WorldWideScience

Sample records for winter seismic exploration

  1. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    International Nuclear Information System (INIS)

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E.

    1992-01-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression

  2. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  3. Attenuation and velocity dispersion in the exploration seismic frequency band

    Science.gov (United States)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to

  4. Ambient seismic noise tomography for exploration seismology at Valhall

    Science.gov (United States)

    de Ridder, S. A.

    2011-12-01

    Permanent ocean-bottom cables installed at the Valhall field can repeatedly record high quality active seismic surveys. But in the absence of active seismic shooting, passive data can be recorded and streamed to the platform in real time. Here I studied 29 hours of data using seismic interferometry. I generate omni-directional Scholte-wave virtual-sources at frequencies considered very-low in the exploration seismology community (0.4-1.75 Hz). Scholte-wave group arrival times are inverted using both eikonal tomography and straight-ray tomography. The top 100 m near-surface at Valhall contains buried channels about 100 m wide that have been imaged with active seismic. Images obtained by ASNT using eikonal tomography or straight-ray tomography both contain anomalies that match these channels. When continuous recordings are made in real-time, tomography images of the shallow subsurface can be formed or updated on a daily basis, forming a very low cost near-surface monitoring system using seismic noise.

  5. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    Science.gov (United States)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  6. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    Science.gov (United States)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz

  7. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  8. Overview of potential issues related to seismic exploration off the north coast of B.C.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.A. [LGL Ltd., King City, ON (Canada)

    2003-07-01

    British Columbia's fisheries industry is worth hundreds of millions of dollars per year and is of great cultural significance to First Nations. While concern about the impact of seismic exploration is relatively recent LGL Limited has been examining the effects of seismic exploration on marine wildlife since 1974 with particular emphasis on the significance of underwater noise from air gun arrays and the effects of seismic hearing in fish and marine mammals such as seals and whales. Research programs have been conducted in the Gulf of Mexico, the west coast of North America, Cook Inlet, Bering Sea, Chukchi Sea and the Beaufort Sea. Studies have also been conducted throughout Arctic Canada, the coastal waters of Newfoundland, the Scotian Shelf, and the Bay of Fundy. This presentation described seismic noise sources, source levels, how source levels are measured, and the path of noise with reference to transmission loss, received levels, and ambient noise. Over the decades, there have not been large-scale demonstrated effects on fisheries in the areas where seismic exploration has occurred. Major collapses have not occurred in fisheries even in the most mature oil and gas fields. It was therefore concluded that seismic exploration can be conducted safely in the northern waters of British Columbia if the programs are carefully planned and if appropriate mitigation measures are in place with good quantitative monitoring by trained biologists. 5 figs.

  9. Scientific Exploration of Induced SeisMicity and Stress (SEISMS

    Directory of Open Access Journals (Sweden)

    H. M. Savage

    2017-11-01

    Full Text Available Several major fault-drilling projects have captured the interseismic and postseismic periods of earthquakes. However, near-field observations of faults immediately before and during an earthquake remain elusive due to the unpredictable nature of seismicity. The Scientific Exploration of Induced SeisMicity and Stress (SEISMS workshop met in March 2017 to discuss the value of a drilling experiment where a fault is instrumented in advance of an earthquake induced through controlled fluid injection. The workshop participants articulated three key issues that could most effectively be addressed by such an experiment: (1 predictive understanding of the propensity for seismicity in reaction to human forcing, (2 identification of earthquake nucleation processes, and (3 constraints on the factors controlling earthquake size. A systematic review of previous injection experiments exposed important observational gaps in all of these areas. The participants discussed the instrumentation and technological needs as well as faults and tectonic areas that are feasible from both a societal and scientific standpoint.

  10. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  11. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.

    Science.gov (United States)

    Finnegan, Laura; Pigeon, Karine E; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B

    2018-01-01

    Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural

  12. 3D seismic Unterhaching 2009 within hydrothermal exploration and modelling; 3D-Seismik Unterhaching 2009 im Rahmen hydrothermaler Exploration und Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Lueschen, Ewald; Dussel, Michael; Thomas, Ruediger; Schulz, Ruediger [Leibniz-Institut fuer Angewandte Geophysik (LIAG), Hannover (Germany)

    2011-10-24

    Within the exploration of hydrothermal reservoirs, results of 3D reflexion-seismic measurements are presented. These measurements were performed in June / July 2009 according to the vibroseis method on an area of 26.3 square kilometers in the area Unterhaching (Federal Republic of Germany). The 3D seismic survey exhibits much more complex structures than previously known by 2D seismic lines. Subsequent to sinistral transtension (active in the Cretaceous to the Eocene) a short transpression impetus was performed. This is evident from graduated normal faults as well as staggered reverse fault structures and inversion structures in the Upper Jurassic. Top and base of the 600-650 m mighty Malm are well resolved. Brittle fault structures are formed linearly at the top Malm but rounded and chaotic within the Malm. This can be explained by a radical karstification / hydrothermal solution. Several circular structures are interpreted as karstified incursion structures. The seismic facies of the Malm is characterized by a shift from relatively transparent zones, layered fields, scatters and fault zones. This is an expression of smaller and larger reefs, lagoons and reef debris. Reefs are characterized by several seismic attributes. Striking low-velocity zones are oriented along the main fault zones and can be interpreted as zones that are relieved by gap porosity. Azimuth variable processing gives evidence for preferred orientations of fractures on the seismic scale. By means of the 3D seismic diverse geothermal exploration targets can be defined.

  13. Alaska Tundra Travel Modeling Project and implications for seismic best management practices

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, G. [Alaska Dept. of Natural Resources, Anchorage, AK (United States)

    2007-07-01

    Much of the oil and gas exploration in the Alaskan North Slope depends on winter off-road travel to gain access to remote exploration areas. A study was conducted to relate vehicular off-road travel to tundra disturbance. Four types of vehicles were driven on the tundra on specific plots at various times throughout early to mid winter in an effort to determine if travel could occur earlier than current practice without impacting tundra integrity. Variables were measured the summer before travel, at the time of travel and the summers following travel. The results were used to develop a management tool to determine when conditions are adequate to allow winter vehicular off-road travel. It was determined that the soil temperature should be 5 degrees C or colder at a depth of 30 cm, with snow depths of 15 cm in coastal sedge tundra or 23 cm in foothills tussock tundra. This presentation also discussed the implications for managing off-road travel associated with seismic operations and recent changes in the types of vehicles used for these operations. figs.

  14. Winter: Public Enemy #1 for Accessibility EXPLORING NEW SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ernesto Morales

    2014-05-01

    Full Text Available Abstract: Winter is expensive. For countries situated in the northern hemisphere, closer to the north pole, such as Canada, Russia and Scandinavia, winter requires the acquisition of special clothing, car tires, and sports equipment, snow removal or plowing from the streets, and is associated with the presence of ice patches, along with accidents and illnesses associated with cold weather. Fall-related injuries due to winter conditions have been estimated to cost the Canadian health care system $ 2.8 billion a year. However, the greatest cost snow entails every year is the social isolation of seniors as well as wheelchair and walker users. This results from the lack of accessibility, as it is difficult to circulate on snow-covered streets even for the able-bodied. Social isolation has been associated with other negative consequences such as depression and even suicide. This exploratory pilot study aimed at finding possible and feasible design solutions for improving the accessibility of sidewalks during winter conditions. For this project we used a Co-Design methodology. Stakeholders (City of Quebec representatives, designers, urban planners, occupational therapists, and adults with motor, visual and aural disabilities were invited to participate in the design process. In order to meet the objectives, two main steps were carried out: 1. Conception of the design solutions (through Co-design sessions in a Focus-group format with seniors, designers and researchers; and 2. Validation of the design solutions (consultation with experts and stakeholders. The results are a wide variety of possible and feasible solutions, including the reorganisation of the snow-removal procedure and the development of heated curb cuts. This project was funded by the City of Quebec in partnership with the Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS. Ultimately, the project sought to explore possible solutions to be implemented

  15. Source localization analysis using seismic noise data acquired in exploration geophysics

    Science.gov (United States)

    Roux, P.; Corciulo, M.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring using seismic noise data shows a growing interest at exploration scale. Recent studies demonstrated source localization capability using seismic noise cross-correlation at observation scales ranging from hundreds of kilometers to meters. In the context of exploration geophysics, classical localization methods using travel-time picking fail when no evident first arrivals can be detected. Likewise, methods based on the intensity decrease as a function of distance to the source also fail when the noise intensity decay gets more complicated than the power-law expected from geometrical spreading. We propose here an automatic procedure developed in ocean acoustics that permits to iteratively locate the dominant and secondary noise sources. The Matched-Field Processing (MFP) technique is based on the spatial coherence of raw noise signals acquired on a dense array of receivers in order to produce high-resolution source localizations. Standard MFP algorithms permits to locate the dominant noise source by matching the seismic noise Cross-Spectral Density Matrix (CSDM) with the equivalent CSDM calculated from a model and a surrogate source position that scans each position of a 3D grid below the array of seismic sensors. However, at exploration scale, the background noise is mostly dominated by surface noise sources related to human activities (roads, industrial platforms,..), which localization is of no interest for the monitoring of the hydrocarbon reservoir. In other words, the dominant noise sources mask lower-amplitude noise sources associated to the extraction process (in the volume). Their location is therefore difficult through standard MFP technique. The Multi-Rate Adaptative Beamforming (MRABF) is a further improvement of the MFP technique that permits to locate low-amplitude secondary noise sources using a projector matrix calculated from the eigen-value decomposition of the CSDM matrix. The MRABF approach aims at cancelling the contributions of

  16. FY 1995 report on verification of geothermal exploration technology. Development of fracture reservoir exploration technology (development of seismic exploration); 1995 nendo chinetsu tansa gijutsunado kensho chosa. Danretsugata choryuso tansaho kaihatsu (danseiha riyo tansaho kaihatsu) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report provides the development of new exploration technology using elastic waves, such as reflection seismic survey, VSP, and seismic tomography, for precisely characterizing subsurface fractures in geothermal reservoirs. In order to investigate and improve the effective data acquisition and analysis methods for detecting a fault type of fractures, an experiment of a seismic tomography method was conducted using wells drilled in the Ogiri geothermal field, Aira-gun, Kagoshima Prefecture. An experiment of propagation characteristics of piezo type underground seismic source in the volcanic field was also conducted as a trend survey of underground seismic sources. The fracture type in the model field was systematically analyzed by measuring the core samples obtained in the demonstration test field through remanence measurement, fluid inclusion measurement, and zircon measurement using test equipment, and by analyzing results obtained from cores and results of seismic tomography obtained from the wells. Based on these results, the effectiveness and practical application of exploration methods using elastic waves were investigated. 80 refs., 250 figs., 49 tabs.

  17. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  18. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  19. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  20. Vertical Cable Seismic Survey for SMS exploration

    Science.gov (United States)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  1. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  2. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  3. The utility of petroleum seismic exploration data in delineating structural features within salt anticlines

    Science.gov (United States)

    Stockton, S.L.; Balch, Alfred H.

    1978-01-01

    The Salt Valley anticline, in the Paradox Basin of southeastern Utah, is under investigation for use as a location for storage of solid nuclear waste. Delineation of thin, nonsalt interbeds within the upper reaches of the salt body is extremely important because the nature and character of any such fluid- or gas-saturated horizons would be critical to the mode of emplacement of wastes into the structure. Analysis of 50 km of conventional seismic-reflection data, in the vicinity of the anticline, indicates that mapping of thin beds at shallow depths may well be possible using a specially designed adaptation of state-of-the-art seismic oil-exploration procedures. Computer ray-trace modeling of thin beds in salt reveals that the frequency and spatial resolution required to map the details of interbeds at shallow depths (less than 750 m) may be on the order of 500 Hz, with surface-spread lengths of less than 350 m. Consideration should be given to the burial of sources and receivers in order to attenuate surface noise and to record the desired high frequencies. Correlation of the seismic-reflection data with available well data and surface geology reveals the complex, structurally initiated diapir, whose upward flow was maintained by rapid contemporaneous deposition of continental clastic sediments on its flanks. Severe collapse faulting near the crests of these structures has distorted the seismic response. Evidence exists, however, that intrasalt thin beds of anhydrite, dolomite, and black shale are mappable on seismic record sections either as short, discontinuous reflected events or as amplitude anomalies that result from focusing of the reflected seismic energy by the thin beds; computer modeling of the folded interbeds confirms both of these as possible causes of seismic response from within the salt diapir. Prediction of the seismic signatures of the interbeds can be made from computer-model studies. Petroleum seismic-reflection data are unsatisfactory for

  4. Seismic applications in CBM exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Lawton, D.C. [Calgary Univ., AB (Canada)

    2002-07-01

    This Power Point presentation reviewed seismic methods, coal seam seismology, seismology and coalbed methane (CBM) development, and time-lapse seismic imaging with reference to numerical modelling and physical testing. The issue of resolution versus detection in various seismic methods was discussed. The thinnest resolvable beds are usually about 1.0 m thick. Coal zones with thin seams can be mapped using seismic reflection, but individual seams are difficult to resolve in field data. In terms of coal seismology, it was noted that seismic surveys make it possible to identify seam thickness, field geometry, subsurface structuring and facies changes. Facies model make it possible to determine the depositional environment, coal type, coal quality and lateral continuity. Some successes in coal seismology include the Cedar Hill and Ferron fields in the San Juan Basin. Numerical modelling methods include digital dipole compressional sonic and density well logs through Ardley Coal Zone, P-wave synthetic seismograms generated in SYNTH (MATLAB), and the alteration of density/velocity values to create new seismograms. Another numerical method is to take the difference between original and altered seismograms. It was shown that dewatering causes a decrease in velocity of about 20 per cent, and a 15 per cent decrease in density. Changes as small as 5 per cent in reservoir properties can be successfully imaged. It was concluded that the identification of dewatered zones allow for optimal positioning of development wells. Further physical testing will involve wet and dry p-wave velocities, s-wave velocities will be tested, and velocities will be measured under pressure. 2 tabs., 10 figs.

  5. Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics

    Science.gov (United States)

    Pirrung, M.; Polom, U.; Krawczyk, C. M.

    2008-12-01

    The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.

  6. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  7. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  8. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  9. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    Science.gov (United States)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C

  10. Exploring the Constraint Profile of Winter Sports Resort Tourist Segments.

    Science.gov (United States)

    Priporas, Constantinos-Vasilios; Vassiliadis, Chris A; Bellou, Victoria; Andronikidis, Andreas

    2015-09-01

    Many studies have confirmed the importance of market segmentation both theoretically and empirically. Surprisingly though, no study has so far addressed the issue from the perspective of leisure constraints. Since different consumers face different barriers, we look at participation in leisure activities as an outcome of the negotiation process that winter sports resort tourists go through, to balance between related motives and constraints. This empirical study reports the findings on the applicability of constraining factors in segmenting the tourists who visit winter sports resorts. Utilizing data from 1,391 tourists of winter sports resorts in Greece, five segments were formed based on their constraint, demographic, and behavioral profile. Our findings indicate that such segmentation sheds light on factors that could potentially limit the full utilization of the market. To maximize utilization, we suggest customizing marketing to the profile of each distinct winter sports resort tourist segment that emerged.

  11. Exploring the Constraint Profile of Winter Sports Resort Tourist Segments

    Science.gov (United States)

    Priporas, Constantinos-Vasilios; Vassiliadis, Chris A.; Bellou, Victoria; Andronikidis, Andreas

    2014-01-01

    Many studies have confirmed the importance of market segmentation both theoretically and empirically. Surprisingly though, no study has so far addressed the issue from the perspective of leisure constraints. Since different consumers face different barriers, we look at participation in leisure activities as an outcome of the negotiation process that winter sports resort tourists go through, to balance between related motives and constraints. This empirical study reports the findings on the applicability of constraining factors in segmenting the tourists who visit winter sports resorts. Utilizing data from 1,391 tourists of winter sports resorts in Greece, five segments were formed based on their constraint, demographic, and behavioral profile. Our findings indicate that such segmentation sheds light on factors that could potentially limit the full utilization of the market. To maximize utilization, we suggest customizing marketing to the profile of each distinct winter sports resort tourist segment that emerged. PMID:29708114

  12. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  13. Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology

    OpenAIRE

    Bettinelli, Pierre; Avouac, Jean-Philippe; Flouzat, Mireille; Bollinger, Laurent; Ramillien, Guillaume; Rajaure, Sudhir; Sapkota, Som

    2008-01-01

    One way to probe earthquake nucleation processes and the relation between stress buildup and seismicity is to analyze the sensitivity of seismicity to stress perturbations. Here, we report evidence for seasonal strain and stress (~ 2–4 kPa) variations in the Nepal Himalaya, induced by water storage variations which correlate with seasonal variations of seismicity. The seismicity rate is twice as high in the winter as in the summer, and correlates with stress rate variations. We infer ~ 10–20 ...

  14. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  15. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koike, G; Yoshikuni, Y [OYO Corp., Tokyo (Japan)

    1996-10-01

    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  16. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)

    1996-12-31

    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  17. A seismic refraction and wide-angle reflection exploration in 2002 on the Mizuho Plateau, East Antarctica-Outline of observations (JARE-43-

    Directory of Open Access Journals (Sweden)

    Hiroki Miyamachi

    2003-03-01

    Full Text Available A seismic refraction and wide-angle reflection exploration was successfully conducted along a profile crossing the JARE-41 seismic profile on the Mizuho Plateau, in East Antarctica, in the austral summer season of 2001-2002 (JARE-43. One hundred sixty-one seismic stations were temporarily installed along a profile about 151 km long and seven large shots with about 700 kg of dynamite were fired. In addition, one shot with charge size of 20 kg was also arranged along the profile. The obtained seismic records show the clear onsets of the first arrivals at distances of less than 100 km from each large shot. In particular, seismic waves traveling through the ice sheet and dispersed surface waves were clearly observed. Some later reflection phases were also detected. The obtained first travel time data show that the ice sheet is a two-layered structure consisting of an upper layer with a P wave velocity of 2.7-2.9 km/s and a lower layer of 3.7-3.9 km/s. The thickness of the upper layer is estimated to be about 36-45 m. The apparent velocity in the basement rock just beneath the ice sheet is 6.1-6.2 km/s in the central and southern parts of the profile and almost 5.9 km/s in the northern part. This report describes basic outlines of the exploration and the obtained seismic data.

  18. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  19. Seismic Canvas: Evolution as a Data Exploration and Analysis Tool

    Science.gov (United States)

    Kroeger, G. C.

    2015-12-01

    SeismicCanvas, originally developed as a prototype interactive waveform display and printing application for educational use has evolved to include significant data exploration and analysis functionality. The most recent version supports data import from a variety of standard file formats including SAC and mini-SEED, as well as search and download capabilities via IRIS/FDSN Web Services. Data processing tools now include removal of means and trends, interactive windowing, filtering, smoothing, tapering, resampling. Waveforms can be displayed in a free-form canvas or as a record section based on angular or great circle distance, azimuth or back azimuth. Integrated tau-p code allows the calculation and display of theoretical phase arrivals from a variety of radial Earth models. Waveforms can be aligned by absolute time, event time, picked or theoretical arrival times and can be stacked after alignment. Interactive measurements include means, amplitudes, time delays, ray parameters and apparent velocities. Interactive picking of an arbitrary list of seismic phases is supported. Bode plots of amplitude and phase spectra and spectrograms can be created from multiple seismograms or selected windows of seismograms. Direct printing is implemented on all supported platforms along with output of high-resolution pdf files. With these added capabilities, the application is now being used as a data exploration tool for research. Coded in C++ and using the cross-platform Qt framework, the most recent version is available as a 64-bit application for Windows 7-10, Mac OS X 10.6-10.11, and most distributions of Linux, and a 32-bit version for Windows XP and 7. With the latest improvements and refactoring of trace display classes, the 64-bit versions have been tested with over 250 million samples and remain responsive in interactive operations. The source code is available under a LPGLv3 license and both source and executables are available through the IRIS SeisCode repository.

  20. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  1. Structuring agreements for seismic group shoots

    International Nuclear Information System (INIS)

    Keeping, C.E.

    1999-01-01

    Sigma Explorations Inc. sells licenses to use Sigma owned seismic data. The company participates with exploration and production companies in the joint acquisition of semi-private participation surveys. This paper discusses three major types of seismic group shoots and the essential elements of the agreements that govern or should govern them. They are: (1) exploration and production company joint ventures, (2) publicly offered spec shoots, and (3) semi-private participation surveys. The key issue with the exploration and production company joint ventures is that the companies are owners of the seismic data in proportion to their contribution towards the cost of the program. Their use of the data should be restricted to those situations permitted by the other owners. These are not often well documented, and there is much concern in the industry as a result. The key issue with publicly offered spec shoots is that the seismic company ultimately owns the data and the client exploration and production company is a licensee and must behave as such. In most such cases the rights and responsibilities are well documented in formal agreements that are signed in advance of the program's beginning date

  2. Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals

    Science.gov (United States)

    Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.

    2010-12-01

    Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.

  3. Seismic and geological interpretation on petroleum exploration in the Cuban economic area in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sora Monroy, America; Lopez, Sofia; Dominguez, Rene; Socorro, Rafael; Sanchez, Jorge; Toucet, Sonia [Cupet -Companhia Cubana de Petroleo, Havana (Cuba)

    2004-07-01

    From the decade of the 50'up to now, many seismic survey were acquired in the Cuban Economic area in the Gulf of Mexico, both, deep water and near short along the littoral, which have contribute to prepare the structural model as well the evolutional one. During the period comprise from June to December 2000, 7330 Km. of seismic lines were acquired over 70 lines in an area of 110000 square Km. that covers the Exclusive Economic area of Cuba. In this area the water depth varies from 500 m to 3500 m. The biggest depth is located at the central part of the whole area. The depth decreases toward the shell and the island's littoral (up to less than 1000 m). Seismic data were processed at CGG' processing in France. Geovector Plus was used as seismic processing software. All the information was calibrate by the wells in the area. The principal wells were DP535 and DP540. The general featuring of seismic image let us to get the map from the main geological elements in this area. In the area we were following two principal horizons: the green one associated to the Middle Cretaceous and the blue one associated to the top of Jurassic. We made the structural maps from the Middle Cretaceous and the Top of Jurassic, and did the seism stratigraphic analysis. We found 16 sequences. We did the chronograph table in this area and we made six maps from different seismic sequences. This analysis let us to define the most important area to continue studying in the Cuban economic area in the Gulf of Mexico on the petroleum exploration. (author)

  4. Integration of potential field and seismic data for hydrocarbon exploration in the Miguasha area, Appalachian Gaspe belt, Quebec

    Energy Technology Data Exchange (ETDEWEB)

    St-Laurent, C.; Adam, E. [Hydro-Quebec, Ste-Foy, PQ (Canada). Petrole et Gaz

    2005-07-01

    In 2003, Hydro-Quebec acquired about 100 km of seismic data and 2,300 km{sup 2} of aeromagnetic data to begin exploration for oil and gas in the Miguasha area of the southwestern part of the Gaspe Peninsula. A discrepancy exists within the prospective area between the observed orientation of formational contacts in outcrop and moderately-dipping reflectors observed on seismic surveys. According to magnetic data, there is only 1 weakly-magnetic zone that is composed of felsic to intermediate volcanic rocks. A 3-D inversion of the total magnetic field was undertaken to obtain the subsurface distribution of magnetic rocks before drilling 2 exploratory wells in 2004. The inversion results were validated by performing 2.5-D modelling along selected traverses and through correlation with depth-converted seismic sections. The 3-D magnetic inversion is a cost-effective method of obtaining a 3-D subsurface image of this weakly-magnetic volcanic zone. Valuable information regarding the depth of the magnetic zone was obtained by combining magnetic inversion results with the seismic data. This study revealed the effectiveness of this approach in discriminating sediments with potential hydrocarbon reservoirs from non-prospective, magnetic volcanic rocks.

  5. seismic refraction investigation of the subsurface structure

    African Journals Online (AJOL)

    DR. AMINU

    employed for exploration include magnetic, electrical and gravitational methods, which depends on the earth's natural fields. Others are seismic and electromagnetic methods, which depends on the introduction of artificial energy in thereof. The seismic refraction method uses the seismic energy that returns to the surface of ...

  6. Redatuming of sparse 3D seismic data

    NARCIS (Netherlands)

    Tegtmeier, S.

    2007-01-01

    The purpose of a seismic survey is to produce an image of the subsurface providing an overview of the earth's discontinuities. The aim of seismic processing is to recreate this image. The seismic method is especially well suited for the exploration and the monitoring of hydrocarbon reservoirs. A

  7. Correlation-based seismic velocity inversion

    NARCIS (Netherlands)

    Van Leeuwen, T.

    2010-01-01

    Most of our knowledge of the subsurface comes from the measurement of quantities that are indirectly related to the earth’s structure. Examples are seismic waves, gravity and electromagnetic waves. We consider the use of seismic waves for inference of structural information on an exploration scale.

  8. Geophysical Exploration. New site exploration method

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Tsuneo; Otomo, Hideo; Sakayama, Toshihiko

    1988-07-25

    Geophysical exploration is used for geologic survey to serve purposes in civil engineering. New methods are being developed inside and outside Japan and are used to serve various purposes. This paper discusses recently developed techniques based on the measurement of seismic waves and electric potential. It also explains seismic tomography, radar tomography, and resistivity tomography which are included in the category of geotomography. At present, effort is being made to apply geophysical exploration technology to problems which were considered to be unsuitable for conventional exploration techniques. When such effort proceeds successfully, it is necessary to develop technology for presenting results quickly and exploration equipment which can work in various conditions. (10 figs, 15 refs)

  9. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  10. Exploring new alleles for frost tolerance in winter rye.

    Science.gov (United States)

    Erath, Wiltrud; Bauer, Eva; Fowler, D Brian; Gordillo, Andres; Korzun, Viktor; Ponomareva, Mira; Schmidt, Malthe; Schmiedchen, Brigitta; Wilde, Peer; Schön, Chris-Carolin

    2017-10-01

    Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.

  11. An Application of Cartesian Graphing to Seismic Exploration.

    Science.gov (United States)

    Robertson, Douglas Frederick

    1992-01-01

    Describes how college students enrolled in a course in elementary algebra apply graphing and algebra to data collected from a seismic profile to uncover the structure of a subterranean rock formation. Includes steps guiding the activity. (MDH)

  12. Exploring the Gross Schoenebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Gerard; Bauer, Klaus; Moeck, Inga; Schulze, Albrecht; Ritter, Oliver [Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam (Germany)

    2010-03-15

    Exploration for geothermal resources is often challenging because there are no geophysical techniques that provide direct images of the parameters of interest, such as porosity, permeability and fluid content. Magnetotelluric (MT) and seismic tomography methods yield information about subsurface distribution of resistivity and seismic velocity on similar scales and resolution. The lack of a fundamental law linking the two parameters, however, has limited joint interpretation to a qualitative analysis. By using a statistical approach in which the resistivity and velocity models are investigated in the joint parameter space, we are able to identify regions of high correlation and map these classes (or structures) back onto the spatial domain. This technique, applied to a seismic tomography-MT profile in the area of the Gross Schoenebeck geothermal site, allows us to identify a number of classes in accordance with the local geology. In particular, a high-velocity, low-resistivity class is interpreted as related to areas with thinner layers of evaporites; regions where these sedimentary layers are highly fractured may be of higher permeability. (author)

  13. New seismic monitoring observation system and data accessibility at Syowa Station

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    1999-03-01

    Full Text Available The seismic observation system at Syowa Station, East Antarctica was fully replaced in the wintering season of the 38th Japanese Antarctic Research Expedition (JARE-38 in 1996-1998. The old seismographic vault constructed in 1970 was closed at the end of JARE-38 because of cumulative damage to the inner side of the vault by continuous flowing in of water from walls in summer and its freezing in winter. All the seismometers were moved to a new seismographic hut (69°00′24.0″S, 39°35′06.0″E and 20m above mean sea level in April 1997. Seismic signals of the short-period (HES and broadband (STS-1 seismometers in the new hut are transmitted to the Earth Science Laboratory (ESL via analog cable 600m in length. The new acquisition system was installed in the ESL with 6-channel 24-bit A/D converters for both sensor signals. All digitized data are automatically transmitted from the A/D converter to a workstation via TCP/IP protocol. After parallel observations with the old acquisition system by personal computers and the new system during the wintering season of JARE-38,the main system was changed to the new one, which has some advantages for both the reduction of daily maintenance efforts and the data transport/communication processes via Internet by use of LAN at the station. In this report, details of the new seismographic hut and the recording system are described. Additionally, the seismic data accessibility for public use, including Internet service, is described.

  14. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  15. Contributions to a shallow aquifer study by reprocessed seismic sections from petroleum exploration surveys, eastern Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Woodward, D.

    1994-01-01

    groundwater in the concession area. Results from this study demonstrate that original seismic field tapes collected for deep petroleum exploration can be reprocessed to explore for groundwater. ?? 1994.

  16. Application of Musical Information Retrieval (MIR Techniques to Seismic Facies Classification. Examples in Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Paolo Dell’Aversana

    2016-12-01

    Full Text Available In this paper, we introduce a novel approach for automatic pattern recognition and classification of geophysical data based on digital music technology. We import and apply in the geophysical domain the same approaches commonly used for Musical Information Retrieval (MIR. After accurate conversion from geophysical formats (example: SEG-Y to musical formats (example: Musical Instrument Digital Interface, or briefly MIDI, we extract musical features from the converted data. These can be single-valued attributes, such as pitch and sound intensity, or multi-valued attributes, such as pitch histograms, melodic, harmonic and rhythmic paths. Using a real data set, we show that these musical features can be diagnostic for seismic facies classification in a complex exploration area. They can be complementary with respect to “conventional” seismic attributes. Using a supervised machine learning approach based on the k-Nearest Neighbors algorithm and on Automatic Neural Networks, we classify three gas-bearing channels. The good performance of our classification approach is confirmed by borehole data available in the same area.

  17. The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets

    CSIR Research Space (South Africa)

    Manzi, MSD

    2014-02-01

    Full Text Available A model of the Ventersdorp Contact Reef (VCR) orebody at Kloof Gold Mine was derived by integrating 3D reflection seismic data with information derived from underground mine mapping and exploration drilling. The study incorporated the depth...

  18. Exploration of lateral discontinuities with shallow seismic reflection

    International Nuclear Information System (INIS)

    Kose, K.; Ecevitoglu, B.

    2007-01-01

    Shallow seismic reflection method is used to for research of mine, fault and stratigraphy and these researches have been result successfully. Survey parameters should be determined with detailed pre-research before data collection. In this study, limestone-fly sch discontinuity experienced at surface and its extension was researched with collected reflection data

  19. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  20. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  1. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  2. Deep seismic sounding in northern Eurasia

    Science.gov (United States)

    Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.

    1992-01-01

    For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].

  3. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    gain insight into how local atmospheric conditions couple with the ground to generate seismic noise, and to explore strategies for reducing this noise post data collection. Comparison of spectra of atmospheric data streams to the three broadband seismic channels for continuous signals recorded during May and June of 2013 shows high coherence between infrasound signals and time variation of air pressure (dP/dt) that we calculated from the air pressure data stream. Coherence between these signals is greatest for the east-west component of the seismic data in northern Chile. Although coherence between seismic, infrasound, and dP/dt is lower for all three seismic channels at other GRO Chile stations, for some of the data streams coherence can jump as much as 6 fold for certain frequency bands, with a common 3-fold increase for periods shorter than 10 seconds and the occasional 6-fold increase at long or very long periods.

  4. 3D and 4D Seismic Technics Today

    Directory of Open Access Journals (Sweden)

    Marcin Marian

    2004-09-01

    Full Text Available Years ago, exploration was done through surface observations and „divining rods“ – now, it is done by satellites, microprocessors, remote sensing, and supercomputers. In the 1970´ s, the exploration success rate was 14 percent, today, it is nearly 29 percent. Not so long ago, three – dimension (3D seismic diagnostic techniques helped recover 25-50 percent of the oil in place – now, 4D seismic helps recover up to 70 percent of the oil in place. 3D and 4D seismic and earth imaging systems also help in understanding the subsurface flow of other fluids, such as groundwater and pollutants.Seismic surveys – a technique in which sound waves are bounced off underground rock struktures to reveal possible oil and gas bearing formation – are now standard fare for the modern petroleum industry. But today’s seismic methods are best at locating „structural traps“ where faults or folds in the underground rock have created zones where oil can become trapped.

  5. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  6. Effects of Seismic Exploration on Mangrove Habitat in Tanzania ...

    African Journals Online (AJOL)

    There were few signs of recovery in the immediate vicinity of seismic lines, which appeared to be related to trampling effects on soil stability and changes in hydrology attributable to the loss of trees. Future research should target seedling and sapling abundance and growth rates, and soil structure, composition and nutrient ...

  7. Three-component seismic data in thin interbedded reservoir exploration

    Science.gov (United States)

    Zhang, Li-Yan; Wang, Yan-Chun; Pei, Jiang-Yun

    2015-03-01

    We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fluids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/ V S, λρ, and µ ρ and map the lithology changes by using density, λρ, and µ ρ. The 3D-3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.

  8. Seasonal water storage, stress modulation and California seismicity

    Science.gov (United States)

    Johnson, C. W.; Burgmann, R.; Fu, Y.

    2017-12-01

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, the accumulation of winter snowpack in the Sierra Nevada, surface water in lakes and reservoirs, and groundwater in sedimentary basins follow the annual cycle of wet winters and dry summers. The surface loads resulting from the seasonal changes in water storage produce elastic deformation of the Earth's crust. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. Previous studies posit that temperature, atmospheric pressure, or hydrologic changes may strain the lithosphere and promote additional earthquakes above background levels. Depending on fault geometry, the addition or removal of water increases the Coulomb failure stress. The largest stress amplitudes are occurring on dipping reverse faults in the Coast Ranges and along the eastern Sierra Nevada range front. We analyze 9 years of M≥2.0 earthquakes with known focal mechanisms in northern and central California to resolve fault-normal and fault-shear stresses for the focal geometry. Our results reveal 10% more earthquakes occurring during slip-encouraging fault-shear stress conditions and suggest that earthquake populations are modulated at periods of natural loading cycles, which promote failure by stress changes on the order of 1-5 kPa. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles.

  9. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real

  10. Winter climate limits subantarctic low forest growth and establishment.

    Science.gov (United States)

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  11. Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum

    Science.gov (United States)

    Ermert, Laura; Sager, Korbinian; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-11-01

    The sources of ambient seismic noise are extensively studied both to better understand their influence on ambient noise tomography and related techniques, and to infer constraints on their excitation mechanisms. Here we develop a gradient-based inversion method to infer the space-dependent and time-varying source power spectral density of the Earth's hum from cross correlations of continuous seismic data. The precomputation of wavefields using spectral elements allows us to account for both finite-frequency sensitivity and for three-dimensional Earth structure. Although similar methods have been proposed previously, they have not yet been applied to data to the best of our knowledge. We apply this method to image the seasonally varying sources of Earth's hum during North and South Hemisphere winter. The resulting models suggest that hum sources are localized, persistent features that occur at Pacific coasts or shelves and in the North Atlantic during North Hemisphere winter, as well as South Pacific coasts and several distinct locations in the Southern Ocean in South Hemisphere winter. The contribution of pelagic sources from the central North Pacific cannot be constrained. Besides improving the accuracy of noise source locations through the incorporation of finite-frequency effects and 3-D Earth structure, this method may be used in future cross-correlation waveform inversion studies to provide initial source models and source model updates.

  12. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  13. Seismic signal and noise on Europa

    Science.gov (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven

    2017-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  14. Use of seismic experience data for replacement and new equipment

    International Nuclear Information System (INIS)

    Johnson, H.W.; Hardy, G.S.; Horstman, N.G.; Baughman, P.D.

    1990-01-01

    Over the past seven years the use of seismic experience data to address seismic concerns has received a great deal of attention, particularly regarding the NRC Unresolved Safety Issue (USI) A-46. The Seismic Qualification Utility Group (SQUG) was formed in January 1982 to develop a practical alternative to the rigorous seismic qualification of equipment for resolution of USI A-46. The alternative method chosen is seismic experience technology. The purpose of this paper is to explore two additional potential applications of seismic experience technology: Replacement parts and New equipment/design change process. The need for, and benefits of, these applications are summarized. The available technology and the methodologies proposed are described. The methodology descriptions include a summary of the requirements for the seismic evaluations, an outline of the method, and the documentation requirements. (orig./HP)

  15. Seismic data processing for domestic seismic survey over the continental shelf of Korea using the Geobit

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Yong [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The `Geobit`, a new seismic data processing software introduced by the Korea Institute of Geology, Mining and Materials recently, is the token of the achievement for the development of technology in the oil exploration over the Korean continental shelf. In comparison with the foreign seismic data processing systems previously used in Korea, the Geobit system has some advanced facilities; it provides an interactive mode which makes the seismic processing easier and has the user-friendly programs which allow the construction of a job control file simpler. Most of all, the Geobit can be run with many computer hardware systems, from PC to supercomputer. The current version of the Geobit can take care of the two-dimensional multi-channel seismic data and is open to the public for an education tool and a research purpose. To demonstrate the ability of the Geobit, a multi-channel field data acquired in the domestic continental shelf over the Yellow Sea in 1970 has been selected and processed with standard seismic data processing techniques. In this report, the Geobit job files and the corresponding results for the construction of a stack are provided. (author). 8 refs., 14 figs., 1 tab.

  16. Winter climate limits subantarctic low forest growth and establishment.

    Directory of Open Access Journals (Sweden)

    Melanie A Harsch

    Full Text Available Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E is oceanic (Conrad Index of Continentality  =  -5 with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C, dry winters (total winter precipitation <400 mm. Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  17. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    Science.gov (United States)

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  18. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    Science.gov (United States)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  19. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    Energy Technology Data Exchange (ETDEWEB)

    Woolery, Edward W [KY Geological Survey, Univ of KY; Wang, Zhenming [KY Geological Survey, Univ of KY; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  20. Seismic Search Engine: A distributed database for mining large scale seismic data

    Science.gov (United States)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  1. Earthquake source studies and seismic imaging in Alaska

    Science.gov (United States)

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.

  2. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  3. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    Science.gov (United States)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  4. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  5. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  6. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  7. Estimation of a subsurface structure by using shallow seismic engineering exploration system with multiple function (SWS); Takino danseiha tansa sochi (SWS) ni yoru senbu chika kozo tansa ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Beijing Shuidian Research Institute of Geophysical Surveying, Beijing (China); Ling, S [Nihon Nessui Corp., Tokyo (Japan); Okada, H [Hokkaido University, Sapporo (Japan)

    1997-10-22

    The Beijing Shuidian Research Institute of Geophysical Surveying has performed ocean seismic exploration in the area where the Fujian Pingtan bridge was planned to be constructed. The elastic wave exploration device is of a multi-functional type. The device has functions of acquiring, processing and analyzing data in seismic exploration using the reflection method, and can visualize subsurface conditions at the same time as performing the exploration. The planned bridge building area spans over a sea area of about 3500 m long with water depths from several meters to 30 meters. The foundation bed consists of dacite lithologic tuff and granodiorite. The seal level varies from 4.0 m to 4.8 m between high and low tides. According to the result of other measurements, the elastic wave propagation velocities of the sea water were found from 1475 to 1485 m/s, and the elastic wave propagation velocities at the surface bed of the sea bottom were from 1550 to 1700 m/s. The exploration used a workboat which moves at a constant speed while maintaining the offset between a transmitting source and a receiving source constant, executing vibration transmitting, receiving and recording all on the sea. The result of the exploration revealed that neither obstacles such as sunken ships nor marks of occurrence of ocean bottom landslides were present. 1 ref., 5 figs.

  8. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  9. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  10. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  11. Discriminating Induced-Microearthquakes Using New Seismic Features

    Science.gov (United States)

    Mousavi, S. M.; Horton, S.

    2016-12-01

    We studied characteristics of induced-microearthquakes on the basis of the waveforms recorded on a limited number of surface receivers using machine-learning techniques. Forty features in the time, frequency, and time-frequency domains were measured on each waveform, and several techniques such as correlation-based feature selection, Artificial Neural Networks (ANNs), Logistic Regression (LR) and X-mean were used as research tools to explore the relationship between these seismic features and source parameters. The results show that spectral features have the highest correlation to source depth. Two new measurements developed as seismic features for this study, spectral centroids and 2D cross-correlations in the time-frequency domain, performed better than the common seismic measurements. These features can be used by machine learning techniques for efficient automatic classification of low energy signals recorded at one or more seismic stations. We applied the technique to 440 microearthquakes-1.7Reference: Mousavi, S.M., S.P. Horton, C. A. Langston, B. Samei, (2016) Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int. doi: 10.1093/gji/ggw258.

  12. Spirit Scans Winter Haven

    Science.gov (United States)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  13. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    of the different components of the PSHA model that has been built through three different independent steps: a formal experts' elicitation, the outcomes of the testing phase, and the correlation between the outcomes. Finally, we explore through different techniques the influence on seismic hazard of the declustering procedure.

  14. Effects of seismic survey sound on cetaceans in the Northwest Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, Valerie D.; Holst, Meike [LGL Limited, Environmental Research Associates (Canada)

    2010-06-15

    Hydrocarbon exploration with marine seismic programs in the Canadian Beaufort Sea is expected to continue in the future. However the effect of those seismic surveys on cetaceans is a controversial subject, the sound emitted by airguns might result in hearing impairment or injury to marine mammals if they are at close range. The aim of this paper is to determine the behavior of cetaceans during seismic surveys. From 2003 to 2008, studies were conducted for 9180 hours over 8 seismic programs to observe the difference in number, sighting distance and behavior of marine mammals between seismic and non-seismic periods. Results showed that mysticetes and baleen whales tend to avoid the active airgun array while large toothed whales showed no difference in sighting rate and distances whether the airgun was active or not. This study showed that the effectiveness of ramping up the airgun to alert cetaceans of seismic operations depends on the species.

  15. Intelligent inversion method for pre-stack seismic big data based on MapReduce

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua

    2018-01-01

    Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.

  16. Next Generation Polar Seismic Instrumentation Challenges

    Science.gov (United States)

    Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.

    2011-12-01

    Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.

  17. Comparing Seismic And Magnetic Responses To Copper Gold Deposits Under Different Cover Sequences

    Directory of Open Access Journals (Sweden)

    Okan Evans Onojasun

    2015-08-01

    Full Text Available Appropriate application of geophysical techniques is required to effectively explore through the cover sequences that will allow the discovery of deep seated orebodies within the 1-3km depth range. Whilst potential field methods that are traditionally used for Cu-Au exploration seems effective they lack the expected resolution required to detect deeper mineral deposits under 500 m cover. Seismic reflection techniques offers a distinct advantage over all other geophysical techniques because of its ability to penetrate deeper into the subsurface without losing its resolution. We present in this report modelling results from magnetic and seismic responses to Cu-Au deposits when located within 100-1000m depth range. In the case of magnetic modelling we apply upward continuation filters which calculate the potential field that would have been recorded at 100m 250m 500m and 1000 m levels by filtering away shallow anomalies from the initial data. For seismic modelling simple but realistic geological model with varying cover thicknesses 100m 250m 500m and 1000m were created and then populate these models with petrophysical data. Simulated synthetic seismic responses from the models was processed using basic processing flows to obtained depth migrated images. Results show that for shower depths 0-100m good correlation exist between the magnetic and the seismic responses. From 100-250m depth cover though we can still see some magnetic anomalies within the target zone its effectiveness decreases with depths whereas seismic responses was maintain within the depth range. From 500m to 1000m magnetic response becomes spear or fuzzy as much useful information is practically missed out. Similarly high resolution power of seismic was ably demonstrated as the depth of even 2km did not degrade its resolution. Thus both magnetic and seismic methods are very useful for shallow investigation but at greater depth seismic method appears to be a more valid exploration

  18. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  19. Use of seismic pulses in surface sources of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.

    1982-01-01

    A discussion is held of the experimental use of surface plus seismic sources. An examination is made of the technicalgeophysical criteria for using the pulse sources. Results are presented from measurements and tests obtained with the help of an air cushion and dinoseis. A comparison is made of the amplitude spectra of the seismic recordings obtained with the help of blasting, dinoseis and air cushion. Possibilities and limitations for using the surface sources in industrial exploration for oil and gas are discussed. Seismic profile is presented which intersects the Tisu River. It was obtained with the help of a dinoseis which notes a sharp change in the wave pattern.

  20. Density-based reflectivity in seismic exploration for coal in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Lyatsky, H.V. (University of Calgary, AB (Canada). Dept. of Geology and Geophysics)

    1991-01-01

    At a coal field in central Alberta, Canada, the acoustic reflectivity of shallow coal seams was found to be dominated by the density contrast between coal and host bentonitic sediments. Sonic logs and a check-shot survey showed that the compressional-wave velocity is almost constant through the coal zone and the overlying sediments, and ranges in value between 2000 m/s and 2350 m/s over different parts of the coal field. The average coal density is 1400 kg/m{sup 3}, whereas the density of the sediments is about 2200 kg/m{sup 3}. Results are illustrated using logs from a typical drillhole in the coal field. At this location, the time reflectivity sequence based on both the density and sonic logs is very similar to that obtained when the density log only is used, with a constant velocity assumed through the coal zone. At another drillhole location in the coal field, where reflection seismic data had been acquired, a synthetic seismogram generated from the density log closely matches the stacked seismic section. 6 refs., 4 figs.

  1. Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra

    Directory of Open Access Journals (Sweden)

    U. Polom

    2008-01-01

    Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami

  2. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  3. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  4. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  5. Near-surface characterization for seismic exploration based on gravity and resistivity data

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan

    (2016), č. článku 41892. [Middle East Geoscience Conference and Exhibition /12./. Manama, 07.03.2016-10.03.2016] Institutional support: RVO:67985530 Keywords : gravity and resistivity surveys * near-surface formations * seismic velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  6. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  7. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  8. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  9. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  10. Influence of Seismic Loading on Segment Opening of a Shield Tunnel

    Science.gov (United States)

    Chun-shan, Yang; Hai-hong, Mo; Jun-sheng, Chen; Yi-zhao, Wang

    2014-01-01

    The influence of seismic loading on segment opening of a shield tunnel was explored using the dynamic finite element method to analyze the distribution of segment opening under multidirectional seismic loading, combined with a typical engineering installation. The calculation of segment opening was deduced from equivalent continuous theory and segment opening was obtained through calculations. The results show that the scope of influence of the foundation excavation on segment opening is mainly resigned to within 5 segment rings next to the diaphragm wall and 4 joints nearest the working well when the tunnel is first excavated followed by the working well in the excavation order. The effect of seismic loading on segment opening is significant, and the minimum increase of the maximal segment opening owing to seismic loading is 16%, while that of the average opening is 27%. Segment opening under bidirectional coupled seismic loading is significantly greater than that under one-dimensional seismic loading. On the basis of the numerical calculations, the seismic acceleration and segment opening caused by seismic action were normalized, and a new calculation method was proposed for predicting the maximal segment opening of a shield tunnel at different depths under conditions of seismic loading. PMID:24955398

  11. A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine

    NARCIS (Netherlands)

    Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob

    2016-01-01

    The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier

  12. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  13. Seismic exploration?scale velocities and structure from ambient seismic noise (>1?Hz)

    NARCIS (Netherlands)

    Draganov, D.S.; Campman, X.; Thorbecke, J.W.; Verdel, A.; Wapenaar, C.P.A.

    2013-01-01

    The successful surface waves retrieval in solid?Earth seismology using long?time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  14. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NARCIS (Netherlands)

    Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K.

    2013-01-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  15. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  16. New seismic sources parameterization in El Salvador. Implications to seismic hazard.

    Science.gov (United States)

    Alonso-Henar, Jorge; Staller, Alejandra; Jesús Martínez-Díaz, José; Benito, Belén; Álvarez-Gómez, José Antonio; Canora, Carolina

    2014-05-01

    seismic accelerations are compared and calibrated using the February 13, 2001 earthquake, as control earthquake. To explore the sources of historical earthquakes we compare synthetic acceleration maps with the historical earthquakes of March 6, 1719 and June 8, 1917. control earthquake. To explore the sources of historical earthquakes we compare synthetic acceleration maps with the historical earthquakes of March 6, 1719 and June 8, 1917.

  17. Seismic prediction ahead of tunnel construction using Rayleigh-waves

    OpenAIRE

    Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas

    2008-01-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...

  18. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  19. Exploration of the South-Eastern Alps lithosphere with 3D refraction seismics project Alp 2002 – data acquisition in Slovenia

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    2003-06-01

    Full Text Available Using combined seismic refraction/wide-angle reflection method project Alp 2002 explored the contact zone between South-Eastern Alps, Dinarides and Pannonian basin. In a network of 12 profiles of 4100 km total length, which are spread over seven countries,1055 portable seismographs were deployed and 31 strong (300 kg explosions fired. In Slovenia 127 seismographs were deployed along five profiles totalling 575 km and two explosions fired near Vojnik and Gradin. The collected data will allow construction of athree-dimensional model of the lithosphere and will contribute to the understanding of the tectonics and geodynamics at the junction of European, Adriatic and Tisza plates.

  20. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  1. What controls intermediate depth seismicity in subduction zones?

    Science.gov (United States)

    Florez, M. A.; Prieto, G. A.

    2017-12-01

    Intermediate depth earthquakes seem to cluster in two distinct planes of seismicity along the subducting slab, known as Double Seismic Zones (DSZ). Precise double difference relocations in Tohoku, Japan and northern Chile confirm this pattern with striking accuracy. Furthermore, past studies have used statistical tests on the EHB global seismicity catalog to suggest that DSZs might be a dominant global feature. However, typical uncertainties associated with hypocentral depth prevent us from drawing meaningful conclusions about the detailed structure of intermediate depth seismicity and its relationship to the physical and chemical environment of most subduction zones. We have recently proposed a relative earthquake relocation algorithm based on the precise picking of the P and pP phase arrivals using array processing techniques [Florez and Prieto, 2017]. We use it to relocate seismicity in 24 carefully constructed slab segments that sample every subduction zone in the world. In all of the segments we are able to precisely delineate the structure of the double seismic zone. Our results indicate that whenever the lower plane of seismicity is active enough the width of the DSZ decreases in the down dip direction; the two planes merge at depths between 140 km and 300 km. We develop a method to unambiguously pick the depth of this merging point, the end of the DSZ, which appears to be correlated with the slab thermal parameter. We also confirm that the width of the DSZ increases with plate age. Finally, we estimate b-values for the upper and lower planes of seismicity and explore their relationships to the physical parameters that control slab subduction.

  2. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    Science.gov (United States)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  3. Patterns in Seismicity at Mt St Helens and Mt Unzen

    Science.gov (United States)

    Lamb, Oliver; De Angelis, Silvio; Lavallee, Yan

    2014-05-01

    Cyclic behaviour on a range of timescales is a well-documented feature of many dome-forming volcanoes. Previous work on Soufrière Hills volcano (Montserrat) and Volcán de Colima (Mexico) revealed broad-scale similarities in behaviour implying the potential to develop general physical models of sub-surface processes [1]. Using volcano-seismic data from Mt St Helens (USA) and Mt Unzen (Japan) this study explores parallels in long-term behaviour of seismicity at two dome-forming systems. Within the last twenty years both systems underwent extended dome-forming episodes accompanied by large Vulcanian explosions or dome collapses. This study uses a suite of quantitative and analytical techniques which can highlight differences or similarities in volcano seismic behaviour, and compare the behaviour to changes in activity during the eruptive episodes. Seismic events were automatically detected and characterized on a single short-period seismometer station located 1.5km from the 2004-2008 vent at Mt St Helens. A total of 714 826 individual events were identified from continuous recording of seismic data from 22 October 2004 to 28 February 2006 (average 60.2 events per hour) using a short-term/long-term average algorithm. An equivalent count will be produced from seismometer recordings over the later stages of the 1991-1995 eruption at MT Unzen. The event count time-series from Mt St Helens is then analysed using Multi-taper Method and the Short-Term Fourier Transform to explore temporal variations in activity. Preliminary analysis of seismicity from Mt St Helens suggests cyclic behaviour of subannual timescale, similar to that described at Volcán de Colima and Soufrière Hills volcano [1]. Frequency Index and waveform correlation tools will be implemented to analyse changes in the frequency content of the seismicity and to explore their relations to different phases of activity at the volcano. A single station approach is used to gain a fine-scale view of variations in

  4. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  5. Large-scale dynamics of the stratosphere and mesosphere during the MAP/WINE campaign winter 1983 to 1984 in comparison with other winters

    Science.gov (United States)

    Petzoldt, K.

    1989-04-01

    For the MAP/WINE winter temperature and wind measurements of rockets were combined with SSU radiances (Stratospheric Sounder Unit onboard the NOAA satellites) and stratopause heights from the Solar Mesosphere Explorer (SME) to get a retrieved data set including all available information. By means of this data set a hemispheric geopotential height, temperature and geostrophic wind fields eddy transports for wave mean flow interaction and potential vorticity for the interpretation of nonlinear wave breaking could be computed. Wave reflection at critical lines was investigated with respect of stratospheric warmings. The meridional gradient of the potential vorticity and focusing of wave activity is compared with derived data from satellite observations during other winters.

  6. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  7. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  8. The seismic reflection inverse problem

    International Nuclear Information System (INIS)

    Symes, W W

    2009-01-01

    The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)

  9. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  10. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  11. Seismic Waveform Inversion : Bump functional, parameterization analysis and imaging ahead of a tunnel-boring machine

    NARCIS (Netherlands)

    Pisupati, P.B.

    2017-01-01

    During a seismic experiment, mechanical waves are usually generated by various manmade sources. These waves propagate in the subsurface and are recorded at receivers. Modern seismic exploration methods analyze them to infer the mechanical properties of the subsurface; this is commonly referred as

  12. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    Science.gov (United States)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  13. Seismics - Yesterday and today

    International Nuclear Information System (INIS)

    Frei, W.

    2014-01-01

    This article published in the Swiss Bulletin for Applied Geology takes a look at technical developments in the field of seismological exploration over the past 25 years. In particular, developments in the information technology area are discussed. Increased data-storage capacities and miniaturization of data-capture systems and sensors are examined. In spite of such developments, the quality of the seismological data acquired is quoted as not showing significantly increased quality. Alternatives to vibration-based seismic exploration are discussed. The challenges faced by near-surface seismology are looked at. Computer-based statistical correction of data and improved resolution are discussed, as is hybrid seismology. Examples are quoted and graphically illustrated. A list of relevant literature completes the article

  14. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas; Beyer, Johanna; Gschwantner, Fritz M.; Muigg, Philipp; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus

    2011-01-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  15. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas

    2011-03-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  16. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  17. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network

    International Nuclear Information System (INIS)

    Cao, Ping; Song, Ke-zhu; Yang, Jun-feng; Ruan, Fu-ming

    2011-01-01

    Nowadays, seismic exploration data acquisition (DAQ) systems have been developed into remote forms with a large-scale coverage area. In this kind of application, some features must be mentioned. Firstly, there are many sensors which are placed remotely. Secondly, the total data throughput is high. Thirdly, optical fibres are not suitable everywhere because of cost control, harsh running environments, etc. Fourthly, the ability of expansibility and upgrading is a must for this kind of application. It is a challenge to design this kind of remote DAQ (rDAQ). Data transmission, clock synchronization, data storage, etc must be considered carefully. A fourth-hierarchy model of rDAQ is proposed. In this model, rDAQ is divided into four different function levels. From this model, a simple and clear architecture based on a distributed storage area network is proposed. rDAQs with this architecture have advantages of flexible configuration, expansibility and stability. This architecture can be applied to design and realize from simple single cable systems to large-scale exploration DAQs

  18. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia characterised by moderate seismicity rates

    Directory of Open Access Journals (Sweden)

    V. Del Gaudio

    2009-02-01

    Full Text Available The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9 has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland. However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  19. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.109 Winter Harbor...

  20. Experiment of exploration using the active-faults exploration system; Katsudanso tansa system wo mochiita chika tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Mikada, H; Sato, H; Iwasaki, T; Hirata, N [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute; Ikeda, Y [The University of Tokyo, Tokyo (Japan). Faculty of Science; Ikawa, T; Kawabe, Y; Aoki, Y [JAPEX Geoscience Institute, Tokyo (Japan)

    1996-10-01

    A system for exploration of active-faults by seismic reflection profiling method was introduced at Earthquake Research Institute, University of Tokyo. A test-run was conducted to check the performance of this system at Ranzan, Saitama Prefecture. This paper describes the confirmed performance of mini-VIB as a wide band frequency seismic source, the quality of data obtained using a digital data acquisition system, and problems for data processing of fault exploration in the future. For the test-run at Ranzan, two-dimensional exploration was conducted by the quasi-three-dimensional data acquisition method using three geophones of 8 Hz, 28 Hz, and 40 Hz, simply arranged in parallel on the measurement line. Using an active seismic vibrator, mini-VIB, data acquisition of faults in the wide band frequency was achieved, which would result in the highly accurate imaging. Operation of data acquisition and processing systems is easy, and the system can be also used as a kind of black box. The existing methods are to be used sufficiently as a tool for imaging of faults. Further research for accumulating experience may become necessary toward the extension of the system expected in the future. 5 refs., 6 figs.

  1. Enhanced Structural Interpretation Using Multitrace Seismic Attribute For Oligo-Miocene Target at Madura Strait Offshore

    Science.gov (United States)

    Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta

    2018-03-01

    Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.

  2. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  3. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  4. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.

  5. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  6. Poleward shifts in winter ranges of North American birds

    Science.gov (United States)

    Frank A. La Sorte; Frank R., III Thompson

    2007-01-01

    Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North...

  7. ) A Feasibility Study for High Resolution 3D Seismic In The Deep Offshore Nigeria

    International Nuclear Information System (INIS)

    Enuma, C.; Hope, R.; Mila, F.; Maurel, L.

    2003-01-01

    The conventional Exploration 3D seismic in the Deep Offshore Nigeria is typically acquired with 4000m-6000m cable length at 6-8 depth and with flip-flop shooting, providing a shot point interval of 50m. the average resulting frequency content is typically between 10-60hz which is adequate for exploration interpretation. It has become common in the last few years. E.g. in Angola and the Gulf of Mexico, to re-acquire High Resolution 3D seismic, after a discovery, to improve definition of turbidite systems and accuracy of reservoir geometry for optimized delineation drilling. This feasibility study which was carried out in three different steps was due to the question on whether HR-Seismic should be acquired over TotalFinaElf AKPO discovery for optimized delineation drilling

  8. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  9. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  10. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  11. Astor Pass Seismic Surveys Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    activity do not have enough offset to produce seismic terminations. We are conducting further high-resolution seismic studies (to 200 ft depths) at the tufa spire to test this hypothesis. Additional work in progress includes a collaborative, iterative joint interpretation of geologic mapping and the seismic sections for fault locations, building the geologic model; and 3d velocity modeling and imaging to locate additional faultplane images appearing between the 2d lines. Overall, the seismic exploration program cost less than $0.5M from all funders. It defines in detail the geologic structure of much of the north margin of Pyramid Lake.

  12. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  13. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  14. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  15. The power situation in winter 2010/2011; Kraftsituasjonen vinteren 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad (ed.)

    2011-07-15

    At the beginning of winter, the reservoir level was record low. Very cold weather before the end of the year contributed to the further tapping. Mild weather and early snow melt caused a rapid increase in water levels in beginning of April. On average, the Norwegian power prices was higher last winter compared with the previous winter. High prices are necessary to get high Norwegian imports and keep consumption down, and thus saving water in the reservoirs. Limitations in transmission capacity between market areas affected the prices and power flow last winter. In the night and weekend hours contributed network problems in southern Sweden to the reduced transmission capacity to Southern Norway. This dampened the Norwegian imports, and Norwegian hydropower producers tapped more of the magazined water than they otherwise would. This emphasizes the need to continue NVE's efforts to explore possibilities for a better utilization of transmission capacities in the network. There were several events that had an impact on the operation of the power system and security of supply last winter. Error events led to interruption for many grid customers, in addition to significant risk of further extensive dark laying of large areas if another failure should occur. (AG

  16. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  17. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  18. Design and realization of real-time processing system for seismic exploration

    International Nuclear Information System (INIS)

    Zhang Sifeng; Cao Ping; Song Kezhu; Yao Lin

    2010-01-01

    For solving real-time seismic data processing problems, a high-speed, large-capacity and real-time data processing system is designed based on FPGA and ARM. With the advantages of multi-processor, DRPS has the characteristics of high-speed data receiving, large-capacity data storage, protocol analysis, data splicing, data converting from time sequence into channel sequence, no dead time data ping-pong storage, etc. And with the embedded Linux operating system, DRPS has the characteristics of flexibility and reliability. (authors)

  19. Aim and points of this workshop: The 2. Workshop on Seismic Observation in Deep Borehole (SODB) and its Applications

    International Nuclear Information System (INIS)

    Sugiyama, Yuichi

    2014-01-01

    The achievements of the first WS and the aim of the Second WS were explained. The purposes of this Second WS were: to re-recognize the significance of seismic ground motion evaluation based on newly added deep borehole seismic observation in addition to existing borehole investigation, geological surveys, and geophysical exploration; to acknowledge deep borehole seismic observation and geophysical exploration (hardware) as well as the site characteristic evaluation method (software) required for seismic ground motion evaluation; and to consolidate opinions on multi-purpose application of observation technology and data as well as acknowledge issues to be addressed and technological problems. The final goals of this WS were to clarify items and issues that present challenges for the future based on the discussions in this WS. (author)

  20. Integrated approach to 3-D seismic acquisition geometry analysis : Emphasizing the influence of the inhomogeneous subsurface

    NARCIS (Netherlands)

    van Veldhuizen, E.J.

    2006-01-01

    The seismic reflection method for imaging of the earth's interior is an essential part of the exploration and exploitation of hydrocarbon resources. A seismic survey should be designed such that the acquired data leads to a sufficiently accurate subsurface image. The survey geometry analysis method

  1. Did you smooth your well logs the right way for seismic interpretation?

    International Nuclear Information System (INIS)

    Duchesne, Mathieu J; Gaillot, Philippe

    2011-01-01

    Correlations between physical properties and seismic reflection data are useful to determine the geological nature of seismic reflections and the lateral extent of geological strata. The difference in resolution between well logs and seismic data is a major hurdle faced by seismic interpreters when tying both data sets. In general, log data have a resolution of at least two orders of magnitude greater than seismic data. Smoothing physical property logs improves correlation at the seismic scale. Three different approaches were used and compared to smooth a density log: binomial filtering, seismic wavelet filtering and discrete wavelet transform (DWT) filtering. Regression plots between the density logs and the acoustic impedance show that the data smoothed with the DWT is the only method that preserves the original relationship between the raw density data and the acoustic impedance. Smoothed logs were then used to generate synthetic seismograms that were tied to seismic data at the borehole site. Best ties were achieved using the synthetic seismogram computed with the density log processed with the DWT. The good performance of the DWT is explained by its adaptive multi-scale characteristic which preserved significant local changes of density on the high-resolution data series that were also pictured at the seismic scale. Since synthetic seismograms are generated using smoothed logs, the choice of the smoothing method impacts on the quality of seismic-to-well ties. This ultimately can have economical implications during hydrocarbon exploration or exploitation phases

  2. Extraction of Pn seismic signals from air-gun shots recorded by the Cascadia Amphibious seismic experiment

    Science.gov (United States)

    Rathnayaka, S.; Gao, H.

    2017-12-01

    The goal of this study is to extract Pn (head wave) seismic waveforms recorded by both offshore and onshore (broadband and short period) seismic stations and evaluate the data quality. Two offshore active-source seismic experiments, MGL 1211 and MGL 1212, were conducted from 13th June to 24th July 2012, during the first year deployment of the Cascadia Initiative Amphibious Array. In total, we choose 110 ocean bottom seismometers and 209 inland stations that are located along the entire Cascadia subduction zone. We first remove the instrument response, and then explore the potential frequency ranges and the diurnal effect. We make the common receiver gathering for each seismic station and filter the seismic waveforms at multiple frequency bands, ranging from 3-5 Hz, 5-10 Hz, 10-20 Hz, to 20-40 Hz, respectively. To quantitatively evaluate the data quality, we calculate the signal-to-noise ratio (SNR) of the waveforms for usable stations that record clear Pn arrivals at multiple frequency bands. Our results show that most offshore stations located at deep water (>1.5 km) record clear air-gun shot signals at frequencies higher than 3 Hz and up to 550 km away from the source. For most stations located on the shallow continental shelf, the seismic recordings appear much noisier at all the frequencies compared to stations at deep water. Three general trends are observed for the SNR distribution; First, the SNR ratio increases from lower to higher frequency bands; Second, the ratio decreases with the increasing source-to-receiver distance; And third, the ratio increases from shallow to deep water. We also observe a rough negative relationship of the signal-to-noise ratio with the thickness of the marine sediment. Only 5 inland stations record clear air-gun shot arrivals up to 200 km away from the source. More detailed data quality analysis with more results will also be present.

  3. Types of damage that could result from a great earthquake in the New Madrid, Missouri, seismic zone

    Science.gov (United States)

    Hopper, M.G.; Algermissen, S.T.

    1984-01-01

    In the winter of 1811–1812 a series of three great earthquakes occurred in the New Madrid seismic zone. In addition to the three principal shocks, at least 15 other earthquakes, Io ≥ VIII, occurred within a year of the first large earthquake on December 16, 1811. The three main shocks were felt over the entire eastern United States. They were strong enough to cause minor damage as far away as Indiana and Ohio on the north, the Carolinas on the east, and southern Mississippi on the south. They were strong enough to cause severe or structural damage in parts of Missouri, Illinois, Indiana, Kentucky, Tennessee, Mississippi, and Arkansas. The section of this poster titled "Seismic history of the New Madrid region" describes what happened in the epicentral region. Fortunately, few people lived in the severely shaken area in 1811; that is not the case today. What would happen if a series of earthquakes as large and numerous as the "New Madrid" earthquakes were to occur in the New Madrid seismic zone today?

  4. Seismic and electromagnetic interferometry : Retrieval of the earth's reflection response using crosscorrelation

    NARCIS (Netherlands)

    Draganov, D.

    2007-01-01

    One of the goals of exploration geophysics is to obtain an image of the subsurface. In petroleum exploration and near-surface geophysics, this is best achieved using reflected waves. For this, a controlled seismic or electromagnetic source is placed at the surface, activated, and the wavefields that

  5. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  6. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  7. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  8. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  9. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  10. Mathematical approaches in deriving hydrocarbons expressions from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering & Reservoir Simulation Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Time Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.

  11. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  12. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  13. Investigation into the value of the seismic methods in delineating structure in southwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J H

    1948-12-31

    This paper constitutes the final report on a project that investigated the possibilities of seismic methods to delineate Palaeozoic structures in areas of hydrocarbon exploration in south-western Ontario. It begins with an introduction on the theory and practice of seismic reflection prospecting and the general Palaeozoic geology of the study area. It then describes the equipment used, preliminary investigations (alignment of instruments, velocity determinations), and field tests conducted over various hydrocarbon prospects. Finally, the feasibility of using seismic methods in the area is discussed along with reasons for difficulties experienced in the investigation.

  14. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    Science.gov (United States)

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  15. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  16. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  17. Neural net generated seismic facies map and attribute facies map

    International Nuclear Information System (INIS)

    Addy, S.K.; Neri, P.

    1998-01-01

    The usefulness of 'seismic facies maps' in the analysis of an Upper Wilcox channel system in a 3-D survey shot by CGG in 1995 in Lavaca county in south Texas was discussed. A neural net-generated seismic facies map is a quick hydrocarbon exploration tool that can be applied regionally as well as on a prospect scale. The new technology is used to classify a constant interval parallel to a horizon in a 3-D seismic volume based on the shape of the wiggle traces using a neural network technology. The tool makes it possible to interpret sedimentary features of a petroleum deposit. The same technology can be used in regional mapping by making 'attribute facies maps' in which various forms of amplitude attributes, phase attributes or frequency attributes can be used

  18. Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin

    Science.gov (United States)

    Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva

    2017-10-01

    Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock

  19. Present-Day Mars' Seismicity Predicted From 3-D Thermal Evolution Models of Interior Dynamics

    Science.gov (United States)

    Plesa, A.-C.; Knapmeyer, M.; Golombek, M. P.; Breuer, D.; Grott, M.; Kawamura, T.; Lognonné, P.; Tosi, N.; Weber, R. C.

    2018-03-01

    The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.

  20. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  1. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  2. Fiscal 2000 basic survey for coal resource exploration. Survey for development of new exploration technology (Exploration of shallow layers on the land - Collection of data and materials); 2000 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (rikuiki senso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    As agreed upon between NEDO (New Energy and Industrial Technology Development Organization), Japan, and Queensland, Australia, joint research was conducted on new technology for coal exploration within Queensland, and data collected during the research and related materials are compiled into this book. The book contains the Agreement for the Joint Research of New Technology in the Geophysical Exploration of Coal Resources (Japanese and English), GPS (global positioning system) survey results along 2-dimensional seismic reflection method traverse lines, GPS survey results along 3-dimensional seismic reflection method traverse lines, seismic generator vehicle inspection and repair report, geophysical logging observer's logs and test bore dip measurement data sheets, examples of outputted shot records (2-dimensional seismic reflection method), examples of outputted shot records (3-dimensional seismic reflection method), analysis and testing report on Girrah layer samples, reference literature on PRBS (pseudorandom binary sequence), collections of photographs of cores sampled by test boring (BG001, BG002, BG003, BG004), collections of other photographs, and so forth. (NEDO)

  3. Removing Love waves from shallow seismic SH-wave data

    NARCIS (Netherlands)

    Van Zanen, L.F.

    2004-01-01

    Geophysical exploration measurements are used to obtain an image of the geological structures of the subsurface, as detailed as possible. To this end, a wavefield is generated by a seismic source. This wavefield propagates through the subsurface, and will partly reflect on boundaries between layers

  4. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  5. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  6. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  7. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  8. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  9. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  10. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  11. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  12. Influence of age and sex on winter site fidelity of sanderlings Calidris alba

    Directory of Open Access Journals (Sweden)

    Pedro M. Lourenço

    2016-09-01

    Full Text Available Many migratory bird species show high levels of site fidelity to their wintering sites, which confers advantages due to prior knowledge, but may also limit the ability of the individual to move away from degrading sites or to detect alternative foraging opportunities. Winter site fidelity often varies among age groups, but sexual differences have seldom been recorded in birds. We studied a population of individually colour-marked sanderlings wintering in and around the Tejo estuary, a large estuarine wetland on the western coast of Portugal. For 160 individuals, sighted a total of 1,249 times between November 2009 and March 2013, we calculated the probability that they moved among five distinct wintering sites and how this probability is affected by distance between them. To compare site fidelity among age classes and sexes, as well as within the same winter and over multiple winters, we used a Site Fidelity Index (SFI. Birds were sexed using a discriminant function based on biometrics of a large set of molecularly sexed sanderlings (n = 990. The vast majority of birds were observed at one site only, and the probability of the few detected movements between sites was negatively correlated with the distance among each pair of sites. Hardly any movements were recorded over more than 15 km, suggesting small home ranges. SFI values indicated that juveniles were less site-faithful than adults which may reflect the accumulated knowledge and/or dominance of older animals. Among adults, females were significantly less site faithful than males. A sexual difference in winter site fidelity is unusual in shorebirds. SFI values show site-faithfulness is lower when multiple winters were considered, and most birds seem to chose a wintering site early in the season and use that site throughout the winter. Sanderlings show a very limited tendency to explore alternative wintering options, which might have implications for their survival when facing habitat change

  13. Fast 3D elastic micro-seismic source location using new GPU features

    Science.gov (United States)

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  14. Estimation of subsurface structures in a Minami Noshiro 3D seismic survey region by seismic-array observations of microtremors; Minami Noshiro sanjigen jishin tansa kuikinai no hyoso kozo ni tsuite. Bido no array kansoku ni yoru suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okada, H; Ling, S; Ishikawa, K [Hokkaido University, Sapporo (Japan); Tsuburaya, Y; Minegishi, M [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Japan National Oil Corporation Technology Research Center has carried out experiments on the three-dimensional seismic survey method which is regarded as an effective means for petroleum exploration. The experiments were conducted at the Minami Noshiro area in Akita Prefecture. Seismometer arrays were developed in radii of 30 to 300 m at seven points in the three-dimensional seismic exploration region to observe microtremors. The purpose is to estimate S-wave velocities from the ground surface to the foundation by using surface waves included in microtremors. Estimation of the surface bed structure is also included in the purpose since this is indispensable in seismic exploration using the reflection method. This paper reports results of the microtremor observations and the estimation on S-wave velocities (microtremor exploration). One or two kinds of arrays with different sizes composed of seven observation points per area were developed to observe microtremors independently. The important point in the result obtained in the present experiments is that a low velocity bed suggesting existence of faults was estimated. It will be necessary to repeat experiments and observations in the future to verify whether this microtremor exploration method has that much of exploration capability. For the time being, however, interest is addressed to considerations on comparison with the result of 3D experiments using the reflection method. 4 refs., 7 figs.

  15. High-resolution seismic reflection study, Vacherie Dome

    International Nuclear Information System (INIS)

    1984-06-01

    A high-resolution seismic reflection study, consisting of recording, processing, and interpreting four seismic reflection lines, was made at Vacherie Dome, Louisiana. The presumed shape of the dome, as pictured in the geologic area characterization report by Law Engineering Testing Company in 1982, was based largely on interpretation of gravity data, constrained by a few wells and exploration-type seismic profiles. The purpose of the study was to obtain refined profiles of the dome above -914 m (-3000 ft) elevation. Additional study had been recommended by Louisiana State University in 1967 and the Office of Nuclear Waste Isolation in 1981 because the interpreted size of Vacherie Dome was based on limited seismic and gravity data. Forty-eight traces of seismic data were recorded each time shots were made to generate energy. Twelve-fold, common-depth-point data were obtained using geophone stations spaced at 15-m (50-ft) intervals with shots at 30-m (100-ft) intervals. The time-sampling interval used was 1 ms. Processing intended to enhance resolution included iterative static corrections, deconvolution before stacking, and both time- and depth-migration. The locations of the steep dome sides were inferred primarily from terminations of strong reflections (migrated) from strata near the top of the upper and lower Cretaceous sections. This interpretation agrees closely with the presumed shape from the top of the dome to about -610 m (-2000 ft) elevation, but below this on three of the profiles, this interpretation indicates a steeper salt face than the presumed shape. The area reduction at -914 m (-3000 ft) elevation is estimated to be on the order of 20 percent. 10 references, 11 figures, 4 tables

  16. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  17. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  18. ASDF: An Adaptable Seismic Data Format with Full Provenance

    Science.gov (United States)

    Smith, J. A.; Krischer, L.; Tromp, J.; Lefebvre, M. P.

    2015-12-01

    In order for seismologists to maximize their knowledge of how the Earth works, they must extract the maximum amount of useful information from all recorded seismic data available for their research. This requires assimilating large sets of waveform data, keeping track of vast amounts of metadata, using validated standards for quality control, and automating the workflow in a careful and efficient manner. In addition, there is a growing gap between CPU/GPU speeds and disk access speeds that leads to an I/O bottleneck in seismic workflows. This is made even worse by existing seismic data formats that were not designed for performance and are limited to a few fixed headers for storing metadata.The Adaptable Seismic Data Format (ASDF) is a new data format for seismology that solves the problems with existing seismic data formats and integrates full provenance into the definition. ASDF is a self-describing format that features parallel I/O using the parallel HDF5 library. This makes it a great choice for use on HPC clusters. The format integrates the standards QuakeML for seismic sources and StationXML for receivers. ASDF is suitable for storing earthquake data sets, where all waveforms for a single earthquake are stored in a one file, ambient noise cross-correlations, and adjoint sources. The format comes with a user-friendly Python reader and writer that gives seismologists access to a full set of Python tools for seismology. There is also a faster C/Fortran library for integrating ASDF into performance-focused numerical wave solvers, such as SPECFEM3D_GLOBE. Finally, a GUI tool designed for visually exploring the format exists that provides a flexible interface for both research and educational applications. ASDF is a new seismic data format that offers seismologists high-performance parallel processing, organized and validated contents, and full provenance tracking for automated seismological workflows.

  19. Cetacean behavioral responses to noise exposure generated by seismic surveys: how to mitigate better?

    Directory of Open Access Journals (Sweden)

    Clara Monaco

    2016-09-01

    Full Text Available Cetaceans use sound in many contexts, such as in social interactions, as well as to forage and to react in dangerous situations. Little information exists to describe how they respond physically and behaviorally to intense and long-term noise levels. Effects on cetaceans from seismic survey activities need to be understood in order to determine detailed acoustic exposure guidelines and to apply appropriated mitigation measures. This study examines direct behavioral responses of cetaceans in the southern Mediterranean Sea during seismic surveys with large airgun arrays (volume up to 5200 ci used in the TOMO-ETNA active seismic experiment of summer 2014. Wide Angle Seismic and Multi-Channel Seismic surveys had carried out with refraction and reflection seismic methods, producing about 25,800 air-gun shots. Visual monitoring undertaken in the 26 daylights of seismic exploration adopted the protocol of the Joint Nature Conservation Committee. Data recorded were analyzed to examine effects on cetaceans. Sighting rates, distance and orientation from the airguns were compared for different volume categories of the airgun arrays. Results show that cetaceans can be disturbed by seismic survey activities, especially during particularly events. Here we propose many integrated actions to further mitigate this exposure and implications for management.

  20. Passive Seismic for Hydrocarbon Indicator : Between Expectation and Reality

    Science.gov (United States)

    Pandito, Riky H. B.

    2018-03-01

    In between 5 – 10 years, in our country, passive seismic method became more popular to finding hydrocarbon. Low price, nondestructive acquisition and easy to mobilization is the best reason for choose the method. But in the other part, some people are pessimistically to deal with the result. Instrument specification, data condition and processing methods is several points which influence characteristic and interpretation passive seismic result. In 2010 one prospect in East Java Basin has been measurement constist of 112 objective points and several calibration points. Data measurement results indicate a positive response. Furthermore, in 2013 exploration drliing conducted on the prospect. Drill steam test showes 22 MMCFD in objective zone, upper – late oligocene. In 2015, remeasurement taken in objective area and show consistent responses with previous measurement. Passive seismic is unique method, sometimes will have difference results on dry, gas and oil area, in field production and also temporary suspend area with hidrocarbon content.

  1. Addressing challenges for youths with mobility devices in winter conditions.

    Science.gov (United States)

    Morales, Ernesto; Lindsay, Sally; Edwards, Geoffrey; Howell, Lori; Vincent, Claude; Yantzi, Nicole; Gauthier, Véronique

    2018-01-01

    Winter-related research about the experience of navigating in the urban context has mostly focused on the elderly population with physical disabilities. The aim of this project was to explore potential design solutions to enhance young people's mobility devices and the built environment to improve accessibility and participation in winter. A multi-method qualitative design process included the following steps: (1) in-depth interviews; (2) photo elicitation; (3) individual co-design sessions; and (4) group co-design sessions (i.e., focus group). The participants were 13 youths (nine males and four females), aged 12-21, who used a wheelchair (12 power chair users and one manual wheelchair), for some with their parents, others without their parents, according to the parents' willingness to participate or not in the study (n = 13). The first two authors conducted group co-design sessions with mechanical engineers and therapists/clinicians in two Canadian cities to discuss the feasibility of the designs. Results (findings): The youths and their parents reported different winter-related challenges and proposed specific design solutions to enhance their participation and inclusion in winter activities. Seven of these designs were presented at two group co-design sessions of therapists/clinicians and engineers. Two designs were found to be feasible: (1) a traction device for wheelchairs in snow and (2) a mat made of rollers to clean snow and dirt from tires. The results of this research highlight the frustrations and challenges youths who use wheelchairs encounter in winter and a need for new solutions to ensure greater accessibility in winter. Therapists/clinicians and designers should address winter-related accessibility problems in areas with abundant snow. Implications for Rehabilitation Several studies show that current urban contexts do not necessarily respond accurately to the needs of individuals with limited mobility. Winter-related research about the

  2. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  3. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  4. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  5. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  6. Seismic signal and noise on Europa and how to use it

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.

    2017-12-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  7. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    Science.gov (United States)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  8. Epistemic uncertainty in California-wide synthetic seismicity simulations

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  9. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  10. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    Science.gov (United States)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  11. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  12. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  13. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  14. Abstracts of the 2008 CSPG-CSEG-CWLS convention : back to exploration

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Margrave, G.; Lawton, D.; Lines, L.; Ferguson, R. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology] (comps.)

    2008-07-01

    The Consortium for Research in Elastic Wave Exploration Seismology (CREWES) is an applied geophysical research group concentrating on the acquisition, analysis and interpretation of multicomponent seismic data. This joint meeting of the Canadian Society of Petroleum Geologists (CSPG), the Canadian Society of Exploration Geophysicists (CSEG) and the Canadian Well Logging Society (CWLS) highlighted the research projects that are underway by CREWES in resource exploration and development. It focused on technologies that improve 3-D geological images of the subsurface, including seismic modeling and well log analysis. Twelve of the 17 CSEG presentations have been catalogued separately for inclusion in this database. refs., tabs., figs.

  15. Abstracts of the 2008 CSPG-CSEG-CWLS convention : back to exploration

    International Nuclear Information System (INIS)

    Stewart, R.; Margrave, G.; Lawton, D.; Lines, L.; Ferguson, R.

    2008-01-01

    The Consortium for Research in Elastic Wave Exploration Seismology (CREWES) is an applied geophysical research group concentrating on the acquisition, analysis and interpretation of multicomponent seismic data. This joint meeting of the Canadian Society of Petroleum Geologists (CSPG), the Canadian Society of Exploration Geophysicists (CSEG) and the Canadian Well Logging Society (CWLS) highlighted the research projects that are underway by CREWES in resource exploration and development. It focused on technologies that improve 3-D geological images of the subsurface, including seismic modeling and well log analysis. Twelve of the 17 CSEG presentations have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  17. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  18. Reducing the uncertainty in the fidelity of seismic imaging results

    Science.gov (United States)

    Zhou, H. W.; Zou, Z.

    2017-12-01

    A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction

  19. Seismic reflection response from cross-correlations of ambient vibrations on non-conventional hidrocarbon reservoir

    Science.gov (United States)

    Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.

    2017-12-01

    Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with

  20. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  1. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  2. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  3. Verification survey of geothermal exploration technology, etc. Report on the result of the developmental research on the development of the fracture type reservoir exploration method; Chinetsu tansa gijutsu nado kensho chosa. Danretsugata choryuso tansaho kaihatsu kenkyu kaihatsu seika sokatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the purpose of grasping fracture groups forming geothermal reservoirs with accuracy, the development of the fracture type reservoir exploration method has advanced the technical development of exploration methods of seismic wave use, electromagnetic induction use, and micro-earthquake use. This paper summarized main results of the development and problems to be solved in the future. In the development of the seismic wave use exploration method, the high accuracy reflection method using seismic wave, VSP and seismic tomography were adopted to the geothermal field, and technology effective for the exploration of fracture type reservoirs was developed. In the development of the electromagnetic induction use exploration method, the array CSMT method which can measure multiple stations along the traverse line at the same time was developed with the aim of grasping effectively and accurately fracture groups forming geothermal reservoirs as changes of resistivity in the shallow-deep underground. In the fracture group forming geothermal reservoirs, micro-earthquakes are generated by movement of thermal water and pressure variations. In the development of the micro-earthquake use exploration method, developed was the micro-earthquake data processing and analysis system (MEPAS). 179 refs., 117 figs., 28 tabs.

  4. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  5. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  6. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  7. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania

    Directory of Open Access Journals (Sweden)

    Oros Eugen

    2015-03-01

    Full Text Available The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania and the historical seismicity of the region (Mw≥4.0. Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of Timisoara (January 2012 and March 2013 and the fourth within Hateg Basin, South Carpathians (October 2013. These sequences occurred within the epicentral areas of some strong historical earthquakes (Mw≥5.0. The main events had some macroseismic effects on people up to some few kilometers from the epicenters. Our results update the Romanian earthquakes catalogue and bring new information along the local seismic hazard sources models and seismotectonics.

  8. Mini-Sosie - a new concept in high-resolution seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C J

    1977-12-01

    Mini-Sosie is a new approach to high-resolution reflection seismics using a nondynamite source. The basic principles is to use an ordinary earth tamper to produce a long duration pseudo-random input pulse train. Returning signals from suitable geophone arrays are decoded in real time by crosscorrelation with the reference signal recorded from a source-sensor attached to the tamper plate. Relatively weak signals are stacked until sufficient amplitude is obtained; most noise is phased out during the decoding process while in-phase seismic events are added, resulting in good signal-to-noise ratios. The resulting output is the standard field seismogram. The source is relatively quiet and surface damage is insignificant thereby avoiding environmental restrictions. Mini-Sosie is especially useful for shallow investigation to one second (two-way time) and has a wide range of applications from shallow oil and gas exploration, coal, and hard mineral exploration to hydrology and engineering studies.

  9. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  10. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  11. Investigating the Deep Seismic Structure of Volcan de Colima, Mexico

    Science.gov (United States)

    Gardine, M. D.; Reyes, T. D.; West, M. E.

    2006-12-01

    We present early-stage results from a novel seismic investigation at Volcan de Colima. The project is a collaboration between the Observatorio Vulcanologico de la Universidad de Colima and the University of Alaska Fairbanks. In January 2006, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL-supported Colima Volcano Deep Seismic Experiment (CODEX). They are scheduled to be in the field for eighteen months. Data from the first several months of the deployment have been used to characterize both the regional seismicity and the seismicity of the volcano, as recorded by the temporary array. Colima volcano has an unusually well-distributed suite of earthquakes on the local, regional and teleseismic scale. Data recorded close to the edifice provide an opportunity to explore the daily explosive activity exhibited by the volcano. The diversity of regional and teleseismic earthquake source regions make Colima an ideal place to probe the deep magmatic structure of a prodigous volcanic center. Results will be interpreted in the context of pre-existing petrologic models to address the relative role of crust and mantle in governing the evolution of an andesitic arc volcano.

  12. Quantitative Prediction of Coalbed Gas Content Based on Seismic Multiple-Attribute Analyses

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2015-09-01

    Full Text Available Accurate prediction of gas planar distribution is crucial to selection and development of new CBM exploration areas. Based on seismic attributes, well logging and testing data we found that seismic absorption attenuation, after eliminating the effects of burial depth, shows an evident correlation with CBM gas content; (positive structure curvature has a negative correlation with gas content; and density has a negative correlation with gas content. It is feasible to use the hydrocarbon index (P*G and pseudo-Poisson ratio attributes for detection of gas enrichment zones. Based on seismic multiple-attribute analyses, a multiple linear regression equation was established between the seismic attributes and gas content at the drilling wells. Application of this equation to the seismic attributes at locations other than the drilling wells yielded a quantitative prediction of planar gas distribution. Prediction calculations were performed for two different models, one using pre-stack inversion and the other one disregarding pre-stack inversion. A comparison of the results indicates that both models predicted a similar trend for gas content distribution, except that the model using pre-stack inversion yielded a prediction result with considerably higher precision than the other model.

  13. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  14. GIS Based Study on Seismicity of Makran over 100 Years

    Directory of Open Access Journals (Sweden)

    Mubarik Ali

    2015-12-01

    Full Text Available The earthquakes in Makran have a history of 600 years (1483-2015. The new ventures of development, urbanization, mining, and exploration for hydrocarbons in Makran region demand recent studies on seismicity. The major tectonic earthquakes are although infrequent in Makran, but are responsible for generating tsunami in coastal areas of Pakistan and Iran and have a long tail of aftershocks of shallow to deep focal depths. The oceanic part of Arabian plate which is underthrusting Eurasian plate (northwards, contributes a major share in producing seismicity of low magnitude (ML 6 on Richter scale has a relation with the rotation of moon (lunar dates in Makran.

  15. Development of Canadian seismic design approach and overview of seismic standards

    Energy Technology Data Exchange (ETDEWEB)

    Usmani, A. [Amec Foster Wheeler, Toronto, ON (Canada); Aziz, T. [TSAziz Consulting Inc., Mississauga, ON (Canada)

    2015-07-01

    Historically the Canadian seismic design approaches have evolved for CANDU® nuclear power plants to ensure that they are designed to withstand a design basis earthquake (DBE) and have margins to meet the safety requirements of beyond DBE (BDBE). While the Canadian approach differs from others, it is comparable and in some cases more conservative. The seismic requirements are captured in five CSA nuclear standards which are kept up to date and incorporate lessons learnt from recent seismic events. This paper describes the evolution of Canadian approach, comparison with others and provides an overview and salient features of CSA seismic standards. (author)

  16. [Population trends and behavioral observations of wintering common cranes (Grus grus) in Yancheng Nature Reserve].

    Science.gov (United States)

    Li, Zhong-Qiu; Wang, Zhi; Ge, Chen

    2013-10-01

    To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family.

  17. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    Science.gov (United States)

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  18. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab

    2018-03-01

    b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.

  19. On the use of a laser ablation as a laboratory seismic source

    Science.gov (United States)

    Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane

    2017-04-01

    Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the

  20. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  1. Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.

    2017-12-01

    Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long

  2. Promoting seismic retrofit implementation through "nudge": using warranty as a driver.

    Science.gov (United States)

    Fujimi, Toshio; Tatano, Hirokazu

    2013-10-01

    This article proposes a new type of warranty policy that applies the "nudge" concept developed by Thaler and Sunstein to encourage homeowners in Japan to implement seismic retrofitting. Homeowner adaptation to natural disasters through loss reduction measures is known to be inadequate. To encourage proactive risk management, the "nudge" approach capitalizes on how choice architecture can influence human decision-making tendencies. For example, people tend to place more value on a warranty for consumer goods than on actuarial value. This article proposes a "warranty for seismic retrofitting" as a "nudge" policy that gives homeowners the incentive to adopt loss reduction measures. Under such a contract, the government guarantees all repair costs in the event of earthquake damage to the house if the homeowner implements seismic retrofitting. To estimate the degree to which a warranty will increase the perceived value of seismic retrofitting, we use field survey data from 1,200 homeowners. Our results show that a warranty increases the perceived value of seismic retrofitting by an average of 33%, and an approximate cost-benefit analysis indicates that such a warranty can be more economically efficient than an ex ante subsidy. Furthermore, we address the failure of the standard expected utility model to explain homeowners' decisions based on warranty evaluation, and explore the significant influence of ambiguity aversion on the efficacy of seismic retrofitting and nonanalytical factors such as feelings or trust. © 2013 Society for Risk Analysis.

  3. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  4. Seismic velocity uncertainties and their effect on geothermal predictions: A case study

    Science.gov (United States)

    Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group

    2017-04-01

    Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.

  5. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  6. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  7. Variations in the microseismic noise level observed at the Bucovina Seismic Array (BURAR)

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2005-01-01

    The microseismic noise level analysis for a seismic array is an essential step to accurately process the data recorded by the system. Basically, the observed background noise is a complex combination of natural and cultural sources as local geology, specific area activity (roads traffic, agricultural and industrial activities) or weather conditions.The understanding of the BURAR site noise characteristics is important for the array specific techniques (beamforming, f-k analysis), to apply the correct bandpass filtering, in order to obtain noise suppression and conservation of the 'true' seismic signal. The array monitoring potential of very small earthquakes and explosions will be enhanced, based on the best signal-to-noise ratio.The noise study at BURAR was carried out over one-year period, considering the noise power spectra in a 0.1 to 10 Hz frequency interval, for every 24 hours: 5 minutes during day and 5 minutes during night. Only short-period vertical sensors were considered. Systematic variations in the microseismic noise level at the BURAR site were observed:- diurnal: a decreasing of about 40% in night noise level at 1 Hz frequency; at 6 Hz frequency, the decreasing could reach 80-90% for 'non-winter' months (May to October); - seasonal: during the winter time, a lower noise level is observed, due to the restraining of the local specific activity (especially agriculture and farming) and of the road traffic. To summarize the level of microseismic noise observed at BURAR for one-year observations, a model curve for array noise level has been estimated, including upper and lower bounds of noise power density together with average spectrum. The BURAR noise model will be useful in the process of local site conditions estimation, by eliminating the noise contribution from the array recording. Also, the detection processing, phase identification and events location procedures will be significantly improved. (authors)

  8. Prevalence of operator fatigue in winter maintenance operations.

    Science.gov (United States)

    Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J

    2018-02-02

    Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Vp/Vs ratio) structures in high seismic potential zones is an important task which can lead to reduce seismic hazard for a future large earthquake.

  10. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  11. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  12. Focusing patterns of seismicity with relocation and collapsing

    Science.gov (United States)

    Li, Ka Lok; Gudmundsson, Ólafur; Tryggvason, Ari; Bödvarsson, Reynir; Brandsdóttir, Bryndís

    2016-07-01

    Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.

  13. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  14. Antarctica: Discovery & Exploration.

    Science.gov (United States)

    Gascoigne, Toss; Collett, Peter

    An examination of Antarctica, from the first sightings to the heroic explorations of the late 18th and early 19th centuries to modern-day research, is presented in this book. Twelve chapters are as follows: (1) The search begins; (2) Whalers and sealers: bites and nibbles; (3) The new continent: first sight; (4) Wintering: the first party; (5)…

  15. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  16. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  17. Attenuation (1/Q) estimation in reflection seismic records

    International Nuclear Information System (INIS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-01-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method. (paper)

  18. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    Science.gov (United States)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  19. EMERALD: A Flexible Framework for Managing Seismic Data

    Science.gov (United States)

    West, J. D.; Fouch, M. J.; Arrowsmith, R.

    2010-12-01

    The seismological community is challenged by the vast quantity of new broadband seismic data provided by large-scale seismic arrays such as EarthScope’s USArray. While this bonanza of new data enables transformative scientific studies of the Earth’s interior, it also illuminates limitations in the methods used to prepare and preprocess those data. At a recent seismic data processing focus group workshop, many participants expressed the need for better systems to minimize the time and tedium spent on data preparation in order to increase the efficiency of scientific research. Another challenge related to data from all large-scale transportable seismic experiments is that there currently exists no system for discovering and tracking changes in station metadata. This critical information, such as station location, sensor orientation, instrument response, and clock timing data, may change over the life of an experiment and/or be subject to post-experiment correction. Yet nearly all researchers utilize metadata acquired with the downloaded data, even though subsequent metadata updates might alter or invalidate results produced with older metadata. A third long-standing issue for the seismic community is the lack of easily exchangeable seismic processing codes. This problem stems directly from the storage of seismic data as individual time series files, and the history of each researcher developing his or her preferred data file naming convention and directory organization. Because most processing codes rely on the underlying data organization structure, such codes are not easily exchanged between investigators. To address these issues, we are developing EMERALD (Explore, Manage, Edit, Reduce, & Analyze Large Datasets). The goal of the EMERALD project is to provide seismic researchers with a unified, user-friendly, extensible system for managing seismic event data, thereby increasing the efficiency of scientific enquiry. EMERALD stores seismic data and metadata in a

  20. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  1. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  2. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  3. Seismic attributes characterization for Albian reservoirs in shallow Santos Basin

    Energy Technology Data Exchange (ETDEWEB)

    Vincentelli, Maria Gabriela C.; Barbosa, Mauro [HRT Petroleum, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Santos basin southwest area is characterized by gas production, but it shows an exploratory problem due to the lack of good reservoirs facies. The main reservoirs are the Albian calcarenites, which show low porosities values (about 2%) in the northwest portion of the study area. From wire log analysis, it was interpreted that the porosity values can reach 15% at the south-west portion, both in the Caravela, Cavalo Marinho and Tubarao oil/gas fields and in the neighborhood of these fields. In order to find the best places to drill exploration wells at Shallow Santos, it is recommended to apply analyses of seismic attributes including: main average amplitude, energy, RMS, main amplitude, etc. Once the application of this methodology is restricted to 3D seismic data, in this study, a pseudo-3D seismic volume was built from 9,635 km of seismic lines, and 13 wells were used for reservoir facies control. As a result, the presence of good facies reservoirs in this area of the basin is restricted to trends with a NE-SW direction, and their presence is not only associated with the structural highs, this fact explains the dry wells over rollover structures. (author)

  4. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Tibuleac, Ileana [Univ. of Nevada, Reno, NV (United States)

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  5. Planetary Seismology : Lander- and Wind-Induced Seismic Signals

    Science.gov (United States)

    Lorenz, Ralph

    2016-10-01

    Seismic measurements are of interest for future geophysical exploration of ocean worlds such as Europa or Titan, as well as Venus, Mars and the Moon. Even when a seismometer is deployed away from a lander (as in the case of Apollo) lander-generated disturbances are apparent. Such signatures may be usefully diagnostic of lander operations (at least for outreach), and may serve as seismic excitation for near-field propagation studies. The introduction of these 'spurious' events may also influence the performance of event detection and data compression algorithms.Examples of signatures in the Viking 2 seismometer record of lander mechanism operations are presented. The coherence of Viking seismometer noise levels and wind forcing is well-established : some detailed examples are examined. Wind noise is likely to be significant on future Mars missions such as InSight, as well as on Titan and Venus.

  6. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  7. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  8. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  9. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  10. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  11. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    Science.gov (United States)

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  12. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  13. Faults survey by 3D reflection seismics; Sanjigen hanshaho jishin tansa ni yoru danso chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, T; Ejiri, T; Yamada, N; Narita, N; Aso, H; Takano, H; Matsumura, M [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    This paper describes fault survey by 3D seismic reflection exploration. Survey has been conducted mainly at flat land area without pavement not in urban area in Japan. Subsurface structure is complicated with intersecting multiple faults. In this area, a lot of geological investigations have been done prior to the seismic reflection exploration. Fairly certain images of faults have been obtained. However, there were still unknown structures. Survey was conducted at an area of 170m{times}280m in the CDP range. Measurements were carried out by using 100 g of dynamite per seismic generation point combined with 40 Hz velocity geophones. Fixed distribution consisting of lattice points of 12{times}12 was adopted as an observation method. In and around the lattice, a great number of explosions were carried out. The CDP stacking method and the method of migration after stacking were used for the data processing. The 3D structures of six horizons and five faults could be interpreted. Interpreted horizons were well agreed with the logging results. 3 figs.

  14. 46 CFR 45.73 - Winter freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Winter freeboard. 45.73 Section 45.73 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.73 Winter freeboard. The minimum winter freeboard (fw) in inches is obtained by the formula: fw=f(s)+T s...

  15. 3D seismic experiment in difficult area in Japan; Kokunai nanchiiki ni okeru sanjigen jishin tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.

  16. MOBB: a permanent ocean floor broadband seismic observatory in Monterey Bay, California

    Science.gov (United States)

    Uhrhammer, R.; Romanowicz, B.; Stakes, D.; Neuhauser, D.; McGill, P.; Ramirez, T.

    2003-04-01

    The Monterey ocean bottom broadband station (MOBB) was installed on the seafloor in Monterey Bay, 40 km offshore, and at a depth of 1000m from the sea surface, on April 9-11, 2002. Its success capitalizes on the experience gained in the 1997 International MOISE experiment, conducted under similar conditions. The deployment took place during 3 dives on consecutive days and made use of MBARI's Point Lobos ship and ROV Ventana. The station is currently recording data autonomously. Eventually, it will be linked to the planned (and recently funded) MARS (Monterey Accelerated Research System; \\url {http://www.mbari.org/mars/}) cable and provide real-time, continuous seismic data to be merged with the rest of the northern California real-time seismic system. The data are archived at the NCEDC for on-line availability, as part of the Berkeley Digital Seismic Network (BDSN). The ocean-bottom MOBB station currently comprises a three-component seismometer package, a current-meter, a DPG, and recording and battery packages. The seismic package contains a low-power (2.2W), three-component CMG-1T broadband seismometer system, built by Guralp, Inc., with a three-component 24-bit digitizer, a leveling system, and a precision clock. The seismometer package is mounted on a cylindrical titanium pressure vessel 54cm in height and 41 cm in diameter, custom built by the MBARI team and outfitted for underwater connection. Data recovery dives, during which the recording and battery package will be exchanged are planned every three months for the next 3 years. Three such dives have already taken place, on 06/27/02, 09/20/02 and on 01/07/03. Due to a software problem, data were lost during the time period 07/01/02 and 09/20/02. Many regional and teleseismic earthquakes have been well recorded and the mass position signals indicate that the instruments have progressively settled. Preliminary analysis of data retrieved during the 2002 summer and winter dives will be presented. In particular

  17. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    Science.gov (United States)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  18. Widespread seismicity excitation following the 2011 M=9.0 Tohoku, Japan, earthquake and its implications for seismic hazard

    Science.gov (United States)

    Toda, S.; Stein, R. S.; Lin, J.

    2011-12-01

    The 11 March 2011 Tohoku-chiho Taiheiyo-oki earthquake (Tohoku earthquake) was followed by massive offshore aftershocks including 6 M≧7 and 94 M≧6 shocks during the 4.5 months (until July 26). It is also unprecedented that a broad increase in seismicity was observed over inland Japan at distances of up to 425 km from the locus of high seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M≧3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common in areas having complex geologic background like Tohoku. In Central Japan, however, there are several regions where the usual tectonic stress has been enhanced by the Tohoku earthquake, and the moderate and large faults have been brought closer to failure, producing M˜5 to 6 shocks, including Nagano, near Mt. Fuji, Tokyo metropolitan area and its offshore. We confirmed that at least 5 of the seven large, exotic, or remote aftershocks were brought ≧0.3 bars closer to failure. Validated by such correlations, we evaluate the effects of the Tohoku event on the other subduction zones nearby and major active faults inland. The majorities of thrust faults inland Tohoku are brought farther from failure by the M9 event. However, we found that the large sections of the Japan trench megathrust, the outer

  19. Rate of Change in Lake Level and its Impact on Reservoir-triggered Seismicity

    Science.gov (United States)

    Simpson, D. W.

    2017-12-01

    With recent interest in increased seismicity related to fluid injection, it is useful to review cases of reservoir-triggered earthquakes to explore common characteristics and seek ways to mitigate the influence of anthropogenic impacts. Three reservoirs - Koyna, India; Nurek, Tajikistan; and Aswan, Egypt - are well-documented cases of triggered earthquakes with recorded time series of seismicity and water levels that extend for more than 30 years. The geological setting, regional tectonics and modes of reservoir utilization, along with the characteristics of the reservoir-seismicity interaction, are distinctly different in each of these three cases. Similarities and differences between these three cases point to regional and local geological and hydrological structures and the rate of changes in reservoir water level as important factors controlling the presence and timing of triggered seismicity. In a manner similar to the way in which the rate of fluid injection influences injection-related seismicity, the rate of change in reservoir water level is a significant factor in determining whether or not reservoir-triggered seismicity occurs. The high rate of annual water level rise may be important in sustaining the exceptionally long sequence of earthquakes at Koyna. In addition to the rate of filling being a determining factor in whether or not earthquakes are triggered, changes in the rate of filling may influence the time of occurrence of individual earthquakes.

  20. Gas hydrates:estimation of the gas potential, from reflection seismic data in the continental shelf of Uruguay

    International Nuclear Information System (INIS)

    De Santa Ana, H.; Ucha, N.; Gutierrez, L.; Veroslavsky, G.

    2004-01-01

    The uruguayan continental shelf shows geophysical indicators of gas hydrates in the Oriental del Plata, Pelotas and Punta del Este basin. The aim of this work is to present the potential presence of gas at the continental shelf in Uruguay and to evaluate the possibility of exploration of unconventional hydrocarbon plays. Analysis of the seismic surface based on regional and stratgigraphic information that proceeded from previous hydrocarbon exploration in the area have been used to estimatge resources of gas hydrates. Gas hydrates accumulation was mapped using characteristic reflectors and amplitude anomalies of seismic lines (BSR). Its quantity was estimated on this basis in about 86 TCF.

  1. Mars Exploration Rover Spirit End of Mission Report

    Science.gov (United States)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  2. Seismic Excitation of the Polar Motion

    Science.gov (United States)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  3. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  4. Winter Arctic sea ice growth: current variability and projections for the coming decades

    Science.gov (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.

    2017-12-01

    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  5. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  6. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented

  7. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  8. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  9. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  10. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  11. Unlocking the hydrocarbon potential of the eastern Black Sea basin. Prospectivity of middle Miocene submarine fan reservoirs by seismic sequence stratigraphy

    International Nuclear Information System (INIS)

    Gundogan, Coskun; Galip, Ozbek; Ali, Demirer

    2002-01-01

    Full text : The objective of this paper is to present present depositional characteristics and hydrocarbon prospectivity of the middle Miocene submarine basin floor fan deposits from the exploration stand point of view by using seismic data available in the offshore eastern Black Sea basin. This basin is a Tertiary trough formed as a continuation of the Mesozoic oceanic basin. The hydrocarbon potential of the basin is believed to be high in the Tertiary section because of the existence of the elements necessary for generation, migration and entrapment of hydrocarbon. A sequence stratigraphic study has been carried out by using 2-d seismic data in the Turkish portion of the eastern Black Sea basin. The objective of the study was to determine periods of major clastic sediment influxes which might lead to identify good reservoir intervals and their spatial distribution in this basin. All basic seismic sequence stratigraphic interpretation techniques and seismic facies analysis were used to identify times of these sand rich deposition periods. Sequence stratigraphy and seismic facies analysis indicate that the basinal areas of the middle Miocene sequences were dominated mainly by submarine fan complexes introduced in the lowstand stages and pelagic sediments deposited during the transgressive and highstand stages. It was proposed that Turkish portion of this basin which is one of the best frontier exploration area with its high potential left in the world, is glimpsing to those looking for good future exploration opportunities.

  12. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  13. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  14. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  15. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  16. Seismic fragility capacity of equipment

    International Nuclear Information System (INIS)

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  17. EMERALD: Coping with the Explosion of Seismic Data

    Science.gov (United States)

    West, J. D.; Fouch, M. J.; Arrowsmith, R.

    2009-12-01

    The geosciences are currently generating an unparalleled quantity of new public broadband seismic data with the establishment of large-scale seismic arrays such as the EarthScope USArray, which are enabling new and transformative scientific discoveries of the structure and dynamics of the Earth’s interior. Much of this explosion of data is a direct result of the formation of the IRIS consortium, which has enabled an unparalleled level of open exchange of seismic instrumentation, data, and methods. The production of these massive volumes of data has generated new and serious data management challenges for the seismological community. A significant challenge is the maintenance and updating of seismic metadata, which includes information such as station location, sensor orientation, instrument response, and clock timing data. This key information changes at unknown intervals, and the changes are not generally communicated to data users who have already downloaded and processed data. Another basic challenge is the ability to handle massive seismic datasets when waveform file volumes exceed the fundamental limitations of a computer’s operating system. A third, long-standing challenge is the difficulty of exchanging seismic processing codes between researchers; each scientist typically develops his or her own unique directory structure and file naming convention, requiring that codes developed by another researcher be rewritten before they can be used. To address these challenges, we are developing EMERALD (Explore, Manage, Edit, Reduce, & Analyze Large Datasets). The overarching goal of the EMERALD project is to enable more efficient and effective use of seismic datasets ranging from just a few hundred to millions of waveforms with a complete database-driven system, leading to higher quality seismic datasets for scientific analysis and enabling faster, more efficient scientific research. We will present a preliminary (beta) version of EMERALD, an integrated

  18. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  19. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  20. Optimization of dynamic source depth for seismic surveys. Part 7; Dynamite shingen no hasshin shindo no saitekika ni tsuite (hyoso kozo no suitei (kusssetsuho jishin tansa oyobi denki denjiho tansa)). 7

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Murayama, R; Mitsuhata, Y; Ishikawa, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-05-01

    For the improvement of quality of data collected by reflection aided seismic exploration using dynamite as the seismic source, information has to be collected about the surface layer structure before the charge depth is determined. For this purpose, refraction, electric, and electromagnetic exploration methods were tried. In the refraction method, an impactor was used as the seismic source. In the records, the surface wave prevails because vibration was generated on the surface. Analysis was made by the use of the initial travel time tomography. In the electric exploration, a double pole array was used to measure resistivity. The measured data was subjected to a fully automatic inversion for analysis. As the result, it was disclosed that it was useful to know the deep-level structure directly by use of tomographic methods in refraction seismic exploration so as to find the optimum charge level. Furthermore, about the electric and electromagnetic exploration techniques, it was found that these methods can be applied making use of resistivity to the evaluation of groundwater saturation. 7 refs., 5 figs., 3 tabs.

  1. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  2. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  3. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  4. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2011-01-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar

  5. Vertical Cable Seismic Survey for Hydrothermal Deposit

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  6. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Science.gov (United States)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  7. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  8. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  9. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  10. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  11. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  12. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  13. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  14. InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake

    Science.gov (United States)

    Peterson, K.; Barnhart, W. D.

    2017-12-01

    On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest

  15. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  16. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    Science.gov (United States)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  17. Advances and Applications of Rock Physics for Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Valle-Molina C.

    2012-10-01

    Full Text Available Integration of the geological and geophysical information with different scale and features is the key point to establish relationships between petrophysical and elastic characteristics of the rocks in the reservoir. It is very important to present the fundamentals and current methodologies of the rock physics analyses applied to hydrocarbons exploration among engineers and Mexican students. This work represents an effort to capacitate personnel of oil exploration through the revision of the subjects of rock physics. The main aim is to show updated improvements and applications of rock physics into seismology for exploration. Most of the methodologies presented in this document are related to the study the physical and geological mechanisms that impact on the elastic properties of the rock reservoirs based on rock specimens characterization and geophysical borehole information. Predictions of the rock properties (litology, porosity, fluid in the voids can be performed using 3D seismic data that shall be properly calibrated with experimental measurements in rock cores and seismic well log data

  18. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Science.gov (United States)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  19. American marten respond to seismic lines in northern Canada at two spatial scales.

    Directory of Open Access Journals (Sweden)

    Jesse Tigner

    Full Text Available Development of hydrocarbon resources across northwest Canada has spurred economic prosperity and generated concerns over impacts to biodiversity. To balance these interests, numerous jurisdictions have adopted management thresholds that allow for limited energy development but minimize undesirable impacts to wildlife. Used for exploration, seismic lines are the most abundant linear feature in the boreal forest and exist at a variety of widths and recovery states. We used American marten (Martes americana as a model species to measure how line attributes influence species' response to seismic lines, and asked whether responses to individual lines trigger population impacts. Marten response to seismic lines was strongly influenced by line width and recovery state. Compared to forest interiors, marten used open seismic lines ≥ 3 m wide less often, but used open lines ≤ 2 m wide and partially recovered lines ≥ 6 m wide similarly. Marten response to individual line types appeared to trigger population impacts. The probability of occurrence at the home range scale declined with increasing seismic line density, and the inclusion of behavioral response to line density calculations improved model fit. In our top performing model, we excluded seismic lines ≤ 2 m from our calculation of line density, and the probability of occurrence declined > 80% between home ranges with the lowest and highest line densities. Models that excluded seismic lines did not strongly explain occurrence. We show how wildlife-derived metrics can inform regulatory guidelines to increase the likelihood those guidelines meet intended management objectives. With respect to marten, not all seismic lines constitute disturbances, but avoidance of certain line types scales to population impacts. This approach provides the ecological context required to understand cause and effect relationships among socio-economic and ecological conservation goals.

  20. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  1. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  2. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  3. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    Science.gov (United States)

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    Landsliding is a worldwide common phenomenon. Every year, and ranging in size from very small to enormous, landslides cause all too often loss of life and disastrous damage to infrastructure, property and the environment. One main reason for more frequent catastrophes is the growth of population on the Earth which entails extending urbanization to areas at risk. Landslides are triggered by a variety and combination of causes, among which the role of water and seismic activity appear to have the most serious consequences. In this regard, seismic shaking is of particular interest since topographic elevation as well as the landslide mass itself can trap waves and hence amplify incoming surface waves - a phenomenon known as "site effects". Research on the topic of landsliding due to seismic and non-seismic activity is extensive and a broad spectrum of methods for modeling slope deformation is available. Those methods range from pseudo-static and rigid-block based models to numerical models. The majority is limited to 2D modeling since more sophisticated approaches in 3D are still under development or calibration. However, the effect of lateral confinement as well as the mechanical properties of the adjacent bedrock might be of great importance because they may enhance the focusing of trapped waves in the landslide mass. A database was created to study 3D landslide geometries. It currently contains 277 distinct seismically and non-seismically triggered landslides spread all around the globe whose rupture bodies were measured in all available details. Therefore a specific methodology was developed to maintain predefined standards, to keep the bias as low as possible and to set up a query tool to explore the database. Besides geometry, additional information such as location, date, triggering factors, material, sliding mechanisms, event chronology, consequences, related literature, among other things are stored for every case. The aim of the database is to enable

  4. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  5. Location of the Green Canyon (Offshore Southern Louisiana) Seismic Event of February 10, 2006

    Science.gov (United States)

    Dewey, James W.; Dellinger, Joseph A.

    2008-01-01

    We calculated an epicenter for the Offshore Southern Louisiana seismic event of February 10, 2006 (the 'Green Canyon event') that was adopted as the preferred epicenter for the event by the USGS/NEIC. The event is held at a focal depth of 5 km; the focal depth could not be reliably calculated but was most likely between 1 km and 15 km beneath sea level. The epicenter was calculated with a radially symmetric global Earth model similar to that routinely used at the USGS/NEIC for all earthquakes worldwide. The location was calculated using P-waves recorded by seismographic stations from which the USGS/NEIC routinely obtains seismological data, plus data from two seismic exploration arrays, the Atlantis ocean-bottom node array, operated by BP in partnership with BHP Billiton Limited, and the CGG Green Canyon phase VIII multi-client towed-streamer survey. The preferred epicenter is approximately 26 km north of an epicenter earlier published by the USGS/NEIC, which was obtained without benefit of the seismic exploration arrays. We estimate that the preferred epicenter is accurate to within 15 km. We selected the preferred epicenter from a suite of trial calculations that attempted to fit arrival times of seismic energy associated with the Green Canyon event and that explored the effect of errors in the velocity model used to calculate the preferred epicenter. The various trials were helpful in confirming the approximate correctness of the preferred epicenter and in assessing the accuracy of the preferred epicenter, but none of the trial calculations, including that of the preferred epicenter, was able to reconcile arrival-time observations and assumed velocity model as well as is typical for the vast majority of earthquakes in and near the continental United States. We believe that remaining misfits between the preferred solution and the observations reflect errors in interpreted arrival times of emergent seismic phases that are due partly to a temporally extended source

  6. The roles of texture and microstructure for seismic properties and anisotropy of the continental crust

    Science.gov (United States)

    Almqvist, B. S. G.; Mainprice, D.

    2017-12-01

    New seismic methods provide images of the continental crust with improved resolution, carrying unique information on the structure and mass transfer regimes within the crust. At the intrinsic scale components contributing to these images are grains and the microfabric, which includes information on grain characteristics. At the extrinsic scale the presence of micro-cracks, fractures and layering are important in controlling seismic velocities. Although the wavelength of a seismic wave is orders of magnitude larger than the intrinsic scale the minerals and microstructures, the interpretations of seismic images are critically dependent on our understanding and quantification of these microscopic constituents. This contribution explores the role of texture and microstructure in governing seismic properties of rocks. We focus on prediction of seismic velocities based on calculations that take into account mineral composition and microfabric of rocks. Emphasis is placed on recent developments in modeling efforts and analytical techniques, which can consider microfabric parameters such as crystallographic preferred orientation (CPO), grain shape, layering and elastic interaction among grains. Static schemes that use Christoffel's equation, and active/dynamic wave propagation methods provide the general techniques to predict seismic velocities. Single crystal elastic constants are essential in predicting seismic properties. However, the database is incomplete considering the variation of crustal mineralogy and lack of data at elevated pressure and temperature conditions occurring in the middle and lower crust. Finally, the method used to measure CPO and microstructure data has an influence on model predictions. Neutron and X-ray goniometry techniques enable investigation of CPO for large sample volumes, but lack other microstructural information. In contrast, electron backscatter diffraction provides data on both CPO and microstructure, but for a relatively small sample

  7. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  8. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  9. Reflection seismic investigations of western Canadian coalfields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Bertram, M.B.

    1983-03-01

    High resolution reflection seismic studies using a seisgun surface source were undertaken at four sites in Alberta. The objective of the project was to test the feasibility of the seismic method for the exploration and evaluation of coal deposits in a range of environments in western Canada. At Camrose, coherent reflections from a coal zone 70-110 m below the surface were recorde along a 5 km profile. Variations in reflection amplitude and character were interpreted in terms of two main seams. Channel washouts, faults with throws of 5 m or greater, and effects of differential compaction were resolved. Studies at a foothills site showed that good data can be obtained in structurally disturbed areas with mild deformation. At this site, faults with vertical throws of up to 40 m were delineated. In the mountain region, studies indicated that the seismic method is not appropriate in areas with strong deformation. Deep weathering, variable topography and rapid lateral changes in reflector dip were the main reasons for poor data quality. The seisgun is a threshold seismic source which performs well in areas with a shallow water table and a zone of interest within 350 m of the surface. Its effectiveness decreases dramatically if the overburden is both thick and dry. Careful selection of field geometry and recording parameters is critical. In data processing, important aspects are the careful muting of first breaks and evaluation of short and long wavelength weathering statics corrections. A computer program listing for static correction analysis is included. The seismic method is very appropriate for evaluation of Plains and Foothills coal deposits in Alberta. It can provide continuous subsurface coverage between drillholes and therefore reduce the density of drillholes required to delineate a prospective area. 29 refs., 33 figs., 2 tabs.

  10. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  11. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to...

  12. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  13. Methodology for seismic PSA of NPPs

    International Nuclear Information System (INIS)

    Jirsa, P.

    1999-09-01

    A general methodology is outlined for seismic PSA (probabilistic safety assessment). The main objectives of seismic PSA include: description of the course of an event; understanding the most probable failure sequences; gaining insight into the overall probability of reactor core damage; identification of the main seismic risk contributors; identification of the range of peak ground accelerations contributing significantly to the plant risk; and comparison of the seismic risk with risks from other events. The results of seismic PSA are typically compared with those of internal PSA and of PSA of other external events. If the results of internal and external PSA are available, sensitivity studies and cost benefit analyses are performed prior to any decision regarding corrective actions. If the seismic PSA involves analysis of the containment, useful information can be gained regarding potential seismic damage of the containment. (P.A.)

  14. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    Science.gov (United States)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  15. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  16. Seismic and dynamic qualification methods

    International Nuclear Information System (INIS)

    Lin, C.W.

    1985-01-01

    This book presents the papers given at a conference on seismic effects on nuclear power plants. Topics considered at the conference included seismic qualification of equipment, multifrequency test methodologies, damping in piping systems, the amplification factor, thermal insulation, welded joints, and response factors for seismic risk analysis of piping

  17. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  18. Results from an acoustic modelling study of seismic airgun survey noise in Queen Charlotte Basin

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.O.; Chapman, N.R. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2005-12-07

    An acoustic modelling study was conducted to examine seismic survey noise propagation in the Queen Charlotte Basin (QCB) and better understand the physical aspects of sound transmission. The study results are intended to help determine the potential physiological and behavioural effects of airgun noise on marine mammals and fish. The scope of the study included a numerical simulation of underwater sound transmission in QCB in areas where oil and gas exploration activities may be conducted; a forecast of received noise levels by combining acoustic transmission loss computations with acoustic source levels representative of seismic exploration activity and, the use of received forecasts to estimate zones of impact for marine mammals. The critical environmental parameters in the QCB are the bathymetry of the ocean, the sound speed profile in the water and the geoacoustic profile of the seabed. The RAM acoustic propagation model developed by the United States Naval Research Laboratory was used to compute acoustic transmission loss in the QCB. The source level and directionality of the seismic array was determined by a full-waveform array source signature model. This modelling study of noise propagation from seismic surveys revealed several key findings. Among them, it showed that received noise levels in the water are affected by the source location, array orientation and the shape of the sound speed profile with respect to water depth. It also showed that noise levels are lowest in shallow bathymetry. 30 refs., 5 tabs., 13 figs.

  19. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  20. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  1. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  2. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  3. Examining winter visitor use in Yellowstone National Park

    Science.gov (United States)

    Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang

    2000-01-01

    This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the author’s hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...

  4. Winter Dew Harvest in Mexico City

    Directory of Open Access Journals (Sweden)

    Arias-Torres Jorge Ernesto

    2015-12-01

    Full Text Available This study presents experimental and theoretical results of winter dew harvest in México City in terms of condensation rate. A simplified theoretical model based on a steady-state energy balance on a radiator-condenser was fitted, as a function of the ambient temperature, the relative humidity and the wind velocity. A glass sheet and aluminum sheet white-painted were used as samples over the outdoor experiments. A good correlation was obtained between the theoretical and experimental data. The experimental results show that there was condensation in 68% of the winter nights on both condensers. The total winter condensed mass was 2977 g/m2 and 2888 g/m2 on the glass sheet and aluminum sheet white-painted, respectively. Thus, the condensed mass on the glass was only 3% higher than that on the painted surface. The maximum nightly dew harvests occurred during December, which linearly reduced from 50 g/m2 night to 22 g/m2 night as the winter months went by. The condensation occurred from 1:00 a.m. to 9:00 a.m., with maximum condensation rates between 6:00 a.m. and 7:00 a.m. The dew harvest can provide a partial alternative to the winter water shortage in certain locations with similar climates to the winter in Mexico City, as long as pollution is not significant.

  5. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  6. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  7. Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques

    Science.gov (United States)

    Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.

    2017-10-01

    It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.

  8. Traffic Light Protocol for Induced Seismicity: What is the Best Strategy?

    Science.gov (United States)

    Kao, H.; Mahani, A. B.; Atkinson, G. M.; Eaton, D. W. S.; Maxwell, S.

    2015-12-01

    In response to the occurrence of relatively large (and felt) earthquakes that are potentially induced by man-made activities, there is an increasing trend for the industry and government regulators to include a "traffic light" system in their decision-making process. Despite its tremendous implications to the cost of operations and the protection of public safety, the protocol that defines the different scenarios for different lights ("green", "yellow", or "red") has not been thoroughly validated to truly reflect the associated seismic risk. Most government regulators adopt a traffic light protocol (TLP) that depends on the magnitude of the earthquake of interest and sometimes felt reports from local communities. It is well known that the estimate of an earthquake's magnitude can have some uncertainty. While an uncertainty of +/-0.2 in magnitude is understandable and generally accepted by the seismological community, it can create a serious problem when the value of magnitude is the predominant factor in the TLP for induced seismicity. Recent examples of magnitude 4 and larger earthquakes in northeast BC and western AB that are possibly induced by shale gas hydraulic fracturing have demonstrated vividly the possible deficiency of existing TLP for induced seismicity. From the viewpoint of mitigating seismic risk, we argue that a ground-motion based TLP should be more effective than a magnitude-based approach. A workshop with representatives from government agencies, the industry, and the academia will be held to review the deficiency of the current TLP for induced seismicity and to explore innovative ways of improvement. The ultimate goal of the TLP for induced seismicity is to reach a balance between the protection of public safety and the economic benefit of developing natural resources In this presentation, main conclusions of this workshop will be presented.

  9. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  10. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  11. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  12. Seismic to­mography; theory and practice

    Science.gov (United States)

    Iver, H.M.; Hirahara, Kazuro

    1993-01-01

    Although highly theoretical and computer-orientated, seismic tomography has created spectacular images of anomolies within the Earth with dimensions of thousands of kilometers to few tens of meters. These images have enabled Earth scientists working on diverse areas to attack fundamental problems relating to the deep dynamical processes within our planet. Additionally, this technique is being used extensively to study the Earth's hazardous regions such as earthquake fault zones and volcanoes, as well as features beneficial to man such as oil or mineral-bearing structures. This book has been written by world experts and describes the theories, experimental and analytical procedures and results of applying seismic tomography from global to purely local scale. It represents the collective global perspective on the state of the art and focusses not only on the theoretical and practical aspects, but also on the uses for hydrocarbon, mineral and geothermal exploitation. Students and researchers in the Earth sciences, and research and exploration geophysicists should find this a useful, practical reference book for all aspects of their work.

  13. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  14. Leadership in American Indian Communities: Winter Lessons

    Science.gov (United States)

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  15. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  16. Link Between the Seismic Events and the Different Seismic Precursor Phenomena

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHITA

    2009-12-01

    Full Text Available This article presents an analysis of the earthquake prediction methods, highlighting mainly the VLF and LF electromagnetic waves seismic precursors’ monitoring method and the correlation among these in order to obtain a more precise result. It is well known the fact that there are lots of links between the seismic events occurrence and different phenomena that predict their occurrence, such as theelectromagnetic field, Earth movement, gaseous content of radon and hydrogen within the soil, or within the underground waters. This paper aims to demonstrate the close link between the seismic events and the electromagnetic wave propagation anomalies, which are recorded before the advent of an earthquake.

  17. Direct methods for seismic profiling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bleistein, N.; Cohen, J.K.; Hagin, F.G.

    1979-12-12

    A coordinated research program in inverse problems was concluded. The program evolved from formulation to analytical solution to implemented computer algorithms. There were two main lines of research in this program: a velocity inversion method, with application to seismic exploration, and a physical optics inverse scattering method for reflector mapping, with application to nondestructive evaluation. In each case, computer algorithms based on the theoretical results were tested on real or testbed data from the area of the cited application. Research goals of both a theoretical and practical nature were achieved. 34 figures.

  18. How new developments in the use of geophysical data have changed the exploration landscape

    International Nuclear Information System (INIS)

    Weir, R.M.

    1999-01-01

    The use of remote sensing and geophysical data by the petroleum and natural gas industry to reduce the risk related to exploration was discussed. Seismic data is used to map the subsurface of the earth. The types of geophysical data currently available include seismic reflection data, magnetic surveys, resistivity/IP surveys, gravity, ground penetrating radar, magnetotelluric and satellite imaging. This paper focused mainly on seismic reflection data because it is more commonly available than all other types of data combined. Seismic data consists of three components - field tapes, the survey data, and the observer notes, which are used by the geophysicist for interpretation. The four general categories of seismic data are: (1) two dimensional, (2) swath data, (3) three dimensional, and (4) vertical seismic profile. This paper reviewed the use of well log data, data storage, pitfalls in agreements, and present and future technology developments. 6 figs

  19. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  20. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  1. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  2. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  3. The 1995 forum on appropriate criteria and methods for seismic design of nuclear piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1996-01-01

    A record of the 1995 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the earthquake experience data base and whether the data base demonstrates that seismic inertia loads will not cause failure in ductile piping systems. This was a follow-up to the 1994 Forum when the use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. Two possible topics for the next forum were identified--inspection after an earthquake and design for safe-shutdown earthquake only

  4. The modest seismicity of the northern Red Sea rift

    Science.gov (United States)

    Mitchell, Neil C.; Stewart, Ian C. F.

    2018-05-01

    Inferring tectonic movements from earthquakes (`seismotectonics') relies on earthquakes faithfully recording tectonic motions. In the northern half of the Red Sea, however, events of magnitude 5.0 and above are almost entirely absent from global catalogues, even though GPS and other plate motion data suggest that the basin is actively rifting at ˜10 mm yr-1. Seismic moments computed here from event magnitudes contributed to the International Seismology Centre (ISC) suggest that the moment release rate is more than an order of magnitude smaller than for the southern Red Sea and for the Southwest Indian Ridge (SWIR), which is spreading at a comparable rate to the central Red Sea and is more remote from recording stations. A smaller moment release rate in the northern Red Sea might be anticipated from its smaller spreading rate, but seismic coupling coefficients, which account for spreading rate variations, are also one order of magnitude smaller than for the other two areas. We explore potential explanations for this apparently reduced seismicity. The northern Red Sea is almost continuously covered with thick evaporites and overlying Plio-Pleistocene sediments. These deposits may have reduced the thickness of the seismogenic layer, for example, by elevating lithosphere temperatures by a thermal blanketing effect or by leading to excess pore fluid pressures that reduce effective stress. The presence of subdued seismicity here implies that tectonic movements can in places be poorly recorded by earthquake data and requires that alternative data be sought when investigating the active tectonics of sedimented rifts in particular.

  5. 3D seismic imaging of the subsurface for underground construction and drilling

    International Nuclear Information System (INIS)

    Juhlin, Christopher

    2014-01-01

    3D seismic imaging of underground structure has been carried out in various parts of the world for various purposes. Examples shown below were introduced in the presentation. - CO 2 storage in Ketzin, Germany; - Mine planning at the Millennium Uranium Deposit in Canada; - Planned Forsmark spent nuclear fuel repository in Sweden; - Exploring the Scandinavian Mountain Belt by Deep Drilling: the COSC drilling project in Sweden. The author explained that seismic methods provide the highest resolution images (5-10 m) of deeper (1-5 km) sub-surfaces in the sedimentary environment, but further improvement is required in crystalline rock environments, and the integration of geology, geophysics, and drilling will provide an optimal interpretation. (author)

  6. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  7. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  8. Seismic data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Nadre, V.N.; Rao, D.S.

    1989-01-01

    Details of seismic data acquisition systems developed at the Bhabha Atomic Research Centre, Bombay are reported. The seismic signals acquired belong to different signal bandwidths in the band from 0.02 Hz to 250 Hz. All these acquisition systems are built around a unique technique of recording multichannel data on to a single track of an audio tape and in digital form. Techniques of how these signals in different bands of frequencies were acquired and recorded are described. Method of detecting seismic signals and its performance is also discussed. Seismic signals acquired in different set-ups are illustrated. Time indexing systems for different set-ups and multichannel waveform display systems which form essential part of the data acquisition systems are also discussed. (author). 13 refs., 6 figs., 1 tab

  9. The north-east Baffin Bay region, offshore Greenland - a new frontier petroleum exploration region

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, U. (Geological Survey of Denmark and Greenland, Copenhagen (Denmark))

    2008-07-15

    In recent years the Arctic has come into focus for hydrocarbon exploration, and areas offshore both West and East Greenland have been evaluated as promising frontier hydrocarbon provinces. Seven hydrocarbon exploration and exploitation licenses were awarded in 2007-2008 offshore the Disko-Nuussuaq region, and two more have been awarded in the open-door region offshore south-western Greenland. In 2007, an extensive amount of new seismic and aero-magnetic data was acquired by the TGS-NOPEC Geophysical Company in the north-eastern Baffin Bay region. Geophysical mapping has been initiated by the Geological Survey of Denmark and Greenland (GEUS) in the Melville Bugt region offshore North-West Greenland with the purpose of evaluating the hydrocarbon prospectivity. Initial interpretation of seismic and gravity data suggests the presence of deep sedimentary basins separated by structural highs. Geological information on source rock, reservoir rock and seal intervals from surrounding regions suggest that the Melville Bugt region is likely to have a significant petroleum potential. The study is based on public domain magnetic and gravity data, and all proprietary and public 2-D seismic data acquired before 2003. Seismic horizons from the 'seismic basement' to 'base Quaternary' are being interpreted regionally. Based on the seismic interpretation, a structural element map, depth-structure maps and isopach maps will be produced in order to assess the prospectivity of the Melville Bugt region. (au)

  10. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  11. The influence of backfill on seismicity

    CSIR Research Space (South Africa)

    Hemp, DA

    1990-09-01

    Full Text Available , that the seismicity has been reduced in areas where backfill had been placed. A factor complicating the evaluation of backfill on seismicity is the effect of geological structures on seismicity....

  12. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  13. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  14. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  15. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  16. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  17. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  18. Seismic shear wall ISP NUPEC's seismic ultimate dynamic response test. Comparison report

    International Nuclear Information System (INIS)

    1996-01-01

    In the seismic design of a nuclear power plant, evaluation of the ultimate strength of the nuclear reactor building is an important subject for assessment of seismic reliability of the plant. In order to carry out the evaluation, the response characteristics of reinforced concrete seismic shear walls up to their ultimate state have to be understood. For this purpose, there is a need to develop reliable non-linear response analysis methods which enables the reliable ultimate strength evaluation of nuclear reactor buildings. Along with this need, many computer codes have been developed. These computer codes are compared. (K.A.)

  19. Making waves in seismic exploration software: Annual report 1998

    International Nuclear Information System (INIS)

    1999-01-01

    GMA International is in the business of developing and supplying geological, geophysical and petrophysical computer-aided exploration software products for use in hydrocarbon exploration and exploitation world-wide. The company is headquartered in Calgary; it also has offices in Houston and London. It has over 5,500 installations and licensing arrangements with over 700 companies in 53 countries. This report details operating results during 1998, which included adding 77 new clients and the sale of over 300 new software licenses to new and existing clients. Consolidated balance sheets provide statements of earning (losses) and retained earnings, and changes in the company's financial position

  20. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    Science.gov (United States)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results

  1. Barriers to wheelchair use in the winter.

    Science.gov (United States)

    Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D

    2015-06-01

    To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  3. Seismic evaluation of the Mors Dome

    International Nuclear Information System (INIS)

    Kreitz, E.

    1982-01-01

    The ''Seismic Case History'' of the Mors saltdome was already published in detail by ELSAM/ELKRAFT so only a few important points need to be mentioned here: (a) Processing and interpretation of the seismic material. (b) Stratigraphic classification of the most important seismic reflection horizons. (c) Construction of the depth sections and description of the saltdome model. (d) Investigations of the problematic salt overhang using interactive seismic modelling. (EG)

  4. Mine-induced seismicity at East-Rand proprietary mines

    CSIR Research Space (South Africa)

    Milev, AM

    1995-09-01

    Full Text Available Mining results in seismic activity of varying intensity, from small micro seismic events to larger seismic events, often associated with significant seismic induced damages. This work deals with the understanding of the present seismicity...

  5. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  6. Review of selected non-seismic methods for onshore hydrocarbon exploration in Denmark. ALTKUL project report part 1

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, T.M.; Thorning, L.

    2012-09-15

    Project ALTKUL was commissioned by DONG E and P A/S and Nordsoefonden; the Danish Energy Agency followed the project closely. The starting point of the study was the need in Danish onshore areas for more knowledge on alternative methods that could be used for hydrocarbon exploration, as an alternative to seismic investigations. DONG E and P A/S and Nordsoefonden approached GEUS, suggesting a study of seven different methods. The Danish Energy Agency was interested in the subject and requested that an actual test of a method be carried out as a part of the project. The seven methods considered and reviewed are: 1: Surface geochemistry; 2: Gravimetric modelling; 3: Magnetotellurics (MT, AMT and ZTEM); 4: High-Moment Electromagnetics (HMEM); 5: High-Powered Spectral Induced Polarization (HPSIP); 6: Electron Para-magnetic Resonance (EPR); 7: Airborne Transient Pulse Surveys. Getting a test of one of the methods based on electromagnetic theory organised caused some difficulties. An experiment with a galvanic controlled source was considered to be the optimum choice. However, based on various contacts and failed attempts to organise a test, a contract was entered with Uppsala University for some initial tests of the MT method. The test is to be carried out in August 2012 and will be reported in a separate report (ALTKUL Project Report Part 2). (LN)

  7. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  8. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  9. Coseismic and Early Post-Seismic Slip Distributions of the 2012 Emilia (Northern Italy) Seismic Sequence: New Insights in the Faults Activation and Resulting Stress Changes on Adjacent Faults

    Science.gov (United States)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.

    2015-12-01

    The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.

  10. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    Science.gov (United States)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  11. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  12. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  13. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  14. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  15. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  16. Integral anomalous effect of an oil and gas deposit in a seismic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Korostyshevskiy, M.B.; Nabokov, G.N.

    1981-01-01

    The basic precepts of an elaborated version of a procedure for forecasting (direct exploration) of oil and gas deposits according to seismic prospecting data MOV are examined. This procedure was previously called the procedure of analysis of the integral affect of an oil and gas deposit in a seismic wave field (MIIEZ-VP). The procedure is implemented in the form of an automated system ASOM-VP for the BESM-4 computer in a standard configuration equipped with standard input-output devices for seismic information (''Potok'', MVU, ''Atlas''). The entire procedure of processing from input of data into the computer to output of resulting maps and graphs on graph plotter ''Atlas'' is automated. Results of testing of procedure MIIEZ-VP and system ASOM-VP on drilled areas of Kazakhstan, Azerbaydzhan and Uzbekistan are cited.

  17. Clamped seismic metamaterials: ultra-low frequency stop bands

    International Nuclear Information System (INIS)

    Achaoui, Y; Enoch, S; Guenneau, S; Antonakakis, T; Brûlé, S; Craster, R V

    2017-01-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1–10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0–30 Hz. (paper)

  18. Geological and Seismic Data Mining For The Development of An Interpretation System Within The Alptransit Project

    Science.gov (United States)

    Klose, C. D.; Giese, R.; Löw, S.; Borm, G.

    Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock

  19. Seismic modelling of shallow coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C. (University of Calgary, Calgary, Alberta (Canada). Dept. of Geology and Geophysics.)

    1987-01-01

    This study was undertaken in order to determine whether reflection seismic surveys can be used to map stratigraphic and structural detail of shallow Plains-type coal deposits. Two coalfields in central Alberta were used to examine and determine optimum acquisition parameters for reflection seismic surveys in such settings. The study was based on 1-D and 2-D numerical seismic modelling using sonic and density well logs to formulate a layered earth model. Additional objectives were to interpret the reflection seismic data in terms of geologic features in the study area, and to investigate the relationship between vertical resolution and field acquisition geometry. 27 refs., 41 figs.

  20. Complex researches on substantiation of construction and seismic stability of large dams in seismic region

    International Nuclear Information System (INIS)

    Negmatullaev, S.Kh.; Yasunov, P.A.

    2001-01-01

    This article is devoted to complex researches on substantiation of construction and seismic stability of large dams (Nurec hydroelectric power station) in seismic region. Geological, seismological, model, and engineering investigations are discussed in this work. At construction of Nurec hydroelectric power station the rich experience is accumulated. This experience can be used in analogous seismically active regions at construction similar hydroelectric power stations.

  1. Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria)

    International Nuclear Information System (INIS)

    Harbi, A.; Maouche, S.; Oussadou, F.; Vaccari, F.; Aoudia, A.; Panza, G.F.; Benouar, D.

    2005-07-01

    Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this capital city, a realistic modelling of the seismic ground motion using the hybrid method that combines the finite-differences method and the modal summation, is conducted. For this purpose, a complete database in terms of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone (2.25 deg. E-3.50 deg. E, 36.50 deg. N-37.00 deg. N) is performed and an earthquake list, for the period 1359-2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross-sections have been built up to model the seismic ground motion in the city, caused by the 1989 Mont-Chenoua and the 1924 Douera earthquakes; a set of synthetic seismograms and response spectral ratio is produced for Algiers. The numerical results show that the soft sediments in Algiers centre are responsible of the noticed amplification of the seismic ground motion. (author)

  2. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen

    DEFF Research Database (Denmark)

    Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.

    2015-01-01

    occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...

  3. Making waves in seismic exploration software: Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    GMA International is in the business of developing and supplying geological, geophysical and petrophysical computer-aided exploration software products for use in hydrocarbon exploration and exploitation world-wide. The company is headquartered in Calgary; it also has offices in Houston and London. It has over 5,500 installations and licensing arrangements with over 700 companies in 53 countries. This report details operating results during 1998, which included adding 77 new clients and the sale of over 300 new software licenses to new and existing clients. Consolidated balance sheets provide statements of earning (losses) and retained earnings, and changes in the company's financial position.

  4. Making waves in seismic exploration software: Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    GMA International is in the business of developing and supplying geological, geophysical and petrophysical computer-aided exploration software products for use in hydrocarbon exploration and exploitation world-wide. The company is headquartered in Calgary; it also has offices in Houston and London. It has over 5,500 installations and licensing arrangements with over 700 companies in 53 countries. This report details operating results during 1998, which included adding 77 new clients and the sale of over 300 new software licenses to new and existing clients. Consolidated balance sheets provide statements of earning (losses) and retained earnings, and changes in the company`s financial position.

  5. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  6. Application of the surface reflection seismic method to shallow coal exploration in the plains of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lyatsky, H.V.; Lawton, D.C. (University of Victoria, Victoria, BC (Canada). Dept. of Physics and Astronomy)

    1988-12-01

    A study was done to make a quantitative interpretation of reflection seismic data from the Highvale-Whitewood shallow coal deposit in central Alberta. Results showed that the data is useful in demonstrating coal thickness and stratigraphy as well as structural formation. Reflection character is affected by nature of the strata surrounding the coal deposit. 22 refs., 1 tab., 23 figs.

  7. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  8. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  9. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  10. Depletion of rice as food of waterfowl wintering in the Mississippi Alluvial Valley

    Science.gov (United States)

    Greer, Danielle M.; Dugger, Bruce D.; Reinecke, Kenneth J.; Petrie, Mark J.

    2009-01-01

    available rice soon after fields were flooded and the amount consumed exceeded our empirical estimates but was -48% (winters pooled) of rice initially present. We suggest 1) using 50 kg/ha as a threshold below which profitability limits waterfowl feeding in MAV rice fields; 2) reducing the current estimate (130 kg/ha) of rice consumed in harvested fields to 47.1 kg/ha; and 3) increasing available rice by increasing total area of fields managed, altering management practices (e.g., staggered flooding), and exploring the potential for producing second or ratoon rice crops for waterfowl.

  11. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    International Nuclear Information System (INIS)

    Juhlin, C.; Bergman, B.; Cosma, C.; Keskinen, J.; Enescu, N.

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  12. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  13. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  14. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  15. The Unusual Southern Hemisphere Stratosphere Winter of 2002

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.

    2003-01-01

    The southern hemisphere stratospheric winter of 2002 was the most unusual winter yet observed in the southern hemisphere climate record. Temperatures near the edge of the Antarctic polar vortex were considerably warmer than normal over the entire course of the winter. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters. These record high temperatures and weak jet resulted from a series of wave events that took place over the course of the winter. The first large event occurred on 15 May, and the final warming occurred on 25 October. The propagation of these wave events from the troposphere is diagnosed from time series of Eliassen-Palm flux vectors. The wave events tended to occur irregularly over the course of the winter, and pre-conditioned the polar night jet for the extremely large wave event of 22 September. This large wave event resulted in the first ever observed major stratospheric warming in the southern hemisphere. This wave event split the Antarctic ozone hole. The combined effect of the wave events of the 2002 winter resulted in the smallest ozone hole observed since 1988.

  16. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  17. Tectonic history in the Fort Worth Basin, north Texas, derived from well-log integration with multiple 3D seismic reflection surveys: implications for paleo and present-day seismicity in the basin

    Science.gov (United States)

    Magnani, M. B.; Hornbach, M. J.

    2016-12-01

    Oil and gas exploration and production in the Fort Worth Basin (FWB) in north Texas have accelerated in the last 10 years due to the success of unconventional gas production. Here, hydraulic fracturing wastewater is disposed via re-injection into deep wells that penetrate Ordovician carbonate formations. The rise in wastewater injection has coincided with a marked rise in earthquake rates, suggesting a causal relationship between industry practices and seismicity. Most studies addressing this relationship in intraplate regions like the FWB focus on current seismicity, which provides an a-posteriori assessment of the processes involved. 3D seismic reflection data contribute complementary information on the existence, distribution, orientation and long-term deformation history of faults that can potentially become reactivated by the injection process. Here we present new insights into the tectonic evolution of faults in the FWB using multiple 3D seismic reflection surveys in the basin, west of the Dallas Fort-Worth Metroplex, where high-volume wastewater injection wells have increased most significantly in number in the past few years. The datasets image with remarkable clarity the 3,300 m-thick sedimentary rocks of the basin, from the crystalline basement to the Cretaceous cover, with particular detail of the Paleozoic section. The data, interpreted using coincident and nearby wells to correlate seismic reflections with stratigraphic markers, allow us to identify faults, extract their orientation, length and displacements at several geologic time intervals, and therefore, reconstruct the long-term deformation history. Throughout the basin, the data show that all seismically detectable faults were active during the Mississippian and Pennsylvanian, but that displacement amounts drop below data resolution ( 7 m) in the post-Pennsylvanian deposits. These results indicate that faults have been inactive for at least the past 300 Ma, until the recent 2008 surge in

  18. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics

    Science.gov (United States)

    Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.

    2018-04-01

    We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.

  19. Green's function representations for seismic interferometry

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.T.

    2006-01-01

    The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

  20. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Energy Technology Data Exchange (ETDEWEB)

    Yuxian, Hu [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics

    1997-03-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  1. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    International Nuclear Information System (INIS)

    Hu Yuxian

    1997-01-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  2. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  3. Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.

  4. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  5. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  6. GrowYourIC: an open access Python code to facilitate comparison between kinematic models of inner core evolution and seismic observations

    Science.gov (United States)

    Lasbleis, M.; Day, E. A.; Waszek, L.

    2017-12-01

    The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow

  7. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  8. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  9. The Virtual Seismic Atlas Project: sharing the interpretation of seismic data

    Science.gov (United States)

    Butler, R.; Mortimer, E.; McCaffrey, B.; Stuart, G.; Sizer, M.; Clayton, S.

    2007-12-01

    Through the activities of academic research programs, national institutions and corporations, especially oil and gas companies, there is a substantial volume of seismic reflection data. Although the majority is proprietary and confidential, there are significant volumes of data that are potentially within the public domain and available for research. Yet the community is poorly connected to these data and consequently geological and other research using seismic reflection data is limited to very few groups of researchers. This is about to change. The Virtual Seismic Atlas (VSA) is generating an independent, free-to-use, community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed using not only existing survey and geographical data but also on the geology they portray. By using "Guided Navigation" to search, discover and retrieve images, users are exposed to arrays of geological analogues that provide novel insights and opportunities for research and education. The VSA goes live, with evolving content and functionality, through 2008. There are opportunities for designed integration with other global data programs in the earth sciences.

  10. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  11. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  12. NCSRR digital seismic network in Romania

    International Nuclear Information System (INIS)

    Aldea, A.; Albota, E.; Demetriu, S.; Poiata, N.; Kashima, T.

    2007-01-01

    Digital seismic instrumentation donated by Japan International Cooperation Agency (JICA) to the National Center for Seismic Risk Reduction (NCSRR, Romania) allowed the installation in 2003 of a new Romanian seismic network. In 2005-2006 the network was developed by investments from NCSRR within the budget ensured by Ministry of Transports, Construction and Tourism (MTCT). The NCSRR seismic network contains three types of instrumentation: (i) free-field stations - outside the capital city Bucharest (8 accelerometers), (ii) instrumented buildings - in Bucharest (5 buildings), and (iii) stations with free-field and borehole sensors - in Bucharest (8 sites with ground surface sensor and sensors in 15 boreholes with depths up to 153 m). Since its installation, the NCSRR network recorded more than 170 seismic motions from 26 earthquakes with moment magnitudes ranging from 3.2 to 6.0. The seismic instrumentation was accompanied by investigations of ground conditions and site response: PS logging tests, single-station and array microtremor measurements. The development of seismic monitoring in Romania is a major contribution of JICA Project, creating the premises for a better understanding and modelling of earthquake ground motion, site effects and building response. (authors)

  13. Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-11-01

    Full Text Available Rockfalls are a ubiquitous geomorphic process and a natural hazard in steep landscapes across the globe. Seismic monitoring can provide precise information on the timing, location and event anatomy of rockfalls, which are parameters that are otherwise hard to constrain. By pairing data from 49 seismically detected rockfalls in the Lauterbrunnen Valley in the Swiss Alps with auxiliary meteorologic and seismic data of potential triggers during autumn 2014 and spring 2015, we are able to (i analyse the evolution of single rockfalls and their common properties, (ii identify spatial changes in activity hotspots (iii and explore temporal activity patterns on different scales ranging from months to minutes to quantify relevant trigger mechanisms. Seismic data allow for the classification of rockfall activity into two distinct phenomenological types. The signals can be used to discern multiple rock mass releases from the same spot, identify rockfalls that trigger further rockfalls and resolve modes of subsequent talus slope activity. In contrast to findings based on discontinuous methods with integration times of several months, rockfall in the monitored limestone cliff is not spatially uniform but shows a systematic downward shift of a rock mass release zone following an exponential law, most likely driven by a continuously lowering water table. Freeze–thaw transitions, approximated at first order from air temperature time series, account for only 5 out of the 49 rockfalls, whereas 19 rockfalls were triggered by rainfall events with a peak lag time of 1 h. Another 17 rockfalls were triggered by diurnal temperature changes and occurred during the coldest hours of the day and during the highest temperature change rates. This study is thus the first to show direct links between proposed rockfall triggers and the spatiotemporal distribution of rockfalls under natural conditions; it extends existing models by providing seismic observations of the

  14. Application of Seismic Array Processing to Tsunami Early Warning

    Science.gov (United States)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  15. Winter vitamin D3 supplementation does not increase muscle strength, but modulates the IGF-axis in young children

    DEFF Research Database (Denmark)

    Mortensen, Charlotte; Mølgaard, Christian; Hauger, Hanne

    2018-01-01

    dynamometer, fat mass index (FMI), fat free mass index (FFMI), height, plasma IGF-1, IGF-binding protein 3 (IGFBP-3), and serum 25(OH)D. RESULTS: At baseline, serum 25(OH)D was positively associated with muscle strength, FFMI, and IGFBP-3 in girls only (all p muscle......PURPOSE: To explore whether muscle strength, the insulin-like growth factor axis (IGF-axis), height, and body composition were associated with serum 25-hydroxyvitamin D [25(OH)D] and affected by winter vitamin D supplementation in healthy children, and furthermore to explore potential sex...... differences. METHODS: We performed a double-blind, placebo-controlled, dose-response winter trial at 55ºN. A total of 117 children aged 4-8 years were randomly assigned to either placebo, 10, or 20 µg/day of vitamin D3 for 20 weeks. At baseline and endpoint, we measured muscle strength with handgrip...

  16. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    Science.gov (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  17. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  18. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    International Nuclear Information System (INIS)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  19. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  20. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  1. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  2. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  3. Chapter 7: Migration and winter ecology

    Science.gov (United States)

    Deborah M. Finch; Jeffrey F. Kelly; Jean-Luc E. Cartron

    2000-01-01

    The willow flycatcher (Empidonax traillii) is a Neotropical migrant that breeds in North America, but winters in Central and northern South America. Little specific information is known about migration and wintering ecology of the southwestern willow flycatcher (E. t. extimus) (Yong and Finch 1997). Our report applies principally...

  4. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  5. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  6. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    Science.gov (United States)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then

  7. Effects of seismic lines on the abundance of breeding birds in the Kendall Island Bird Sanctuary, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Ashenhurst, A.R.; Hannon, S.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2008-06-15

    The effects of oil and gas exploration activities on bird abundance in the Arctic were investigated. The study examined the impacts of new and oil visible seismic lines within the Kendall Island Bird Sanctuary on the abundance of breeding passerines, Lapland longspur, common redpoll, American tree sparrow, and red-necked phalarope in upland tundra region and sedge-willow habitats. Results of the study showed that the effects on abundance with newer seismic lines were not statistically significant for most groups of birds. However, more birds were seen on reference transects than on seismic lines. The seismic lines had a significant impact on passerines grouped in upland tundra, as well as for sparrows in sedge and willows. Along older seismic lines, passerine abundance was lower than on reference transects in upland tundra. The study demonstrated that seismic lines created between 10 and 30 years ago had persistent vegetative changes that have reduced bird abundance. It was concluded that although the birds were not avoiding lines, some birds appeared to have increased the size of their territories in order to compensate for vegetative changes. 34 refs., 4 tabs.

  8. Seismic Excitation of the Polar Motion, 1977-1993

    Science.gov (United States)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by CHAO and GROSS (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approximately 140deg E, away from the actual observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by CHAO and GROSS (1987), manifests some geodynamic behavior yet to be explored.

  9. Seismic excitation of the polar motion, 1977 1993

    Science.gov (United States)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-09-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0 1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards ˜140°E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  10. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  11. Autumn Weather and Winter Increase in Cerebrovascular Disease Mortality

    LENUS (Irish Health Repository)

    McDonagh, R

    2016-11-01

    Mortality from cerebrovascular disease increases in winter but the cause is unclear. Ireland’s oceanic climate means that it infrequently experiences extremes of weather. We examined how weather patterns relate to stroke mortality in Ireland. Seasonal data for Sunshine (% of average), Rainfall (% of average) and Temperature (degrees Celsius above average) were collected for autumn (September-November) and winter (December-February) using official Irish Meteorological Office data. National cerebrovascular mortality data was obtained from Quarterly Vital Statistics. Excess winter deaths were calculated by subtracting (nadir) 3rd quarter mortality data from subsequent 1st quarter data. Data for 12 years were analysed, 2002-2014. Mean winter mortality excess was 24.7%. Winter mortality correlated with temperature (r=.60, p=0.04). Rise in winter mortality correlated strongly with the weather in the preceding autumn (Rainfall: r=-0.19 p=0.53, Temperature: r=-0.60, p=0.03, Sunshine, r=0.58, p=0.04). Winter cerebrovascular disease mortality appears higher following cool, sunny autum

  12. Dominant seismic sources for the cities in South Sumatra

    Science.gov (United States)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  13. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  14. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  15. Seismicity, state of stress and induced seismicity in the molasse basin and Jura (N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Deichmann, N. [Schweizerischer Erdbebendienst, ETH Zuerich, Zuerich (Switzerland); Burlini, L. [Institut of Geology, ETH Zuerich, Zuerich (Switzerland)

    2010-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) is one of a series of appendices dealing with the potential for geological sequestration of CO{sub 2} in Switzerland. This report takes a look at the seismicity, state of stress and induced seismicity in the molasse basin and Jura Mountains in northern Switzerland. Data collected since 1983 by the Swiss Earthquake Service and the National Cooperative for the Disposal of Radioactive Wastes NAGRA on the tectonics and seismic properties of North-western Switzerland is noted. The results are illustrated with a number of maps and graphical representations and are discussed in detail. Cases of induced seismicity as resulting from both natural and man-made causes are examined.

  16. Geological affinity of reflecting boundaries in the intermediate structural stage of the Chu Sarysuyskiy depression based on results of vertical seismic profilling

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, N.G.; Kiselevskiy, Yu.N.

    1983-01-01

    A computer (EVM) and an ASOI-VSP-SK program complex are used to analyze data from seismic exploration and acoustical logging with interval by interval calculation of the velocity every four meters. Vertical seismic profilling (VSP) results are used to identify all the upper layers as reference layers. The basic reference level, the third, which corresponds to the floor of the carbonate middle to upper Visean series, is not sustained due to the thin layered state of the terrigeneous section. Based on data from vertical seismic profilling, the reflected wave method (MOV) and the common depth point method (MOGT), the reference 3-a and 6-a levels are identified. Deep reflections of the seventh, 7-a and Rf, approximately confined to the roof and floor of the lower Paleozoic deposits and the upper part of the upper reef series, are noted in the series of the Caledonian cap of the Prebaykal massifs based on vertical seismic profilling. Collector levels are noted on the basis of the frequency of the wave spectra and from the absorption coefficient in the Testas structure and in other low amplitude structures. The insufficiency of the depth capability of the common depth point method and the poor knowledge level of seismic exploration of the section of the lower Paleozoa and the upper Proterozoa of the Chu Sarysuyskiy depresion are noted.

  17. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs

  18. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  19. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  20. Interim Report 'Winter smog and traffic'.

    NARCIS (Netherlands)

    Bloemen, H.; Blom, T.; Bogaard, van den C.; Boluyt, N.; Bree, van L.; Brunekreef, B.; Hoek, G.; Zee, van der S.

    1994-01-01

    This report presents a halfway score of the research project "Winter smog and Traffic", one of the themes of the research programme "Air Pollution and Health". A state of the art is presented of the health effects associated with exposure to winter smog and of the toxicological effects caused by the

  1. Home advantage in the Winter Paralympic Games 1976-2014.

    Science.gov (United States)

    Wilson, Darryl; Ramchandani, Girish

    2017-01-01

    There is a limited amount of home advantage research concerned with winter sports. There is also a distinct lack of studies that investigate home advantage in the context of para sport events. This paper addresses this gap in the knowledge by examining home advantage in the Winter Paralympic Games. Using a standardised measure of success, we compared the performances of host nations at home with their own performances away from home between 1976 and 2014. Both country level and individual sport level analysis is conducted for this time period. Comparisons are also drawn with the Winter Olympic Games since 1992, the point from which both the Winter Olympic Games and the Winter Paralympic Games have been hosted by the same nations and in the same years. Clear evidence of a home advantage effect in the Winter Paralympic Games was found at country level. When examining individual sports, only alpine skiing and cross country skiing returned a significant home advantage effect. When comparing home advantage in the Winter Paralympic Games with the Winter Olympic Games for the last seven host nations (1992-2014), we found that home advantage was generally more pronounced (although not a statistically significant difference) in the case of the former. The causes of home advantage in the Winter Paralympic Games are unclear and should be investigated further.

  2. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  3. Cognitive predictors and moderators of winter depression treatment outcomes in cognitive-behavioral therapy vs. light therapy.

    Science.gov (United States)

    Sitnikov, Lilya; Rohan, Kelly J; Evans, Maggie; Mahon, Jennifer N; Nillni, Yael I

    2013-12-01

    There is no empirical basis for determining which seasonal affective disorder (SAD) patients are best suited for what type of treatment. Using data from a parent clinical trial comparing light therapy (LT), cognitive-behavioral therapy (CBT), and their combination (CBT + LT) for SAD, we constructed hierarchical linear regression models to explore baseline cognitive vulnerability constructs (i.e., dysfunctional attitudes, negative automatic thoughts, response styles) as prognostic and prescriptive factors of acute and next winter depression outcomes. Cognitive constructs did not predict or moderate acute treatment outcomes. Baseline dysfunctional attitudes and negative automatic thoughts were prescriptive of next winter treatment outcomes. Participants with higher baseline levels of dysfunctional attitudes and negative automatic thoughts had less severe depression the next winter if treated with CBT than if treated with LT. In addition, participants randomized to solo LT who scored at or above the sample mean on these cognitive measures at baseline had more severe depressive symptoms the next winter relative to those who scored below the mean. Baseline dysfunctional attitudes and negative automatic thoughts did not predict treatment outcomes in participants assigned to solo CBT or CBT + LT. Therefore, SAD patients with extremely rigid cognitions did not fare as well in the subsequent winter if treated initially with solo LT. Such patients may be better suited for initial treatment with CBT, which directly targets cognitive vulnerability processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley

    DEFF Research Database (Denmark)

    Gerhards, R; Christensen, Svend

    2003-01-01

    with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site-specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including...

  5. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  6. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  7. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.

    2018-02-01

    We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  8. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  9. Seismic Structure of Southern African Cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Artemieva, Irina; Levander, Alan

    2014-01-01

    functions and finite-frequency tomography based on data from the South Africa Seismic Experiment (SASE). Combining the two methods provides high vertical and lateral resolution. The main results obtained are (1) the presence of a highly heterogeneous crustal structure, in terms of thickness, composition (as......Cratons are extremely stable continental crustal areas above thick depleted lithosphere. These regions have remained largely unchanged for more than 2.5 Ga. This study presents a new seismic model of the seismic structure of the crust and lithospheric mantle constrained by seismic receiver...

  10. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  11. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  12. Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index

    Science.gov (United States)

    Chen, Shangfeng; Wu, Renguang

    2018-01-01

    This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.

  13. Excess mortality in winter in Finnish intensive care.

    Science.gov (United States)

    Reinikainen, M; Uusaro, A; Ruokonen, E; Niskanen, M

    2006-07-01

    In the general population, mortality from acute myocardial infarctions, strokes and respiratory causes is increased in winter. The winter climate in Finland is harsh. The aim of this study was to find out whether there are seasonal variations in mortality rates in Finnish intensive care units (ICUs). We analysed data on 31,040 patients treated in 18 Finnish ICUs. We measured severity of illness with acute physiology and chronic health evaluation II (APACHE II) scores and intensity of care with therapeutic intervention scoring system (TISS) scores. We assessed mortality rates in different months and seasons and used logistic regression analysis to test the independent effect of various seasons on hospital mortality. We defined 'winter' as the period from December to February, inclusive. The crude hospital mortality rate was 17.9% in winter and 16.4% in non-winter, P = 0.003. Even after adjustment for case mix, winter season was an independent risk factor for increased hospital mortality (adjusted odds ratio 1.13, 95% confidence interval 1.04-1.22, P = 0.005). In particular, the risk of respiratory failure was increased in winter. Crude hospital mortality was increased during the main holiday season in July. However, the severity of illness-adjusted risk of death was not higher in July than in other months. An increase in the mean daily TISS score was an independent predictor of increased hospital mortality. Severity of illness-adjusted hospital mortality for Finnish ICU patients is higher in winter than in other seasons.

  14. Eastern US seismic hazard characterization update

    International Nuclear Information System (INIS)

    Savy, J.B.; Boissonnade, A.C.; Mensing, R.W.; Short, C.M.

    1993-06-01

    In January 1989, LLNL published the results of a multi-year project, funded by NRC, on estimating seismic hazard at nuclear plant sites east of the Rockies. The goal of this study was twofold: to develop a good central estimate (median) of the seismic hazard and to characterize the uncertainty in the estimates of this hazard. In 1989, LLNL was asked by DOE to develop site specific estimates of the seismic hazard at the Savannah River Site (SRS) in South Carolina as part of the New Production Reactor (NPR) project. For the purpose of the NPR, a complete review of the methodology and of the data acquisition process was performed. Work done under the NPR project has shown that first order improvement in the estimates of the uncertainty (i.e., lower mean hazard values) could be easily achieved by updating the modeling of the seismicity and ground motion attenuation uncertainty. To this effect, NRC sponsored LLNL to perform a reelicitation to update the seismicity and ground motion experts' inputs and to revise methods to combine seismicity and ground motion inputs in the seismic hazard analysis for nuclear power plant sites east of the Rocky Mountains. The objective of the recent study was to include the first order improvements that reflect the latest knowledge in seismicity and ground motion modeling and produce an update of all the hazard results produced in the 1989 study. In particular, it had been demonstrated that eliciting seismicity information in terms of rates of earthquakes rather than a- and b-values, and changing the elicitation format to a one-on-one interview, improved our ability to express the uncertainty of earthquake rates of occurrence at large magnitudes. Thus, NRC sponsored this update study to refine the model of uncertainty, and to re-elicitate of the experts' interpretations of the zonation and seismicity, as well as to reelicitate the ground motion models, based on current state of knowledge

  15. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  16. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  17. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  18. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  19. User's Manual Frac-Explore 2.0

    Energy Technology Data Exchange (ETDEWEB)

    George, S.A.; Guo, Genliang

    1999-03-09

    FRAC-EXPLORE 2.0, a new computer software package for oil and gas exploration using surface lineament and fracture analysis. FRAC-EXPLORE 2.0 provides a suite of tools for analyzing the characteristics and patterns of surface lineaments and fractures, as well as other surface geological features. These tools help identify priority areas of potential subsurface oil and gas traps. The package can be used in a frontier basin to initially screen the priority locations for further seismic and/or geochemical surveys. It can also be used in a mature basin to help delineate additional oil and gas reservoirs.

  20. Seismic Response of Deep Hydrocarbon Bearing Reservoirs: examples from Oso Field and implications for Future Opportunities

    International Nuclear Information System (INIS)

    Oluwasusi, A. B.; Hussey, V.; Goulding, F. J.

    2002-01-01

    The Oso Field (OML 70) produces approximately 100 TBD of condensate from Miocene age shelfal sand reservoirs at approximately 10,000 feet below sea level. The field was discovered in 1967 while testing a deeply buried fault closure. Reservoirs are normally pressured, exceed 1 Darcy in permeability and range from 50 to 600 feet in thickness.There are seismic amplitudes associated with the shallower reservoirs on the existing conventional 3D dataset; however there are no anomalies associated with the deeper, condensate accumulations.The paper explores the physical rock and fluid properties associated with the Oso reservoirs and the resulting seismic responses. Modelled results have been calibrated with the actual seismic signatures for the water and hydrocarbon bearing zones. Results indicate that the deeper reservoirs exhibit a classic Class II AVG seismic response and that the use of longer offset and angle stack data can help predict the occurrence of these types of reservoirs. Examples of similar accumulations will be shared.Mobil Producing Nigeria is conducting a full reprocessing effort of the existing 3D dataset over the Joint Venture acreage with a goal of identifying and exploiting additional accumulations with Class II AVG seismic response. Preliminary results of the reprocessing over known accumulations will be presented

  1. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  2. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  3. Study on highly efficient seismic data acquisition and processing methods based on sparsity constraint

    Science.gov (United States)

    Wang, H.; Chen, S.; Tao, C.; Qiu, L.

    2017-12-01

    High-density, high-fold and wide-azimuth seismic data acquisition methods are widely used to overcome the increasingly sophisticated exploration targets. The acquisition period is longer and longer and the acquisition cost is higher and higher. We carry out the study of highly efficient seismic data acquisition and processing methods based on sparse representation theory (or compressed sensing theory), and achieve some innovative results. The theoretical principles of highly efficient acquisition and processing is studied. We firstly reveal sparse representation theory based on wave equation. Then we study the highly efficient seismic sampling methods and present an optimized piecewise-random sampling method based on sparsity prior information. At last, a reconstruction strategy with the sparsity constraint is developed; A two-step recovery approach by combining sparsity-promoting method and hyperbolic Radon transform is also put forward. The above three aspects constitute the enhanced theory of highly efficient seismic data acquisition. The specific implementation strategies of highly efficient acquisition and processing are studied according to the highly efficient acquisition theory expounded in paragraph 2. Firstly, we propose the highly efficient acquisition network designing method by the help of optimized piecewise-random sampling method. Secondly, we propose two types of highly efficient seismic data acquisition methods based on (1) single sources and (2) blended (or simultaneous) sources. Thirdly, the reconstruction procedures corresponding to the above two types of highly efficient seismic data acquisition methods are proposed to obtain the seismic data on the regular acquisition network. A discussion of the impact on the imaging result of blended shooting is discussed. In the end, we implement the numerical tests based on Marmousi model. The achieved results show: (1) the theoretical framework of highly efficient seismic data acquisition and processing

  4. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  5. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  6. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    Science.gov (United States)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  7. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  8. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D

    2018-02-01

    We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  9. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  10. Southern Hemisphere circulation signals in connection with winter rainfall forecasting in central Chile

    International Nuclear Information System (INIS)

    Rutlant, J.; Aceituno, P.

    1991-05-01

    The possibility of detecting easterly propagating low frequency signals in the Southern Hemispheric circulation is explored in connection with the assessment of a possible seasonal rainfall forecast in central Chile. The analysis has focused on the seasonal variability associated with the biennial component of the Southern Oscillation (SO) and on the one resulting from superimposed intraseasonal oscillations, in relation with winter precipitation and individual rainfall events, respectively. Based on a previous work, relating wet winters to frequent blocks to the SW of South America during warm events of the SO, time-longitude cross sections of a 5-day average blocking index (BI) calculated from ECMWF 200 hPa daily hemispheric analyses for the period 1980-1987 are presented. A general eastward displacement of western and central Pacific positive BI areas seems to characterize the developing phase of warm SO events and vice versa, while intraseasonal variability patterns appear to be related to single rainstorms, either when the positive BI phase of the wave amplifies while crossing the western Pacific or when it reaches the far southeastern Pacific, frequently with a double block structure. It is concluded that the behaviour of both sources of variability is consistent with previously described teleconnection patterns for ENSO events in the southern winter, and that a primary prospect for winter precipitation and for the occurrence of relatively large individual rainstorms in central Chile could be obtained following the filtered BI and 500 hPa height anomalies in both time scales during the fall season. (author). 28 refs, 12 figs

  11. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  12. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  13. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding

    Science.gov (United States)

    Wood, Eric M.

    2017-01-01

    Anthropogenic changes to the landscape and climate cause novel ecological and evolutionary pressures, leading to potentially dramatic changes in the distribution of biodiversity. Warm winter temperatures can shift species' distributions to regions that were previously uninhabitable. Further, urbanization and supplementary feeding may facilitate range expansions and potentially reduce migration tendency. Here we explore how these factors interact to cause non-uniform effects across a species's range. Using 17 years of data from the citizen science programme Project FeederWatch, we examined the relationships between urbanization, winter temperatures and the availability of supplementary food (i.e. artificial nectar) on the winter range expansion (more than 700 km northward in the past two decades) of Anna's hummingbirds (Calypte anna). We found that Anna's hummingbirds have colonized colder locations over time, were more likely to colonize sites with higher housing density and were more likely to visit feeders in the expanded range compared to the historical range. Additionally, their range expansion mirrored a corresponding increase over time in the tendency of people to provide nectar feeders in the expanded range. This work illustrates how humans may alter the distribution and potentially the migratory behaviour of species through landscape and resource modification. PMID:28381617

  14. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  15. Application of the neo-deterministic seismic microzonation procedure in Bulgaria and validation of the seismic input against Eurocode 8

    International Nuclear Information System (INIS)

    Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.

    2008-03-01

    The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed. (author)

  16. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  17. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  18. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  19. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  20. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)