere in Austria's Eastern Alps. Sampling was carried out every spring at the end of the winter accumulation period in the years 1983-2014. Concentrations of major ions (NH4+, SO42-, NO3-, Ca2+, Mg2+, K+, Na+ and Cl-) were determined using ion chromatography (IC) as well as atomic absorption spectroscopy (AAS) in the earlier years. Concentration of H+ was calculated via the measured pH of the samples. Trends in deposition and concentration were analysed for all major ions within the period from 1983 to 2014 using Kendall's tau rank correlation coefficient. From 1983 to 2014, total ion concentration declined ∼25%, i.e. solutions became ∼25% more dilute, indicating reduced acidic atmospheric deposition, even at high altitude in winter snow. SO42- and NO3- concentrations decreased significantly by 70% and 30%, respectively, accompanied by a 54% decrease of H+ concentrations. Ionic concentrations in snowpack were dominated by H+ and SO42- in the earliest decade measured, whereas they were dominated by Ca2+ by the most recent decade. SO42- and H+ depositions, i.e. concentrations multiplied by volume, also showed a significant decrease of more than 50% at both sites. This reflects the successful emission reductions of the precursor gases SO2 and NOx. Seasonal values with significantly elevated spring concentrations of NH4+, SO42- and H+ compared to fall snow reflects the beginning of vertical mixing during spring. All other ions do not show any seasonality. Source identification of the ions was performed using a principal component analysis (PCA). One anthropogenic cluster (SO42-, NO3- and NH

  1. Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods.

    Science.gov (United States)

    Schmidt, Niels M; Mosbacher, Jesper B; Vesterinen, Eero J; Roslin, Tomas; Michelsen, Anders

    2018-04-26

    Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.

  2. Winter: Public Enemy #1 for Accessibility EXPLORING NEW SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ernesto Morales

    2014-05-01

    Full Text Available Abstract: Winter is expensive. For countries situated in the northern hemisphere, closer to the north pole, such as Canada, Russia and Scandinavia, winter requires the acquisition of special clothing, car tires, and sports equipment, snow removal or plowing from the streets, and is associated with the presence of ice patches, along with accidents and illnesses associated with cold weather. Fall-related injuries due to winter conditions have been estimated to cost the Canadian health care system $ 2.8 billion a year. However, the greatest cost snow entails every year is the social isolation of seniors as well as wheelchair and walker users. This results from the lack of accessibility, as it is difficult to circulate on snow-covered streets even for the able-bodied. Social isolation has been associated with other negative consequences such as depression and even suicide. This exploratory pilot study aimed at finding possible and feasible design solutions for improving the accessibility of sidewalks during winter conditions. For this project we used a Co-Design methodology. Stakeholders (City of Quebec representatives, designers, urban planners, occupational therapists, and adults with motor, visual and aural disabilities were invited to participate in the design process. In order to meet the objectives, two main steps were carried out: 1. Conception of the design solutions (through Co-design sessions in a Focus-group format with seniors, designers and researchers; and 2. Validation of the design solutions (consultation with experts and stakeholders. The results are a wide variety of possible and feasible solutions, including the reorganisation of the snow-removal procedure and the development of heated curb cuts. This project was funded by the City of Quebec in partnership with the Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS. Ultimately, the project sought to explore possible solutions to be implemented

  3. Snow multivariable data assimilation for hydrological predictions in mountain areas

    Science.gov (United States)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground

  4. Winter Arctic sea ice growth: current variability and projections for the coming decades

    Science.gov (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.

    2017-12-01

    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  5. Winter forest soil respiration controlled by climate and microbial community composition.

    Science.gov (United States)

    Monson, Russell K; Lipson, David L; Burns, Sean P; Turnipseed, Andrew A; Delany, Anthony C; Williams, Mark W; Schmidt, Steven K

    2006-02-09

    Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.

  6. Snow melting system with electric heating using photovoltaic power generation; Solar yusetsuko

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M; Fujita, S; Kaga, T; Koyama, N [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    This paper clarifies the solar characteristics in Hachinohe district, to investigate a possibility of the snow melting system with electric heating using solar energy. Power demand for snow melting, power generated by the photovoltaic (PV) array, area of PV array, and working conditions of the system, as to temperature, precipitation and snowfall, were investigated. The percentage of sunshine is 44% in Hachinohe district, which has more fortunate natural condition for utilizing solar radiation compared with that of 20% in Aomori prefecture. The intensity of solar radiation in winter from December to March is around 500 W/m{sup 2} in average, which is equivalent to the quantity of solar radiation, around 2 kWh/m{sup 2} a day. When assuming that snow on the road surface is frozen at the snowfall under the air temperature below -3{degree}C, the occurrence frequency is 50% during January and February in Hachinohe district, which means one frozen day for two days and is equivalent to the occurrence frequency of frozen days, 34% in average during winter. The electric application ratio is 0.34 at the maximum in winter. That is, days of 34% for one month are required for snow melting. 3 figs., 3 tabs.

  7. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    Science.gov (United States)

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  8. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal.

    Directory of Open Access Journals (Sweden)

    Madhu Chetri

    Full Text Available Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57, collected within 26 sampling grid cells (5×5 km that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples, whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%. Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%, but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%, and wild ungulates more frequently in scats from females (males: 48%, females: 70%. The sexual difference agrees with

  9. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal

    Science.gov (United States)

    Odden, Morten; Wegge, Per

    2017-01-01

    Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous

  10. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal.

    Science.gov (United States)

    Chetri, Madhu; Odden, Morten; Wegge, Per

    2017-01-01

    Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous

  11. Aerotechnogenic Monitoring of Urban Environment on Snow Cover Pollution (on the Example of Voronezh City

    Directory of Open Access Journals (Sweden)

    Prozhorina Tatyana Ivanovna

    2014-09-01

    Full Text Available Snow cover is characterized by high sorption ability and represents an informative object in the process of identifying the technogenic pollution of urban environment. The article contains the results of the research on the chemical composition of the snow which fell in Voronezh in the winter period of 2013–2014. The coefficients of chemical elements concentration were calculated to provide objective characteristics of snow cover pollution. The authors analyze the connection between the presence of pollutants in snow and the level of technogenic impact. The obtained ranges of anomaly coefficients among anions reflect the composition of technogenic emissions. The mineralization of snow water reliably characterizes the intensity of anthropogenic impact on the urban environment, and the value of mineralization snow samples ranges from 62,6 (background to 183,9 mg/l. Maximum values of mineralization (more than 150 mg/l are typical for samples taken in transport area. High values of salinity (more than 120 mg/l are observed in snow samples taken in the industrial area, which confirms the high “technogenic pressure” on the urban environment in zones of industrial and transport potential of the city. The investigated functional areas can be arranged in the following series by descending level of contamination: transport area > industrial zone > residential and recreational areas > background territory. The study of the chemical composition of snow cover in the various functional areas of Voronezh allows to conclude that the pH level, mineralization and the content of suspended solids in snow waters characterize the intensity of anthropogenic pressure on the urban environment, and the composition of melt waters indicates the nature of its pollution.

  12. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water

  13. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  14. Simulating the Dependence of Aspen on Redistributed Snow

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  15. Analysis of Light Absorbing Aerosols in Northern Pakistan: Concentration on Snow/Ice, their Source Regions and Impacts on Snow Albedo

    Science.gov (United States)

    Gul, C.; Praveen, P. S.; Shichang, K.; Adhikary, B.; Zhang, Y.; Ali, S.

    2016-12-01

    Elemental carbon (EC) and light absorbing organic carbon (OC) are important particulate impurities in snow and ice which significantly reduce the albedo of glaciers and accelerate their melting. Snow and ice samples were collected from Karakorum-Himalayan region of North Pakistan during the summer campaign (May-Jun) 2015 and only snow samples were collected during winter (Dec 2015- Jan 2016). Total 41 surface snow/ice samples were collected during summer campaign along different elevation ranges (2569 to 3895 a.m.s.l) from six glaciers: Sachin, Henarche, Barpu, Mear, Gulkin and Passu. Similarly 18 snow samples were collected from Sust, Hoper, Tawas, Astore, Shangla, and Kalam regions during the winter campaign. Quartz filters were used for filtering of melted snow and ice samples which were then analyzed by thermal optical reflectance (TOR) method to determine the concentration of EC and OC. The average concentration of EC (ng/g), OC (ng/g) and dust (ppm) were found as follows: Passu (249.5, 536.8, 475), Barpu (1190, 397.6, 1288), Gulkin (412, 793, 761), Sachin (911, 2130, 358), Mear (678, 2067, 83) and Henarche (755, 1868, 241) respectively during summer campaign. Similarly, average concentration of EC (ng/g), OC (ng/g) and dust (ppm) was found in the samples of Sust (2506, 1039, 131), Hoper (646, 1153, 76), Tawas (650, 1320, 16), Astore (1305, 2161, 97), Shangla (739, 2079, 31) and Kalam (107, 347, 5) respectively during winter campaign. Two methods were adopted to identify the source regions: one coupled emissions inventory with back trajectories, second with a simple region tagged chemical transport modeling analysis. In addition, CALIPSO subtype aerosol composition indicated that frequency of smoke in the atmosphere over the region was highest followed by dust and then polluted dust. SNICAR model was used to estimate the snow albedo reduction from our in-situ measurements. Snow albedo reduction was observed to be 0.3% to 27.6%. The derived results were used

  16. Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo

    Science.gov (United States)

    Gul, Chaman; Praveen Puppala, Siva; Kang, Shichang; Adhikary, Bhupesh; Zhang, Yulan; Ali, Shaukat; Li, Yang; Li, Xiaofei

    2018-04-01

    Black carbon (BC), water-insoluble organic carbon (OC), and mineral dust are important particles in snow and ice which significantly reduce albedo and accelerate melting. Surface snow and ice samples were collected from the Karakoram-Himalayan region of northern Pakistan during 2015 and 2016 in summer (six glaciers), autumn (two glaciers), and winter (six mountain valleys). The average BC concentration overall was 2130 ± 1560 ng g-1 in summer samples, 2883 ± 3439 ng g-1 in autumn samples, and 992 ± 883 ng g-1 in winter samples. The average water-insoluble OC concentration overall was 1839 ± 1108 ng g-1 in summer samples, 1423 ± 208 ng g-1 in autumn samples, and 1342 ± 672 ng g-1 in winter samples. The overall concentration of BC, OC, and dust in aged snow samples collected during the summer campaign was higher than the concentration in ice samples. The values are relatively high compared to reports by others for the Himalayas and the Tibetan Plateau. This is probably the result of taking more representative samples at lower elevation where deposition is higher and the effects of ageing and enrichment are more marked. A reduction in snow albedo of 0.1-8.3 % for fresh snow and 0.9-32.5 % for aged snow was calculated for selected solar zenith angles during daytime using the Snow, Ice, and Aerosol Radiation (SNICAR) model. The daily mean albedo was reduced by 0.07-12.0 %. The calculated radiative forcing ranged from 0.16 to 43.45 W m-2 depending on snow type, solar zenith angle, and location. The potential source regions of the deposited pollutants were identified using spatial variance in wind vector maps, emission inventories coupled with backward air trajectories, and simple region-tagged chemical transport modeling. Central, south, and west Asia were the major sources of pollutants during the sampling months, with only a small contribution from east Asia. Analysis based on the Weather Research and Forecasting (WRF-STEM) chemical transport model identified a

  17. Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies

    DEFF Research Database (Denmark)

    Björkman, M.P.; Morgner, E.; Cooper, E.J.

    2010-01-01

    removal, (3) diffusion measurements, F2-point, within the snowpack, and (4) a trace gas technique, FSF6, with multiple gas sampling within the snowpack. According to measurements collected from shallow and deep snow cover in High Arctic Svalbard and subarctic Sweden during the winter of 2007......The winter CO2 efflux from subnivean environments is an important component of annual C budgets in Arctic ecosystems and consequently makes prediction and estimations of winter processes as well as incorporations of these processes into existing models important. Several methods have been used......, Fsoil is assumed to measure soil production, whereas FSF6, Fsnow, and F2-point are considered better approaches for quantifying exchange processes between the soil, snow, and the atmosphere. This study indicates that estimates of winter CO2 emissions may vary more as a result of the method used than...

  18. ULUDAĞ WINTER TOURISM and ITS IMPORTANCE IN THE ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sema AY

    2016-08-01

    Full Text Available Tourism that is a regional means of development is closely related with the local economic development. Winter tourism is a set of activities and relationships composed of trips made to the regions which are located in the heart of ski sports and accordingly with slopes and snow, accommodations and other services. Since winter tourism mainly consists of a number of activities depending on snowy environments, it requires locations with certain height and slope which will also allow the execution of other nature sports such as walking, climbing etc. besides skiing and snowboarding. Uludağ, the most popular winter sports center that is 30 km away from the Bursa city center has significant natural advantages in terms of winter tourism. However, with the recently changing tourism demands in winter tourism, developments have been taking place in the types of tourism. Uludağ having natural advantages have not been able to sufficiently benefit from these advantages and cannot make use of its existing potential. Besides the countries having sucessful snow resorts of Europe such as Austria, France, Switzerland, Italy and Andorra, Romania and Bulgaria are also increasing their competitiveness in the international markets in recent years with ambitious investments. When Uludağ that is in the location of the largest snow resort in Turkey is compared with these resorts, it is thought that there is a way to go in the field of winter tourism. Starting from this idea, in the research, it is aimed to identify the contribution of Uludağ to the local economic development and the potentials for increasing this contribution. Towards the mentioned aim, the study will be carried out based on field research. In the conclusion of the study, it is planned to submit the proposals focused on policy and strategy to be followed in terms of having Uludağ use its potential in the most efficient way and provide more contribution to the local economy. In addition, its

  19. Quantifying small-scale spatio-temporal variability of snow stratigraphy in forests based on high-resolution snow penetrometry

    Science.gov (United States)

    Teich, M.; Hagenmuller, P.; Bebi, P.; Jenkins, M. J.; Giunta, A. D.; Schneebeli, M.

    2017-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception, wind speed reduction, and changes to the energy balance. The lack of snowpack observations in forests limits our ability to understand the evolution of snow stratigraphy and its spatio-temporal variability as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack under canopies of a spruce forest in the central Rocky Mountains, USA, using the SnowMicroPen (SMP), a high resolution digital penetrometer. Weekly-repeated penetration force measurements were recorded along 10 m transects every 0.3 m in winter 2015 and bi-weekly along 20 m transects every 0.5 m in 2016 in three study plots beneath canopies of undisturbed, bark beetle-disturbed and harvested forest stands, and an open meadow. To disentangle information about layer hardness and depth variabilities, and to quantitatively compare the different SMP profiles, we applied a matching algorithm to our dataset, which combines several profiles by automatically adjusting their layer thicknesses. We linked spatial and temporal variabilities of penetration force and depth, and thus snow stratigraphy to forest and meteorological conditions. Throughout the season, snow stratigraphy was more heterogeneous in undisturbed but also beneath bark beetle-disturbed forests. In contrast, and despite remaining small diameter trees and woody debris, snow stratigraphy was rather homogenous at the harvested plot. As expected, layering at the non-forested plot varied only slightly over the small spatial extent sampled. At the open and harvested plots, persistent crusts and ice lenses were clearly present in the snowpack, while such hard layers barely occurred beneath undisturbed and disturbed canopies. Due to settling, hardness significantly increased with depth at

  20. Variation of rock-forming metals in sub-annual increments of modern Greenland snow

    Science.gov (United States)

    Hinkley, T.K.

    1992-01-01

    may be identified by small changes in metal ratios caused by moderate increases of K and Ca from marine sources, nearly unaccompanied by the minor and trace metals Rb, Cs and Ba, that are very rare in the oceans. A sampling frequency, such as that of the present study, that divides a year's accumulation into 8-10 subsamples is sufficient to reveal details of the time pattern of variation in proportions and concentrations of metals that give information about atmospheric deposition of important types of earth materials.Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analyzed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring-early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However, samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give informati

  1. Regional pattern of snow characteristics around Antarctic Lake Vostok

    Science.gov (United States)

    Vladimirova, Diana; Ekaykin, Alexey; Popov, Sergey; Shibaev, Yuriy; Kozachek, Anna; Lipenkov, Vladimir

    2015-04-01

    Since 1998 Russian Antarctic Expedition has organized several scientific traverses in the region of subglacial Lake Vostok mainly devoted to the radar echo and seismic sounding of the glacier and water (the results have been published elsewhere). Along with the geophysical studies, a number of glaciological investigations have been carried out: snow pit digging, installation of accumulation stakes, snow sampling to study the stable water isotope content. Here we for the first time present a synthesis of these works and demonstrate a series of maps that characterize the snow density, isotope content and accumulation rate the studied region. A general tendency of the snow accumulation rate and isotope content is a significant increase from south (south-west) to north (north-east) from 35 to 23 mm w.e. per year and from -53,3 ‰ to -57,3 ‰ for delta oxygen-18 respectively, which likely reflects the continental-scale pattern, i.e., increase from inland to the coast. Deuterium excess varies from 11,7 ‰ to 16,3 ‰ is negatively correlated with the isotope content, which is typical for central Antarctica. The snow density demonstrate different pattern: higher values offshore the lake (up to 0,356 g/cm^3), and lower values within the lake's shoreline (lower limit is 0,328 g/cm^3). We suggest that this is related to the katabatic wind activity: very flat nearly horizontal surface of the glacier above the lake is not favorable for the strong winds, which leads to lower surface snow density. Superimposed on the main trend is the regional pattern, namely, curved contour lines in the middle part of the lake. We suggest that it may be related to the local anomalies of the snow drift by wind. Indeed, on the satellite images of the lake one can easily see a snowdrift stretching from the lake's western shore downwind in the middle part of the lake. The isolines of delta oxygen-18 and deuterium excess become perpendicular to each other in the north part of the lake which also

  2. Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.

    Science.gov (United States)

    Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas

    2013-01-01

    Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.

  3. [Snow cover pollution monitoring in Ufa].

    Science.gov (United States)

    Daukaev, R A; Suleĭmanov, R A

    2008-01-01

    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  4. THEORY AND PRACTICE OF INDIVIDUAL SNOW AVALANCHE RISK ASSESSMENT IN THE RUSSIAN ARCTIC

    Directory of Open Access Journals (Sweden)

    Aleksandr Shnyparkov

    2012-01-01

    Full Text Available In recent years, the Government of the Russian Federation considerably increased attention to the exploitation of the Russian Arctic territories. Simultaneously, the evaluation of snow avalanches danger was enhanced with the aim to decrease fatalities and reduce economic losses. However, it turned out that solely reporting the degree of avalanche danger is not sufficient. Instead, quantitative information on probabilistic parameters of natural hazards, the characteristics of their effects on the environment and possibly resulting losses is increasingly needed. Such information allows for the estimation of risk, including risk related to snow avalanches. Here, snow avalanche risk is quantified for the Khibiny Mountains, one of the most industrialized parts of the Russian Arctic: Major parts of the territory have an acceptable degree of individual snow avalanche risk (<1×10-6. The territories with an admissible (10-4–10-6 or unacceptable (>1×10-4 degree of individual snow avalanche risk (0.5 and 2% of the total area correspond to the Southeast of the Khibiny Mountains where settlements and mining industries are situated. Moreover, due to an increase in winter tourism, some traffic infrastructure is located in valleys with an admissible or unacceptable degree of individual snow avalanches risk.

  5. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    Science.gov (United States)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  6. Sensitivity Analysis of Snow Patterns in Swiss Ski Resorts to Shifts in Temperature, Precipitation and Humidity Under Condition of Climate Change

    Science.gov (United States)

    Uhlmann, B.; Goyette, S.; Beniston, M.

    2008-12-01

    The value of snow as a resource has considerably increased in Swiss mountain regions, in particular in the context of winter tourism. In the perspective of a warming climate, it is thus important to quantify the potential changes in snow amount and duration that could have large repercussions on the economy of ski resorts. Because of the fine spatial variability of snow, the use of a Surface Energy Balance Model (SEBM) is adequate to simulate local snow cover evolution. A perturbation method has been developed to generate plausible future meteorological input data required for SEBM simulations in order to assess the changes in snow cover patterns. Current and future snow depths have also been simulated within the ski areas themselves. The results show a large decrease of the snow depths and duration, even at high elevation in a warmer climate and emphasize the sensitivity of snow to topographical characteristics of the resorts. The study highlights the fact that not only the altitude of a domain but also its exposure, localization inland and slope gradients need to be taken into account when evaluating current and future snow depths. This method enables a precise assessment of the snow pattern over a small area.

  7. Performance evaluation of snow and ice plows.

    Science.gov (United States)

    2015-11-01

    Removal of ice and snow from road surfaces is a critical task in the northern tier of the United States, : including Illinois. Highways with high levels of traffic are expected to be cleared of snow and ice quickly : after each snow storm. This is ne...

  8. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  9. Photopolarimetric Retrievals of Snow Properties

    Science.gov (United States)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  10. CHEMICAL COMPOSITION CHANGE OF SUBSURFACE SNOW IN EAST ANTARCTICA WITH DISTANCE FROM THE COAST

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2012-01-01

    Full Text Available The paper presents data on chemical composition of snow in theAntarcticasampled along the first tractor traverse during the 53th Russian Antarctic Expedition from Station Progress (the sea coast to Station Vostok (1,276 kmfrom Progress. Specific features of horizontal and depth distribution of chemical components in snow revealed differences in conditions of formation of snow cover along the traverse in both spatial and time scales. Chemical composition of snow depends on the sources of admixture inputs onto the surface of the ice sheet (marine, continental and volcanic. The influence of sea factor decreases with the distance from the coast. Calculated factor of element enrichment indicated that some ions in snow cover were of continental origin in the middle of the traverse. Elevated concentrations of sulphate ions were recorded in snow-firn cores at 130–150 cmfrom the surface. They were attributed to signals of the Pinatubo volcano eruption (1991. Accumulation rate of snow was calculated for the traverse sites based on the depth of the Pinatubo layer.

  11. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    Directory of Open Access Journals (Sweden)

    K. M. Sterle

    2013-02-01

    Full Text Available When contaminated by absorbing particles, such as refractory black carbon (rBC and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g–1 compared to bulk values in the snowpack (~3 ng g–1. Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m−2 during April and May, with dust likely contributing a greater share of the forcing.

  12. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    Science.gov (United States)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  13. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model

    Science.gov (United States)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2016-02-01

    Snowfall forecasts help winter maintenance of road networks, ensure better coordination between services, cost control, and a reduction in environmental impacts caused by an inappropriate use of de-icers. In order to determine the possible accumulation of snow on pavements, forecasting the road surface temperature (RST) is mandatory. Weather outstations are used along these networks to identify changes in pavement status, and to make forecasts by analyzing the data they provide. Physical numerical models provide such forecasts, and require an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with two approaches to evaluate traffic incidence on RST. Experiments were then conducted to measure the effect of traffic on RST increase with respect to non-circulated areas. These field data were then used for comparison with the forecast provided by this traffic-implemented TEB version.

  14. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with TEB model

    Science.gov (United States)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2015-06-01

    A forecast of the snowfall helps winter coordination operating services, reducing the cost of the maintenance actions, and the environmental impacts caused by an inappropriate use of de-icing. In order to determine the possible accumulation of snow on pavement, the forecast of the road surface temperature (RST) is mandatory. Physical numerical models provide such forecast, and do need an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with all the energy interactions, with two approaches to evaluate the traffic incidence on RST. Experiments were then conducted to measure the traffic effect on RST increase with respect to non circulated areas. These field data were then used for comparison with forecast provided by this traffic-implemented TEB version.

  15. Effects of Snow/ Soil Interface on Microwave Backscatter of Terrestrial Snowpack at X- and Ku- Band

    Science.gov (United States)

    Kang, D. H.; Tan, S.; Zhu, J.; Gu, W.; Tsang, L.; Kim, E. J.

    2017-12-01

    Recent advances in monitoring and modeling capabilities to support remote sensing of terrestrial snow is encouraging to develop satellite mission concept in monitoring cold-region hydrological processes on global scales. However, it is still challenging to link back the active microwave backscattering signals to physical snowpack parameters. One of the limitations resides in the ignorance of the vegetation and soil conditions beneath the snowpack in the microwave scattering/ emission modeling and the snow water equivalent (SWE) retrieval algorithm. During the SnowEx 2017 winter campaign in Grand Mesa, CO, a particular effort has been made on comprehensive measurements of the underlying vegetation and soil characteristics from the snowpit measurements. Besides conducting standard snow core sampling, we have made additional protocols to record the background information beneath the snowpack. Recent works on active SWE retrieval algorithm using backscatters at X- (9.6 GHz) and Ku- (17.2 GHz) band suggest the significant signals from the background scattering characterization. The background scattering arising from the rough snow/ soil interface and the buried vegetation inside and beneath the snowpack modifies the sensitivity of the total backscatter to SWE. In this paper, we summarize the snow/ soil interface conditions as observed in the SnowEx campaign. We also develop standards for future in-situ snowpit measurements to include regular snow/ soil interface observations to accommodate the interpretation of microwave backscatter both for modeling and observation of microwave signatures. These observations first provide inputs to the microwave scattering models to predict the backscattering contribution from background, which is one of the key factors to be included to improve the SWE retrieval performance.

  16. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Directory of Open Access Journals (Sweden)

    Marc Zebisch

    2013-03-01

    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  17. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    Science.gov (United States)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low

  18. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    NARCIS (Netherlands)

    Gryning, S.E.; Batchvarova, E.; DeBruin, H.A.R.

    2001-01-01

    Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day

  19. Testing of Rice Stocks for Their Survival of Winter Cold

    Directory of Open Access Journals (Sweden)

    Hiroshi Ikehashi

    2018-03-01

    Full Text Available Rice cultivation is considered to be initiated by vegetative propagation of sprout from wild perennial stocks. To test whether any presently cultivated rice cultivar can survive the winter cold or not, rice stocks of several cultivars including indica and japonica types were placed in a shallow pool from October to April in 2015–2016 and 2016–2017. During the coldest period of the winter, the bases of the stocks were placed 5–6 cm below the surface of water, where temperatures ranged from 3 °C to 5 °C, while the surface was frozen for two or three times and covered with snow for a day. Only one cultivar, Nipponbare, a japonica type, survived the winter cold and regenerated sprouts in the end of April or early May. A possibility to develop perennial cultivation of rice or perennial hybrid rice is discussed.

  20. Winter concrete; Kanchu kunkurito. Gijutsu no genjo to shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Eiji [Hokkaido University, Hokkaido (Japan)

    1998-11-10

    Much energy is consumed in order to carry out the winter concrete, and it becomes not always the work in the work environment of the amenity. Therefore, it wants to avoid it, if such work is possible. The winter concrete is a basis in carrying out the construction in cold region in all year. Large role is very much fulfilled for efficient operation of the construction industry in which foot of maintain is wide, activation of the regional economy of snows cold region such as the constant employment of construction worker, improvement in the social environment. Therefore, the popularization of the winter concrete technology is indispensable in the chilly snowy area, and it becomes the importance that the efficiency improvement is attempted. (NEDO)

  1. Review of ice and snow runway pavements

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-05-01

    Full Text Available Antarctica is the highest, driest, coldest, windiest, most remote and most pristine place on Earth. Polar operations depend heavily on air transportation and support for personnel and equipment. It follows that improvement in snow and ice runway design, construction and maintenance will directly benefit polar exploration and research. Current technologies and design methods for snow and ice runways remain largely reliant on work performed in the 1950s and 1960s. This paper reviews the design and construction of polar runways using snow and ice as geomaterials. The inability to change existing snow and ice thickness or temperature creates a challenge for polar runway design and construction, as does the highly complex mechanical behaviour of snow, including the phenomena known as sintering. It is recommended that a modern approach be developed for ice and snow runway design, based on conventional rigid and flexible pavement design principles. This requires the development on an analytical model for the prediction of snow strength, based on snow age, temperature history and density. It is also recommended that the feasibility of constructing a snow runway at the South Pole be revisited, in light of contemporary snow sintering methods. Such a runway would represent a revolutionary advance for the logistical support of Antarctic research efforts. Keywords: Runway, Pavement, Snow, Ice, Antarctic

  2. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  3. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  4. MODIS Snow and Sea Ice Products

    Science.gov (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  5. Environmental impacts of urban snow management - The alpine case study of Innsbruck

    International Nuclear Information System (INIS)

    Engelhard, C.; De Toffol, S.; Lek, I.; Rauch, W.; Dallinger, R.

    2007-01-01

    In regions with colder climate, snow at roads can accumulate significant amounts of pollutant chemicals. In northern countries various efforts have been made to face this problem, but for the alpine region little is known about the pollution of urban snow. The present case study was carried out in the city of Innsbruck (Austria). It aimed at measuring pollution of roadside snow and estimating the impact of snow management practises on environmental quality. Concentrations of copper, zinc, lead, cadmium, suspended solids and chloride were determined during a series of sampling events. Various locations with low and high traffic densities and in different distances from a highway have been investigated. The concentrations of copper were generally higher at sites with high traffic density compared to locations with low traffic impact. In contrast to this, the concentrations of zinc and lead remained almost unvaried irrespective of traffic density at the different sampling sites. For cadmium, the picture was more diverse, showing moderately elevated concentrations of this metal also at the urban reference site not polluted by traffic. This indicates that there may be also other important sources for cadmium besides traffic. Suspended solids accumulated in the roadside snow, the highest concentrations were found at the sites with high traffic density. The chloride concentrations were considerable in the snow, especially at the highway. Based on the results of the present measurement campaign, the environmental impact of snow disposal in rivers was also estimated. A negative impact on rivers from snow disposal seems likely to occur, although the discharged loads could only be calculated with substantial uncertainty, considering the high variability of the measured pollutant concentrations. For a more accurate evaluation of this management practise on rivers, further investigations would be necessary

  6. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa.

    NARCIS (Netherlands)

    Bokhorst, S.F.; Phoenix, G.K.; Bjerke, J.W.; Callaghan, T.V.; Huyer-Brugman, F.A.; Berg, M.P.

    2012-01-01

    Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate

  7. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    International Nuclear Information System (INIS)

    Kuittinen, R.; Vironmaeki, J.

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method. (Auth.)

  8. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kuittinen, R [National Board of Waters (Finland); Vironmaeki, J [Geological Survey of Finland

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method.

  9. Responses of Plant Community Composition to Long-term Changes in Snow Depth at the Great Basin Desert - Sierra Nevada ecotone.

    Science.gov (United States)

    Loik, M. E.

    2015-12-01

    Snowfall is the dominant hydrologic input for many high-elevation ecosystems of the western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Given the importance of snowfall for future carbon cycling in high elevation ecosystems, how will these changes affect seedling recruitment, plant mortality, and community composition? To address this question, experiments utilize snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. Long-term April 1 snow pack depth averages 1344 mm (1928-2015) but is highly variable from year to year. Snow fences increased equilibrium drift snow depth by 100%. Long-term changes in snow depth and melt timing are associated with s shift from shurbs to graminoids where snow depth was increased for >50 years. Changes in snow have impacted growth for only three plant species. Moreover, annual growth ring increments of the conifers Pinus jeffreyi and Pi. contorta were not equally sensitive to snow depth. There were over 8000 seedlings of the shrubs Artemisia tridentata and Purshia tridentata found in 6300 m2 in summer 2009, following about 1400 mm of winter snow and spring rain. The frequency of seedlings of A. tridentata and P. tridentata were much lower on increased-depth plots compared to ambient-depth, and reduced-depth plots. Survival of the first year was lowest for A. tridentata. Survival of seedlings from the 2008 cohort was much higher for P. tridentata than A. tridentata during the 2011-2015 drought. Results indicate complex interactions between snow depth and plant community characteristics, and that responses of plants at this ecotone may not respond similarly to increases vs. decreases in snow depth. These changes portend altered carbon uptake in this region under future snowfall scenarios.

  10. Evaluation of an assimilation scheme to estimate snow water equivalent in the High Atlas of Morocco.

    Science.gov (United States)

    Baba, W. M.; Baldo, E.; Gascoin, S.; Margulis, S. A.; Cortés, G.; Hanich, L.

    2017-12-01

    The snow melt from the Atlas mountains represents a crucial water resource for crop irrigation in Morocco. Due to the paucity of in situ measurements, and the high spatial variability of the snow cover in this semi-arid region, assimilation of snow cover area (SCA) from high resolution optical remote sensing into a snowpack energy-balance model is considered as a promising method to estimate the snow water equivalent (SWE) and snow melt at catchment scales. Here we present a preliminary evaluation of an uncalibrated particle batch smoother data assimilation scheme (Margulis et al., 2015, J. Hydrometeor., 16, 1752-1772) in the High-Atlas Rheraya pilot catchment (225 km2) over a snow season. This approach does not require in situ data since it is based on MERRA-2 reanalyses data and satellite fractional snow cover area data. We compared the output of this prior/posterior ensemble data assimilation system to output from the distributed snowpack evolution model SnowModel (Liston and Elder, 2006, J. Hydrometeor. 7, 1259-1276). SnowModel was forced with in situ meteorological data from five automatic weather stations (AWS) and some key parameters (precipitation correction factor and rain-snow phase transition parameters) were calibrated using a time series of 8-m resolution SCA maps from Formosat-2. The SnowModel simulation was validated using a continuous snow height record at one high elevation AWS. The results indicate that the open loop simulation was reasonably accurate (compared to SnowModel results) in spite of the coarse resolution of the MERRA-2 forcing. The assimilation of Formosat-2 SCA further improved the simulation in terms of the peak SWE and SWE evolution over the melt season. During the accumulation season, the differences between the modeled and estimated (posterior) SWE were more substantial. The differences appear to be due to some observed precipitation events not being captured in MERRA-2. Further investigation will determine whether additional

  11. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps

    Science.gov (United States)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.

    2017-12-01

    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  12. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    Science.gov (United States)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  13. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  14. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  15. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    International Nuclear Information System (INIS)

    Takeuchi, Nozomu

    2013-01-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m −2 in cell volume or 13 mg carbon m −2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season. (letter)

  16. CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data

    Directory of Open Access Journals (Sweden)

    T. Y. Lakhankar

    2013-02-01

    Full Text Available The CREST-Snow Analysis and Field Experiment (CREST-SAFE was carried out during January–March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field experiment was to improve understanding of the effect of changing snow characteristics (grain size, density, temperature under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations. In this paper we present an overview of the field experiment and comparative preliminary analysis of the continuous microwave and snowpack observations and simulations. The observations revealed a large difference between the brightness temperature of fresh and aged snowpack even when the snow depth was the same. This is indicative of a substantial impact of evolution of snowpack properties such as snow grain size, density and wetness on microwave observations. In the early spring we frequently observed a large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization corresponding to daytime snowmelt and nighttime refreeze events. SNTHERM (SNow THERmal Model and the HUT (Helsinki University of Technology snow emission model were used to simulate snowpack properties and microwave brightness temperatures, respectively. Simulated snow depth and snowpack temperature using SNTHERM were compared to in situ observations. Similarly, simulated microwave brightness temperatures using the HUT model were compared with the observed brightness temperatures under different snow conditions to identify different states of the snowpack that developed during the winter season.

  17. Snow and ice: Chapter 3

    Science.gov (United States)

    Littell, Jeremy; McAfee, Stephanie A.; O'Neel, Shad; Sass, Louis; Burgess, Evan; Colt, Steve; Clark, Paul; Hayward, Gregory D.; Colt, Steve; McTeague, Monica L.; Hollingsworth, Teresa N.

    2017-01-01

    Temperature and precipitation are key determinants of snowpack levels. Therefore, climate change is likely to affect the role of snow and ice in the landscapes and hydrology of the Chugach National Forest region.Downscaled climate projections developed by Scenarios Network for Alaska and Arctic Planning (SNAP) are useful for examining projected changes in snow at relatively fine resolution using a variable called “snowday fraction (SDF),” the percentage of days with precipitation falling as snow.We summarized SNAP monthly SDF from five different global climate models for the Chugach region by 500 m elevation bands, and compared historical (1971–2000) and future (2030–2059) SDF. We found that:Snow-day fraction and snow-water equivalent (SWE) are projected to decline most in late autumn (October to November) and at lower elevations.Snow-day fraction is projected to decrease 23 percent (averaged across five climate models) from October to March, between sea level and 500 m. Between sea level and 1000 m, SDF is projected to decrease by 17 percent between October and March.Snow-water equivalent is projected to decrease most in autumn (October and November) and at lower elevations (below 1500 m), an average of -26 percent for the 2030–2059 period compared to 1971– 2000. Averaged across the cool season and the entire domain, SWE is projected to decrease at elevations below 1000 m because of increased temperature, but increase at higher elevations because of increased precipitation.Compared to 1971–2000, the percentage of the landscape that is snowdominant in 2030–2059 is projected to decrease, and the percentage in which rain and snow are co-dominant (transient hydrology) is projected to increase from 27 to 37 percent. Most of this change is at lower elevations.Glaciers on the Chugach National Forest are currently losing about 6 km3 of ice per year; half of this loss comes from Columbia Glacier (Berthier et al. 2010).Over the past decade, almost all

  18. Evidence for a photoprotective function for secondary carotenoids of snow algae

    International Nuclear Information System (INIS)

    Bidigare, R.R.; Ondrusek, M.E.; Kennicutt, M.C. II; Iturriaga, R.; Harvey, H.R.; Hoham, R.W.; Macko, S.A.

    1993-01-01

    Snow algae occupy a unique habitat in high altitude and polar environments. These algae are often subject to extremes in nutrient availability, acidity, solar irradiance, desiccation, and ambient temperature. This report documents the accumulation of secondary carotenoids by snow algae in response to the availability of nitrogenous nutrients. Unusually large accumulations of astaxanthin esters in extra-chloroplastic lipid globules produce the characteristic red pigmentation typical of some snow algae (e.g., Chlamydomonas nivalis (Bauer) Wille). Consequently, these compounds greatly reduce the amount of light available for absorption by the light-harvesting pigment-protein complexes, thus potentially limiting photoinhibition and photodamage caused by intense solar radiation. The esterification of astaxanthin with fatty acids represents a possible mechanism by which this chromophore can be concentrated within cytoplasmic globules to maximize its photoprotective efficiency. 53 refs., 2 figs., 4 tabs

  19. Slip and fall risk on ice and snow:identification, evaluation and prevention

    OpenAIRE

    Gao, Chuansi

    2004-01-01

    Slip and fall accidents and associated injuries on ice and snow are prevalent among outdoor workers and the general public in winter in many regions of the world. To understand and tackle this multi-factorial problem, a multidisciplinary approach was used to identify and evaluate slip and fall risks, and to propose recommendations for prevention of slips and falls on icy and snowy surfaces. Objectives were to present a systems perspective of slip and fall accidents and related risk factors; t...

  20. Digging of 'Snow White' Begins

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander began excavating a new trench, dubbed 'Snow White,' in a patch of Martian soil located near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The trench is about 2 centimeters (.8 inches) deep and 30 centimeters (about 12 inches) long. The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.' At this early stage of digging, the Phoenix team did not expect to find any of the white material seen in the first trench, now called 'Dodo-Goldilocks.' That trench showed white material at a depth of about 5 centimeters (2 inches). More digging of Snow White is planned for coming sols, or Martian days. The dark portion of this image is the shadow of the lander's solar panel; the bright areas within this region are not in shadow. Snow White was dug on Sol 22 (June 17, 2008) with Phoenix's Robotic Arm. This picture was acquired on the same day by the lander's Surface Stereo Imager. This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  2. Everywhere and nowhere: snow and its linkages

    Science.gov (United States)

    Hiemstra, C. A.

    2017-12-01

    Interest has grown in quantifying higher latitude precipitation change and snow-related ecosystem and economic impacts. There is a high demand for creating and using snow-related datasets, yet available datasets contain limitations, aren't scale appropriate, or lack thorough validation. Much of the uncertainty in snow estimates relates to ongoing snow measurement problems that are chronic and pervasive in windy, Arctic environments. This, coupled with diminishing support for long-term snow field observations, creates formidable hydrologic gaps in snow dominated landscapes. Snow touches most aspects of high latitude landscapes and spans albedo, ecosystems, soils, permafrost, and sea ice. In turn, snow can be impacted by disturbances, landscape change, ecosystem, structure, and later arrival of sea or lake ice. Snow, and its changes touch infrastructure, housing, and transportation. Advances in snow measurements, modeling, and data assimilation are under way, but more attention and a concerted effort is needed in a time of dwindling resources to make required advances during a time of rapid change.

  3. An Inexpensive, Implantable Electronic Sensor for Autonomous Measurement of Snow Pack Parameters

    Science.gov (United States)

    De Roo, R. D.; Haengel, E.; Rogacki, S.

    2015-12-01

    Snow accumulations on the ground are an important source of water in many parts of the world. Mapping the accumulation, usually represented as the snow water equivalent (SWE), is valuable for water resource management. The longest record of regional and global maps of SWE are from orbiting microwave radiometers, which do not directly measure SWE but rather measure the scatter darkening from the snow pack. Robustly linking the scatter darkening to SWE eludes us to this day, in part because the snow pack is highly variable in both time and space. The data needed is currently collected by hand in "snow pits," and the labor-intensive process limits the size of the data sets that can be obtained. In particular, time series measurements are only a one or two samples per day at best, and come at the expense of spatial sampling. We report on the development of a low-power wireless device that can be embedded within a snow pack to report on some of the critical parameters needed to understand scatter darkening. The device autonomously logs temperature, the microwave dielectric constant and infrared backscatter local to the device. The microwave dielectric constant reveals the snow density and the presence of liquid water, while the infrared backscatter measurement, together with the density measurement, reveals a characteristic grain size of the snow pack. The devices are made to be inexpensive (less than $200 in parts each) and easily replicated, so that many can be deployed to monitor variations vertically and horizontally in the snow pack. The low-power operation is important both for longevity of observations as well as insuring minimal anomalous metamorphism of the snow pack. The hardware required for the microwave measurement is intended for wireless communications, and this feature will soon be implemented for near real-time monitoring of snow conditions. We will report on the design, construction and initial deployment of about 30 of these devices in northern lower

  4. PERSPECTIVE: Snow matters in the polar regions

    Science.gov (United States)

    Sodeau, John

    2010-03-01

    to 30 times greater than those found in ice-free areas. The main question to ask is: how might the bromine have become released to the atmosphere? Many ideas have, in fact, been put forward over the last few years as to how such polar ocean-troposphere exchanges can take place. Much of the interest was driven by the so-called 'sudden' ozone depletion episodes first detected in Arctic air during the 1990s alongside simultaneous bromine 'explosions' which were monitored by ground-based instrumentation and satellite (as the radical BrO) over sea-ice covered by snowpack (Hausmann and Platt 1994, Schonhardt et al 2008). The likely precursors suggested, to date, have been sea-salt, frost-flowers and anthropogenic contents rather than organo- bromine matter (Simpson et al 2007). Associated processing routes including the formation of HOBr, the need for acidity, the involvement of trihalide ions and the potential role of freezing processes and the quasi-liquid layer have all been discussed in this context (Abbatt 1994, Neshyba et al 2009, O'Driscoll et al 2006). Computational work has also led to suggestions that preferential surface dispersion of the more highly polarizable halides (iodide and bromide ions) may lead to their direct interfacial reaction with atmospheric ozone leading to BrO or IO formation (Jungwirth and Winter 2008). The involvement of snow micro-algae in the production of halo-compounds such as CHBr3 and CH2Br2 in Antarctica cannot, of course, be ignored following the measurement of these compounds by Sturges and co-workers over 15 years ago (Sturges et al 1993). And the measurement of high levels of nutrient discussed in the recent work by Antony et al (2010) in the ice-cap areas do provide a basis for understanding why micro- algae growth in snow might be promoted. However the question still comes back to: how are these halo-compounds processed to produce 'active' species like BrO radicals, HOBr, Br atoms, Br2 gas or interhalogens such as BrCl? The

  5. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  6. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    International Nuclear Information System (INIS)

    Singh, G.P.

    2003-05-01

    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons followed by excess (deficient) rainfall over India using National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanylised data for the period 1948-1995. The composite difference of temperature, wind, stream function and velocity potential during the years of high and low snow years at upper and lower levels have been studied in detail. The temperature at lower level shows maximum cooling up to 6 deg. C during DJF and this cooling persists up to 500hPa by 2 deg. C which gives rise to anomalous cyclonic circulation over the Caspian Sea and this may be one of the causes of the weakening of the summer monsoon circulation over Indian sub-continent. The stream function difference fields show westerly dominated over Arabian Sea at upper level in weak monsoon years. Velocity potential difference field shows complete phase reversal in the dipole structure from the deficient to excess Indian summer monsoon rainfall. (author)

  7. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees from 2011 to 2017

    Directory of Open Access Journals (Sweden)

    J. Revuelto

    2017-12-01

    Full Text Available This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i continuous meteorological variables acquired from an automatic weather station (AWS, (ii detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology for certain dates across the snow season (between three and six TLS surveys per snow season and (iii time-lapse images showing the evolution of the snow-covered area (SCA. The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface, and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277 is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which

  8. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions

    Science.gov (United States)

    Christina Tague; Gordon E. Grant

    2009-01-01

    In mountain environments, spatial and temporal patterns of snow accumulation and melt are dominant controls on hydrologic responses to climate change. In this paper, we develop a simple conceptual model that links the timing of peak snowmelt with geologically mediated differences in rate of streamflow recession. This model demonstrates that within the western United...

  9. Marine snow increases the adverse effects of oil on benthic invertebrates

    NARCIS (Netherlands)

    Eenennaam, Van Justine S.; Rahsepar, Shokouh; Radović, Jagoš R.; Oldenburg, Thomas B.P.; Wonink, Jessica; Langenhoff, Alette A.M.; Murk, Albertinka J.; Foekema, Edwin M.

    2018-01-01

    After the Deepwater Horizon oil spill, a MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) event took place, transporting an estimated 14% of total released oil to the sediment, and smothering parts of the benthic ecosystem. This microcosm study describes the effects of oiled

  10. Peeking Below the Snow Surface to Explore Amundsen Sea Climate Variability and Locate Optimal Ice-Core Sites

    Science.gov (United States)

    Neff, P. D.; Fudge, T. J.; Medley, B.

    2016-12-01

    Observations over recent decades reveal rapid changes in ice shelves and fast-flowing grounded ice along the Amundsen Sea coast of the West Antarctic Ice Sheet (WAIS). Long-term perspectives on this ongoing ice loss are needed to address a central question of Antarctic research: how much and how fast will Antarctic ice-loss raise sea level? Ice cores can provide insight into past variability of the atmospheric (wind) forcing of regional ocean dynamics affecting ice loss. Interannual variability of snow accumulation on coastal ice domes grounded near or within ice shelves reflects local to regional atmospheric circulation near the ice-ocean interface. Records of snow accumulation inferred from shallow ice cores strongly correlate with reanalysis precipitation and pressure fields, but ice cores have not yet been retrieved along the Amundsen Sea coast. High-frequency airborne radar data (NASA Operation IceBridge), however, have been collected over this region and we demonstrate that these data accurately reflect annual stratigraphy in shallow snow and firn (1 to 2 decades of accumulation). This further validates the agreement between radar snow accumulation records and climate reanalysis products. We then explore regional climate controls on local snow accumulation through comparison with gridded reanalysis products, providing a preview of what information longer coastal ice core records may provide with respect to past atmospheric forcing of ocean circulation and WAIS ice loss.

  11. Distribution and variability of total mercury in snow cover?a case study from a semi-urban site in Pozna?, Poland

    OpenAIRE

    Siudek, Patrycja

    2016-01-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Pozna? (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5?ng?L?1, with a mean value of 4.62?ng?L?1. The highest Hg conc...

  12. Warming, soil moisture, and loss of snow increase Bromus tectorum’s population growth rate

    Directory of Open Access Journals (Sweden)

    Aldo Compagnoni

    2014-01-01

    Full Text Available Abstract Climate change threatens to exacerbate the impacts of invasive species. In temperate ecosystems, direct effects of warming may be compounded by dramatic reductions in winter snow cover. Cheatgrass (Bromus tectorum is arguably the most destructive biological invader in basins of the North American Intermountain West, and warming could increase its performance through direct effects on demographic rates or through indirect effects mediated by loss of snow. We conducted a two-year experimental manipulation of temperature and snow pack to test whether 1 warming increases cheatgrass population growth rate and 2 reduced snow cover contributes to cheatgrass’ positive response to warming. We used infrared heaters operating continuously to create the warming treatment, but turned heaters on only during snowfalls for the snowmelt treatment. We monitored cheatgrass population growth rate and the vital rates that determine it: emergence, survival and fecundity. Growth rate increased in both warming and snowmelt treatments. The largest increases occurred in warming plots during the wettest year, indicating that the magnitude of response to warming depends on moisture availability. Warming increased both fecundity and survival, especially in the wet year, while snowmelt contributed to the positive effects of warming by increasing survival. Our results indicate that increasing temperature will exacerbate cheatgrass impacts, especially where warming causes large reductions in the depth and duration of snow cover.

  13. Daily snow depth measurements from 195 stations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  14. A webgis supported snow information system with long time satellite data for Turkey

    Science.gov (United States)

    Surer, S.; Bolat, K.; Akyurek, Z.

    2012-04-01

    KARBILSIS is an online platform which is developed in order to provide end-users with daily remote sensing snow products for Turkey (www.karbilsis.com). The project has been started as a research activity after an award by Ministry of Science and Technology has been granted to our company. At the first stage of our project MODIS atmospherically corrected reflectance data has been downloaded covering the period of 2000-2011 which makes more than ten years of satellite imagery for Turkey. The archived MODIS data that have been obtained from National Snow and Ice Data Center (NSIDC) is mainly MOD09GA product that includes seven spectral bands. Only the tiles which are covering Turkey have been archived namely 19&20 horizontal and 4&5 vertical ones. In order to provide scientists with a website giving the availability of analysis of snow covered area for long terms based on their area of interests, a fractional snow extent (FSE) product has been generated. For FSE product a normalized difference snow index (NDSI) based algorithm has been developed using daily land surface reflectance values (MOD09GA). In addition to MODIS data, four different Landsat images belonging to different days of snowy period (January, March, and May) have been used during algorithm development taking into account a better representation of different reflectance values of snow which highly varies depending on the accumulation and melting periods. Landsat images were used as reference images. First the Landsat images were orthorectified and mapped to a cartographic projection. Then image segmentation was applied to obtain homogeneous tiles, where the homogeneity is defined as similarity in pixel values. The mean-shift segmentation approach, where each pixel was associated with a significant mode of the joint domain density located in its neighborhood, was applied. After segmentation, the image was classified into snow and no-snow classes with Maximum Likelihood Classification Method. FSE

  15. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers

    International Nuclear Information System (INIS)

    Xu Baiqing; Joswiak, Daniel R; Zhao Huabiao; Cao Junji; Liu Xianqin; He Jianqiao

    2012-01-01

    The post-depositional enrichment of black soot in snow-pack was investigated by measuring the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year experiment revealed that black soot was greatly enriched, defined as the ratio of concentration to original snow concentration, in the unmelted snow-pack by at least an order of magnitude. Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g −1 in the summer surface snow indicate that soot can significantly contribute to glacier melt. BC concentrations reaching 3000 ng g −1 in the bottom portion of the firn pit are especially concerning given the expected equilibrium-line altitude (ELA) rise associated with future climatic warming, which would expose the dirty underlying firn and ice. Since most of the accumulation area on Tibetan glaciers is within the percolation zone where snow densification is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of foremost importance. Results suggest the effect of black soot on glacier melting may currently be underestimated. (letter)

  16. Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping

    Science.gov (United States)

    Kadlec, Jiri

    to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS