Sample records for winter season snow

  1. Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps) (United States)

    Förster, Kristian; Hanzer, Florian; Stoll, Elena; Scaife, Adam A.; MacLachlan, Craig; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich


    This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months' lead time from two coupled atmosphere-ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5) drive the Alpine Water balance and Runoff Estimation model (AWARE) in order to predict mid-winter snow accumulation in the Inn headwaters. As snowpack is hydrological storage that evolves during the winter season, it is strongly dependent on precipitation totals of the previous months. Climate model (CM) predictions of precipitation totals integrated from November to February (NDJF) compare reasonably well with observations. Even though predictions for precipitation may not be significantly more skilful than for temperature, the predictive skill achieved for precipitation is retained in subsequent water balance simulations when snow water equivalent (SWE) in February is considered. Given the AWARE simulations driven by observed meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is r = 0.57. The tendency of SWE anomalies (i.e. the sign of anomalies) is correctly predicted in 11 of 13 years. For CFSv2-AWARE, the corresponding values are r = 0.28 and 7 of 13 years. The results suggest that some seasonal prediction of hydrological model storage tendencies in parts of Europe is possible.

  2. Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps

    Directory of Open Access Journals (Sweden)

    K. Förster


    Full Text Available This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months' lead time from two coupled atmosphere–ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5 drive the Alpine Water balance and Runoff Estimation model (AWARE in order to predict mid-winter snow accumulation in the Inn headwaters. As snowpack is hydrological storage that evolves during the winter season, it is strongly dependent on precipitation totals of the previous months. Climate model (CM predictions of precipitation totals integrated from November to February (NDJF compare reasonably well with observations. Even though predictions for precipitation may not be significantly more skilful than for temperature, the predictive skill achieved for precipitation is retained in subsequent water balance simulations when snow water equivalent (SWE in February is considered. Given the AWARE simulations driven by observed meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is r  =  0.57. The tendency of SWE anomalies (i.e. the sign of anomalies is correctly predicted in 11 of 13 years. For CFSv2-AWARE, the corresponding values are r  =  0.28 and 7 of 13 years. The results suggest that some seasonal prediction of hydrological model storage tendencies in parts of Europe is possible.

  3. Lessons learned from the snow emergency management of winter season 2008-2009 in Piemonte (United States)

    Bovo, Dr.; Pelosini, Dr.; Cordola, Dr.


    The winter season 2008-2009 has been characterized by heavy snowfalls over the whole Piemonte, in the Western Alps region. The snowfalls have been exceptional because of their earliness, persistence and intensity. The impact on the regional environment and territory has been relevant, also from the economical point of view, as well as the effort of the people involved in the forecasting, prevention and fighting actions. The environmental induced effects have been shown until late spring. The main critical situations have been arisen from the snowfalls earliness in season, the several snow precipitation events over the plains, the big amount of snow accumulation on the ground, as well as the anomaly with respect to the last 30 years climatic trend of snow conditions in Piemonte. The damage costs to the public property caused by the snowfalls have been estimated by the Regione Piemonte to be 470 million euros, giving evidence of the real emergency dimension of the event, never occurred during the last 20 years. The technical support from the Regional Agency for Environmental Protection of Regione Piemonte (Arpa Piemonte) to the emergency management allowed to analyse and highlight the direct and induced effects of the heavy snowfalls, outlining risk scenarios characterized by different space and time scales. The risk scenarios deployment provided a prompt recommendation list, both for the emergency management and for the natural phenomena evolution surveillance planning to assure the people and property safety. The risk scenarios related to the snow emergency are different according to the geographical and anthropic territory aspects. In the mountains, several natural avalanche releases, characterized frequently by a large size, may affect villages, but they may also interrupt the main and secondary roads both down in the valleys and small villages road access, requiring a long time for the complete and safe snow removal and road re-opening. The avalanches often

  4. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  5. Storing snow for the next winter: Two case studies on the application of snow farming. (United States)

    Grünewald, Thomas; Wolfsperger, Fabian


    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  6. Analysis of the Lake Superior Watershed Seasonal Snow Cover

    National Research Council Canada - National Science Library

    Daly, Steven F; Baldwin, Timothy B; Weyrick, Patricia


    Daily estimates of the snow water equivalent (SWE) distribution for the period from 1 December through 30 April for each winter season from 1979 80 through 2002 03 were calculated for the entire Lake Superior watershed...

  7. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  8. A triple-moment blowing snow-atmospheric model and its application in computing the seasonal wintertime snow mass budget

    Directory of Open Access Journals (Sweden)

    J. Yang


    Full Text Available Many field studies have shown that surface sublimation and blowing snow transport and sublimation have significant influences on the snow mass budget in many high latitude regions. We developed a coupled triple-moment blowing snow-atmospheric modeling system to study the influence of these processes on a seasonal time scale over the Northern Hemisphere. Two simulations were performed. The first is a 5 month simulation for comparison with snow survey measurements over a Saskatchewan site to validate the modeling system. The second simulation covers the 2006/2007 winter period to study the snow mass budget over the Northern Hemisphere. The results show that surface sublimation is significant in Eurasian Continent and the eastern region of North America, reaching a maximum value of 200 mm SWE (Snow Water Equivalent. Over the Arctic Ocean and Northern Canada, surface deposition with an average value of 30 mm SWE was simulated. Blowing snow sublimation was found to return up to 50 mm SWE back to the atmosphere over the Arctic Ocean, while the divergence of blowing snow transport contributes only a few mm SWE to the change in snow mass budget. The results were further stratified in 10 degree latitudinal bands. The results show that surface sublimation decreases with an increase in latitude while blowing snow sublimation increases with latitude. Taken together, the surface sublimation and blowing snow processes was found to distribute 23% to 52% of winter precipitation over the three month winter season.

  9. Winter survival of Scots pine seedlings under different snow conditions. (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi


    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  10. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire (United States)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea


    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  11. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.


    frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5......years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme...... events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas...

  12. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. (United States)

    Wang, Xiaoyi; Wang, Tao; Guo, Hui; Liu, Dan; Zhao, Yutong; Zhang, Taotao; Liu, Qiang; Piao, Shilong


    Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high-latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite-based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one-fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing-season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the "moisture" and "growth period" effect, to a larger extent, result in positive and negative snow-productivity associations, respectively. The magnitude and sign of snow-productivity association is then dependent upon the relative dominance of these two processes, with the "moisture" effect and positive association predominating in Central, western North America and Greater Himalaya, and the "growth period" effect and negative association in Central Europe. We also indicate that current state-of-the-art models in general reproduce satellite-based snow-productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the "moisture" effect than the "growth period" effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow


    CERN Multimedia

    ST-HM Group; Tel. 72202


    As usual at this time of the year, the snowing clearing service, which comes under the control of the Transport Group (ST-HM), is preparing for the start of snow-clearing operations (timetable, stand-by service, personnel responsible for driving vehicles and machines, preparation of useful and necessary equipment, work instructions, etc.) in collaboration with the Cleaning Service (ST-TFM) and the Fire Brigade (TIS-FB). The main difficulty for the snow-clearing service is the car parks, which cannot be properly cleared because of the presence of CERN and private vehicles parked there overnight in different parts of the parking areas. The ST-HM Transport Group would therefore like to invite you to park vehicles together in order to facilitate the access of the snow ploughs, thus allowing the car parks to be cleared more efficiently before the personnel arrives for work in the mornings.

  14. Relationship of deer and moose populations to previous winters' snow (United States)

    Mech, L.D.; McRoberts, R.E.; Peterson, R.O.; Page, R.E.


    (1) Linear regression was used to relate snow accumulation during single and consecutive winters with white-tailed deer (Odocoileus virginianus) fawn:doe ratios, mosse (Alces alces) twinning rates and calf:cow ratios, and annual changes in deer and moose populations. Significant relationships were found between snow accumulation during individual winters and these dependent variables during the following year. However, the strongest relationships were between the dependent variables and the sums of the snow accumulations over the previous three winters. The percentage of the variability explained was 36 to 51. (2) Significant relationships were also found between winter vulnerability of moose calves and the sum of the snow accumulations in the current, and up to seven previous, winters, with about 49% of the variability explained. (3) No relationship was found between wolf numbers and the above dependent variables. (4) These relationships imply that winter influences on maternal nutrition can accumulate for several years and that this cumulative effect strongly determines fecundity and/or calf and fawn survivability. Although wolf (Canis lupus L.) predation is the main direct mortality agent on fawns and calves, wolf density itself appears to be secondary to winter weather in influencing the deer and moose populations.

  15. Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter (United States)

    Ibuki, R.; Harada, K.


    Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.

  16. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva


    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  17. The effects of changes in snow depth on winter recreation

    Czech Academy of Sciences Publication Activity Database

    Zahradníček, Pavel; Rožnovský, J.; Štěpánek, Petr; Farda, Aleš; Brzezina, J.


    Roč. 7, č. 1 (2016), s. 44-54 ISSN 1804-2821 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-04291S; GA ČR(CZ) GA14-12262S Institutional support: RVO:67179843 Keywords : new snow * total snow depth * climate change * climate models * winter recreations Subject RIV: EH - Ecology, Behaviour

  18. Snow line analysis in the Romanian Carpathians under the influence of winter warming (United States)

    Micu, Dana; Cosmin Sandric, Ionut


    The Romanian Carpathians are subject to winter warming as statistically proved by station measurements over a 47 year period (1961-2007). Herein, the snow season is considered to last from the 1st of November to the 30th of April, when snowpack usually reaches the highest stability and thickness. This paper investigates the signals of winter temperature and precipitation change at 17 mountain station located above 1,000 m, as being considered the main triggering factors of large fluctuations in snow amount and duration in these mountains. Fewer snowfalls were recorded all over the Romanian Carpathians after the mid 80s and over large mountain areas (including the alpine ones) the frequency of positive temperature extremes became higher (e.g. winter heat waves). Late Fall snowfalls and snowpack onsets (mainly in mid elevation areas, located below 1,700 m) and particularly the shifts towards early Spring snowmelts (at all the sites) were statistically proved to explain the decline of snow cover duration across the Carpathians. However, the sensitivity of snow cover duration to recent winter warming is still blurred in the high elevation areas (above 2,000 m). The trends in winter climate variability observed in the Romanian Carpathians beyond 1,000 m altitude are fairly comparable to those estimated in other European mountain ranges from observational data (e.g. the Swiss Alps, the French Alps and the Tatra Mts.). In relation to the climate change signals derived from observational data provided by low density mountain meteorological network (of about 3.3 stations per km2 in the areas above 1,000 m), the paper analysis the spatial probability and evolution trends of snow line in each winter season across the Romanian Carpathians, based on Landsat satellite data (MSS, TM and ETM+), with sufficiently high spatial (30 to 60 m) and temporal resolutions (850 images), over the 1973-2011 period. The Landsat coverage was considered suitable enough to enable an objective

  19. Winter climate extremes and their role for priming SOM decomposition under the snow (United States)

    Gavazov, Konstantin; Bahn, Michael


    The central research question of this project is how soil respiration and soil microbial community composition and activity of subalpine grasslands are affected by extreme winter climate events, such as mid-winter snowmelt and subsequent advanced growing season date. In the scope of this talk, focus will be laid on the assumptions that (1) reduced snow cover leads to intensive freeze-thaw cycles in the soil with larger amplitudes of microbial biomass, DOC and soil CO2 production and efflux over the course of winter, and shifts peak microbial activity to deeper soil layers with limited and recalcitrant substrate; (2) causes a shift in microbial community composition towards decreased fungal/bacterial ratios; and (3) results in a stronger incorporation of labile C in microbial biomass and more pronounced priming effects of soil organic matter turnover. Our findings indicate that snow removal, induces a strong and immediate negative effect on the physiology of soil microbes, impairing them in their capacity for turnover of SOM in the presence of labile substances (priming). This effect however is transient and soil microbes recover within the same winter. The reason for that is that snow removal did not produce any measurable (PLFA) changes in soil microbial community composition. The advanced start of the growing season, as a result of snow removal in mid-winter, granted the bacterial part of the microbial community more active in the uptake of labile substrates and the turnover of SOM than the fungal one. This finding is in line with the concept for a seasonal shift towards bacterial-dominated summer microbial community composition and could bring about implications for the plant-microbe competition for resources at the onset of the growing season.

  20. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.


    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  1. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. Consistent seasonal ... Consistent seasonal snow cover depth and duration, delay days and early melt days of consistent seasonal snow cover at 11 stations spread across different mountain ranges over the WH were analyzed. Mean, maximum and ...

  2. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    Directory of Open Access Journals (Sweden)

    J. A. Leach


    Full Text Available Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1 winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2 stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that

  3. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. (United States)

    Blanc-Betes, Elena; Welker, Jeffrey M; Sturchio, Neil C; Chanton, Jeffrey P; Gonzalez-Meler, Miquel A


    Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long-term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and (13) C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun-Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75-120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and -31 ± 1 mg CH4  m(-2)  season(-1) at Ambient and RS). Deeper snow reduced Fox by 35-40% and 90-100% in medium- (MS) and high- (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4  m(-2)  season(-1) at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant-mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw-induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently

  4. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel


    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  5. Snow farming: conserving snow over the summer season (United States)

    Grünewald, Thomas; Wolfsperger, Fabian; Lehning, Michael


    Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides sufficient protection for mid

  6. Snow farming: conserving snow over the summer season

    Directory of Open Access Journals (Sweden)

    T. Grünewald


    Full Text Available Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides

  7. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    CERN Document Server

    Singh, G P


    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons f...

  8. Monitoring and evaluation of seasonal snow cover in Kashmir valley ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 6 ... Different geographical parameters of these regions were studied to evaluate the influence on snow cover and it was observed that altitude and position of region with respect to mountain range are the deciding factors for retaining the seasonal snow ...

  9. Monitoring and evaluation of seasonal snow cover in Kashmir valley ...

    Indian Academy of Sciences (India)

    in Kashmir valley using remote sensing, GIS and ancillary data. H S Negi∗, N K Thakur, Rajeev Kumar and Manoj Kumar. Snow and Avalanche Study Establishment, Him Parisar, Sector-37A, Chandigarh 160 036, India. ∗ e-mail: negi− Seasonal snow cover is a vital natural resource in the Himalaya.

  10. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina


    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  11. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack (United States)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.


    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  12. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)


    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  13. Modeling the Seasonality of Snow Cover in Naryn Oblast, Kyrgyzstan. (United States)

    Tomaszewska, M. A.; Henebry, G. M.


    Vertical transhumance practiced by herders in the highlands of Kyrgyzstan is strongly affected by timing of snow melt in high-elevation summer pastures. To model snow cover seasonality, we explore a novel approach through the synergistic use of "frost degree-days" obtained from MODIS land surface temperature data and the normalized difference snow index (NDSI) derived from over 16 years of Landsat imagery (2000-2015). From the fitted parameter coefficients of a convex quadratic model linking NDSI to accumulated frost degree-days (AFDD), we calculated two key metrics—the Peak Height of the NDSI and the Thermal Time (in AFDD) to the Peak Height—to examine the interannual variation in the timing of snow cover onset, snow melt, and snow cover duration. We discuss the strengths and limitations of this modeling approach to snow cover seasonality as well as demonstrate how it complements the land surface phenology modeling for understanding climatic influences on the highland pastures of Naryn oblast in Central Kyrgyzstan.

  14. Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow

    International Nuclear Information System (INIS)

    Lee, Khanghyun; Hong, Sang-Bum; Lee, Jeonghoon; Chung, Jiwoong; Hur, Soon-Do; Hong, Sungmin


    Oxygen isotope ratio (δ 18 O) and concentrations of Al, Na + , methanesulfonic acid (MSA), SO 4 2− , and selenium (Se) in a continuous series of 70 snow samples from a 3.2-m snow pit at a site in northwestern Greenland were determined using ultraclean procedures. Well-defined depth profiles of δ 18 O, Al, and sea-salt-Na + allowed the determination of chronology of the snow pit that spanned approximately 6 years from spring 2003 to summer 2009. Se concentrations were at a low pg/g level, ranging from 7.2 to 45 pg/g, and exhibited high variability with generally higher values during winter and spring and lower values during summer and fall. Very high crustal enrichment factors (EF c ) of Se averaging approximately 26,600 for the entire time period indicate a small contribution from crust dust. High Se/MSA ratios are generally observed in the winter and spring snow layers, in which the Se concentrations were relatively high (> 20 pg/g). This suggests that a significant component of the Se present in the snow layers is of anthropogenic origin. During the summer season, however, high EF c values are accompanied with low Se/MSA, indicating an increased contribution of marine biogenic sources. Significant correlations between Se, Al, and non-sea-salt SO 4 2− highlight that significant inputs of Se to the snow are likely controlled by the seasonality in the transport efficiency of anthropogenic Se from the source regions to the site. Based on the seasonal changes in Se concentrations, Se/MSA, and Se/S ratios observed in the samples, the input of anthropogenic Se to the site appears to be governed by the long-range transportation of Se emitted from coal combustion in East Asian countries, especially in China. - Highlights: • The first comprehensive seasonal variation of Se in Greenland snow is presented. • Data exhibit pronounced seasonality in the fallout of Se to Greenland. • High Se/MSA ratios indicate a significant contribution from anthropogenic sources.

  15. Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khanghyun; Hong, Sang-Bum [Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406–840 (Korea, Republic of); Lee, Jeonghoon [Department of Science Education, Ewha womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750 (Korea, Republic of); Chung, Jiwoong; Hur, Soon-Do [Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406–840 (Korea, Republic of); Hong, Sungmin, E-mail: [Department of Ocean Sciences, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)


    Oxygen isotope ratio (δ{sup 18}O) and concentrations of Al, Na{sup +}, methanesulfonic acid (MSA), SO{sub 4}{sup 2−}, and selenium (Se) in a continuous series of 70 snow samples from a 3.2-m snow pit at a site in northwestern Greenland were determined using ultraclean procedures. Well-defined depth profiles of δ{sup 18}O, Al, and sea-salt-Na{sup +} allowed the determination of chronology of the snow pit that spanned approximately 6 years from spring 2003 to summer 2009. Se concentrations were at a low pg/g level, ranging from 7.2 to 45 pg/g, and exhibited high variability with generally higher values during winter and spring and lower values during summer and fall. Very high crustal enrichment factors (EF{sub c}) of Se averaging approximately 26,600 for the entire time period indicate a small contribution from crust dust. High Se/MSA ratios are generally observed in the winter and spring snow layers, in which the Se concentrations were relatively high (> 20 pg/g). This suggests that a significant component of the Se present in the snow layers is of anthropogenic origin. During the summer season, however, high EF{sub c} values are accompanied with low Se/MSA, indicating an increased contribution of marine biogenic sources. Significant correlations between Se, Al, and non-sea-salt SO{sub 4}{sup 2−} highlight that significant inputs of Se to the snow are likely controlled by the seasonality in the transport efficiency of anthropogenic Se from the source regions to the site. Based on the seasonal changes in Se concentrations, Se/MSA, and Se/S ratios observed in the samples, the input of anthropogenic Se to the site appears to be governed by the long-range transportation of Se emitted from coal combustion in East Asian countries, especially in China. - Highlights: • The first comprehensive seasonal variation of Se in Greenland snow is presented. • Data exhibit pronounced seasonality in the fallout of Se to Greenland. • High Se/MSA ratios indicate a

  16. Indicative properties on snow cover based on the results of experimental studies in the winter 2011/12 in the central part of the East European Plain

    Directory of Open Access Journals (Sweden)

    L. M. Kitaev


    Full Text Available Local and regional differences in the snow formation were studied in different landscapes of the central part of the East European Plain – within reserves in the Moscow and Tver’ regions (south-north direction; the study period is the winter 2011/12. The observed increase of snow storage in 1.3–1.5 times in the direction south-north is connected, apparently. The difference in the five-day appearance of snow cover maximum is related to differences in regional winter air temperature. Throughout the snow depth and snow storage in spruce are smaller than in deciduous forest – in the ratio of 0.81 in south area and 0.93 in north area; in spruce the large part of solid precipitation is intercepted by the crowns pine trees. Snow stratigraphy at south areas has four layers, six layers at the north area are more variable in snow density and snow storage. Perhaps, gravitational conversion is more noticeable due to larger snow depth. Snow density and snow storage at the open areas are more heterogeneous than in the forest. This is due to sharp fluctuations in air temperature, wind transport and compaction of snow, evaporation from the snow surface. The stratigraphy of snow also reflects the history of winter changes of air temperature and snow accumulation. Common feature for reserves at south and north is the availability of layers with maximum snow storage in the middle of the snow thickness, which were formed during the air temperature drops to the lowest seasonal values in period with increase of snow depth to maximum. Formation of depth hoar in snow thickness are touched everywhere the bottom and middle layers, respectively, it was formed both before and during the period with minimal air temperature. Thus, the results of experimental studies confirm the significance of the differences of individual components of the landscape setting. Analytical conclusions are largely qualitative in nature due to the lack to date of initial information, and

  17. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    International Nuclear Information System (INIS)

    Takeuchi, Nozomu


    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m −2 in cell volume or 13 mg carbon m −2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season. (letter)

  18. Seasonal prediction skill of winter temperature over North India (United States)

    Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Kumari, S.; Sinha, P.


    The climatology, amplitude error, phase error, and mean square skill score (MSSS) of temperature predictions from five different state-of-the-art general circulation models (GCMs) have been examined for the winter (December-January-February) seasons over North India. In this region, temperature variability affects the phenological development processes of wheat crops and the grain yield. The GCM forecasts of temperature for a whole season issued in November from various organizations are compared with observed gridded temperature data obtained from the India Meteorological Department (IMD) for the period 1982-2009. The MSSS indicates that the models have skills of varying degrees. Predictions of maximum and minimum temperature obtained from the National Centers for Environmental Prediction (NCEP) climate forecast system model (NCEP_CFSv2) are compared with station level observations from the Snow and Avalanche Study Establishment (SASE). It has been found that when the model temperatures are corrected to account the bias in the model and actual orography, the predictions are able to delineate the observed trend compared to the trend without orography correction.

  19. Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study

    Directory of Open Access Journals (Sweden)

    Simona Fratianni


    Full Text Available Snow cover greatly influences the climate in the Alpine region and is one of the most relevant parameters for the climate change analysis. Nevertheless, snow precipitation variability is a relatively underexplored field of research because of the lack of long-term, continuous and homogeneous time series. After a historical research aiming to recover continuous records, three high quality time series of snow precipitation and snow depth recorded in the southwestern Italian Alps were analyzed. The comparison between the climatological indices over the 30 years reference period 1971–2000 and the decade 2000–2009 outlined a general decrease in the amount of snow precipitation, and a shift in the seasonal distribution of the snow precipitation in the most recent period. In the analysis of the last decade snow seasons characteristics, the attention was focused on the heavy snowfalls that occurred in Piedmont during the 2008–2009 snow season: MODerate resolution Imager Spectroradiometer (MODIS snow cover products were used to evaluate snow cover extension at different times during the snow season, and the results were set in relation to the temperatures.

  20. Establishing Winter Origins of Migrating Lesser Snow Geese Using Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux


    Full Text Available Increases in Snow Goose (Chen caerulescens populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C, nitrogen (δ15N, and hydrogen (δ2H isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management

  1. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters (United States)

    McCabe, Gregory J.; Wolock, David M.


    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  2. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests. (United States)

    Chan, Allison M; Bowling, David R


    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter-spring and fall-winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density method to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze-thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  3. Effects of sowing time on pink snow mould, leaf rust and winter damage in winter rye varieties in Finland

    Directory of Open Access Journals (Sweden)



    Full Text Available Disease infection in relation to sowing time of winter rye (Secale cereale was studied in southern Finland in order to compare overwintering capacity of modern rye varieties and to give recommendations for rye cultivation. This was done by using three sowing times and four rye varieties in field trials conducted at three locations in 1999–2001. The early sown rye (beginning of August was severely affected by diseases caused by Puccinia recondita and Microdochium nivale, whereas postponing sowing for two weeks after the recommended sowing time resulted in considerably less infection. The infection levels of diseases differed among rye varieties. Finnish rye varieties Anna and Bor 7068 were more resistant to snow mould and more winter hardy than the Polish variety Amilo, or the German hybrid varieties Picasso and Esprit. However, Amilo was the most resistant to leaf rust. In the first year snow mould appeared to be the primary cause of winter damage, but in the second year the winter damage was positively correlated with leaf rust. No significant correlation between frit fly infestation and winter damage or disease incidence of snow mould or leaf rust was established. The late sowing of rye (in the beginning of September is recommended in Finland, particularly with hybrid varieties, to minimize the need for chemical plant protection in autumn.;

  4. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution. (United States)

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni


    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. Copyright © 2015. Published by Elsevier B.V.

  5. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J


    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  6. Winter fidelity and apparent survival of lesser snow goose populations in the Pacific flyway (United States)

    Williams, C.K.; Samuel, M.D.; Baranyuk, Vasily V.; Cooch, E.G.; Kraege, Donald K.


    The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island

  7. Frost flower chemical signature in winter snow on Vestfonna ice cap, Nordaustlandet, Svalbard

    Directory of Open Access Journals (Sweden)

    E. Beaudon


    Full Text Available The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard, exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO42-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

  8. Winter fidelity and apparent survival of lesser snow goose populations in the Pacific flyway (United States)

    Williams, C.K.; Samuel, M.D.; Baranyuk, Vasily V.; Cooch, E.G.; Kraege, Donald K.


    The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern

  9. How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study (United States)

    Luo, Xiao; Wang, Bin


    Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be

  10. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition (United States)

    Zheng, J.; Yackel, J.


    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  11. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.


    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  12. Snow Based Winter Tourism and Kinds of Adaptations to Climate Change (United States)

    Breiling, M.


    Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.

  13. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    International Nuclear Information System (INIS)

    Singh, G.P.


    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons followed by excess (deficient) rainfall over India using National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanylised data for the period 1948-1995. The composite difference of temperature, wind, stream function and velocity potential during the years of high and low snow years at upper and lower levels have been studied in detail. The temperature at lower level shows maximum cooling up to 6 deg. C during DJF and this cooling persists up to 500hPa by 2 deg. C which gives rise to anomalous cyclonic circulation over the Caspian Sea and this may be one of the causes of the weakening of the summer monsoon circulation over Indian sub-continent. The stream function difference fields show westerly dominated over Arabian Sea at upper level in weak monsoon years. Velocity potential difference field shows complete phase reversal in the dipole structure from the deficient to excess Indian summer monsoon rainfall. (author)

  14. Seasonal Evolution of Thermal Conductivity of Snow and its Impact on Surface Temperature Regimes (United States)

    Alexeev, V. A.; Kholodov, A. L.


    Snow acts as an insulating blanket for permafrost in the winter. Thermal conductivity properties of snowpack in the winter will greatly impact the temperature regimes of the underlaying permafrost. Fourier analysis and other techniques are applied to data obtained from a set of observational sites in Fairbanks, AK with temperature and moisture measured within the snowpack throughout the entire winter in order to estimate thermal conductivity of snow and fluxes through the snow. These data are analyzed in order to understand the variations of soil temperature as a function of snow properties and weather conditions. Thermal diffusion coefficients, snow depth and density data are compared with other available sources. Results obtained will be used for further development of a snow-permafrost model.

  15. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline. (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff


    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  16. The seasonal cycle of snow cover, sea ice and surface albedo (United States)

    Robock, A.


    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  17. Adaptation to seasonality and the winter freeze

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston


    Full Text Available Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve.

  18. Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature (United States)

    Yu, Lulu; Wu, Zhiwei; Zhang, Renhe; Yang, Xin


    Seasonal prediction of the East Asian (EA) winter monsoon (EAWM) is of great significance yet a challenging issue. In this study, three statistical seasonal prediction models for the EAWM are established using three leading modes of the Eurasian snow cover (ESC), the first leading mode of sea surface temperature (SST) and the four leading modes of the combination of the ESC and SST in preceding autumn, respectively. These leading modes are identified by the partial-least square (PLS) regression. The first PLS (PLS1) mode for the ESC features significantly anomalous snow cover in Siberia and Tibetan Plateau regions. The ESC second PLS (PLS2) mode corresponds to large areas of snow cover anomalies in the central Siberia, whereas the third PLS (PLS3) mode a meridional seesaw pattern of ESC. The SST PLS1 mode basically exhibits an El Niño-Southern Oscillation developing phase in equatorial eastern Pacific and significant SST anomalies in North Atlantic. A strong EAWM tends to emerge in a La Niña year concurrent with cold SST anomalies in the North Atlantic, and vice versa. After a 35-year training period (1967-2001), three PLS seasonal prediction models are constructed and the 11-year hindcast is performed for the period of 2002-2012, respectively. The PLS model based on combination of the autumn ESC and SST exhibits the best hindcast skill among the three models, its correlation coefficient between the observation and the hindcast reaching 0.86. This indicates that this physical-based PLS model may provide another practical tool for the EAWM. In addition, the relative contribution of the ESC and SST is also examined by assessing the hindcast skills of the other two PLS models constructed solely by the ESC or SST. Possible physical mechanisms are also discussed.

  19. Winter season mortality: will climate warming bring benefits? (United States)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert


    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  20. A technigue exploitation about anti-slide tire polyploid on ice-snow road in winter (United States)

    Xiaojie, Qi; Qiang, Wang; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv


    Present studies focus on improving anti-slide property of tyes on ice-snow road by changing material modification of tyre tread and designing groove. However, the basic reason causing starting slide, long braking distance, turning slide slip and so on of tyres used in winter is that tyre tread materials are unitary and homogenous rubber composite which can’t coordinate driving demands of tyres in winter under muti-work condition, and can’t exert their best property when starting, braking and sliding slip. In order to improve comprehensive anti-slide property of tyres, this paper discusses about changing structure, shape and distribution proportion among haploid materials of tyre tread rubber. Polyploid bubber tyre tread technique based on artificial neural network which is in favor of starting, braking and anti-slide slip is optimized and combined. Friction feature and anti-slide mechanism on ice-snow road of polyploid rubber tyre tread are studied using testing technique of low-temperature cabin and computer simulation. A set high anti-slide theories and realizing method systems of polyploid rubber composite formed from basic theory, models and technique method are developped which will be applied into solving anti-slide problem of winter tyres, provide theory instruction for studies on high anti-slide winter tyres, and promote development of application and usage safety of winter tyres.

  1. Optimizing winter/snow removal operations in MoDOT St. Louis district : includes outcome based evaluation of operations. (United States)


    The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...

  2. Geophysical forecast: industry expects busy winter season

    Energy Technology Data Exchange (ETDEWEB)

    Ludwick, J.


    Survey results by the Canadian Association of Geophysical Contractors were discussed. According to the survey, all of the sector`s 65 crews will be fully utilized this winter, although no activity records are expected. Charges are likely to be slightly higher than last year. At least some of the increase will go towards increased pay to attract more workers into the field in an effort to counter the labour shortage in the seismic industry. Contractors must compete with other sectors such as construction, which is booming as a result of Alberta`s burgeoning economy. The Slave Lake and Rocky Mountain House regions are expected to be the hottest in Alberta. Southeastern Saskatchewan also promises to be the site of increased activity due to the growing interest in the Red River oil play. Another reason for the increased activity may be the use of innovative technology such as that employed by Enertec Geophysical Service Limited. It will pilot-test its newly acquired PowerProbe technology, which is said to be able to immediately detect the presence of hydrocarbons.

  3. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China (United States)

    Pu, Wei; Wang, Xin; Wei, Hailun; Zhou, Yue; Shi, Jinsen; Hu, Zhiyuan; Jin, Hongchun; Chen, Quanliang


    A large field campaign was conducted and 284 snow samples were collected at 38 sites in Xinjiang Province and 6 sites in Qinghai Province across northwestern China from January to February 2012. A spectrophotometer combined with chemical analysis was used to measure the insoluble light-absorbing particles (ILAPs) and chemical components in seasonal snow. The results indicate that the cleanest snow was found in northeastern Xinjiang along the border of China, and it presented an estimated black carbon (CBCest) of approximately 5 ng g-1. The dirtiest snow presented a CBCest of approximately 450 ng g-1 near industrial cities in Xinjiang. Overall, the CBCest of most of the snow samples collected in this campaign was in the range of 10-150 ng g-1. Vertical variations in the snowpack ILAPs indicated a probable shift in emission sources with the progression of winter. An analysis of the fractional contributions to absorption implied that organic carbon (OC) dominated the 450 nm absorption in Qinghai, while the contributions from BC and OC were comparable in Xinjiang. Finally, a positive matrix factorization (PMF) model was run to explore the sources of particulate light absorption, and the results indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.

  4. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters (United States)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.


    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  5. Seasonal snow accumulation in the mid-latitude forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav


    Roč. 69, č. 11 (2014), s. 1562-1569 ISSN 0006-3088 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : snow depth * snow water equivalent * forested catchment Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  6. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    of biodiversity, global ecosystem and global hydro- logical cycle (Robinson ... climate change impacts assessment, water resources ...... Brown R D and Braaten R O 1998 Spatial and temporal vari- ability of Canadian monthly snow depths; Atmos. Ocean. 36 37–54. Cayan D R 1996 Interannual climate variability and snow.

  7. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change. (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.


    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  8. Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter Season L-Band Measurements Data-Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Reza Naderpour


    Full Text Available The L-band radiometry data and in-situ ground and snow measurements performed during the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented and discussed. An improved version of the procedure for the computation of L-band brightness temperatures from ELBARA radiometer raw data is introduced. This procedure includes a thorough explanation of the calibration and filtering including a refined radio frequency interference (RFI mitigation approach. This new mitigation approach not only performs better than conventional “normality” tests (kurtosis and skewness but also allows for the quantification of measurement uncertainty introduced by non-thermal noise contributions. The brightness temperatures of natural snow covered areas and areas with a reflector beneath the snow are simulated for varying amounts of snow liquid water content distributed across the snow profile. Both measured and simulated brightness temperatures emanating from natural snow covered areas and areas with a reflector beneath the snow reveal noticeable sensitivity with respect to snow liquid water. This indicates the possibility of estimating snow liquid water using L-band radiometry. It is also shown that distinct daily increases in brightness temperatures measured over the areas with the reflector placed on the ground indicate the onset of the snow melting season, also known as “early-spring snow”.

  9. Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear Baseline Surface Radiation Network measurements


    Wang, Xianwei; Zender, Charles S


    This study analyzes diurnal and seasonal variations of snow albedo at four Baseline Surface Radiation Network stations in the Arctic and Antarctica from 2003 to 2008 to elucidate similarities and differences in snow albedo diurnal cycles across geographic zones and to assess how diurnal changes in snow albedo affect the surface energy budget. At the seasonal scale, the daily albedo for the perennial snow at stations South Pole and Georg von Neumayer in Antarctica has a similar symmetric varia...

  10. Evaluation of forest snow processes models (SnowMKIP2) (United States)

    Nick Rutter; Richard Essery; John Pomeroy; Nuria Altimir; Kostas Andreadis; Ian Baker; Alan Barr; Paul Bartlett; Aaron Boone; Huiping Deng; Herve Douville; Emanuel Dutra; Kelly Elder; others


    Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation...

  11. Climatic potential for tourism in the Black Forest, Germany--winter season. (United States)

    Endler, Christina; Matzarakis, Andreas


    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  12. Climatic potential for tourism in the Black Forest, Germany — winter season (United States)

    Endler, Christina; Matzarakis, Andreas


    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  13. Dispersion of atmospheric air pollution in summer and winter season. (United States)

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech


    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  14. Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    Directory of Open Access Journals (Sweden)

    Dean A. Hegg


    Full Text Available Two data sets consisting of measurements of light absorbing aerosols (LAA in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF model. Four sources were found for each data set (crop and grass burning, boreal biomass burning, pollution and marine. For both data sets, the crops and grass biomass burning was the main source of both LAA species, suggesting the non-BC LAA was brown carbon. Depth profiles at most of the sites allowed assessment of the seasonal variation in the source strengths. The biomass burning sources dominated in the spring but pollution played a more significant (though rarely dominant role in the fall, winter and, for Greenland, summer. The PMF analysis is consistent with trajectory analysis and satellite fire maps.

  15. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    ... surface at this station received a mean short wave radiation of 430 W m−2, out of which 298 W m−2 was re flected back by the snow surface with mean albedo value of 0.70. The high average temperature and more absorption of solar radiation resulted in higher thermal state of the snowpack which was further responsible ...

  16. Variations in snow cover seasonality across the Kyrgyz Republic from 2000 to 2016 revealed through MODIS Terra and Aqua snow products (United States)

    Tomaszewska, M. A.; Henebry, G. M.


    The vertical transhumance practiced by herders in the highlands of Kyrgyzstan is vulnerable to environmental change. Herd movements and pasture conditions are both affected by spatial and temporal variations in snow cover and the timing of snowmelt. Early growing season soil moisture conditions affect the phenology and growth of vegetation, especially in the high elevation pastures used for summer forage. To evaluate snow seasonality, we examined three snow cover variables—the first day of snow (FDoS), the last day of snow (LDoS), and the duration of snow cover (DoSC) over 17 years based on 8-day snow product from MODIS Terra and Aqua (MOD/MYD10A2) across the Kyrgyz Republic (KYR). To track the "snow season" efficiently in the presence of snow-capped peaks, we start each snow season at day of year (DOY) 169, approximately the summer solstice, and extend to DOY 168 of the following year. To track the interannual variation of these variables, we applied two nonparametric statistics: the Mann-Kendall trend test and the Theil-Sen linear trend estimator. Our preliminary results focusing on four rayons in two oblasts indicate both large swaths of positive and negative significant trends over the different regions of the country. Positive trends in FDoS, meaning later snow arrival, were detected in parts of central KYR. Negative trends in FDoS meaning earlier arrival were detected at lower elevations in southwestern KYR. Earlier snowmelt (negative trend in LDoS) in eastern KYR resulted in a shorter snow season (negative trend in DoSC); in contrast, later snowmelt in southwestern KYR (positive trend in LDoS) resulted in a longer period of snow cover (positive trend of DoSC). We extend the analysis to the entire country and explore the influence of terrain attribites (elevation, slope, and aspect) and MODIS IGBP land cover type (MCD12Q1) on trends in snow cover seasonality. Additionally, we ran the trend tests for the Terra and Aqua snow products separately to evaluate

  17. Seasonal forecasts of northern hemisphere winter 2009/10

    International Nuclear Information System (INIS)

    Fereday, D R; Maidens, A; Arribas, A; Scaife, A A; Knight, J R


    Northern hemisphere winter 2009/10 was exceptional for atmospheric circulation: the North Atlantic Oscillation (NAO) index was the lowest on record for over a century. This contributed to cold conditions over large areas of Eurasia and North America. Here we use two versions of the Met Office GloSea4 seasonal forecast system to investigate the predictability of this exceptional winter. The first is the then operational version of GloSea4, which uses a low top model and successfully predicted a negative NAO in forecasts produced in September, October and November 2009. The second uses a new high top model, which better simulates sudden stratospheric warmings (SSWs). This is particularly relevant for 2009/10 due to its unusual combination of a strong El Niño and an easterly quasi-biennial oscillation (QBO) phase, favouring SSW development. SSWs are shown to play an influential role in surface conditions, producing a stronger sea level pressure signal and improving predictions of the 2009/10 winter. (letter)

  18. Skillful seasonal predictions of winter precipitation over southern China (United States)

    Lu, Bo; Scaife, Adam A.; Dunstone, Nick; Smith, Doug; Ren, Hong-Li; Liu, Ying; Eade, Rosie


    Southern China experiences large year-to-year variability in the amount of winter precipitation, which can result in severe social and economic impacts. In this study, we demonstrate prediction skill of southern China winter precipitation by three operational seasonal prediction models: the operational Global seasonal forecasting system version 5 (GloSea5), the NCEP Climate Forecast System (CFSv2) and the Beijing Climate Center Climate System Model (BCC-CSM1.1m). The correlation scores reach 0.76 and 0.67 in GloSea5 and CFSv2, respectively; and the amplitude of the ensemble mean forecast signal is comparable to the observed variations. The skilful predictions in GloSea5 and CFSv2 mainly benefit from the successful representation of the observed ENSO teleconnection. El Niño weakens the Walker circulation and leads to the strengthening of the subtropical high over the northwestern Pacific. The anti-cyclone then induces anomalous northward flow over the South China Sea and brings water vapor to southern China, resulting in more precipitation. This teleconnection pattern is too weak in BCC-CSM1.1m, which explains its low skill (0.13). Whereas the most skilful forecast system is also able to simulate the influence of the Indian Ocean on southern China precipitation via changes in southwesterly winds over the Bay of Bengal. Finally, we examine the real-time forecast for 2015/16 winter when a strong El Niño event led to the highest rainfall over southern China in recent decades. We find that the GloSea5 system gave good advice as it produced the third wettest southern China in the hindcast, but underestimated the observed amplitude. This is likely due to the underestimation of the Siberian High strength in 2015/2016 winter, which has driven strong convergence over southern China. We conclude that some current seasonal forecast systems can give useful warning of impending extremes. However, there is still need for further model improvement to fully represent the complex

  19. Spatial and temporal evolution of snow water equivalent in the seasonal snow pack in Hemavan based on field measurements of Snow Accumulation compiled for ASAR validation (United States)

    Ingvander, S. M.; Brown, I.


    Estimating the snow water equivalent (SWE) of the seasonal snowpack is key information for the prediction of spring flood rates and the contribution to water reservoirs in Hydro-power production. This is particularly important in Northern Sweden where 40% of the power generation is from hydropower sources (2004). By determining the frequency and amplitude of the landscape topography and in the field measure how snow is accumulated in this landscape we can increase the accuracy of the estimation of SWE in the Swedish mountain regions. Understanding the distribution of snow depth in micro scale (sub meter scale) is our basis for extrapolating the information to kilometre scale based on digital elevation models and weighted by the land cover in the area. The micro scale analysis will then be extrapolated over a larger region by using DEM, remotely sensed data such as ASAR (Advanced Synthetic Aperture Radar) C-band, MODIS (Moderate Resolution Imaging Spectroradiometer) optical data and field data sampled in macro scale (kilometre scale) in reference areas. By establishing the relationship between accumulation patterns and physical parameters in the landscape, atmosphere and the volume area ration in snow melt, a model of accumulation patterns in different types of reference areas can be produced. This information can then be applied to satellite imagery and help the understanding of information in different scales and types of satellite imagery by upscaling from high resolution field data to derive new satellite algorithms. Snow cover mapping is an area of interest on national and international levels with ESA committed to data provision and the data provided in this project will be made available for validation of future ESA projects such as the BIOMASS and CoREH2O project.

  20. Linkages between Snow Cover Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan (United States)

    Henebry, Geoffrey; Tomaszewska, Monika; Kelgenbaeva, Kamilya


    In the highlands of Kyrgyzstan, vertical transhumance is the foundation of montane agropastoralism. Terrain attributes, such as elevation, slope, and aspect, affect snow cover seasonality, which is a key influence on the timing of plant growth and forage availability. Our study areas include the highland pastures in Central Tien Shan mountains, specifically in the rayons of Naryn and At-Bashy in Naryn oblast, and Alay and Chong-Alay rayons in Osh oblast. To explore the linkages between snow cover seasonality and land surface phenology as modulated by terrain and variations in thermal time, we use 16 years (2001-2016) of Landsat surface reflectance data at 30 m resolution with MODIS land surface temperature and snow cover products at 1 km and 500 m resolution, respectively, and two digital elevation models, SRTM and ASTER GDEM. We model snow cover seasonality using frost degree-days and land surface phenology using growing degree-days as quadratic functions of thermal time: a convex quadratic (CxQ) model for land surface phenology and a concave quadratic (CvQ) model for snow cover seasonality. From the fitted parameter coefficients, we calculated phenometrics, including "peak height" and "thermal time to peak" for the CxQ models and "trough depth" and "thermal time to trough" for the CvQ models. We explore how these phenometrics change as a function of elevation and slope-aspect interactions and due to interannual variability. Further, we examine how snow cover duration and timing affects the subsequent peak height and thermal time to peak in wetter, drier, and normal years.

  1. Combined Study of Snow Depth Determination and Winter Leaf Area Index Retrieval by Unmanned Aerial Vehicle Photogrammetry (United States)

    Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal


    A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed

  2. Camouflage mismatch in seasonal coat color due to decreased snow duration


    Mills, L. Scott; Zimova, Marketa; Oyler, Jared; Running, Steven; Abatzoglou, John T.; Lukacs, Paul M.


    Most examples of seasonal mismatches in phenology span multiple trophic levels, with timing of animal reproduction, hibernation, or migration becoming detached from peak food supply. The consequences of such mismatches are difficult to link to specific future climate change scenarios because the responses across trophic levels have complex underlying climate drivers often confounded by other stressors. In contrast, seasonal coat color polyphenism creating camouflage against snow is a direct a...

  3. Snow Cover and Precipitation Impacts on Dry Season Streamflow in the Lower Mekong Basin (United States)

    Cook, Benjamin I.; Bell, A. R.; Anchukaitis, K. J.; Buckley, B. M.


    Climate change impacts on dry season streamflow in the Mekong River are relatively understudied, despite the fact that water availability during this time is critically important for agricultural and ecological systems. Analyses of two gauging stations (Vientiane and Kratie) in the Lower Mekong Basin (LMB) show significant positive correlations between dry season (March through May, MAM) discharge and upper basin snow cover and local precipitation. Using snow cover, precipitation, and upstream discharge as predictors, we develop skillful regression models for MAM streamflow at Vientiane and Kratie, and force these models with output from a suite of general circulation model (GCM) experiments for the twentieth and twenty-first centuries. The GCM simulations predict divergent trends in snow cover (decreasing) and precipitation (increasing) over the twenty-first century, driving overall negligible long-term trends in dry season streamflow. Our study demonstrates how future changes in dry season streamflow in the LMB will depend on changes in snow cover and precipitation, factors that will need to be considered when assessing the full basin response to other climatic and non-climatic drivers.

  4. Monitoring seasonal dust depositions on snow in a high-altitude site of the European Alps (United States)

    Di Mauro, Biagio; Filippa, Gianluca; Pogliotti, Paolo; Galvagno, Marta; Morra di Cella, Umberto; Cremonese, Edoardo; Isabellon, Michel; Rossini, Micol; Garzonio, Roberto; Gramegna, Gianluca; Colombo, Roberto


    The seasonal input of mineral dust from Saharan desert impacts the optical properties of snow in the European Alps. The albedo reduction may alter the melting dynamics of the snowpack, resulting in earlier snow melts. In this contribution, we evaluate the impact of dust depositions on snowpack melting dynamics in a high-altitude site (2160 m) in the northwestern Italian Alps (Aosta Valley, IT). In particular, we focus on the two following specific objectives: i) to assess the potential of a spectral index derived from digital camera images to identify the occurrence of dust deposition events; ii) to evaluate the impact of dust depositions on snow melting based on the comparison between observed snow height and the potential snow height simulated with a hydrological model not accounting for melting caused by snow impurities. The experimental site is equipped with instruments that measure snow albedo (Kipp and Zonen cnr4 net radiometer), snow height (SR50A, Campbell Scientific, Inc), air temperature (HMP45, Vaisala Inc.) and surface temperature (SI-111, Apogee Instr. Inc.). Furthermore, a Nikon digital camera (model d5000) is installed at the site. The camera collects images in JPEG format and features a resolution of 12.3 megapixels, with three color channels (namely Red, Green and Blue). Data were collected from 10 am to 5 pm, with an hourly temporal resolution. Data from 2013 to 2016 are presented here. The seasonality and timing of dust depositions were determined using two atmospheric transport models: the NAAPS and the BSC-DREAM8 model. Dust depositions were compared with time series of the Snow Darkening Index (SDI) calculated from the channels of the digital camera, combining the Red and Green channels as a normalized difference. SDI time series were extracted from the repeated images using the Phenopix R package ( The impact of dust deposition on snow melt was evaluated by comparing the observed snow height

  5. Preliminary analysis of measured sound propagation over various seasonal snow covers (United States)

    Albert, Donald G.


    Measurements of acoustic pulse propagation in the 5 to 500-Hz frequency band were conducted under various snow cover conditions during the 1989 to 1990 winter in New Hampshire. The objective was to determine the effect of snow cover thickness and other snow properties on the absorption of acoustic pulses. Blank pistol shots were used as the source of the acoustic waves, and geophones and microphones in an 80 m-long linear array served as receivers. Snow thicknesses ranged from 0.05 to 0.35 m, and densities varied from 100 to 350 kg m(sup -3) during the 10 separate measurement days. Preliminary analysis indicates that the peak pulse amplitude decayed in proportion to approx. gamma (sup -1.7) for most conditions and that the acoustic-to-seismic ratios varied from about 4 to 15 x 10(exp -6) m s(sup -1) Pa(sup -1). Theoretical waveforms were calculated for propagation in a homogeneous atmosphere using Attenborough's model of ground impedance. An automatic fitting procedure for the normalized experimental and theoretical waveforms was used to determine the effective flow resistivity of the snow covers, and gave values of 10 to 35 kN s m(sup -4), in agreement with earlier results.

  6. Numerical Model Simulation of Offshore Flow during the Winter Season. (United States)

    Piccolo, Maria Cintia

    Because of the step function variability of heat and moisture flux in coastal zones, adequate descriptive models of mesoscale coastal circulation and weather patterns demand high spatial resolution in the analysis of wind, temperature and moisture patterns. To obtain realistic concepts of offshore flow the sparse offshore data networks need to be supplemented by mesoscale numerical models. The problems associated with the modeling of offshore flow across the east coast of the United States during the winter season have been investigated with a simple two dimensional numerical model of the planetary boundary layer. The model has two predictive equations for the potential temperature and humidity fields. A diagnostic equation based upon observed data is used to determine wind velocities. At each horizontal step the wind was integrated with height, and the equations for the temperature and humidity were solved for each level. A second order model using the Dufort-Frankel finite difference scheme with two vertical grid spacing and eddy coefficient formulations was applied to actual cases of offshore winter flow. The results of the model were compared with measurements at anemometer level at offshore stations. Different flux formulations were tested. Key problems related to the use of the Dufort-Frankel scheme were indicated. Problems associated with the use of a K-theory profile for the turbulent fluxes in the marine planetary boundary layer were isolated. The initial air-sea temperature difference and the K-theory formulations were crucial to the computational stability of the model as well as the resolution of the model, even after the stability problems were solved. A bulk aerodynamic formulation produced better results in the marine surface layer, however when merged with K-theory for the rest of the planetary boundary layer disastrous results can occur. A first order model with a similar resolution was applied to the same situation and showed superior results.

  7. Source attribution of light-absorbing impurities in seasonal snow across northern China (United States)

    Zhang, R.; Hegg, D. A.; Huang, J.; Fu, Q.


    Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of light-absorbing impurities (LAI), including all particles that absorb light in the 650-700 nm wavelength interval. The LAI, together with 14 other analytes, are used as input to a positive matrix factorization (PMF) receptor model to explore the sources of the LAI in the snow. The PMF analysis for the LAI sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured snow light absorption: a soil dust source, an industrial pollution source, and a biomass and biofuels burning source. Soil dust was the main source of the LAI, accounting for ~ 53% of the LAI on average.

  8. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China (United States)

    Zhang, R.; Hegg, D. A.; Huang, J.; Fu, Q.


    Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP), including all particles that absorb light in the 650-700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF) receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  9. Camouflage mismatch in seasonal coat color due to decreased snow duration. (United States)

    Mills, L Scott; Zimova, Marketa; Oyler, Jared; Running, Steven; Abatzoglou, John T; Lukacs, Paul M


    Most examples of seasonal mismatches in phenology span multiple trophic levels, with timing of animal reproduction, hibernation, or migration becoming detached from peak food supply. The consequences of such mismatches are difficult to link to specific future climate change scenarios because the responses across trophic levels have complex underlying climate drivers often confounded by other stressors. In contrast, seasonal coat color polyphenism creating camouflage against snow is a direct and potentially severe type of seasonal mismatch if crypsis becomes compromised by the animal being white when snow is absent. It is unknown whether plasticity in the initiation or rate of coat color change will be able to reduce mismatch between the seasonal coat color and an increasingly snow-free background. We find that natural populations of snowshoe hares exposed to 3 y of widely varying snowpack have plasticity in the rate of the spring white-to-brown molt, but not in either the initiation dates of color change or the rate of the fall brown-to-white molt. Using an ensemble of locally downscaled climate projections, we also show that annual average duration of snowpack is forecast to decrease by 29-35 d by midcentury and 40-69 d by the end of the century. Without evolution in coat color phenology, the reduced snow duration will increase the number of days that white hares will be mismatched on a snowless background by four- to eightfold by the end of the century. This novel and visually compelling climate change-induced stressor likely applies to >9 widely distributed mammals with seasonal coat color.

  10. Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983-2014) (United States)

    Greilinger, Marion; Schöner, Wolfgang; Winiwarter, Wilfried; Kasper-Giebl, Anne


    A long-term record of inorganic ion concentrations in wet and dry deposition sampled from snow packs at two high altitude glaciers was used to assess impacts of air pollution on remote sites in central Europe. Sampling points were located at Wurtenkees and Goldbergkees near the Sonnblick Observatory (3106 m above sea level), a background site for measuring the status of the atmosphere in Austria's Eastern Alps. Sampling was carried out every spring at the end of the winter accumulation period in the years 1983-2014. Concentrations of major ions (NH4+, SO42-, NO3-, Ca2+, Mg2+, K+, Na+ and Cl-) were determined using ion chromatography (IC) as well as atomic absorption spectroscopy (AAS) in the earlier years. Concentration of H+ was calculated via the measured pH of the samples. Trends in deposition and concentration were analysed for all major ions within the period from 1983 to 2014 using Kendall's tau rank correlation coefficient. From 1983 to 2014, total ion concentration declined ∼25%, i.e. solutions became ∼25% more dilute, indicating reduced acidic atmospheric deposition, even at high altitude in winter snow. SO42- and NO3- concentrations decreased significantly by 70% and 30%, respectively, accompanied by a 54% decrease of H+ concentrations. Ionic concentrations in snowpack were dominated by H+ and SO42- in the earliest decade measured, whereas they were dominated by Ca2+ by the most recent decade. SO42- and H+ depositions, i.e. concentrations multiplied by volume, also showed a significant decrease of more than 50% at both sites. This reflects the successful emission reductions of the precursor gases SO2 and NOx. Seasonal values with significantly elevated spring concentrations of NH4+, SO42- and H+ compared to fall snow reflects the beginning of vertical mixing during spring. All other ions do not show any seasonality. Source identification of the ions was performed using a principal component analysis (PCA). One anthropogenic cluster (SO42-, NO3- and NH

  11. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer


    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  12. Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season

    International Nuclear Information System (INIS)

    Galvagno, M; Cremonese, E; Filippa, G; Morra di Cella, U; Wohlfahrt, G; Rossini, M; Colombo, R; Julitta, T; Manca, G; Siniscalco, C; Migliavacca, M


    Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period. (letter)

  13. Presentations and outcomes of patients with acute decompensated heart failure admitted in the winter season. (United States)

    Kaneko, Hidehiro; Suzuki, Shinya; Goto, Masato; Arita, Takuto; Yuzawa, Yasufumi; Yagi, Naoharu; Murata, Nobuhiro; Yajima, Junji; Oikawa, Yuji; Sagara, Koichi; Otsuka, Takayuki; Matsuno, Shunsuke; Kano, Hiroto; Uejima, Tokuhisa; Nagashima, Kazuyuki; Kirigaya, Hajime; Sawada, Hitoshi; Aizawa, Tadanori; Yamashita, Takeshi


    Seasonal variations in cardiovascular disease is well recognized. However, little is known about the presentations and outcomes of Japanese heart failure (HF) patients in the winter season. We used a single hospital-based cohort from the Shinken Database 2004-2012, comprising all new patients (n=19,994) who visited the Cardiovascular Institute Hospital. A total of 375 patients who were admitted owing to acute decompensated HF were included in the analysis. Of these patients, 136 (36%) were admitted in winter. Winter was defined as the period between December and February. The HF patients admitted in winter were older, and had a higher prevalence of hypertension and diabetes mellitus than the patients admitted in other seasons. Patients with conditions categorized as clinical scenario 1 tended to be admitted more commonly in winter. HF with preserved left ventricular ejection fraction (LVEF) was more common in HF patients admitted in winter than in those admitted in other seasons. Beta-blocker use at hospital discharge was more common in the patients admitted in other seasons. Kaplan-Meier curves and log-rank test results indicated that the incidences of all-cause death, cardiovascular death, and HF admission were comparable between the patients admitted in winter and those admitted in other seasons. HF admission was frequently observed in the winter season and HF patients admitted in the winter season were older, and had higher prevalence of hypertension and diabetes mellitus, and preserved LVEF suggesting that we might need to pay more attention for elderly patients with hypertension, diabetes mellitus, and HF with preserved LVEF to decrease HF admissions in the winter season. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  14. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism. (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André


    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  15. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover (United States)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis


    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  16. A snow and ice melt seasonal prediction modelling system for Alpine reservoirs (United States)

    Förster, Kristian; Oesterle, Felix; Hanzer, Florian; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich


    The timing and the volume of snow and ice melt in Alpine catchments are crucial for management operations of reservoirs and hydropower generation. Moreover, a sustainable reservoir operation through reservoir storage and flow control as part of flood risk management is important for downstream communities. Forecast systems typically provide predictions for a few days in advance. Reservoir operators would benefit if lead times could be extended in order to optimise the reservoir management. Current seasonal prediction products such as the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2) enable seasonal forecasts up to nine months in advance, with of course decreasing accuracy as lead-time increases. We present a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps (Gepatschalm). Meteorological forecasts are obtained from the CFSv2 model. Subsequently, these data are downscaled to the Alpine Water balance And Runoff Estimation model AWARE running at monthly time step. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN that predicts hourly fields of snow water equivalent and snowmelt at a regular grid with 50 m spacing. Reservoir inflow is calculated taking into account various runs of the CFSv2 model. These simulations are compared with observed inflow volumes for the melting and accumulation period 2015.

  17. Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon (United States)

    Cummings, M. L.; Weatherford, J. M.; Eibert, D.


    Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.

  18. The Year Without a Ski Season: An Analysis of the Winter of 2015 for Three Ski Resorts in Western Canada Using Historical and Simulation Model Forecasted Climate Data (United States)

    Pidwirny, M. J.; Goode, J. D.; Pedersen, S.


    The winter of 2015 will go down as "the year without a ski season" for many ski resorts located close to the west coast of Canada and the USA. During this winter season, a large area of the eastern North Pacific Ocean had extremely high sea surface temperatures. These high sea surface temperatures influenced weather patterns on the west coast of North America producing very mild temperatures inland. Further, in alpine environments precipitation that normally arrives in the form of snow instead fell as rain. This research examines the climate characteristics of the winter of 2015 in greater detail for three ski resorts in British Columbia, Canada: Mount Washington, Cypress Mountain and Hemlock Valley. For these resorts, historical (1901 to 2013) and IPCC AR5 climate model forecasted climate data (RCP8.5 for 2025, 2055, and 2085) was generated for the variable winter degree days climate database ClimateBC. A value for winter degree days climate data at nearby meteorological stations for comparative analysis. For all three resorts, the winter of 2015 proved to be warmer than any individual year in the period 1901 to 2013. Interpolations involving the multi-model ensemble forecast means suggest that the climate associated with winter of 2015 will become the average normal for these resorts in only 35 to 45 years under the RCP8.5 emission scenario.

  19. The bright side of snow cover effects on PV production - How to lower the seasonal mismatch between electricity supply and demand in a fully renewable Switzerland (United States)

    Kahl, Annelen; Dujardin, Jérôme; Dupuis, Sonia; Lehning, Michael


    One of the major problems with solar PV in the context of a fully renewable electricity production at mid-latitudes is the trend of higher production in summer and lower production in winter. This trend is most often exactly opposite to demand patterns, causing a seasonal mismatch that requires extensive balancing power from other production sources or large storage capacities. Which possibilities do we have to bring PV production into closer correlation with demand? This question motivated our research and in response we investigated the effects of placing PV panels at different tilt angles in regions with extensive snow cover to increase winter production from ground reflected short wave radiation. The aim of this project is therefore to quantify the effect of varying snow cover duration (SCD) and of panel tilt angle on the annual total production and on production during winter months when electricity is most needed. We chose Switzerland as ideal test site, because it has a wide range of snow cover conditions and a high potential for renewable electricity production. But methods can be applied to other regions of comparable conditions for snow cover and irradiance. Our analysis can be separated into two steps: 1. A systematic, GIS and satellite-based analysis for all of Switzerland: We use time series of satellite-derived irradiance, and snow cover characteristics together with land surface cover types and elevation information to quantify the environmental conditions and to estimate potential production and ideal tilt angles. 2. A scenario-based analysis that contrasts the production patterns of different placement scenarios for PV panels in urban, rural and mountainous areas. We invoke a model of a fully renewable electricity system (including Switzerland's large hydropower system) at national level to compute the electricity import and storage capacity that will be required to balance the remaining mismatch between production and demand to further illuminate

  20. Light-absorbing particulates in seasonal snow in western North America (United States)

    Dang, Cheng

    Commonly found light-absorbing particulates (LAPs) in snow are black carbon (BC), organic carbon (OC), and mineral dust (MD). These LAPs can reduce the very high albedo of snowpack and trigger positive feedback processes, eventually accelerate the snowmelt and hence influence the climate and hydrology. From the January to March of 2013, a field campaign was conducted to study the LAPs in seasonal snow across 13 American states and 3 Canadian Provinces in western North America. We collected and filtered more than 600 snow samples from 67 sites to extract the water-insoluble LAPs in snow, and saved melted snow samples. More than 500 LAP nuclepore samples were analyzed in a spectrophotometer to estimate the light absorption due to LAP samples. This optical analysis also allow us to calculate the absorption Angstrom exponent (A) of LAPs, estimate the BC mixing ratio, and partition the light absorption by BC and non-BC LAPs. About 100 LAP GHP samples were extracted by a serial of chemical solvents to remove OC; then measured in the spectrophotometer to estimate the light absorption changes. The iron concentration was derived from ICP-MS (Inductively Coupled Plasma - Mass Spectroscopy), and was used to estimate the light absorption due to MD. The BC mixing ratio varies from 4--510 ng/g (ng of BC/g of snow), with regional medians vary from 14 ng/g in the Pacific Northwest to 65 ng/g in the Northern Plains. This amount of BC is lower than that found in China, and the LAP in the cleanest sites is as low as that found in the Arctic snow. The regional medians of A vary from 1.6 to 2.6, indicating that BC is not the only LAP in snow. Chemical extractions suggest that methanol-soluble OC (polar OC) and base-soluble HULIS are responsible for 3% and 8% of light absorption by all LAP respectively. They are likely generated from biomass burning or soil. The fractional light absorption produced by OC and HULIS in the Northern Plains is a factor of two higher than that of the other

  1. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I (United States)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten


    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  2. Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. (United States)

    Dong, Zhiwen; Qin, Dahe; Qin, Xiang; Cui, Jianyong; Kang, Shichang


    Trace elements in the atmosphere could provide information about regional atmospheric pollution. This study presented a whole year of precipitation observation data regarding the concentrations of trace metals (e.g., Cr, Ni, Cu, Mn, Cd, Mo, Pb, Sb, Ti, and Zn), and a TEM-EDX (transmission electron microscope-energy dispersive X-ray spectrometer) analysis from June 2014 to September 2015 at a remote alpine glacier basin in Northwest China, the Laohugou (LHG) basin (4200 m a.s.l.), to determine the regional scale of atmospheric conditions and chemical processing in the free troposphere in the region. The results of the concentrations of trace metals showed that, although the concentrations generally were lower compared with that of surrounding rural areas (and cities), they showed an obviously higher concentration and higher EFs in winter (DJF) and a relatively lower concentration and lower EFs in summer (JJA) and autumn (SON), implying clearly enhanced winter pollution of the regional atmosphere in Northwest China. The TEM observed residue in precipitation that was mainly composed of types of dust, salt-dust, BC-fly ash-soot, and organic particles in precipitation, which also showed remarked seasonal change, showing an especially high ratio of BC-soot-fly ash particles in winter precipitation compared with that of other seasons (while organic particles were higher in the summer), indicating significant increased anthropogenic particles in the winter atmosphere. The source of increased winter anthropogenic pollutants mainly originated from emissions from coal combustion, e.g., the regional winter heating supply for residents and cement factories in urban and rural regions of Northwest China. Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric optical depth (AOD) also showed a significant influence of regional atmospheric pollutant emissions over the region in winter. In total, this work indicated that the atmospheric environment in western Qilian

  3. Variation of respiratory syncytial virus and the relation with meteorological factors in different winter seasons.

    NARCIS (Netherlands)

    Meerhoff, T.J.; Paget, W.J.; Kimpen, J.L.; Schellevis, F.


    Background: Respiratory syncytial virus (RSV) is the most important viral agent causing severe respiratory disease in infants and children. In temperate climates, RSV activity typically peaks during winter. We have described the seasonal variation in RSV activity and investigated which

  4. Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models (United States)

    Brucker, Ludovic; Royer, Alain; Picard, Ghislain; Langlois, Alex; Fily, Michel


    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates.

  5. Confronting the demand and supply of snow seasonal forecasts for ski resorts : the case of French Alps (United States)

    Dubois, Ghislain


    Alpine ski resorts are highly dependent on snow, which availability is characterized by a both a high inter-annual variability and a gradual diminution due to climate change. Due to this dependency to climatic resources, the ski industry is increasingly affected by climate change: higher temperatures limit snow falls, increase melting and limit the possibilities of technical snow making. Therefore, since the seventies, managers drastically improved their practices, both to adapt to climate change and to this inter-annual variability of snow conditions. Through slope preparation and maintenance, snow stock management, artificial snow making, a typical resort can approximately keep the same season duration with 30% less snow. The ski industry became an activity of high technicity The EUPORIAS FP7 ( project developed between 2012 and 2016 a deep understanding of the supply and demand conditions for the provision of climate services disseminating seasonal forecasts. In particular, we developed a case study, which allowed conducting several activities for a better understanding of the demand and of the business model of future services applied to the ski industry. The investigations conducted in France inventoried the existing tools and databases, assessed the decision making process and data needs of ski operators, and provided evidences that some discernable skill of seasonal forecasts exist. This case study formed the basis of the recently funded PROSNOW H2020 project. We will present the main results of EUPORIAS project for the ski industry.

  6. Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations (United States)

    Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.


    Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud

  7. European seasonal mortality and influenza incidence due to winter temperature variability (United States)

    Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.


    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.

  8. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China

    Directory of Open Access Journals (Sweden)

    R. Zhang


    Full Text Available Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP, including all particles that absorb light in the 650–700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  9. Contrasting Seasonal Survivorship of Two Migratory Songbirds Wintering in Threatened Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert


    Full Text Available Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded, a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded, a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.

  10. Effects of school closures, 2008 winter influenza season, Hong Kong


    Leung, GM; Chan, KH; Lam, CLH; Cowling, BJ; Cheng, CKY; Lau, EHY; Kovar, J; Peiris, JSM


    In winter 2008, kindergartens and primary schools in Hong Kong were closed for 2 weeks after media coverage indicated that 3 children had died, apparently from influenza. We examined prospective influenza surveillance data before, during, and after the closure. We did not find a substantial effect on community transmission.

  11. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. (United States)

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita


    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  12. Determination of snowmaking efficiency on a ski slope from observations and modelling of snowmaking events and seasonal snow accumulation (United States)

    Spandre, Pierre; François, Hugues; Thibert, Emmanuel; Morin, Samuel; George-Marcelpoil, Emmanuelle


    The production of Machine Made (MM) snow is now generalized in ski resorts and represents the most common method of adaptation for mitigating the impact of a lack of snow on skiing. Most investigations of correlations between snow conditions and the ski industry's economy focus on the production of MM snow though not one of these has taken into account the efficiency of the snowmaking process. The present study consists of observations of snow conditions (depth and mass) using a Differential GPS method and snow density coring, following snowmaking events and seasonal snow accumulation in Les Deux Alpes ski resort (French Alps). A detailed physically based snowpack model accounting for grooming and snowmaking was used to compute the seasonal evolution of the snowpack and compared to the observations. Our results show that approximately 30 % of the water mass can be recovered as MM snow within 10 m from the center of a MM snow pile after production and 50 % within 20 m. Observations and simulations on the ski slope were relatively consistent with 60 % (±10 %) of the water mass used for snowmaking within the limits of the ski slope. Losses due to thermodynamic effects were estimated in the current case example to be less than 10 % of the total water mass. These results suggest that even in ideal conditions for production a significant fraction of the water used for snowmaking can not be found as MM snow within the limits of the ski slope with most of the missing fraction of water. This is due to site dependent characteristics (e.g. meteorological conditions, topography).

  13. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter


    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  14. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao


    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  15. Assessment of the Performance of Several Roadway Mixes under Rain, Snow, and Winter Maintenance Activities


    Flintsch, Gerardo W.


    The purpose of this study was to assess the relative functional performance, including skid resistance and splash and spray, of five hot-mix-asphalt (HMA) surfaces and a tinned portland cement concrete highway surface during controlled wet and wintry weather events. The study compared the way that these surfaces respond to various deicing and anti-icing snow removal and ice control techniques under artificial wintry conditions. In addition, the splash and spray characteristics of the surfaces...

  16. Assessing a Top-Down Modeling Approach for Seasonal Scale Snow Sensitivity (United States)

    Luce, C. H.; Lute, A.


    Mechanistic snow models are commonly applied to assess changes to snowpacks in a warming climate. Such assessments involve a number of assumptions about details of weather at daily to sub-seasonal time scales. Models of season-scale behavior can provide contrast for evaluating behavior at time scales more in concordance with climate warming projections. Such top-down models, however, involve a degree of empiricism, with attendant caveats about the potential of a changing climate to affect calibrated relationships. We estimated the sensitivity of snowpacks from 497 Snowpack Telemetry (SNOTEL) stations in the western U.S. based on differences in climate between stations (spatial analog). We examined the sensitivity of April 1 snow water equivalent (SWE) and mean snow residence time (SRT) to variations in Nov-Mar precipitation and average Nov-Mar temperature using multivariate local-fit regressions. We tested the modeling approach using a leave-one-out cross-validation as well as targeted two-fold non-random cross-validations contrasting, for example, warm vs. cold years, dry vs. wet years, and north vs. south stations. Nash-Sutcliffe Efficiency (NSE) values for the validations were strong for April 1 SWE, ranging from 0.71 to 0.90, and still reasonable, but weaker, for SRT, in the range of 0.64 to 0.81. From these ranges, we exclude validations where the training data do not represent the range of target data. A likely reason for differences in validation between the two metrics is that the SWE model reflects the influence of conservation of mass while using temperature as an indicator of the season-scale energy balance; in contrast, SRT depends more strongly on the energy balance aspects of the problem. Model forms with lower numbers of parameters generally validated better than more complex model forms, with the caveat that pseudoreplication could encourage selection of more complex models when validation contrasts were weak. Overall, the split sample validations

  17. The impact of land initialization on seasonal forecasts of surface air temperature: role of snow data assimilation in the Northern Hemisphere (United States)

    Lin, P.; Wei, J.; Zhang, Y.; Yang, Z. L.


    Land initializations (i.e., snow, soil moisture, leaf area index) have been recognized as important sources of seasonal climate predictability besides ocean and atmosphere initializations. However, studies focusing on assessing how land data assimilation (DA) contributes to seasonal forecast skills are still lacking due to the limited number of large-scale land DA studies. In this study, taking advantage of the snow outputs from a multivariate global land DA system (i.e., DART/CLM), we systematically investigated the role of large-scale snow DA in influencing seasonal forecasts of surface air temperature. Three suites of ensemble seasonal forecast experiments were performed using the Community Earth System Model (CESM v1.2.1), in which three different snow initialization datasets were used. They are (1) CLM4 simulation without DA, (2) CLM4 simulation with MODIS snow cover DA, and (3) CLM4 simulation with joint GRACE and MODIS snow DA. Each suite of the experiment starts from multiple initialization dates of eight years from 2003 to 2010 and has three-month lead times. All experiments used the same atmosphere initializations from ERA-Interim (perturbed to get 8 ensembles) and the same prescribed SSTs. Our results show that snow DA plays an important role in surface air temperature predictions in regions such as Europe, western Canada, northern Alaska, Mongolia Plateau, Tibetan Plateau, and the Rocky Mountains. The analyses also account for multiple lead times as snow can influence the atmosphere through immediate snow-albedo effect and through delayed snow hydrological effect after snow melts and wets the soil. This is a first study to quantify the impacts of snow initializations on seasonal forecasts of surface air temperature with an emphasis on large-scale snow DA. The insights are helpful to both land DA studies as well as research on seasonal climate forecasts.

  18. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.


    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  19. Retrieval of the ultraviolet effective snow albedo during 1998 winter campaign in the French Alps. (United States)

    Smolskaia, Irina; Masserot, Dominique; Lenoble, Jacqueline; Brogniez, Colette; de la Casinière, Alain


    A measurement campaign was carried out in February 1998 at Briançon Station, French Alps (44.9 degrees N, 6.65 degrees E, 1,310 m above sea level) in order to determine the UV effective snow albedo that was retrieved for both erythemal and UV-A irradiances from measurements and modeling enhancement factors. The results are presented for 15 cloudless days with very variable snow cover and a small snowfall in the middle of the campaign. Erythemal irradiance enhancement due to the surface albedo was found to decrease from approximately +15% to +5% with a jump to +22% after the snowfall, whereas UV-A irradiance enhancement decreased from 7% to 5% and increased to 15% after the snowfall. Thesevalues fit to effective surface albedos of 0.4, 0.1, and 0.5 for erythemal, and to effective albedos of 0.25, 0.1, and 0.4 for UV-A irradiances, respectively. An unexpected difference between the effective albedos retrieved in the two wavelength regions can be explained by the difference of the environment contribution.

  20. Winter is losing its cool (United States)

    Feng, S.


    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.



    タケウチ, ユカリ; コダマ, ユウジ; ナカバヤシ, ヒロノリ; Yukari, TAKEUCHI; Yuji, KODAMA; Hironori, NAKABAYASHI


    Meteorological conditions and evaporation from snow and tundra surfaces were measured in the tundra area in Spitsbergen from the end of May to the end of June in 1993. In this period, three types of ground surface were seen, i.e. dry snow, melting snow and snow-free tundra. Clear changes in evaporation as well as the meteorological conditions were seen with the changes in surface condition. During the dry snow period, evaporation predominated at the snow surface and the latent heat loss by ev...

  2. A robust empirical seasonal prediction of winter NAO and surface climate. (United States)

    Wang, L; Ting, M; Kushner, P J


    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  3. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons (United States)

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.


    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  4. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland. (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes


    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  5. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    Directory of Open Access Journals (Sweden)

    Françoise Martz

    Full Text Available At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE. By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  6. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. (United States)

    Gillespie, Lauren M; Volaire, Florence A


    Dormancy in higher plants is an adaptive response enabling plant survival during the harshest seasons and has been more explored in woody species than in herbaceous species. Nevertheless, winter and summer shoot meristem dormancy are adaptive strategies that could play a major role in enhancing seasonal stress tolerance and resilience of widespread herbaceous plant communities. This review outlines the symmetrical aspects of winter and summer dormancy in order to better understand plant adaptation to severe stress, and highlight research priorities in a changing climate. Seasonal dormancy is a good model to explore the growth-stress survival trade-off and unravel the relationships between growth potential and stress hardiness. Although photoperiod and temperature are known to play a crucial, though reversed, role in the induction and release of both types of dormancy, the thresholds and combined effects of these environmental factors remain to be identified. The biochemical compounds involved in induction or release in winter dormancy (abscisic acid, ethylene, sugars, cytokinins and gibberellins) could be a priority research focus for summer dormancy. To address these research priorities, herbaceous species, being more tractable than woody species, are excellent model plants for which both summer and winter dormancy have been clearly identified. Summer and winter dormancy, although responding to inverse conditions, share many characteristics. This analogous nature can facilitate research as well as lead to insight into plant adaptations to extreme conditions and the evolution of phenological patterns of species and communities under climate change. The development of phenotypes showing reduced winter and/or enhanced summer dormancy may be expected and could improve adaptation to less predictable environmental stresses correlated with future climates. To this end, it is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its

  7. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. (United States)

    Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C


    As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this

  8. Past and future of the Austrian snow cover - results from the CC-Snow project (United States)

    Strasser, Ulrich; Marke, Thomas; Hanzer, Florian; Ragg, Hansjörg; Kleindienst, Hannes; Wilcke, Renate; Gobiet, Andreas


    This study has the goal to simulate the evolution of the Austrian snow cover from 1971 to 2050 by means of a coupled modelling scheme, and to estimate the effect of climate change on the evolution of the natural snow cover. The model outcomes are interepreted with focus on both the future natural snow conditions, and the effects on winter skiing tourism. Therefore the regional temperature-index snow model SNOWREG is applied, providing snow maps with a spatial resolution of 250 m. The model is trained by means of assimilating local measurements and observed natural snow cover patterns. Meteorological forcing consists of the output of four realizations of the ENSEMBLES project for the A1B emission scenario. The meteorological variables are downscaled and error corrected with a quantile based empirical-statistical method on a daily time basis. The control simulation is 1971-2000, and the scenario simulation 2021-2050. Spatial interpolation is performed on the basis of parameter-elevation relations. We compare the four different global/regional climate model combinations and their effect on the snow modelling, and we explain the patterns of the resulting snow cover by means of regional climatological characteristics. The provinces Tirol and Styria serve as test regions, being typical examples for the two climatic subregions of Austria. To support the interpretation of the simulation results we apply indicators which enable to define meaningful measures for the comparison of the different periods and regions. Results show that the mean duration of the snow cover will decrease by 15 to 30 days per winter season, mostly in elevations between 2000 and 2500 m. Above 3000 m the higher winter precipitation can compensate this effect, and mean snow cover duration may even slightly increase. We also investigate the local scale by application of the physically based mountain snow model AMUNDSEN. This model is capable of producing 50 m resolution output maps for indicators

  9. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations. (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis


    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Water losses during technical snow production (United States)

    Grünewald, Thomas; Wolfsperger, Fabian


    These days, the production of technical snow can be seen as a prerequisite for winter tourism. Huge amounts of water are used for technical snow production by ski resorts, especially in the beginning of the winter season. The aim is to guarantee an appropriate amount of snow to reliably provide optimal ski runs until the date of season opening in early December. Technical snow is generated by pumping pressurized water through the nozzles of a snow machine and dispersing the resulting spray of small water droplets which freeze during their travel to the ground. Cooling and freezing of the droplets can only happen if energy is emitted to the air mass surrounding the droplets. This heat transfer is happening through convective cooling and though evaporation and sublimation of water droplets and ice particles. This means that also mass is lost from the droplets and added in form of vapor to the air. It is important to note that not all water that is pumped through the snow machine is converted to snow distributed on the ground. Significant amounts of water are lost due to wind drift, sublimation and evaporation while droplets are traveling through the air or to draining of water which is not fully frozen when arriving at the ground. Studies addressing this question are sparse and the quantity of the water losses is still unclear. In order to assess this question in more detail, we obtained several systematic field observations at a test site near Davos, Switzerland. About a dozen of snow making tests had been performed during the last winter seasons. We compare the amount of water measured at the intake of the snow machine with the amount of snow accumulating at the ground during a night of snow production. The snow mass was calculated from highly detailed repeated terrestrial laser scanning measurements in combination with manually gathered snow densities. In addition a meteorological station had been set up in the vicinity observing all relevant meteorological

  11. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil (United States)

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.


    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  12. Evaluation of alternative snow plow cutting edges. (United States)


    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  13. [Effects of different irrigation modes in winter wheat growth season on the grain yield and water use efficiency of winter wheat-summer maize]. (United States)

    Wang, Hai-xia; Li, Yu-yi; Ren, Tian-zhi; Pang, Huan-cheng


    Three irrigation modes in winter wheat growth season were carried out in Heilonggang basin of North China Plain to investigate their effects on the grain yield, water consumption, and water use efficiency (WUE) of winter wheat-summer maize. The three irrigation modes included irrigation before sowing (75 mm, W1), irrigation before sowing and at jointing stage (75 mm + 90 mm, W2), and irrigation before sowing, at jointing stage, and at filling stage (75 mm + 90 mm + 60 mm, W3). With the irrigation modes W2 and W3, the increment of the annual yield of winter wheat-summer maize was 8.7% and 12.5% higher than that with W1, respectively. The water consumption in winter wheat growth season decreased with increasing irrigation amount, while that in summer maize growth season increased with the increasing irrigation amount in winter wheat growth season. The WUE of winter wheat with the irrigation mode W2 was 11.1% higher than that with W3, but the WUE of summer maize had less difference between irrigation modes W2 and W3. The annual WUE (WUE(T)) of W2 and W1 was 21.28 and 21.60 kg(-1) x mm x hm(-2), being 7.8% and 9.4% higher than that of W3, respectively. Considering the annual yield, water consumption, and WUE, irrigation mode W2 could be the advisable mode for water-saving and high-yielding.

  14. Modelling of stream flow in snow dominated Budhigandaki ...

    Indian Academy of Sciences (India)


    at the downstream part of the basin. The catchment area experiences short winter monsoon between. Nov-Feb. Relative humidity reaches maximum during the monsoon season. The Himalayan zone contributes to the stream flow in the dry season by snow and ice melt. The Central Mahabharata zone, which account for the ...

  15. Winter is coming: nightmares and sleep problems during seasonal affective disorder. (United States)

    Sandman, Nils; Merikanto, Ilona; Määttänen, Hanna; Valli, Katja; Kronholm, Erkki; Laatikainen, Tiina; Partonen, Timo; Paunio, Tiina


    Sleep problems, especially nightmares and insomnia, often accompany depression. This study investigated how nightmares, symptoms of insomnia, chronotype and sleep duration associate with seasonal affective disorder, a special form of depression. Additionally, it was noted how latitude, a proxy for photoperiod, and characteristics of the place of residence affect the prevalence of seasonal affective disorder and sleep problems. To study these questions, data from FINRISK 2012 study were used. FINRISK 2012 consists of a random population sample of Finnish adults aged 25-74 years (n = 4905) collected during winter from Finnish urban and rural areas spanning the latitudes of 60°N to 66°N. The Seasonal Pattern Assessment Questionnaire was used to assess symptoms of seasonal affective disorder. Participants with symptoms of seasonal affective disorder had significantly increased odds of experiencing frequent nightmares and symptoms of insomnia, and they were more often evening chronotypes. Associations between latitude, population size and urbanicity with seasonal affective disorder symptoms and sleep disturbances were generally not significant, although participants living in areas bordering urban centres had less sleep problems than participants from other regions. These data show that the prevalence of seasonal affective disorder was not affected by latitude. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  16. How Well Are We Measuring Snow? The NOAA/FAA/NCAR Winter Precipitation Test Bed (United States)

    Baker, B.; Rasmussen, R.; Kochendorfer, J.; Meyers, T.; Nitu, R.; Paul, J.; Smith, C.; Yang, D.


    Precipitation is one of the most important atmospheric variables for ecosystems, hydrologic systems, climate, and weather forecasting. Despite its importance, accurate measurement remains challenging, and the lack of recent and complete inter-comparisons leads researchers to discount the importance and severity of measurement errors. These errors are exacerbated for the automated measurement of solid precipitation and underestimates of 20-50% are common. While solid precipitation measurements have been the subject of many studies, there have been only a limited number of coordinated assessments on the accuracy, reliability, and repeatability of automatic precipitation measurements. The most recent comprehensive study, the "WMO Solid Precipitation Measurement Inter-comparison" focused on manual techniques of solid precipitation measurement. Precipitation gauge technology has changed considerably in the last 12 years and the focus has shifted to automated techniques. Given the strong need for automated solid precipitation data from both the climate and weather communities, and the widely varying catch efficiencies of the various instruments, inter-comparison studies are needed. The World Meteorological Organization Committee on Meteorological Instruments and Observations (WMO-CIMO) is organizing a Solid Precipitation Inter-comparison Experiment (WMO-SPICE) focused on automatic precipitation gauges and their configurations, in various climate conditions, building on the significant efforts currently underway in many countries. The inter-comparison will aim at understanding and improving our ability to reliably measure solid precipitation using automatic gauges. The study will take place starting in 2012 at sites around the world including the US, Norway, China, Canada, Japan, Switzerland, Russia, Finland and New Zealand. The NOAA /FAA/NCAR precipitation test bed in Marshall, CO. in partnership with Environment Canada will collect data during the winter of 2011/2012 to

  17. To Everything There Is a Season: Summer-to-Winter Food Webs and the Functional Traits of Keystone Species. (United States)

    Humphries, Murray M; Studd, Emily K; Menzies, Allyson K; Boutin, Stan


    From a trophic perspective, a seasonal increase in air temperature and photoperiod propagates as bottom-up pulse of primary production by plants, secondary production by herbivores, and tertiary production by carnivores. However, food web seasonality reflects not only abiotic variation in temperature and photoperiod, but also the composition of the biotic community and their functional responses to this variation. Some plants and animals-here referred to as seasonal specialists-decouple from food webs in winter through migration or various forms of metabolic arrest (e.g., senescence, diapause, and hibernation), whereas some plants and resident animals-here referred to as seasonal generalists-remain present and trophically coupled in winter. The co-occurrence of species with divergent responses to winter introduces seasonal variation in interaction strengths, resulting in summer-to-winter differences in trophic organization. Autumn cooling and shortening day length arrests primary productivity and cues seasonal herbivores to decouple, leaving generalist carnivores to concentrate their predation on the few generalist herbivores that remain resident, active, and vulnerable to predation in winter, which themselves feed on the few generalist plant structures available in winter. Thus, what was a bottom-up pulse, spread among many species in summer, including highly productive seasonal specialists, reverses into strong top-down regulation in winter that is top-heavy, and concentrated among a small number of generalist herbivores and their winter foods. Intermediate-sized, generalist herbivores that remain active and vulnerable to predation in winter are likely to be keystone species in seasonal food webs because they provide the essential ecosystem service of turning summer primary productivity into winter food for carnivores. Empirical examination of terrestrial mammals and their seasonal trophic status in the boreal forest and across an arctic-to-tropics seasonality

  18. Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle

    Directory of Open Access Journals (Sweden)

    O. Meinander


    Full Text Available We have measured spectral albedo, as well as ancillary parameters, of seasonal European Arctic snow at Sodankylä, Finland (67°22' N, 26°39' E. The springtime intensive melt period was observed during the Snow Reflectance Transition Experiment (SNORTEX in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed albedo values of ~0.5–0.7 for the ultraviolet and visible range, both under clear sky and variable cloudiness. During the most intensive snowmelt period of four days, albedo decreased from 0.65 to 0.45 at 330 nm, and from 0.72 to 0.53 at 450 nm. In the literature, the UV and VIS albedo for clean snow are ~0.97–0.99, consistent with the extremely small absorption coefficient of ice in this spectral region. Our low albedo values were supported by two independent simultaneous broadband albedo measurements, and simulated albedo data. We explain the low albedo values to be due to (i large snow grain sizes up to ~3 mm in diameter; (ii meltwater surrounding the grains and increasing the effective grain size; (iii absorption caused by impurities in the snow, with concentration of elemental carbon (black carbon in snow of 87 ppb, and organic carbon 2894 ppb, at the time of albedo measurements. The high concentrations of carbon, detected by the thermal–optical method, were due to air masses originating from the Kola Peninsula, Russia, where mining and refining industries are located.

  19. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover (United States)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.


    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  20. Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles). (United States)

    McClune, David W; Kostka, Berit; Delahay, Richard J; Montgomery, W Ian; Marks, Nikki J; Scantlebury, David M


    Resting metabolic rate (RMR) is a measure of the minimum energy requirements of an animal at rest, and can give an indication of the costs of somatic maintenance. We measured RMR of free-ranging European badgers (Meles meles) to determine whether differences were related to sex, age and season. Badgers were captured in live-traps and placed individually within a metabolic chamber maintained at 20 ± 1°C. Resting metabolic rate was determined using an open-circuit respirometry system. Season was significantly correlated with RMR, but no effects of age or sex were detected. Summer RMR values were significantly higher than winter values (mass-adjusted mean ± standard error: 2366 ± 70 kJ⋅d(-1); 1845 ± 109 kJ⋅d(-1), respectively), with the percentage difference being 24.7%. While under the influence of anaesthesia, RMR was estimated to be 25.5% lower than the combined average value before administration, and after recovery from anaesthesia. Resting metabolic rate during the autumn and winter was not significantly different to allometric predictions of basal metabolic rate for mustelid species weighing 1 kg or greater, but badgers measured in the summer had values that were higher than predicted. Results suggest that a seasonal reduction in RMR coincides with apparent reductions in physical activity and body temperature as part of the overwintering strategy ('winter lethargy') in badgers. This study contributes to an expanding dataset on the ecophysiology of medium-sized carnivores, and emphasises the importance of considering season when making predictions of metabolic rate.

  1. Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: Evidence from fresh snow from Sapporo, northern Japan (United States)

    Yamamoto, Shinya; Kawamura, Kimitaka; Seki, Osamu


    Molecular distributions of terrestrial biomarkers were investigated in fresh snow samples from Sapporo, northern Japan, to better understand the long-range atmospheric transport of terrestrial organic matter by the Asian winter monsoon. Stable carbon (δ 13C) and hydrogen (δD) isotope ratios of C 22-C 28n-alkanoic acids were also measured to decipher their source regions. The snow samples are found to contain higher plant-derived n-alkanes, n-alkanols and n-alkanoic acids as major components. Relative abundances of these three biomarker classes suggest that they are likely derived from higher plants in the Asian continent. The C 27/C 31 ratios of terrestrial n-alkanes in the snow samples range from 1.3 to 5.5, being similar to those of the plants growing in the latitudes >40°N of East Asia. The δ 13C values of the n-alkanoic acids in the snow samples (-33.4 to -27.6‰) are similar to those of typical C 3 gymnosperm from Sapporo (-34.9 to -29.3‰). However, the δD values of the n-alkanoic acids (-208 to -148‰) are found to be significantly depleted with deuterium (by ˜72‰) than those of plant leaves from Sapporo. Such depletion can be most likely interpreted by the long-range atmospheric transport of the n-alkanoic acids from vegetation in the latitudes further north of Sapporo because the δD values of terrestrial higher plants tend to decrease northward in East Asia reflecting the δD of precipitation. Together with the results of backward trajectory analyses, this study suggests that the terrestrial biomarkers in the Sapporo snow samples are likely transported from Siberia, Russian Far East and northeast China to northern Japan by the Asian winter monsoon.

  2. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia

    International Nuclear Information System (INIS)

    Walker, T.R.; Crittenden, P.D.; Young, S.D.


    The chemistry of winter snow pack and terricolous lichens indicate pollution distribution in Arctic Russia. - The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g -1 at 90 km south to 0.43 mmol N g -1 at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha -1 at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO 4 2- , Ca 2+ , K + ) and pH of snow, and modified N concentration and the concentration ratios K + :Mg 2+ and K + : (Mg 2+ +Ca 2+ ) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 μmol l -1 at remote sites to ca. 19 μmol l -1 near Vorkuta. Nitrate concentration in snow (typically ca. 9 μmol l -1 ) did not vary with proximity to perceived pollution sources

  3. Impacts of +2 °C global warming on winter tourism demand in Europe

    NARCIS (Netherlands)

    Damm, Andrea; Greuell, Wouter; Landgren, Oskar; Prettenthaler, Franz


    Increasing temperatures and snow scarce winter seasons challenge the winter tourism industry. In this study the impacts of +2 °C global warming on winter tourism demand in Europe's ski tourism related NUTS-3 regions are quantified. Using time series regression models, the relationship between

  4. Geophysical investigations of underplating at the Middle American Trench, weathering in the critical zone, and snow water equivalent in seasonal snow (United States)

    St. Clair, James

    indicate that to a first order, the permeability structure of the CZ can be predicted with knowledge of the regional tectonic stress field and local topography. In landscapes characterized by strongly compressive tectonic stresses or closely space ridges and valleys, deep zones of permeable bedrock are found beneath ridges, while the depth to impermeable bedrock beneath drainages is comparatively shallow. In landscapes characterized by weakly compressive tectonic stresses or widely spaced ridges and valleys, the depth to impermeable bedrock is approximately uniform throughout the landscape. In Chapter 3, a semi-automated method of estimating snow water equivalent (SWE) in seasonal snow packs from common offset Ground Penetrating Radar (GPR) data is presented. Many mountainous regions of the world depend on seasonal snow for fresh water resources. Water forecasting relies principally on historical records that relate SWE observations at a limited number of locations to stream discharge. As climate change contributes to a wider range of variability in seasonal snow fall, water forecasts are likely to become less reliable, thus there is a need to find new methods of estimating how much water is stored in seasonal snow. GPR has been shown to be an effective tool for measuring SWE if the radar velocity can be measured. In this chapter, a method that was originally developed to measure seismic velocities from zero-offset seismic reflection data is applied to common-offset GPR data collected over seasonal snow. The method involves suppressing continuous reflections in the image so that the velocity information contained in diffracted energy can be exploited. The filtered images are migrated through a suite of velocities and the velocity that best focus the diffracted energy is chosen on the basis of the varimax norm, which measures how peaked the energy distribution is. GPR derived SWE estimates agree with manual measurements within the uncertainty bounds of both methods. In

  5. In-transit development of color abnormalities in turkey breast meat during winter season


    Carvalho, Rafael H.; Honorato, Danielle C. B.; Guarnieri, Paulo D.; Soares, Adriana L.; Pedrão, Mayka R.; Oba, Alexandre; Paião, Fernanda G.; Ida, Elza I.; Shimokomaki, Massami


    Background The poultry industry suffers losses from problems as pale, soft and exudative (PSE), and dark, firm and dry (DFD) meat can develop in meat as a result of short- and long-term stress, respectively. These abnormalities are impacted by pre-slaughter animal welfare. Methods This work evaluated the effects of open vehicle container microclimate, throughout the 38 ± 10 km journey from the farm to the slaughterhouse, on commercially turkey transported during the Brazilian winter season. T...



    Şen Özdemir, Nurgül; Caf, Fatma


    In this study was carried out winter season in 2011; zooplankton faunaof the Bingol Floating Islands. To­tally 18 zooplankton species were determinedas fol­lows; 14 Rotifera, 3 Cladocera and 1 Copepoda. It was determined thatthis zooplanktonic organisms consist­ed of 87.74 % Rotifera, 6.83 % Cladocera, and3.36 %  copepodit stages, 2.07 %  nauplii of copepoda. Rotif­era were thedominant group with regard to both spe­cies numbers, and individual numbers ofspecies. Cy­clops vicinus from Copepoda...

  7. Hydrological scenarios for two selected Alpine catchments for the 21st century using a stochastic weather generator and enhanced process understanding for modelling of seasonal snow and glacier melt for improved water resources management (United States)

    Strasser, Ulrich; Schneeberger, Klaus; Dabhi, Hetal; Dubrovsky, Martin; Hanzer, Florian; Marke, Thomas; Oberguggenberger, Michael; Rössler, Ole; Schmieder, Jan; Rotach, Mathias; Stötter, Johann; Weingartner, Rolf


    The overall objective of HydroGeM³ is to quantify and assess both water demand and water supply in two coupled human-environment mountain systems, i.e. Lütschine in Switzerland and Ötztaler Ache in Austria. Special emphasis is laid on the analysis of possible future seasonal water scarcity. The hydrological response of high Alpine catchments is characterised by a strong seasonal variability with low runoff in winter and high runoff in spring and summer. Climate change is expected to cause a seasonal shift of the runoff regime and thus it has significant impact on both amount and timing of the release of the available water resources, and thereof, possible future water conflicts. In order to identify and quantify the contribution of snow and ice melt as well as rain to runoff, streamflow composition will be analysed with natural tracers. The results of the field investigations will help to improve the snow and ice melt and runoff modules of two selected hydrological models (i.e. AMUNDSEN and WaSiM) which are used to investigate the seasonal water availability under current and future climate conditions. Together, they comprise improved descriptions of boundary layer and surface melt processes (AMUNDSEN), and of streamflow runoff generation (WaSiM). Future meteorological forcing for the modelling until the end of the century will be provided by both a stochastic multi-site weather generator, and downscaled climate model output. Both approches will use EUROCORDEX data as input. The water demand in the selected study areas is quantified for the relevant societal sectors, e.g. agriculture, hydropower generation and (winter) tourism. The comparison of water availability and water demand under current and future climate conditions will allow the identification of possible seasonal bottlenecks of future water supply and resulting conflicts. Thus these investigations can provide a quantitative basis for the development of strategies for sustainable water management in

  8. Assessing Snow Water Equivalent (SWE) storage and seasonal melting in High Mountain Asia using passive microwave data (United States)

    Brandt, T.; Bookhagen, B.; Dozier, J.


    High Mountain Asia (HMA) contains the world's tallest peaks, and stores the largest quantity of snow and ice barring Earth's Polar Regions. The water derived from these mountains, whether from rain, snow or ice, is critical for the water supply of Central Asia, of which half the world's people are reliant. Consequently, climate change could have serious implications for Central Asia water resource security and regional stability. Seasonal snow represents a substantial part of the HMA hydrological budget. This is especially the case for western HMA where snowmelt can contribute in excess of 40% of the annual river discharge. Nevertheless the magnitude and spatiotemporal distribution of HMA snow is essentially an unknown. In principle, this is due to an insufficient number of surface stations. As a result, knowledge gained through remotely sensed observations of mountain snows could greatly enhance water resource planning and regional precipitation models. Since November 1978, passive microwave radiometers aboard satellites have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of passive microwave radiometers to directly measure SWE, and at a high temporal frequency during the day or night, offers some distinct advantages over optical remote sensors. Therefore, between 1979 and 2013, we used passive microwave observations to measure the magnitude, and spatiotemporal distribution of SWE throughout HMA. Our principal goals were: 1) to compare the rank order of observed discharge for individual watersheds with that of their observed SWE; 2) to observe any changes in the spatial temporal distribution of SWE that may have occurred as a result of changes in climate; and 3) to assess the contribution of SWE to the major river basins of HMA. We used pre-processed SWE products from the National Snow and Ice Data Center (NSIDC) and developed our own calibrated products for comparison purposes using atmospherically corrected

  9. Observed decreases in the Canadian outdoor skating season due to recent winter warming

    International Nuclear Information System (INIS)

    Damyanov, Nikolay N; Mysak, Lawrence A; Damon Matthews, H


    Global warming has the potential to negatively affect one of Canada’s primary sources of winter recreation: hockey and ice skating on outdoor rinks. Observed changes in winter temperatures in Canada suggest changes in the meteorological conditions required to support the creation and maintenance of outdoor skating rinks; while there have been observed increases in the ice-free period of several natural water bodies, there has been no study of potential trends in the duration of the season supporting the construction of outdoor skating rinks. Here we show that the outdoor skating season (OSS) in Canada has significantly shortened in many regions of the country as a result of changing climate conditions. We first established a meteorological criterion for the beginning, and a proxy for the length of the OSS. We extracted this information from daily maximum temperature observations from 1951 to 2005, and tested it for significant changes over time due to global warming as well as due to changes in patterns of large-scale natural climate variability. We found that many locations have seen a statistically significant decrease in the OSS length, particularly in Southwest and Central Canada. This suggests that future global warming has the potential to significantly compromise the viability of outdoor skating in Canada. (letter)

  10. Study on Assessment Model of Classification for Snow Disasters in Tibet Plateau (United States)

    Jia, L., Sr.; Xiao, T.; Wang, C.; Du, J.; Chen, D.; Zhou, Z.


    Based on Tibetan Plateau snow observation data from 39 meteorological stations during 1979-2013, we found 4 indexes for assessment model, as snow depth, the max snow depth, snow cover areas and snow duration respectively. The recurrence period of snow disasters and event distance function were calculated by normal probability density function. And the assessment model classification for snow disasters was also studied. The main contents of this research are summarized as follows: (1) The assessment model of classification for Snow Disasters was build. The snow depth, the max snow depth, snow cover areas and snow duration were selected as indexes for model, and the standard of Classification was found. The four indexes form the evaluation vector, thus euclidean distance was calculated to classify the snow disasters form the first to fifth class snow disaster. (2) The assessment of snow disasters was studied. In 370 cases of heavy snowfall in four seasons, the first class snow disaster occurred 257 times, and 69.46% of the whole cases. The second to fourth class snow disaster occurred 22.44%, 4.05% respectively. The probability of snow disaster is highest in spring, and the probability is similar in autumn and winter. (3) The average of snow depth in the fourth class snow disaster was 2.56cm, the max of snow depth is 7.45cm, the snow cover areas is 0.17 and snow duration is 57.2d. There are 4, 7, 4 times of the fourth class snow disaster in 1980s, 1990s, 2000s respectively, and 9 times occurred in winter. In December 1981, there was the fourth class snow disaster lasted for three months. During 2006-2013, up to the third class snow disaster were occurred every year, and the fourth class snow disaster occurred 4 times. In 21st century, although the times of the class snow disaster was descend, but it still has hugely damages at plateau areas. Key words: Snow Disasters; Tibet plateau; Classification; Assessment Model Acknowledgements: This study was supported by

  11. An attempt to monitor liquid water content in seasonal snow using capacitance probes (United States)

    Avanzi, Francesco; Caruso, Marco; Jommi, Cristina; De Michele, Carlo; Ghezzi, Antonio


    Liquid water dynamics in snow are a key factor in wet snow avalanche triggering, in ruling snowmelt runoff timing and amounts, and in remote sensing interpretation. It follows that a continuous-time monitoring of this variable would be very desirable. Nevertheless, such an operation is nowadays hampered by the difficulty in obtaining direct, precise and continuous-time measurements of this quantity without perturbing the snowpack itself. As a result, only a few localized examples exist of continuous-time measurements of this variable. In this framework, we tried to get undisturbed measurements of liquid water content using capacitance probes. These instruments were originally designed to obtain liquid water content data in soils. After being installed on a support and driven in the snow, they include part of the medium under investigation in a LC circuit. The resonant frequency of the circuit depends on liquid water content, hence its measurement. To test these sensors, we designed two different field surveys (in April 2013 and April 2014) at a medium elevation site (around 1980 m a.s.l.). In both the cases, a profile of sensors was inserted in the snowpack, and undisturbed measurements of liquid water content were obtained using time-domain-reflectometry based devices. To assist in the interpretation of the readings from these sensors, some laboratory tests were run, and a FEM model of a sensor was implemented. Results show that sensors are sensitive to increasing liquid water content in snow. Nonetheless, long-term tests in snow cause the systematic development of an air gap between the instrument and the surrounding snow, that hampers the interpretation. Perspectives on future investigation are discussed to bring the proposed procedure towards long-term applications in snowpacks.

  12. Building a Cloud-based Global Snow Observatory (United States)

    Li, X.; Coll, J. M.


    Snow covers some 40 percent of Earth's land masses year in and year out and constitutes a vitally important variable for the planet's climate, hydrology, and biosphere due to its high albedo and insulation. It affects atmospheric circulation patterns, permafrost, glacier mass balance, river discharge, and groundwater recharge (Dietz et al. 2015). Snow is also nature's igloo where species from microscopic fungi to 800-pound moose survive the winter each in its own way (Pauli et al. 2013; Petty et al. 2015). Many studies have found that snow in high elevation regions is particularly sensitive to global climate change and is considered as sentinel of change. For human beings, about one-sixth of the world's population depends on seasonal snow and glaciers for their water supply (Barnett et al. 2005) and more than 50% of mountainous areas have an essential or supportive role for downstream regions (Viviroli et al. 2007). Large snowstorms also have a major impact on society in terms of human life, economic loss, and disruption (Squires et al. 2014). Remote sensing provides a practical approach of monitoring global snow and ice cover change. Based on our comprehensive validation and assessment on MODIS snow products, we build a cloud-based Global Snow Observatory (GSO) using Google Earth Engine (GEE) to serve as a platform for global researchers and the general public to access, visualize, and analyze snow data and to build snowmelt runoff models for mountain watersheds. Specifically, we build the GSO to serve global MODIS daily snow cover data and their analyses through GEE on Google App Engine. The GSO provides users the functions of accessing and extracting cloud-gap-filled snow data and interactive snow cover change exploration. In addition to snow cover frequency (SCF), we also plan to develop several other snow cover parameters, including snow cover duration/days, snow cover onset dates, and snow cover melting dates, and to study the shift and trend of global snow

  13. A trial of cross-disciplinary classes at the university and the high school on the seasonal transition and the seasonal feeling from autumn to winter in East Asia (joint activity of meteorology with Japanese classical literature, music and art) (United States)

    Kato, K.; Sato, S.; Kato, H.; Akagi, R.; Sueishi, N.; Mori, T.; Nakakura, T.; Irie, I.


    There are many steps of the rapid seasonal transitions in East Asia influenced by the seasonal cycle of the Asian monsoon system, resulting in the variety of "seasonal feeling" there. For example, the extremely cold air flowing from the Siberian continent to the Japan Islands is transformed by the huge supply of heat and moisture from the underlying sea (the Japan Sea) in midwinter, which brings the large amount of snowfall in the Japan Sea side of the Japan Islands. However, although the air temperature there is still rather higher from November to early December than in the midwinter, such wintertime weather pattern often appears due to the early development of the Siberian high (however, the precipitation is brought not as in snow but as rain). The intermittent rainfall in such situation due to the shallow cumulus clouds from late autumn to early winter is called the word "Shi-gu-re" in Japanese. It is also well known that the "Shi-gu-re" is often used for expression of the "seasonal feeling" in the Japanese classical literature (especially we can see in the Japanese classic poems called "Wa-Ka"). The present study reports a trial of cross-disciplinary class on the seasonal cycle in East Asia in association with the "seasonal feeling" from autumn to winter, by the joint activity of meteorology with the Japanese classical literature, the music, and the art. Firstly, we will summarize the characteristics of the large-scale climate systems and the daily weather situations from autumn to winter. We will also introduce some examples of the expression of the weather situation found in the Japanese classical poems. Next the outline of the cross-disciplinary classes on such topics at the Faculty of Education, Okayama University, and those at Okayama-Ichinomiya High School and Attached Junior High School of Okayama University will be presented together with the analyses of these practices. We should note that the present trial of the classes might also contribute to

  14. Intense seasonal A/H1N1 influenza in Mexico, winter 2013-2014. (United States)

    Dávila-Torres, Javier; Chowell, Gerardo; Borja-Aburto, Víctor H; Viboud, Cécile; Grajalez-Muñiz, Concepción; Miller, Mark A


    A recrudescent wave of pandemic influenza A/H1N1 affected Mexico during the winter of 2013-2014 following a mild 2012-2013 A/H3N2 influenza season. We compared the demographic and geographic characteristics of hospitalizations and inpatient deaths for severe acute respiratory infection (SARI) and laboratory-confirmed influenza during the 2013-2014 influenza season compared to previous influenza seasons, based on a large prospective surveillance system maintained by the Mexican Social Security health care system. A total of 14,236 SARI hospitalizations and 1,163 inpatient deaths (8.2%) were reported between October 1, 2013 and March 31, 2014. Rates of laboratory-confirmed A/H1N1 hospitalizations and deaths were significantly higher among individuals aged 30-59 years and lower among younger age groups for the 2013-2014 A/H1N1 season compared to the previous A/H1N1 season in 2011-2012 (χ(2) test, p influenza season in central Mexico was estimated at 1.3-1.4, in line with that reported for the 2011-2012 A/H1N1 season but lower than during the initial waves of pandemic A/H1N1 activity in 2009. We documented a substantial increase in the number of A/H1N1-related hospitalizations and deaths during the period from October 2013-March 2014 in Mexico and a proportionate shift of severe disease to middle-aged adults, relative to the preceding A/H1N1 2011-2012 season. In the absence of clear antigenic drift in globally circulating A/H1N1 viruses in the post-2009 pandemic period, the gradual change in the age distribution of A/H1N1 infections observed in Mexico suggests a slow build-up of immunity among younger populations, reminiscent of the age profile of past pandemics. Copyright © 2015 IMSS. All rights reserved.

  15. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia (United States)

    Zhang, Yinsheng; Ma, Ning


    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE

  16. Analyses of newly digitised and reconstructed snow series over the last 100+ years in Switzerland (United States)

    Scherrer, S. C.; Wüthrich, C.; Croci-Maspoli, M.; Appenzeller, C.


    Snow is an important socio-economic factor in the Swiss Alpine region (tourism, hydro-electricity, drinking water) and responsible for considerable natural hazards such as avalanches. In addition, high-quality long-term snow series can be used as an excellent indicator of climate change. The objectives of this study are threefold. First, suitable long-term snow series from different altitudes and regions in Switzerland have been selected, missing data digitized and the entire series quality checked. Second, the long-term snow series have been used for trend analyses over a time period >100 years. Third, snow depth series have been reconstructed using daily new snow, temperature and precipitation as input variables. This made it possible to analyse snow depth related variables such as days with snow pack. Results show that the snow cover is varying substantially on seasonal and decadal time scales. The analyses of the decadal new snow trends during the last 100 years shows unprecedented low new snow sums in the winter seasons (DJF) of the 1990s. The 100 year trend of days with snow pack reveals a significant decrease for stations below 800 m asl in the winter season (DJF) and for stations around 1800 m asl in spring (MAM). Similar results were found for seasonal new snow sums. The results of the trend analyses are also discussed with respect to temperature and precipitation trends. Finally we will also shortly discuss how especially "precious" snow measurements have been identified and incorporated in a National Basic Climatological Network (NBCN) as well as in the Global Climate Observing System (GCOS).

  17. Winter electricity supply and seasonal storage deficit in the Swiss Alps (United States)

    Manso, Pedro; Monay, Blaise; Dujardin, Jérôme; Schaefli, Bettina; Schleiss, Anton


    Switzerland electricity production depends at 60% on hydropower, most of the remainder coming from nuclear power plants. The ongoing energy transition foresees an increase in renewable electricity production of solar photovoltaic, wind and geothermal origin to replace part of nuclear production; hydropower, in its several forms, will continue to provide the backbone and the guarantee of the instantaneous and permanent stability of the electric system. One of the key elements of any future portfolio of electricity mix with higher shares of intermittent energy sources like wind and solar are fast energy storage and energy deployment solutions. Hydropower schemes with pumping capabilities are eligible for storage at different time scales, whereas high-head storage hydropower schemes have already a cornerstone role in today's grid operation. These hydropower storage schemes have also been doing what can be labelled as "seasonal energy storage" in different extents, storing abundant flows in the wet season (summer) to produce electricity in the dry (winter) alpine season. Some of the existing reservoirs are however under sized with regards to the available water inflows and either spill over or operate as "run-of-the-river" which is economically suboptimal. Their role in seasonal energy transfer could increase through storage capacity increase (by dam heightening, by new storage dams in the same catchment). Inversely, other reservoirs that already store most of the wet season inflow might not fill up in the future in case inflows decrease due to climate changes; these reservoirs might then have extra storage capacity available to store energy from sources like solar and wind, if water pumping capacity is added or increased. The present work presents a comprehensive methodology for the identification of the seasonal storage deficit per catchment considering todays and future hydrological conditions with climate change, applied to several landmark case studies in

  18. Exceptional influenza morbidity in summer season of 2017 in Israel may predict the vaccine efficiency in the coming winter. (United States)

    Pando, Rakefet; Sharabi, Sivan; Mandelboim, Michal


    Influenza infections are the leading cause of respiratory viral infections worldwide, and are mostly common in the winter season. The seasonal influenza vaccine is currently the most effective preventive modality against influenza infection. Immediately following each winter season the World Health Organization (WHO) announces the vaccine composition for the following winter. Unexpectedly, during the summer of 2017, in Israel, we observed in hospitalized patients, an exceptionally high numbers of Influenza positive cases. The majority of the influenza B infections were caused by influenza B/Yamagata lineage, which did not circulate in Israel in the previous winter, and most of the influenza A infections were caused by influenza A/H3N2, a strain similar to the strain that circulated in Israel in the previous winter. We therefore predict that these two viruses will circulate in the coming winter of 2017/18 and that the trivalent vaccine, which includes antigenically different viruses will be inefficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluation and Economic Value of Winter Weather Forecasts


    Snyder, Derrick William


    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of ...

  20. Vitamin D provision in children of different age groups during the winter season

    Directory of Open Access Journals (Sweden)

    S. V. Maltsev


    Full Text Available The paper gives an update on the biological role of vitamin D in the human body, its metabolic pathways, and potential abnormalities resulting in reduced provision.Objective: to determine vitamin D provision in the children of Kazan during the winter season.Examinations were made in 309 children, including 171 infants aged 1 month to 3 years and 138 children 6 to 18 years of age. Serum 25(OHD levels were determined by chemiluminescence immunoassay at the EFiS Research Center (Moscow. In infants under 3 years of age, the mean 25(OHD values were 18,2±1,0 ng/ml, while only 14,8% of the patients were found to have normal 25(OH D values of (more than 30 ng/ml and the rest had vitamin D metabolite insufficiency or deficiency. The winter vitamin D level was consistent with the normal ones in 11,2% of the schoolers, lower in 122 (88,8% children; the provision of vitamin D was at its deficiency level (less than 10 ng/ml in 33 (24% children. The findings suggest that it is necessary to prescribe vitamin D for all children under the age of 18 during winter and autumn. It is best to determine the initial level of the metabolite and to use its dose corresponding to that of vitamin D. 

  1. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza


    Full Text Available The change of grape (Vitis vinifera harvest from summer to winter through double pruning management has improved the fine wine quality in southern Brazil. High altitude, late cultivar and grafting combination all need to be investigated to optimize this new viticulture management. For this purpose, this study was carried out during the 2011 and 2012 growing seasons in a high altitude region of the state of Minas Gerais, Brazil, using eight grafting combinations for five year old Cabernet Sauvignon vines. The stem water potential, photosynthetic rate and stomatal conductance were not affected by rootstock type. The rootstocks IAC 766 and 101-14 induced, respectively, the highest and lowest vegetative vigor in Cabernet Sauvignon, as shown by leaf area and pruning weight. In the 2011 growing season, the leaf chlorophyll contents were increased in IAC 766, whereas vines grafted onto 101-14 accumulated more leaf starch, probably due to reduced vegetative and reproductive growth. In general, rootstocks K5BB, 1045P, SO4 and IAC 766 had the highest yield as compared to 1103P and 101-14. Berries from the grapevine with the highest yield did not differ in pH, total soluble solids and acidity. The rootstocks did not influence the anthocyanins and total phenols in both growing seasons. Quality parameters were better in the 2011 than in the 2012 growing season due to better climatic conditions, mainly less rainfall. The best performance of Cabernet Sauvignon was achieved when grafted onto K5BB, 1045P, SO4 and IAC 766 rootstocks.

  2. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts

    Directory of Open Access Journals (Sweden)

    Mirjam Münch


    Full Text Available Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In

  3. Prediction of the Arctic Oscillation in Boreal Winter by Dynamical Seasonal Forecasting Systems (United States)

    Kang, Daehyun; Lee, Myong-In; Im, Jungho; Kim, Daehyun; Kim, Hye-Mi; Kang, Hyun-Suk; Schubert, Siegfried D.; Arribas, Alberto; MacLachlan, Craig


    This study assesses the skill of boreal winter Arctic Oscillation (AO) predictions with state-of-the-art dynamical ensemble prediction systems (EPSs): GloSea4, CFSv2, GEOS-5, CanCM3, CanCM4, and CM2.1. Long-term reforecasts with the EPSs are used to evaluate how well they represent the AO and to assess the skill of both deterministic and probabilistic forecasts of the AO. The reforecasts reproduce the observed changes in the large-scale patterns of the Northern Hemispheric surface temperature, upper level wind, and precipitation associated with the different phases of the AO. The results demonstrate that most EPSs improve upon persistence skill scores for lead times up to 2 months in boreal winter, suggesting some potential for skillful prediction of the AO and its associated climate anomalies at seasonal time scales. It is also found that the skill of AO forecasts during the recent period (1997-2010) is higher than that of the earlier period (1983-1996).

  4. Seasonal prediction of winter extreme precipitation over Canada by support vector regression

    Directory of Open Access Journals (Sweden)

    Z. Zeng


    Full Text Available For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR (nonlinear and linear versions, nonlinear Bayesian neural network (BNN and multiple linear regression (MLR. The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern. The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN, and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.

  5. Precipitation in Madeira island and atmospheric rivers in the winter seasons (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor


    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  6. Comparative study of holt-winters triples exponential smoothing and seasonal Arima: Forecasting short term seasonal car sales in South Africa

    Directory of Open Access Journals (Sweden)

    Katleho Daniel Makatjane


    Full Text Available In this paper, both Seasonal ARIMA and Holt-Winters models are developed to predict the monthly car sales in South Africa using data for the period of January 1994 to December 2013. The purpose of this study is to choose an optimal model suited for the sector. The three error metrics; mean absolute error, mean absolute percentage error and root mean square error were used in making such a choice. Upon realizing that the three forecast errors could not provide concrete basis to make conclusion, the power test was calculated for each model proving Holt-Winters to having about 0.3% more predictive power. Empirical results also indicate that Holt-Winters model produced more precise short-term seasonal forecasts. The findings also revealed a structural break in April 2009, implying that the car industry was significantly affected by the 2008 and 2009 US financial crisis

  7. Soil Properties and Earthworm Population Dynamics Influenced by Organic Manure in Winter and Spring Seasons at Rampur, Chitwan, Nepal


    Roshan Babu Ojha; Shree Chand Shah; Keshab Raj Pande; Durga Datta Dhakal


    Two experiments were carried out in a Randomized Complete Block Design with six treatments (0, 10, 20, 30, 40, 50 Mg FYM ha-1) replicated four times at the horticultural farm, IAAS, Rampur, Chitwan, Nepal in winter (Oct-Jan) and spring (Feb-May) seasons to quantify optimum dose of organic manure (FYM) to maintain earthworm population and enhance soil properties. In each treatment 100 earthworms (Eisenia fetida) were inoculated within one square meter of each plot. Porosity in the first season...

  8. Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China

    International Nuclear Information System (INIS)

    Gao Zhiling; Yuan Huijun; Ma Wenqi; Liu Xuejun; Desjardins, R.L.


    Accurately determining methane emission factors of dairy herd in China is imperative because of China's large population of dairy cattle. An inverse dispersion technique in conjunction with open-path lasers was used to quantify methane emissions from a dairy feedlot during the fall and winter seasons in 2009-2010. The methane emissions had a significant diurnal pattern during both periods with three emission peaks corresponding to the feeding schedule. A 10% greater emission rate in the fall season was obtained most likely by the higher methane emission from manure during that period. An annual methane emission rate of 109 ± 6.7 kg CH 4 yr -1 characterized with a methane emission intensity of 32.3 ± 1.59 L CH 4 L -1 of milk and a methane conversion factor (Y m ) of 7.3 ± 0.38% for mature cattle was obtained, indicating the high methane emission intensity and low milk productivity in Northern China. - Highlights: → CH 4 emission from the feedlot in China was associated with clear diurnal pattern. → Methane conversion factor for mature cows in this feedlot was about 7.3%. → This feedlot was characterized with relatively high methane emission intensity. - High methane emission intensity and low milk productivity of Chinese dairy production are indicated.

  9. Population Study of Diabrotica speciosa (Ger. (Coleoptera: Chrysomelidae in Fall / Winter Season

    Directory of Open Access Journals (Sweden)

    Ventura Maurício Ursi


    Full Text Available Population studies of D. speciosa on fall / winter crops were conducted. Larvae were monitored on maize (Zea mays L., wheat (Triticum aestivum L. and black oats (Avena strigosa Schreb. and beetles on soybeans (Glycine max (L. Mill., maize, common beans (Phaseolus vulgaris L., wheat and black oats from March 23, 2001 to August 24, 2001. Soybean, maize, common beans, wheat and oats were sown on December 28, 2000; February 9, 2001; March 2, 2001; April 26, 2001 and May 11, 2001, respectively. Maize and common beans were grown on latter growing season. Adult beetles of D. speciosa were collected throughout the sampling period. Greatest beetles population peak occurred on wheat in August 3, 2001 which coincided with flowering period. Population dynamics of males and females was similar on common beans and soybeans. Females on maize predominate mostly after the first 30 days after the plant emergence (dae (before were not detected until about 45 dae. Males appeared to predominate during the flowering period. Similar population dynamics of males and females were found on wheat and black oats. Greatest peak of larvae occurred on maize roots. The growing season corn farm system was recently introduced, what probably explains the reports of increasing populations of adults during almost the whole year. Probable applications of the results are discussed.

  10. Snow impact on groundwater recharge in Table Mountain Group ...

    African Journals Online (AJOL)

    Snowmelt in the mountainous areas of the Table Mountain Group (TMG) in South Africa is believed to be one of sources of groundwater recharge in some winter seasons. This paper provides a scientific assessment of snow impact on groundwater recharge in Table Mountain Group Aquifer Systems for the first time.

  11. Influence of bird feces to water quality in paddy fields during winter season (United States)

    Somura, H.; Takeda, I.; Masunaga, T.; Mori, Y.; Ide, J.


    Thousands of migratory birds such as tundra swan came to the paddy fields for overwintering in recent years in the study area. They stayed in paddy fields during night time for sleeping and used around the fields as a feeding ground during day time. During the birds stay, it was observed that water pooled in the paddy fields gradually turned green and gave off a bad smell. In this study, we tried to estimate the influence of the bird’s feces to water quality in the paddy fields. The study area is in the southeastern portion of Matsue City in Shimane Prefecture, Japan. In several paddy fields, puddling procedure was executed after harvesting rice and then water was stored in the paddy fields during winter season. This is because of being easier of farming activities such as weeding next season and of avoiding using pesticide for weeding with rising of environmental awareness. Water in the paddy fields was collected once or twice a month from the target fields and analyzed nitrogen, phosphorus, and organic carbon in 2007. In the study in 2006, as water was sampled once a week and the changes in the water quality had been grasped, we paid attention to behavior of the birds in a day in the field investigation in 2007. The number of the birds was counted once an hour from visible 7 am to 6 pm once a month. In addition to this, fresh feces were sampled from the fields and analyzed the contents of nitrogen, phosphorus, and organic carbon in the feces. As results, average water qualities of TN, TP, and TOC from November 2007 to March 2008 showed very high concentrations compared with a river water concentration used as irrigation water. More than 70% of TN in the water was ammonia nitrogen. Moreover, comparing with a standard fertilizer amount of nitrogen and phosphorus for paddy fields during irrigation period, it was estimated that the amount of nitrogen excreted by the bird’s feces during the winter season was equivalent to the standard fertilizer amount and the

  12. Snow reliability in ski resorts considering artificial snowmaking (United States)

    Hofstätter, M.; Formayer, H.; Haas, P.


    Snow reliability is the key factor to make skiing on slopes possible and to ensure added value in winter tourism. In this context snow reliability is defined by the duration of a snowpack on the ski runs of at least 50 mm snow water equivalent (SWE), within the main season (Dec-Mar). Furthermore the snowpack should form every winter and be existent early enough in season. In our work we investigate the snow reliability of six Austrian ski resorts. Because nearly all Austrian resorts rely on artificial snowmaking it is of big importance to consider man made snow in the snowpack accumulation and ablation in addition to natural snow. For each study region observed weather data including temperature, precipitation and snow height are used. In addition we differentiate up to three elevations on each site (valley, intermediate, mountain top), being aware of the typical local winter inversion height. Time periods suitable for artificial snow production, for several temperature threshold (-6,-4 or -1 degree Celsius) are calculated on an hourly base. Depending on the actual snowpack height, man made snow can be added in the model with different defined capacities, considering different technologies or the usage of additives. To simulate natural snowpack accumulation and ablation we a simple snow model, based on daily precipitation and temperature. This snow model is optimized at each site separately through certain parameterization factors. Based on the local observations and the monthly climate change signals from the climate model REMO-UBA, we generate long term time series of temperature and precipitation, using the weather generator LARS. Thereby we are not only able to simulate the snow reliability under current, but also under future climate conditions. Our results show significant changes in snow reliability, like an increase of days with insufficient snow heights, especially at mid and low altitudes under natural snow conditions. Artificial snowmaking can partly

  13. Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts (United States)

    He, Qiong; Zuo, Zhiyan; Zhang, Renhe; Zhang, Ruonan


    The spring snow water equivalent (SWE) over Eurasia plays an important role in East Asian and Indian monsoon rainfall. This study evaluates the seasonal prediction capability of NCEP Climate Forecast System version 2 (CFSv2) retrospective forecasts (1983-2010) for the Eurasian spring SWE. The results demonstrate that CFSv2 is able to represent the climatological distribution of the observed Eurasian spring SWE with a lead time of 1-3 months, with the maximum SWE occurring over western Siberia and Northeastern Europe. For a longer lead time, the SWE is exaggerated in CFSv2 because the start of snow ablation in CFSv2 lags behind that of the observation, and the simulated snowmelt rate is less than that in the observation. Generally, CFSv2 can simulate the interannual variations of the Eurasian spring SWE 1-5 months ahead of time but with an exaggerated magnitude. Additionally, the downtrend in CFSv2 is also overestimated. Because the initial conditions (ICs) are related to the corresponding simulation results significantly, the robust interannual variability and the downtrend in the ICs are most likely the causes for these biases. Moreover, CFSv2 exhibits a high potential predictability for the Eurasian spring SWE, especially the spring SWE over Siberia, with a lead time of 1-5 months. For forecasts with lead times longer than 5 months, the model predictability gradually decreases mainly due to the rapid decrease in the model signal.

  14. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.


    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  15. In-transit development of color abnormalities in turkey breast meat during winter season. (United States)

    Carvalho, Rafael H; Honorato, Danielle C B; Guarnieri, Paulo D; Soares, Adriana L; Pedrão, Mayka R; Oba, Alexandre; Paião, Fernanda G; Ida, Elza I; Shimokomaki, Massami


    The poultry industry suffers losses from problems as pale, soft and exudative (PSE), and dark, firm and dry (DFD) meat can develop in meat as a result of short- and long-term stress, respectively. These abnormalities are impacted by pre-slaughter animal welfare. This work evaluated the effects of open vehicle container microclimate, throughout the 38 ± 10 km journey from the farm to the slaughterhouse, on commercially turkey transported during the Brazilian winter season. The journey was initiated immediately after water bath in truck fitted with portable Kestrel anemometers to measure air ventilation, relative humidity, temperature and ventilation. The inferior compartments of the middle and rear truck regions showed highest temperature and relative humidity, and lower air ventilation. In addition, the superior compartments of the front truck regions presented lower temperature and wind chill, and highest air ventilation. The breast meat samples from animals located at the inferior compartments of the middle and rear truck regions and subjected to with water bath (WiB) treatment presented highest DFD-like and had lowest PSE-like meat incidence than those from animals located at other compartments within the container. Lower incidence of PSE-like meat was observed in birds without water bath (WoB). Assessment on turkeys transported under Brazilian southern winter conditions revealed that breast meat quality can be affected by relative humidity, air ventilation, temperature, and transport under subtropical conditions promoting color abnormalities and the formation of simultaneously PSE-like and DFD-like meat.

  16. Breeding-season sympatry facilitates genetic exchange among allopatric wintering populations of Northern Pintails in Japan and California (United States)

    Flint, P.L.; Ozaki, K.; Pearce, J.M.; Guzzetti, B.; Higuchi, H.; Fleskes, J.P.; Shimada, T.; Derksen, D.V.


    The global redistribution of pathogens, such as highly pathogenic avian influenza, has renewed interest in the connectivity of continental populations of birds. Populations of the Northern Pintail (Anas acuta) wintering in Japan and California are considered separate from a management perspective. We used data from band recoveries and population genetics to assess the degree of biological independence of these wintering populations. Distributions of recoveries in Russia of Northern Pintails originally banded during winter in North America overlapped with distributions of Northern Pintails banded during winter in Japan. Thus these allopatric wintering populations are partially sympatric during the breeding season. The primary areas of overlap were along the Chukotka and Kamchatka peninsulas in Russia. Furthermore, band recoveries demonstrated dispersal of individuals between wintering populations both from North America to Japan and vice versa. Genetic analyses of samples from both wintering populations showed little evidence of population differentiation. The combination of banding and genetic markers demonstrates that these two continental populations are linked by low levels of dispersal as well as likely interbreeding in eastern Russia. Although the levels of dispersal are inconsequential for population dynamics, the combination of dispersal and interbreeding represents a viable pathway for exchange of genes, diseases, and/or parasites. ?? The Cooper Ornithological Society 2009.

  17. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev


    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  18. Distributed calibrating snow models using remotely sensed snow cover information (United States)

    Li, H.


    Distributed calibrating snow models using remotely sensed snow cover information Hongyi Li1, Tao Che1, Xin Li1, Jian Wang11. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China For improving the simulation accuracy of snow model, remotely sensed snow cover data are used to calibrate spatial parameters of snow model. A physically based snow model is developed and snow parameters including snow surface roughness, new snow density and critical threshold temperature distinguishing snowfall from precipitation, are spatially calibrated in this study. The study region, Babaohe basin, located in northwestern China, have seasonal snow cover and with complex terrain. The results indicates that the spatially calibration of snow model parameters make the simulation results more reasonable, and the simulated snow accumulation days, plot-scale snow depth are more better than lumped calibration.

  19. Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves

    Directory of Open Access Journals (Sweden)

    Gunter Stacey A


    Full Text Available Abstract In December of 3 years, 87 beef cows with nursing calves (594 ± 9.8 kg; calving season, September to November at side were stratified by body condition score, body weight, cow age, and calf gender and divided randomly into 6 groups assigned to 1 of 6 cool-season annual pastures (0.45 ha/cow that had been interseeded into a dormant common bermudagrass (Cynodon dactylon [L.] Pers./bahiagrass (Paspalum notatum Flugge sod. Pastures contained 1 of the following 3 seeding mixtures (2 pastures/mixture: 1 wheat (Triticum aestivum L. and ryegrass (Lolium multiflorum Lam., WRG, 2 wheat and ryegrass plus red clover (Trifolium pretense L., WRR, or 3 wheat and ryegrass plus white (Trifolium repens L. and crimson clovers (Trifolium incarnatum L., WRW. All groups had ad libitum access to grass hay (12% crude protein; 58% total digestible nutrients. The second week in December, cow estrous cycles were synchronized and artificially inseminated. In late December, a bull was placed with each group for 60-d. Data were analyzed with an analysis of variance using a mixed model containing treatment as the fixed effect and year as the random effect. Body weight and condition scores did not differ (P ≥ 0.27 among cows between February and June. Calf birth weights or average daily gain did not differ (P ≥ 0.17 among treatments; however, calves grazing pastures with clovers did tend (P = 0.06 to weigh more than calves grazing grass only. Weaning weight per cow exposed to a bull was greater (P = 0.02 for WRR and WRW than WRG. Cows grazing winter-annual pastures containing clovers tended to wean more calf body weight per cow exposed to a bull than cows grazing the grass only pastures.

  20. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100 (United States)

    Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.


    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  1. A mass balance approach to the fate of viruses in a municipal wastewater treatment plant during summer and winter seasons. (United States)

    Ulbricht, Katharina; Selinka, Hans-Christoph; Wolter, Stefanie; Rosenwinkel, Karl-Heinz; Nogueira, Regina


    In contrast to previous discussion on general virus removal efficiency and identifying surrogates for human pathogenic viruses, this study focuses on virus retention within each step of a wastewater treatment plant (WWTP). Additionally, the influence of weather conditions on virus removal was addressed. To account for the virus retention, this study describes a mass balance of somatic coliphages (bacterial viruses) in a municipal WWTP, performed in the winter and summer seasons of 2011. In the winter season, the concentration of coliphages entering the WWTP was about 1 log lower than in summer. The mass balance in winter revealed a virus inactivation of 85.12 ± 13.97%. During the summer season, virus inactivation was significantly higher (95.25 ± 3.69%, p-value virus removal in the secondary clarifier by insolation. Thus, a total removal of coliphages of about 2.78 log units was obtained in summer compared to 1.95 log units in winter. Rainfall events did not statistically correlate with the concentrations of coliphages entering the WWTP in summer.

  2. Does outdoor work during the winter season protect against depression and mood difficulties?

    DEFF Research Database (Denmark)

    Hahn, Ina H; Grynderup, Matias; Dalsgaard, Sofie B


    At temperate latitudes, 1-5% of the population suffer from winter depression; during winter, mood difficulties tend to increase but may be alleviated by bright light therapy. Unlike indoor workers, outdoor workers are exposed to therapeutic levels of sunlight during winter. We hypothesized that o...

  3. Does outdoor work during the winter season protect against depression and mood difficulties?

    DEFF Research Database (Denmark)

    Hahn, Ina H; Grynderup, Matias Brødsgaard; Dalsgaard, Sofie B


    At temperate latitudes, 1-5% of the population suffer from winter depression; during winter, mood difficulties tend to increase but may be alleviated by bright light therapy. Unlike indoor workers, outdoor workers are exposed to therapeutic levels of sunlight during winter. We hypothesized...... that outdoor work may protect against mood difficulties and depression....

  4. Modeling of Nitrate Leaching during the Fall–Winter Season in Artificially Drained Soils

    Directory of Open Access Journals (Sweden)

    Alaa El-Sadek


    Full Text Available The nitrogen processes that occur within the soil play a major role in determining the nitrate leaching to shallow groundwater. In this study, the transport and fate of nitrate within the soil profile were analyzed by comparing field data with the simulation results of a mathematical model. The objective was to study the transport and fate of nitrate within the soil profile and nitrate leaching to shallow groundwater for the fall-winter season, by applying the methodology in Elverdinge experiment, situated in the sandy loam region in Belgium, from October 1, 2000 to March 31, 2001. The analysis by comparing field data with the simulation results of DRAINMOD-N model is given. The research indicated that the DRAINMOD-N model can, after calibration and validation, be used as a useful fertilizer management tool in predicting the nitrate transport and transformation in the soil profile and the nitrate leaching to shallow groundwater and surface waters. The model can also be used as an environmental control when the environmental objective has a greater importance than profits in the agriculture field.

  5. Seasonal movements, winter range use, and migratory connectivity of the Black Oystercatcher (United States)

    Johnson, Matthew; Clarkson, Peter; Goldstein, Michael I.; Haig, Susan M.; Lanctot, Richard B.; Tessler, David F.; Zwiefelhofer, Denny


    The Black Oystercatcher (Haematopus bachmani) is an intertidal obligate along North America's Pacific coast and a species of high conservation concern (population size 8900–11 000 individuals). Understanding birds' movements and space use throughout the annual cycle has become paramount in the face of changing environmental conditions, and intertidal species may be particularly vulnerable to habitat change due to anticipated sea-level rise associated with climate change and increasing coastal development. Conservation of the Black Oystercatcher is hindered by a lack of information on the species' nonbreeding distribution, seasonal movements, and habitat connectivity. Using satellite (n = 19) and VHF (n = 19) radio transmitters, we tracked Black Oystercatchers from five breeding sites (Vancouver Island, British Columbia; Kodiak Island, Prince William Sound, Middleton Island, and Juneau, Alaska) through one and one half annual cycles (May 2007–Dec 2008). We documented medium- to long-distance migration (range of migration distance 130–1667 km) in three populations (Prince William Sound, Middleton Island, and Juneau) and year-round residency in two others (Kodiak and Vancouver Island). We observed variation in the timing and length of migration by study site, and individual birds demonstrated fidelity to breeding and nonbreeding sites. We did not observe strong migratory connectivity. Migratory oystercatchers distributed themselves widely along the coasts of British Columbia and southeast Alaska during winter. Results provide baseline information on the Black Oystercatcher's movements and space use throughout the annual cycle.

  6. Root growth in field-grown winter wheat: Some effects of soil conditions, season and genotype. (United States)

    Hodgkinson, L; Dodd, I C; Binley, A; Ashton, R W; White, R P; Watts, C W; Whalley, W R


    This work compared root length distributions of different winter wheat genotypes with soil physical measurements, in attempting to explain the relationship between root length density and soil depth. Field experiments were set up to compare the growth of various wheat lines, including near isogenic lines (Rht-B1a Tall NIL and Rht-B1c Dwarf NIL) and wheat lines grown commercially (cv. Battalion, Hystar Hybrid, Istabraq, and Robigus). Experiments occurred in two successive years under rain fed conditions. Soil water content, temperature and penetrometer resistance profiles were measured, and soil cores taken to estimate vertical profiles of pore distribution, and root number with the core-break method and by root washing. Root length distributions differed substantially between years. Wetter soil in 2014/2015 was associated with shallower roots. Although there was no genotypic effect in 2014/2015, in 2013/2014 the dwarf wheat had the most roots at depth. In the shallower layers, some wheat lines, especially Battalion, seemed better at penetrating non-structured soil. The increase in penetrometer resistance with depth was a putative explanation for the rapid decrease in root length density with depth. Differences between the two years in root profiles were greater than those due to genotype, suggesting that comparisons of different genotypic effects need to take account of different soil conditions and seasonal differences. We also demonstrate that high yields are not necessarily linked to resource acquisition, which did not seem to be limiting in the low yielding dwarf NIL.

  7. Snow-atmosphere coupling and its impact on temperature variability and extremes over North America (United States)

    Diro, G. T.; Sushama, L.; Huziy, O.


    The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating

  8. Snow-atmosphere coupling and its impact on temperature variability and extremes over North America (United States)

    Diro, G. T.; Sushama, L.; Huziy, O.


    The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating

  9. Limitations in controlling white mold on common beans with Trichoderma spp. at the fall-winter season

    Directory of Open Access Journals (Sweden)

    Trazilbo José de Paula Júnior


    Full Text Available We studied the effectiveness of application of Trichoderma spp. in controlling white mold on common beans at the fall-winter crop in the Zona da Mata region of the State of Minas Gerais, Brazil. There was no effect of the antagonist in reducing the disease severity, which could be explained by the low temperatures and the high inoculum pressure in the field. We concluded that Trichoderma applications are not recommended for control of white mold on common beans at the fall-winter season in regions with average temperature bellow 20 °C, since this condition favor more the pathogen than the antagonist.

  10. Titan's cloud seasonal activity from winter to spring with Cassini/VIMS (United States)

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Sotin, Christophe; Brown, R.H.; Barnes, J.W.; Griffith, C.A.; Burgalat, J.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.


    Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002-August 2009) and the beginning of spring, allowing a detailed monitoring of Titan's cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan's clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60??N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4. years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1. year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30??S and 60??S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached. We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid

  11. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012) (United States)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.


    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  12. Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring (United States)

    Thomas, Jaison Ambadan; Berg, Aaron A.; Merryfield, William J.


    This study examines the influence of snow and soil moisture initialization on sub-seasonal potential and actual prediction skill of Canadian Climate Model version 3 (CanCM3) predictions of springtime (April-May) near surface air temperature. Four series of ten-member ensemble forecasts, initialized on 1st April where each series use different land surface initialization, were performed for the 20 year period 1986-2005. Potential predictability of temperature for extratropical Northern Hemisphere land is assessed using synthetic truth and signal-to-noise methods, and compared with actual prediction skills determined through validation against an ensemble mean of six reanalysis products. These metrics are computed for the forecasted 15 days averaged values of temperature at 15, 30 and 45 days lead times. Three of the four land surface initializations considered are intended to be realistic. These are obtained from the Canadian LAand Surface Scheme (CLASS) land surface component of the climate model driven off line with bias-corrected meteorological fields, with and without rescaling to the climate model's land climatology, and from climate model runs where the atmospheric component is constrained by reanalysis fields. A fourth land surface initialization that is intended to be unrealistic consists of a "scrambled" version of that obtained from rescaled offline-driven CLASS, in which each ensemble member is assigned values from a year other than the one being forecasted. Comparisons of forecasts using the scrambled and corresponding realistic land initializations indicate that the latter show higher potential predictability overall especially over North America and parts of Eurasia at all lead times. The higher potential predictability is primarily attributed to correct initialization of land surface variables, in particular the snow water equivalent, and the frozen and liquid components of soil moisture. Our results also indicate that predictability is governed

  13. Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada (United States)

    Domine, Florent; Barrere, Mathieu; Sarrazin, Denis


    The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013-2014 winter, because little snow was present. During the 2014-2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m-1 K-1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m-1 K-1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m-1 K-1, while in frozen soil it was around 1.9 W m-1 K-1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity-liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12-0.27 W m-1 K-1) and low ones in its upper parts (0.02-0.12 W m-1 K-1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.

  14. Validation of MODIS snow cover images over Austria

    Directory of Open Access Journals (Sweden)

    J. Parajka


    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  15. Drought and Snow: Analysis of Drivers, Processes and Impacts of Streamflow Droughts in Snow-Dominated Regions (United States)

    Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan


    Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on

  16. Winter temperatures over the Korean Peninsula and East Asia: development of a new index and its application to seasonal forecast (United States)

    Kim, Seon Tae; Sohn, Soo-Jin; Kug, Jong-Seong


    This study proposes a new index for monitoring and predicting winter temperatures of the Korean Peninsula based on the dominant atmospheric winter teleconnection patterns. The utilization of this index is further extended to the East Asian Winter Monsoon (EAWM) index because the new index is found to well represent the main feature of the EAWM circulation. Among the teleconnection patterns, the East Atlantic (EA) and Western Pacific (WP) patterns are found to be most strongly correlated with winter temperatures via their partial association with changes in sea level pressure (SLP) around the Korean Peninsula, i.e., the EA and WP patterns are associated with SLP variation over the Siberian High region and the Kuroshio extension region to the east of Japan, respectively. On the basis of this relationship, the two regions representing the northwest-to-southeast SLP gradients are determined to define the new index. It is found that the new index can represent the Korean winter temperatures consistently well regardless of their considerable decadal changes. When compared with the existing SLP-based EAWM indices, the new index shows the best performance in delineating winter air temperatures, not only in the Korean Peninsula but also in the entire East Asian region. We also assess the prediction skill of the new index with seasonal coupled forecast models of the APEC Climate Center of Korea and its capability to predict winter temperatures. This assessment shows that the new index has potential for operationally predicting and monitoring winter temperatures in Korea and the whole of East Asia.

  17. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN (United States)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.


    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy

  18. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland

    Directory of Open Access Journals (Sweden)

    Bin Cheng


    Full Text Available The seasonal evolution of snow and ice on Lake Orajärvi, northern Finland, was investigated for three consecutive winter seasons. Material consisting of numerical weather prediction model (HIRLAM output, weather station observations, manual snow and ice observations, high spatial resolution snow and ice temperatures from ice mass balance buoys (SIMB, and Moderate Resolution Imaging Spectroradiometer (MODIS lake ice surface temperature observations was gathered. A snow/ice model (HIGHTSI was applied to simulate the evolution of the snow and ice surface energy balance, temperature profiles and thickness. The weather conditions in early winter were found critical in determining the seasonal evolution of the thickness of lake ice and snow. During the winter season (Nov.–Apr., precipitation, longwave radiative flux and air temperature showed large inter-annual variations. The uncertainty in snow/ice model simulations originating from precipitation was investigated. The contribution of snow to ice transformation was vital for the total lake ice thickness. At the seasonal time scale, the ice bottom growth was 50–70% of the total ice growth. The SIMB is suitable for monitoring snow and ice temperatures and thicknesses. The Mean Bias Error (MBE between the SIMB and borehole measurements was −0.7 cm for snow thicknesses and 1.7 cm for ice thickness. The temporal evolution of MODIS surface temperature (three seasons agrees well with SIMB and HIGHTSI results (correlation coefficient, R=0.81. The HIGHTSI surface temperatures were, however, higher (2.8°C≤MBE≤3.9°C than the MODIS observations. The development of HIRLAM by increasing its horizontal and vertical resolution and including a lake parameterisation scheme improved the atmospheric forcing for HIGHTSI, especially the relative humidity and solar radiation. Challenges remain in accurate simulation of snowfall events and total precipitation.

  19. Probability of occurrence of monthly and seasonal winter precipitation over Northwest India based on antecedent-monthly precipitation (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.


    Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.

  20. Wet scavenging of organic and elemental carbon during summer monsoon and winter monsoon seasons (United States)

    Sonwani, S.; Kulshrestha, U. C.


    In the era of rapid industrialization and urbanization, atmospheric abundance of carbonaceous aerosols is increasing due to more and more fossil fuel consumption. Increasing levels of carbonaceous content have significant adverse effects on air quality, human health and climate. The present study was carried out at Delhi covering summer monsoon (July -Sept) and winter monsoon (Dec-Jan) seasons as wind and other meteorological factors affect chemical composition of precipitation in different manner. During the study, the rainwater and PM10 aerosols were collected in order to understand the scavenging process of elemental and organic carbon. The Rain water samples were collected on event basis. PM10 samples were collected before rain (PR), during rain (DR) and after rain (AR) during 2016-2017. The collected samples were analysed by the thermal-optical reflectance method using IMPROVE-A protocol. In PM10, the levels of organic carbon (OC) and its fractions (OC1, OC2, OC3 and OC4) were found significantly lower in the AR samples as compared to PR and DR samples. A significant positive correlation was noticed between scavenging ratios of organic carbon and rain intensity indicating an efficient wet removal of OC. In contrast to OCs, the levels of elemental carbon and its fractions (EC1, EC2, and EC3) in AR were not distinct during PR and DR. The elemental carbon showed very week correlation with rain intensity in Delhi region which could be explained on the basis of hydrophobic nature of freshly emitted carbon soot. The detailed results will be discussed during the conference.

  1. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements (United States)

    Zhao, C.; Hu, Z.; Qian, Y.; Leung, L. Ruby; Huang, J.; Huang, M.; Jin, J.; Flanner, M. G.; Zhang, R.; Wang, H.; Yan, H.; Lu, Z.; Streets, D. G.


    A state-of-the-art regional model, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 2005), is coupled with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall within the uncertainty ranges of observations. The simulated BCS and DSTS are highest with > 5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to dust in the atmosphere. This study represents an effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack. Although a variety of observational data sets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  2. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.


    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de

  3. Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster (United States)

    By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?  

  4. Sustainability of winter tourism in a changing climate over Kashmir Himalaya. (United States)

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif


    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  5. Molecular features of influenza A (H1N1pdm09 prevalent in Mexico during winter seasons 2012-2014.

    Directory of Open Access Journals (Sweden)

    Rocío Arellano-Llamas

    Full Text Available Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009 virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.

  6. Molecular features of influenza A (H1N1)pdm09 prevalent in Mexico during winter seasons 2012-2014. (United States)

    Arellano-Llamas, Rocío; Alfaro-Ruiz, Luis; Arriaga Canon, Cristian; Imaz Rosshandler, Ivan; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Rebollar Vega, Rosa; Wong, Christopher W; Maurer-Stroh, Sebastian; Romero Córdoba, Sandra; Liu, Edison T; Hidalgo-Miranda, Alfredo; Vázquez-Pérez, Joel A


    Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.

  7. Snow and albedo climate change impacts across the United States Northern Great Plains (United States)

    Fassnacht, S. R.; Cherry, M. L.; Venable, N. B. H.; Saavedra, F.


    In areas with a seasonal snowpack, a warmer climate could cause less snowfall, a shallower snowpack, and a change in the timing of snowmelt, all which could reduce the winter albedo and yield an increase in net short-wave radiation. Trends in temperature, precipitation (total and as snow), days with precipitation and snow, and winter albedo were investigated over the 60-year period from 1951 to 2010 for 20 meteorological stations across the Northern Great Plains. This is an area where snow accumulation is shallow but persistent for most of the winter (November to March). The most consistent trends were minimum temperature and days with precipitation, both of which increased at a majority of the stations. Among the stations included, a decrease in the modelled winter albedo was more prevalent than an increase. There was substantial spatial variability in the climate trends. For most variables, the period of record used influenced the magnitude and sign of the significant trends.

  8. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry (United States)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.


    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential

  9. Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack

    International Nuclear Information System (INIS)

    Halsall, Crispin J.


    POPs in the Arctic are the focus of international concern due to their occurrence and accumulation in Arctic food webs. This paper presents an overview of the major pathways into the Arctic and details contemporary studies that have focused on the occurrence and transfer of POPs between the major Arctic compartments, highlighting areas where there is a lack of quantitative information. The behaviour of these chemicals in the Arctic atmosphere is scrutinised with respect to long-term trends and seasonal behaviour. Subtle differences between the PCBs and OC pesticides are demonstrated and related to sources outside of the Arctic as well as environmental processes within the Arctic. Unlike temperate regions, contaminant fate is strongly affected by the presence of snow and ice. A description of the high Arctic snow pack is given and the physical characteristics that determine chemical fate, namely the specific surface area of snow and wind driven ventilation, are discussed. Using a well-characterised fresh snow event observed at Alert (Canadian high Arctic) [Atmos. Environ. 36(2002) 2767] the flux of γ-HCH out of the snow is predicted following snow ageing. Under conditions of wind (10 m/s) it is estimated that ∼75% of the chemical may be re-emitted to the atmosphere within 24 h following snowfall, compared with just ∼5% under conditions of no wind. The implications of this are raised and areas of further research suggested. - The fluxes and fate of POPs in snowpacks are key to their behaviour in polar systems

  10. Morphology and state of mixture of atmospheric soot aggregates during the winter season over Southern Asia-a quantitative approach (United States)

    Coz, Esther; Leck, Caroline


    The atmospheric brown cloud phenomena characterized by a high content of soot and a large impact on the solar radiative heating especially affects the tropical Indian Ocean during the winter season. The present study focuses on morphological characteristics and state of mixture of soot aggregates during the winter season over India. Given are quantitative measures of size, morphology and texture on aggregates collected in air at two different sites: Sinhagad near Pune in India and Hanimaadhoo in Maldives. For the latter site two different synoptic patterns prevailed: advection of air from the Arabian region and from the Indian subcontinent, respectively. Aggregates collected at Sinhagad, were associated with open branched structures, characteristic of fresh emission and diameters between 220 and 460 nm. The Hanimaadhoo aggregates were associated with aged closed structures, smaller sizes (130-360 nm) and frequently contained inorganic inclusions. Those arriving from the Indian subcontinent were characterized by the presence of an additional organic layer that covered the aggregate structure. These organic coatings might be a reasonable explanation of the low average wash-out ratios of soot two to seven times lower than that of nss-SO42- that have been reported for air flow arriving at Hanimaadhoo from the Indian subcontinent in winter.

  11. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China. (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan


    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of winter season increased significantly, the trend of chilling and drought decreased, however, the extreme disasters occurred frequently and the risks were higher in winter production areas. It was suggested that the winter planting should be closely integrated with climate resources and the occurrence law of meteorological disasters in growing season.

  12. Combining snow depth and innovative skier flow measurements in order to improve snow grooming techniques (United States)

    Carmagnola, Carlo Maria; Albrecht, Stéphane; Hargoaa, Olivier


    In the last decades, ski resort managers have massively improved their snow management practices, in order to adapt their strategies to the inter-annual variability in snow conditions and to the effects of climate change. New real-time informations, such as snow depth measurements carried out on the ski slopes by grooming machines during their daily operations, have become available, allowing high saving, efficiency and optimization gains (reducing for instance the groomer fuel consumption and operation time and the need for machine-made snow production). In order to take a step forward in improving the grooming techniques, it would be necessary to keep into account also the snow erosion by skiers, which depends mostly on the snow surface properties and on the skier attendance. Today, however, most ski resort managers have only a vague idea of the evolution of the skier flows on each slope during the winter season. In this context, we have developed a new sensor (named Skiflux) able to measure the skier attendance using an infrared beam crossing the slopes. Ten Skiflux sensors have been deployed during the 2016/17 winter season at Val Thorens ski area (French Alps), covering a whole sector of the resort. A dedicated software showing the number of skier passages in real time as been developed as well. Combining this new Skiflux dataset with the snow depth measurements from grooming machines (Snowsat System) and the snow and meteorological conditions measured in-situ (Liberty System from Technoalpin), we were able to create a "real-time skiability index" accounting for the quality of the surface snow and its evolution during the day. Moreover, this new framework allowed us to improve the preparation of ski slopes, suggesting new strategies for adapting the grooming working schedule to the snow quality and the skier attendance. In the near future, this work will benefit from the advances made within the H2020 PROSNOW project ("Provision of a prediction system allowing

  13. Unexpected Patterns in Snow and Dirt (United States)

    Ackerson, Bruce J.


    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This…

  14. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014 (United States)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard


    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (" target="_blank"> This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  15. Wind drifted snow influence on the water and mass balance in the mountainous catchment "Modry potok", the Giant Mountains, Czech Republic. (United States)

    Dvorak, I. J.; Fottova, D.; Tesar, M.; Kocianova, M.; Harcarik, J.


    There are very specific components of the water balance in the mountain headwater regions. Beside the point of cloud- and fog-water deposition it is mainly accumulation of water in the snow cover drifted into the watershed by the wind. Uneven distribution of the snow cover over the mountainous terrain is a well known phenomenon in all alpine and arctic areas. The result of this uneveness is a mosaic of microhabitats with various snow depths, different melting dates and snow free periods. Wire probes can be reliably used up to snow depths of 3 m only. To get more realistic data, two digital models using kinematic carrier phase-based GPS measurements were developed: (1) a model for snow surface data, applied at the end of winter seasons from 2000 to 2008, and (2) a model for the underlying snow free ground surface, applied after the snow melting in August 2000. These two models, overlaid in the GIS environment, have identified snow depths. For the creation of digital elevation models (DEMs), the TOPOGRID command in ArcInfo was used, which generated a grid of elevations from 3-D point, line, and polygon data. The snow depths were obtained and snow maps constructed accordingly. These "snow" results can be used for more realistic estimation of water content of snow in the watershed, distribution of snow depth during the winter seasons and define the water and mass balance more precisely. The objectives of this study were to highlight water storage in the snow-beds and show the GPS kinematic measurements as a contribution to understand more the snow accumulating and melting processes in the Modry potok catchment (2,62 km2, 1010 - 1554 m a.s.l.) in the Giant Mts. The research is supported by the Ministry of the Environment of the Czech Republic (SP/1a6/151/07) and by the Krkonose National Park Administration in Vrchlabi.

  16. Transformations of snow chemistry in the boreal forest: Accumulation and volatilization (United States)

    Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.


    This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation

  17. Integration of snow management practices into a detailed snow pack model (United States)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle


    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  18. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria (United States)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael


    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  19. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective (United States)

    Hill, Nichola J.; Takekawa, John Y.; Cardona, Carol J.; Meixell, Brandt W.; Ackerman, Joshua T.; Runstadler, Jonathan A.; Boyce, Walter M.


    The spread of avian influenza viruses (AIV) in nature is intrinsically linked with the movements of wild birds. Wild birds are the reservoirs for the virus and their migration may facilitate the circulation of AIV between breeding and wintering areas. This cycle of dispersal has become widely accepted; however, there are few AIV studies that present cross-seasonal information. A flyway perspective is critical for understanding how wild birds contribute to the persistence of AIV over large spatial and temporal scales, with implications for how to focus surveillance efforts and identify risks to public health. This study characterized spatio-temporal infection patterns in 10,389 waterfowl at two important locations within the Pacific Flyway--breeding sites in Interior Alaska and wintering sites in California's Central Valley during 2007-2009. Among the dabbling ducks sampled, the northern shoveler (Anas clypeata) had the highest prevalence of AIV at both breeding (32.2%) and wintering (5.2%) locations. This is in contrast to surveillance studies conducted in other flyways that have identified the mallard (Anas platyrhynchos) and northern pintail (Anas acuta) as hosts with the highest prevalence. A higher diversity of AIV subtypes was apparent at wintering (n=42) compared with breeding sites (n=17), with evidence of mixed infections at both locations. Our study suggests that wintering sites may act as an important mixing bowl for transmission among waterfowl in a flyway, creating opportunities for the reassortment of the virus. Our findings shed light on how the dynamics of AIV infection of wild bird populations can vary between the two ends of a migratory flyway.

  20. Snow management practices in French ski resorts (United States)

    Spandre, Pierre; Francois, Hugues; George-Marcelpoil, Emmanuelle; Morin, Samuel


    Winter tourism plays a fundamental role in the economy of French mountain regions but also in other countries such as Austria, USA or Canada. Ski operators originally developed grooming methods to provide comfortable and safe skiing conditions. The interannual variability of snow conditions and the competition with international destinations and alternative tourism activities encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However some regions may not be able to produce machine made snow due to inadequate conditions and low altitude resorts are still negatively impacted by low snow seasons. In the meantime, even though the operations of high altitude resorts do not show any dependency to the snow conditions they invest in snowmaking facilities. Such developments of snowmaking facilities may be related to a confused and contradictory perception of climate change resulting in individualistic evolutions of snowmaking facilities, also depending on ski resorts main features such as their altitude and size. Concurrently with the expansion of snowmaking facilities, a large range of indicators have been used to discuss the vulnerability of ski resorts such as the so-called "100 days rule" which was widely used with specific thresholds (i.e. minimum snow depth, dates) and constraints (i.e. snowmaking capacity). The present study aims to provide a detailed description of snow management practices and major priorities in French ski resorts with respect to their characteristics. We set up a survey in autumn 2014, collecting data from 56 French ski operators. We identify the priorities of ski operators and describe their snowmaking and grooming practices and facilities. The operators also provided their perception of the ski resort vulnerability to snow and economic challenges which we could compare with the actual snow conditions and ski lift tickets sales during the period from 2001 to 2012.

  1. Snow Fun. (United States)

    Finlay, Joy


    Describes several learning activities that can be done with children in the snow. Includes shake paintings, snow sculpture, snow "snakes," snow-ball contests, an igloo experience, and how to make snowshoes. (TW)

  2. Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves (United States)

    Every December, for 3 years, 87 beef cows, nursing cows, (594 ' 9.8 kg; calving season, September to November) were stratified by body condition score, body weight, cow age, and calf gender. They were divided randomly into 6 groups and assigned to 1 of 6 cool-season annual swards (0.45 hectares/cow...

  3. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events (United States)

    Wyard, Coraline; Fettweis, Xavier


    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  4. Forecasting of Sporadic Demand Patterns with Seasonality and Trend Components: An Empirical Comparison between Holt-Winters and (SARIMA Methods

    Directory of Open Access Journals (Sweden)

    Rita Gamberini


    Full Text Available Items with irregular and sporadic demand profiles are frequently tackled by companies, given the necessity of proposing wider and wider mix, along with characteristics of specific market fields (i.e., when spare parts are manufactured and sold. Furthermore, a new company entering into the market is featured by irregular customers' orders. Hence, consistent efforts are spent with the aim of correctly forecasting and managing irregular and sporadic products demand. In this paper, the problem of correctly forecasting customers' orders is analyzed by empirically comparing existing forecasting techniques. The case of items with irregular demand profiles, coupled with seasonality and trend components, is investigated. Specifically, forecasting methods (i.e., Holt-Winters approach and (SARIMA available for items with seasonality and trend components are empirically analyzed and tested in the case of data coming from the industrial field and characterized by intermittence. Hence, in the conclusions section, well-performing approaches are addressed.

  5. Alpine snow cover in a changing climate: a regional climate model perspective (United States)

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph


    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  6. Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chun; Hu, Zhiyuan; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Maoyi; Jin, Jiming; Flanner, M. G.; Zhang, Rudong; Wang, Hailong; Yan, Huiping; Lu, Zifeng; Streets, D. G.


    A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 μg g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  7. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.


    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  8. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, W.; Church, H.W.


    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  9. Implications of being born late in the active season for growth, fattening, torpor use, winter survival and fecundity (United States)

    Mahlert, Britta; Gerritsmann, Hanno; Stalder, Gabrielle; Ruf, Thomas; Zahariev, Alexandre; Blanc, Stéphane


    For hibernators, being born late in the active season may have important effects on growth and fattening, hence on winter survival and reproduction. This study investigated differences in growth, fattening, energetic responses, winter survival and fecundity between early-born (‘EB’) and late-born (‘LB’) juvenile garden dormice (Eliomys quercinus). LB juveniles grew and gained mass twice as fast as EB individuals. Torpor use was low during intensive growth, that are, first weeks of body mass gain, but increased during pre-hibernation fattening. LB juveniles showed higher torpor use, reached similar body sizes but lower fat content than EB individuals before hibernation. Finally, LB individuals showed similar patterns of hibernation, but higher proportion of breeders during the following year than EB dormice. These results suggest that torpor is incompatible with growth but promotes fattening and consolidates pre-hibernation fat depots. In garden dormice, being born late in the reproductive season is associated with a fast life history. PMID:29458712

  10. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei


    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hydrological Implications of Covering Wind-Blown Snow Accumulations with Geotextiles on Mount Aragats, Armenia

    Directory of Open Access Journals (Sweden)

    Alexander Nestler


    Full Text Available Snow is an excellent water reservoir, naturally storing large quantities of water at time scales from a few days to several months. In summer-dry countries, like Armenia, runoff due to snow melt from mountain regions is highly important for a sustained water supply (irrigation, hydropower. Snow fields on Mount Aragats, Armenia’s highest peak, often persist until July, providing vital amounts of melt water. Artificially managing these wind-driven snow accumulations as a natural water reservoir might have considerable potential. In the context of the Swiss-Armenian joint venture, Freezwater, snow fields are covered with geotextiles in order to delay snow melt long enough to provide additional melt water in the dry season of the year. In this study, we analyze the hydrological effectiveness of the artificial management of the natural snow cover on Mount Aragats based on various field measurements acquired over a three-year period and numerical modeling. Over the winter season, partly more than five meter-thick snow deposits are formed supported by snow redistribution by strong wind. Repeated mappings of snow fields indicate that snow cover patterns remain highly consistent over time. Measurements of ablation below manually applied geotextiles show a considerable reduction of melt rates by more than 50%. Simulations with an energy-balance model and a distributed temperature-index model allow assessing the hydrological effect of artificial snow management for different initial snow depths and elevations and suggest that coverage is needed at a large scale in order to generate a significant impact on discharge.


    Directory of Open Access Journals (Sweden)

    Paweł Sokołowski


    Full Text Available In free stall, the maintenance of animals in the deep litter, the measurements of temperature and relative humidity of indoor air, temperature and relative humidity of the outside air were conducted. Observation also covered the thermal conditions of litter and its thickness. The study covered the winter period from 1st of December to 28th of February. The study showed that during the winter there is a slight risk of unfavorable thermal conditions for dairy cattle in the barn. The analysis of the obtained results showed a significant effect of the number of animals present in the barn on thermal conditions and humidity. The increase in stocking density in the barn affects the increase of the internal temperature and relative humidity.

  13. Soil nitrogen dynamics in high-altitude ski runs during the winter season (Monterosaski - Vallée d (United States)

    Freppaz, M.; Icardi, M.; Filippa, G.; Zanini, E.


    In many Alpine catchments, the development of winter tourism determined a widespread change in land use, shifting from forested and cultivated lands to ski slopes. The construction of a ski slope implies a strong impact on the landscape, with potential consequences on the soil quality. In most cases, the construction procedures include the total or partial removal of the soil body, the reallocation of the fine hearth fraction, the subsequent seeding of plants and the use of organic fertilizers. This work aims to evaluate soil physical and chemical properties and nitrogen (N) dynamics in anthropogenic soils from ski slopes of different age. Study sites were located in Champoluc (AO)- NW Italy between 2400 and 2700 m ASL. Topsoils (0-10 cm depth) were sampled in 4 ski slopes hydroseeded with commercial mixtures 4, 6, 10 and 12 years earlier, and in 4 control plots at the same exposure and altitude as the ski slopes. Soil samples were characterized, N dynamics in winter was evaluated with the buried bag technique and snowpack was analyzed for chemical and physical properties. Total nitrogen (TN) content in topsoil ranged 0.75-1.06 g kg-1 and was not correlated with the ski slope age. In all but one site, the TN content was significantly lower in the ski slope than in the control plot. A positive net ammonification and nitrification throughout the winter were found in all but one ski runs. These results suggest a high variability in the evolution degree of these anthropogenic soils. The net overwinter N mineralization that we report demonstrates that these soils are biologically active during the winter season. Such activity results in a pool of labile inorganic nitrogen potentially available for plant demand at the spring snowmelt.

  14. Seedling establishment at the alpine tree line - Can there be too much winter protection? (United States)

    Lett, S.; Wardle, D.; Nilsson, M. C.; Dorrepaal, E.


    Alpine and arctic tree line expansion relies on tree seedling survival above the tree line, where the environment is harsh and protection by snow during winter is essential. Above the tree line, bryophytes are dominant; they may act as thermal insulators but their insulating ability differs between species. Apart from these positive effects, both snow and bryophytes may have negative effects on seedlings via shortening of the growing season or competition, respectively. Snow depth and duration are expected to change due to climate change, leading in some places to more snow and in others to less. What is the role of bryophytes insulating properties for seedling establishment under changing winter conditions at the alpine tree line? We hypothesized that protecting effects of snow and bryophytes would be more important for seedling survival in harsh climate (high elevation) than in milder climate (low elevation) (interactions: bryophyte*elevation and snow*elevation) and that negative effects of less snow would be ameliorated by well-insulating bryophytes (interaction: bryophyte*snow). To test this, we transplanted cores of three bryophyte species of differing insulation capacity and bare soil (control) from the subarctic tree line (~600m asl.) to 700 and 350 m asl. We transplanted 10 seedlings of two common tree line tree species (Betula pubescens and Pinus sylvestris) into each core in late summer. Cores were subjected to one of three snow treatments: autumn and spring snow removal or addition, or no manipulation. After the winter we scored seedling survival. The snow treatments had different effects at the two elevations (elevation* snow: Pbryophytes did not (elevation*bryophyte: n.s). In the harsh climate, snow addition generally enhanced seedling survival. In contrast, at the milder climate site, snow addition only increased survival in the bare soil treatment but decreased survival of seedlings in the bryophyte cores (bryophyte*snow: P=0.053). Our data show that

  15. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica) (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo


    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  16. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation (United States)

    Sarah M. Rockwell; Joseph M. Wunderle; T. Scott Sillett; Carol I. Bocetti; David N. Ewert; Dave Currie; Jennifer D. White; Peter P. Marra


    Conservation of migratory animals requires information about seasonal survival rates. Identifying factors that limit populations, and the portions of the annual cycle in which they occur, are critical for recognizing and reducing potential threats. However, such data are lacking for virtually all migratory taxa. We investigated patterns and environmental correlates of...

  17. Seasonal prediction of winter haze days in the north central North China Plain

    Directory of Open Access Journals (Sweden)

    Z. Yin


    Full Text Available Recently, the winter (December–February haze pollution over the north central North China Plain (NCP has become severe. By treating the year-to-year increment as the predictand, two new statistical schemes were established using the multiple linear regression (MLR and the generalized additive model (GAM. By analyzing the associated increment of atmospheric circulation, seven leading predictors were selected to predict the upcoming winter haze days over the NCP (WHDNCP. After cross validation, the root mean square error and explained variance of the MLR (GAM prediction model was 3.39 (3.38 and 53 % (54 %, respectively. For the final predicted WHDNCP, both of these models could capture the interannual and interdecadal trends and the extremums successfully. Independent prediction tests for 2014 and 2015 also confirmed the good predictive skill of the new schemes. The predicted bias of the MLR (GAM prediction model in 2014 and 2015 was 0.09 (−0.07 and −3.33 (−1.01, respectively. Compared to the MLR model, the GAM model had a higher predictive skill in reproducing the rapid and continuous increase of WHDNCP after 2010.

  18. Snow multivariable data assimilation for hydrological predictions in Alpine sites (United States)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè


    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity

  19. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.


    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  20. Seasonal migration, vertical activity and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides (Walbaum) in West Greenland waters

    DEFF Research Database (Denmark)

    Boje, Jesper; Neuenfeldt, Stefan; Sparrevohn, Claus Reedtz


    little is known about its behavior and habitat characteristics. We tagged adult Greenland halibut in the waters off Ilulissat with electronic data storage tags that collected information on depth, temperature, and time. Although clear differences between individuals in migration and vertical behavior...... were present, we discovered a consistent seasonal migration from the relatively shallow-water Disko Bay area into the deep waters of the Ilulissat Icefjord, where the fish resided in the winter months before returning to Disko Bay. Vertical activity was pronounced at both locations, with fish covering...... resident in Disko Bay (mean range 2.6°C) than when resident in the ice fjord (mean range 1.4°C). Using the tagged halibut as a 'live tool,' we show that parts of the ice fjord are hundreds of meters deeper than previously thought. We also document the first seawater temperature measurements made beneath...

  1. Cold truths: how winter drives responses of terrestrial organisms to climate change. (United States)

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J


    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  2. Evaluation of air temperature distribution using thermal image under conditions of nocturnal radiative cooling in winter season over Shikoku area

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.


    Using the thermal images offered by the infra-red thermometer and the LANDSAT, the air temperature distribution over mountainous regions were estimated under conditions of nocturnal radiative cooling in the winter season. The thermal image analyses by using an infra-red thermometer and the micrometeological observation were carried out around Zentsuji Kagawa prefecture. At the same time, the thermal image analyses were carried out by using the LANDSAT data. The LANDSAT data were taken on Dec. 7, 1984 and Dec. 5, 1989. The scenes covered the west part of Shikoku, southwest of Japan.The results were summarized as follows:Values of the surface temperature of trees, which were measured by an infra-red thermometer, were almost equal to the air temperature. On the other hand, DN values detected by LANDSAT over forest area were closely related with air temperature observed by AMeDAS. Therefore, it is possible to evaluate instantaneously a spatial distribution of the nocturnal air temperature from thermal image.The LANDSAT detect a surface temperature over Shikoku area only at 21:30. When radiative cooling was dominant, the thermal belt and the cold air lake were already formed on the mountain slopes at 21:30. Therfore, it is possible to estimate the characteristic of nocturnal temperature distribution by using LANDSAT data.It became clear that the temperature distribution estimated by thermal images offered by the infra-red thermometer and the LANDSAT was useful for the evaluation of rational land use for winter crops

  3. [Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter season]. (United States)

    Liang, Jian; Jiang, Tao; WeiI, Shi-Qiang; Lu, Song; Yan, Jin-Long; Wang, Qi-Lei; Gao, Jie


    This study aimed at evaluating the variability of the optical properties including UV-Vis and fluorescence characteristics of dissolved organic matter (DOM) from rainwater in summer and winter seasons. UV-Vis and fluorescence spectroscopy, together with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and fire events map, were conducted to characterize DOM and investigate its sources and contributions. The results showed that as compared with aquatic and soil DOM, rainwater DOM showed similar spectral characteristics, suggesting DOM in precipitation was also an important contributor to DOM pool in terrestrial and aquatic systems. The concentrations of DOC in rainwater were 0.88-12.80 mg x L(-1), and the CDOM concentrations were 3.17-21.11 mg x L(-1). Differences of DOM samples between summer and winter were significant (P rainwater DOM and the others from other sources. Thus, the classic differentiation method by "allochthonous (terrigenous) and autochthonous (authigenic)" is possibly too simple and arbitrary for characterization of DOM in rainwater.

  4. Effect assessment of Future Climate Change on Water Resource and Snow Quality in cold snowy regions in Japan (United States)

    Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.


    It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular

  5. Seasonal occurrence and species specificity of fishy and musty odor in Huajiang Reservoir in winter, China

    Directory of Open Access Journals (Sweden)

    Rui Wang


    Full Text Available This paper describes the results of measurements from one year period on the existence of fishy and musty odor in drinking water at low temperatures (1–2 °C in Baotou, China, using an open-loop stripping analysis (OLSA systems and Gas chromatography spectrometry (GC. The main results show that it is micro-contaminated water body of the raw water in Huajiang Reservoir. The average phytoplankton abundance was 2.06×107 L−1, Cyanobacteria counts were at 2.0×106 L−1 and the dominate family of the algae are Chlorophyta, Cryptophyta, and Bacillariophyta. Experimental results indicated that under the ice whose thickness was 0.55 m, the photosynthetically active radiation (PAR of the surface varied from 70 to 636 W m−2 from November to March of next year. The average surface PAR was 114.8 W m−2, and the lowest value was 70.57 W m−2 (in December and the average bottom PAR was 19.04 W m−2, and the lowest value was 3.84 W m−2 (in December. The surface PAR, bottom PAR, eutrophic conditions in ice-covered Huajiang reservoir satisfied the growth and MIB/geosmin production of Cyanobacteria algae in winter. The 2-methyl-isoborneol (MIB concentration ranged from 29 ng L−1 to 102 ng L−1. The concentration of trans-1,10-dimethyl-trans-9-decalol (geosmin ranges from 20 ng L−1 to 65 ng L−1 and it is 2 to 5 times of the odor threshold concentrations (OTC. The correlations between MIB/geosmin and nitrogen are 0.63–0.37. Eutrophication is the most important factor influencing synthesis of taste and odors, but not temperature. Using bypassing pipe pumping Yellow River water directly to the Water treatment plant (WTP is an efficient way about T&O compounds׳ control in drinking water of Baotou city in winter.

  6. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. (United States)

    Wang, Jingzhi; Cao, Junji; Dong, Zhibao; Guinot, Benjamin; Gao, Meiling; Huang, Rujin; Han, Yongming; Huang, Yu; Ho, Steven Sai Hang; Shen, Zhenxing


    Seasonal variation and spatial distribution of PM 2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2 nd -3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing

    Directory of Open Access Journals (Sweden)

    K. Rankinen


    Full Text Available Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990 were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model

  8. Forcing the snow-cover model SNOWPACK with forecasted weather data

    Directory of Open Access Journals (Sweden)

    S. Bellaire


    Full Text Available Avalanche danger is often estimated based on snow cover stratigraphy and snow stability data. In Canada, single forecasting regions are very large (>50 000 km2 and snow cover data are often not available. To provide additional information on the snow cover and its seasonal evolution the Swiss snow cover model SNOWPACK was therefore coupled with a regional weather forecasting model GEM15. The output of GEM15 was compared to meteorological as well as snow cover data from Mt. Fidelity, British Columbia, Canada, for five winters between 2005 and 2010. Precipitation amounts are most difficult to predict for weather forecasting models. Therefore, we first assess the capability of the model chain to forecast new snow amounts and consequently snow depth. Forecasted precipitation amounts were generally over-estimated. The forecasted data were therefore filtered and used as input for the snow cover model. Comparison between the model output and manual observations showed that after pre-processing the input data the snow depth and new snow events were well modelled. In a case study two key factors of snow cover instability, i.e. surface hoar formation and crust formation were investigated at a single point. Over half of the relevant critical layers were reproduced. Overall, the model chain shows promising potential as a future forecasting tool for avalanche warning services in Canadian data sparse areas and could thus well be applied to similarly large regions elsewhere. However, a more detailed analysis of the simulated snow cover structure is still required.

  9. Winter excess in hospital admissions, in-patient mortality and length of acute hospital stay in stroke: a hospital database study over six seasonal years in Norfolk, UK. (United States)

    Myint, Phyo K; Vowler, Sarah L; Woodhouse, Peter R; Redmayne, Oliver; Fulcher, Robert A


    Several studies have examined the incidence and mortality of stroke in relation to season. However, the evidence is conflicting partly due to variation in the populations (community vs. hospital-based), and in climatic conditions between studies. Moreover, they may not have been able to take into account the age, sex and stroke type of the study population. We hypothesized that the age, sex and type of stroke are major determinants of the presence or absence of winter excess in morbidity and mortality associated with stroke. We analyzed a hospital-based stroke register from Norfolk, UK to examine our prior hypothesis. Using Curwen's method, we performed stratified sex-specific analyses by (1) seasonal year and (2) quartiles of patients' age and stroke subtype and calculated the winter excess for the number of admissions, in-patient deaths and length of acute hospital stay. There were 5,481 patients (men=45%). Their ages ranged from 17 to 105 years (median=78 years). There appeared to be winter excess in hospital admissions, deaths and length of acute hospital stay overall accounting for 3/100,000 extra admissions (winter excess index of 3.4% in men and 7.6% in women) and 1/100,000 deaths (winter excess index of 4.7 and 8.6% in women) due to stroke in winter compared to non-winter periods. Older patients with non-haemorrhagic stroke mainly contribute to this excess. If our findings are replicated throughout England and Wales, it is estimated that there are 1,700 excess admissions, 600 excess in-patient deaths and 24,500 extra acute hospital bed days each winter, related to stroke within the current population of approximately 60 million. Further research should be focused on the determinants of winter excess in morbidity and mortality associated with stroke. This may subsequently reduce the morbidity and mortality by providing effective preventive strategies in future. (c) 2007 S. Karger AG, Basel.

  10. Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean (United States)

    Estrada, Marta; Latasa, Mikel; Emelianov, Mikhail; Gutiérrez-Rodríguez, Andrés; Fernández-Castro, Bieito; Isern-Fontanet, Jordi; Mouriño-Carballido, Beatriz; Salat, Jordi; Vidal, Montserrat


    The phytoplankton bloom in the Liguro-Provençal deep convection region represents one of the main fertilization mechanisms in the Mediterranean. This communication examines nano- and microphytoplankton observations, and measurements of primary production and chlorophyll a concentration (Chl a) in the southwestern part of the deep convection region, where such information is scarce. Data were obtained from four cruises, carried out in 2005 (EFLUBIO project) and 2009 (FAMOSO project), covering the seasonality between mid-March and September in the region. Our aims were to constrain primary production estimates and to ascertain the importance of short-term variability on the photosynthetic response of phytoplankton assemblages during bloom, post-bloom and late-summer stratification periods in the area. Overall, the initial slope of the P-E relationship (αB) increased and the Chl a-normalized photosynthetic rate (PmB) decreased with increasing optical depth of sample origin, but there were exceptions. In general, there were marked seasonal trends, with stratification increasing and Chl a concentration, primary production and dissolved inorganic nitrogen and phosphate fluxes decreasing from winter to late summer. Chl a at 5 m depth reached a maximum of 7 mg m-3 on 25 March 2005, one of the highest values measured in the region. Average surface values (±SD) ranged from respectively 2.4±2.3 mg m-3 and 2±0.7 mg m-3 in the March 2005 and March 2009 cruises to 0.12±0.01 mg m-3 in the September 2009 cruise. Vertically integrated (0-80 m) primary production (PPint) attained 1800 mg C m-2 d-1 in March 2009, with an average of 1024±523 mg C m-2 d-1, and decreased to a mean of 141±0.43 mg C m-2 d-1 in September 2009. Superimposed to the seasonal trends, there was a considerable within-cruise variability of biomass and primary production, especially during the spring-winter bloom and post-bloom periods, when PPint could change more than threefold within a few days. These

  11. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.


    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  12. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons (United States)

    Corsi, Steven R.; De Cicco, Laura A.; Lutz, Michelle A.; Hirsch, Robert M.


    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006–2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  13. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia


    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  14. First Stages of the Formation of the South Seasonal Cap in Early Southern Winter as Observed by OMEGA/Mex (United States)

    Langevin, Y.; Vincendon, M.; Bibring, J.-P.; Gondet, B.; Poulet, F.


    Observations in the visible [1] demonstrated that the retreat of the southern seasonal is very asymmetrical from Ls 230° to Ls 300°, ice extending much further North over a range of longitudes (270° E to 0° E) corresponding to the "bright cap". Observations by TES demonstrated that the bright regions corresponding to the visible cap are at the equilibrium temperature of CO2 ice, as well as the cryptic region, which exhibits low albedos (0.2 - 0.25) close to mid southern spring (Ls 225°). Observations by OMEGA/Mex have Mars Express have demonstrated that the Southern seasonal cap is indeed spectrally dominated by CO2 ice [3, 4]. The low albedo of the cryptic region results from dust contamination on the surface [3] most likely linked to a venting process [5] when CO2 ice sublimates in contact with the underlying surface. OMEGA observed that the very high albedos are linked to large equivalent grain sizes on the bright cap (270°E to 0°E) [4]. These characteristics have been associated with global climate evolution models [6, 7] with a major role played by the two large southern basins, Hellas and Argyre, in the circulation patterns [6]. A possible interpretation of the long lasting cap over the "bright cap" range of longitudes is that the CO2 deposit on the surface is initiated by the sedimentation of small CO2 ice grains or H2O ice grains on the surface followed by the condensation of a layer CO2 directly from the atmosphere. If this is the case, the surface underlying the bright cap regions is protected from photons penetrating the overlying large-grained CO2 layer, which inhibits the venting process, delaying the sublimation of the CO2 ice layer until late spring. Observations by OMEGA close to the southern terminator in early winter (Ls 15°) at high latitudes (70°) obtained in April 2004 and November 2009 correspond to very high incidences (~ 85° or more). This requires a careful evaluation of the aerosol contribution, at the limit of the range of

  15. Influence of the calf presence during milking on dairy performance, milk fatty acid composition, lipolysis and cheese composition in Salers cows during winter and grazing seasons. (United States)

    Cozma, A; Martin, B; Cirié, C; Verdier-Metz, I; Agabriel, J; Ferlay, A


    The milking of Salers cows requires the presence of the calf. The removal of the calf would simplify the milking routine, but it could also modify the milk yield and the milk and cheese composition. Therefore, the aim of this experiment was to evaluate the effect of calf presence during milking during sampling period (winter or grazing periods), on dairy performance, milk fatty acid (FA) composition, lipolysis and cheese yield and composition. Nine and 8 Salers lactating cows were milked in the presence (CP) or absence (CA) of their calves respectively. During winter, the cows were fed a hay-based diet and then they only grazed a grassland pasture. Calf presence during milking increased milk yield and milk 16:0 concentration and decreased milk fat content and milk total odd- and branched-chain FA (OBCFA) concentrations. Calf presence only increased initial lipolysis in milk collected during the winter season. Milk from CP cows compared to CA cows resulted in a lower cheese yield and ripened cheeses with lower fat content. Milk from the grazing season had lower saturated medium-chain FA and OBCFA concentrations and higher 18:0, cis-9-18:1, trans-11-18:1 and cis-9, trans-11-CLA concentrations than that from the winter season. Initial milk lipolysis was higher in the winter than in the grazing season. These variations could be due to seasonal changes in the basal diet. Furthermore, the effect of calf presence during milking on milk fat composition was lower than that on dairy performance, cheese yield and composition. Removing the calf during the milking of Salers cows seems feasible without a decrease in milked milk, and with a positive effect on cheese yield and fat content, under the condition that we are able to select cows having the capacity to be milked easily without the calf. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction

    Directory of Open Access Journals (Sweden)

    C. Mitterer


    Full Text Available Wet-snow avalanches are notoriously difficult to predict; their formation mechanism is poorly understood since in situ measurements representing the thermal and mechanical evolution are difficult to perform. Instead, air temperature is commonly used as a predictor variable for days with high wet-snow avalanche danger – often with limited success. As melt water is a major driver of wet-snow instability and snow melt depends on the energy input into the snow cover, we computed the energy balance for predicting periods with high wet-snow avalanche activity. The energy balance was partly measured and partly modelled for virtual slopes at different elevations for the aspects south and north using the 1-D snow cover model SNOWPACK. We used measured meteorological variables and computed energy balance and its components to compare wet-snow avalanche days to non-avalanche days for four consecutive winter seasons in the surroundings of Davos, Switzerland. Air temperature, the net shortwave radiation and the energy input integrated over 3 or 5 days showed best results in discriminating event from non-event days. Multivariate statistics, however, revealed that for better predicting avalanche days, information on the cold content of the snowpack is necessary. Wet-snow avalanche activity was closely related to periods when large parts of the snowpack reached an isothermal state (0 °C and energy input exceeded a maximum value of 200 kJ m−2 in one day, or the 3-day sum of positive energy input was larger than 1.2 MJ m−2. Prediction accuracy with measured meteorological variables was as good as with computed energy balance parameters, but simulated energy balance variables accounted better for different aspects, slopes and elevations than meteorological data.

  17. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.


    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  18. On the seasonal transition from winter to spring in Europe and the "seasonal feeling" relating to "Fasnacht" in comparison with those in East Asia (Toward an interdisciplinary activity on climate and cultural understanding education) (United States)

    Kato, Kuranoshin; Kato, Haruko; Hamaki, Tatsuya


    As mentioned in the introduction of the EGU2016 abstract (Kato et al., submitted to CL5.06/AS4.9), there are many stages with rapid seasonal transitions in East Asia, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the arts. On the other hand, around Germany located near the western edge of the Eurasian Continent, there are so many music or literature works in which the "May" is treated as the special season (comparison of the climate and songs on "spring" (or "May") between Japan and Germany was tried in a book by Kato, H. and K. Kato, although written in Japanese). The Japanese researchers on German Literature suggested that there are basically two seasons "winter" and "summer" around Germany, with the transitional stages of spring and autumn. The concepts of the battle between winter and summer, and driving winter away, and so on, around Germany seem to show rather different seasonal feelings from that around the Japan Islands (Oshio 1982; Miyashita 1982; Takeda 1980). A traditional event there called "Fasnacht" for driving winter away is held in March or slightly earlier stage (Takeda 1980; Ueda and Ebato 1988). Kato et al. (EGU2016, submitted to CL5.06/AS4.9) will report the synoptic climatological features on the seasonal transition from winter to spring in Europe based on the daily data, by comparing with that in East Asia. In this presentation, we will discuss on the climatological background for the "seasonal feeling" leading to such as the battle between winter and summer, driving winter away, including "Fasnacht", also by referring to some songs (children's songs, etc.). At the same time, the analysis results on the seasonal transition from winter to spring in Europe in comparison with those in East Asia by Kato et al. (EGU2016) will be also referred to. On the other hand, although it is around the end of March when the "wintertime pressure pattern" on the daily surface weather maps in

  19. Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016 (United States)

    Evangeliou, Nikolaos; Shevchenko, Vladimir P.; Espen Yttri, Karl; Eckhardt, Sabine; Sollum, Espen; Pokrovsky, Oleg S.; Kobelev, Vasily O.; Korobov, Vladimir B.; Lobanov, Andrey A.; Starodymova, Dina P.; Vorobiev, Sergey N.; Thompson, Rona L.; Stohl, Andreas


    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53-0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE = 49 ng g-1) in 2014, 48 % (RMSE = 37 ng g-1) in 2015 and 27 % (RMSE = 43 ng g-1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB > -100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in snow especially for samples collected in springtime.

  20. Impact of Seasonal Winter Air Pollution on Health across the Lifespan in Mongolia and Some Putative Solutions. (United States)

    Warburton, David; Warburton, Nicole; Wigfall, Clarence; Chimedsuren, Ochir; Lodoisamba, Delgerzul; Lodoysamba, Sereeter; Jargalsaikhan, Badarch


    Environmental pollution of the air, water, and soil comprise an increasingly urgent challenge to global health, well-being, and productivity. The impact of environmental pollution arguably has its greatest impact across the lifespan on children, women of childbearing age, and pregnant women and their unborn children, not only because of their vulnerability during development, but also because of their subsequent longevity. Ulaanbaatar, Mongolia, is a highly instructive, perhaps extreme, example of what happens with recent, rapid urbanization. It is the coldest capital city on Earth, where average ambient temperatures routinely fall below -40°C/F between November and February. During the cold winter period, more than 200,000 "Gers" (traditional felt-lined dwellings) in the "Ger district" burn over 600,000 tons of coal for domestic heating (>3 tons each). Thus, outdoor ambient particulate levels frequently exceed 100 times the WHO-recommended safety level for sustained periods of time, and drive the majority of personal particulate matter exposure. Indoor levels of exposure are somewhat lower in this setting because Gers are equipped with chimneys. Major adverse health impacts that we have documented in the Ger districts include the following: respiratory diseases among those between 1 and 59 years of age and cardiac diseases in those over 60; alarming increases in lung cancer rates in females are also beginning to emerge; and fertility and subsequent successful completion of term pregnancy falls by up to half during the winter pollution season, while early fetal death rises by fourfold. However, the World Bank has intervened with a Ger stove replacement project that has progressively reduced winter pollution by about 30% over the past 5 years, and this has been accompanied by an increase in mean term birth weight of up to 100g. Each incremental decrement in air pollution clearly has beneficial effects on pregnancy, which are likely to have the greatest positive

  1. The ringed seal's last refuge and the importance of snow cover (United States)

    Kelly, B. P.; Bitz, C. M.


    Ringed seals are strongly adapted to inhabiting seasonal ice cover throughout the Arctic Ocean, marginal seas, and some freshwater lakes. Their distribution has expanded and contracted with northern hemisphere ice cover and is expected to mirror declining ice cover in coming decades. Ringed seals require snow cover to provide shelter from extreme cold and from predators, and the southern extent of their range corresponds to the latitudes to which snow cover—sufficient to form and maintain subnivean lairs—extends. The lairs are especially critical to the survival of pups born and nursed under the snow in late March through May. Snow drifts 50 cm or deeper are necessary for lair occupation, and field measurements indicate that such drifting occurs only where average snow depths (on flat ice) exceed 20 cm. When snow depths are less, ringed seal pups freeze in their lairs and are vulnerable to predation by carnivores and birds. As the climate warms, winter precipitation is expected to increase in the Arctic Ocean, potentially favoring formation and occupation of lairs. At the same time, increasingly late ice formation is expected to decrease the overall accumulation of snow, an effect exacerbated by the high fraction of annual snow fall that occurs in autumn. Early snow melts also contribute to pup mortality and are likely to increase as the climate warms. We forecast April snow depths on Arctic sea ice through the year 2100 in seven runs of CCSM3. Despite predicted increases in winter precipitation in the Arctic, the model forecasted that the accumulation of snow on sea ice will decrease by almost 50% in this century. The timing of the onset of snow melt changes little in the projections, but the shallower snow pack will melt more quickly in the warmer climate. In almost all portions of the range, average snow depths are expected to be less than 20 cm and inadequate for successful rearing of ringed seal young by the end of the century and—in many locations

  2. A comparison of annual and seasonal carbon dioxide effluxes between subarctic Sweden and high-arctic Svalbard

    DEFF Research Database (Denmark)

    Björkman, Mats P.; Morgner, Elke; Björk, Robert G.


    Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and quantity of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were...... in the literature. Winter emissions varied in their contribution to total annual production between 1 and 18%. Artificial snow drifts shortened the snow-free period by 2 weeks and decreased the annual CO2 emission by up to 20%. This study suggests that future shifts in vegetation zones may increase soil respiration...

  3. Winter climate change effects on soil C and N cycles in urban grasslands. (United States)

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M


    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost. © 2013 John Wiley & Sons Ltd.

  4. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations. (United States)

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine


    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  5. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  6. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli


    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  7. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain. (United States)

    Wu, Jianjun; Liu, Ming; Lü, Aifeng; He, Bin


    The North China Plain (NCP) is one of the main agricultural areas in China. However, it is also widely known for its water shortages, especially during the winter wheat growing season. Recently, climate change has significantly affected the water environment for crop growth. Analyzing the changes in the water deficit, which is only affected by climate factor, will help to improve water management in the NCP. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) was used to investigate the variations in the water deficit during the winter wheat growing season from 1961 to 2010 in 12 selected stations in the NCP. To represent the changes in the water deficit without any artificial affection, the rainfed simulation was used. Over the past 50 years, the average temperature during the winter wheat growing season increased approximately 1.42 °C. The anthesis date moved forward approximately 7-10 days and to late April, which increased the water demand in April. Precipitation in March and May showed a positive trend, but there was a negative trend in April. The water deficit in late April and early May became more serious than before, with an increasing trend of more than 0.1 mm/year. In addition, because the heading stage, which is very important to crop yield of winter wheat, moved forward, the impact of water deficit in late April was more serious to crop yield.

  8. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season. (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing


    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  9. Optical Sky Brightness and Transparency during the Winter Season at Dome A Antarctica from the Gattini-All-Sky Camera (United States)

    Yang, Yi; Moore, Anna M.; Krisciunas, Kevin; Wang, Lifan; Ashley, Michael C. B.; Fu, Jianning; Brown, Peter J.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel; Riddle, Reed L.; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Suntzeff, Nicholas B.; Tothill, Nick; Travouillon, Tony; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi


    The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, near-infrared, and terahertz astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in 2009 January. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90^\\circ × 90^\\circ ) in the photometric B-, V-, and R-bands; cloud cover statistics measured during the 2009 winter season; and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S B = 22.98, S V = 21.86, and S R = 21.68 mag arcsec-2. These values were obtained during the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Maunakea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.

  10. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. (United States)

    Romero-Espinoza, Jose A; Moreno-Valencia, Yazmin; Coronel-Tellez, Rodrigo H; Castillejos-Lopez, Manuel; Hernandez, Andres; Dominguez, Aaron; Miliar-Garcia, Angel; Barbachano-Guerrero, Arturo; Perez-Padilla, Rogelio; Alejandre-Garcia, Alejandro; Vazquez-Perez, Joel A


    Acute asthma exacerbations and pneumonia are important causes of morbidity and mortality in children and may coexist in the same children, although symptom overlap may lead to difficulties in diagnosis. Microbial and viral diversity and differential abundance of either may play an important role in infection susceptibility and the development of acute and chronic respiratory diseases. To describe the virome and bacteriome present in the upper respiratory tract of hospitalized children with a clinical diagnosis of asthma and pneumonia during an acute exacerbation and an acute respiratory illness ARI episode respectively. During the winter seasons of 2013-2014 and 2014-2015, 134 nasopharyngeal swabs samples of children pneumonia. The virome and bacteriome were characterized using Whole Genome Sequencing (WGS) and in-house bioinformatics analysis pipeline. The Asthma group was represented mainly by RV-C, BoV-1 and RSV-B and the pneumonia group by Bacteriophage EJ-1 and TTMV. TTV was found in both groups with a similar amount of reads. About bacterial composition Moraxella catarrhalis, Propionibacterium acnes and Acinetobacter were present in asthma and Veillonella parvula and Mycoplasma pneumoniae in pneumonia. Streptococcus pneumoniae and Haemophilus influenzae were mostly found with both asthma and pneumonia. Our results show a complex viral and bacterial composition in asthma and pneumonia groups with a strong association of RV-C presence in asthmatic children. We observed Streptococcus pneumoniae and Haemophilus influenzae concurrently in both groups.

  11. Winter Precipitation in North America and the Pacific-North America Pattern in GEOS-S2Sv2 Seasonal Hindcast (United States)

    Li, Zhao; Molod, Andrea; Schubert, Siegfried


    Reliable prediction of precipitation remains one of the most pivotal and complex challenges in seasonal forecasting. Previous studies show that various large-scale climate modes, such as ENSO, PNA and NAO play significant role in winter precipitation variability over the Northern America. The influences are most pronounced in years of strong indices of such climate modes. This study evaluates model bias, predictability and forecast skills of monthly winter precipitation in GEOS5-S2S 2.0 retrospective forecast from 1981 to 2016, with emphasis on the forecast skill of precipitation over North America during the extreme events of ENSO, PNA and NAO by applying EOF and composite analysis.

  12. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012 (United States)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan


    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  13. Canadian snow and sea ice: historical trends and projections (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross


    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  14. Simulation of snow accumulation and melt in needleleaf forest environments

    Directory of Open Access Journals (Sweden)

    C. R. Ellis


    Full Text Available Drawing upon numerous field studies and modelling exercises of snow processes, the Cold Regions Hydrological Model (CRHM was developed to simulate the four season hydrological cycle in cold regions. CRHM includes modules describing radiative, turbulent and conductive energy exchanges to snow in open and forest environments, as well as account for losses from canopy snow sublimation and rain evaporation. Due to the physical-basis and rigorous testing of each module, there is a minimal need for model calibration. To evaluate CRHM, simulations of snow accumulation and melt were compared to observations collected at paired forest and clearing sites of varying latitude, elevation, forest cover density, and climate. Overall, results show that CRHM is capable of characterising the variation in snow accumulation between forest and clearing sites, achieving a model efficiency of 0.51 for simulations at individual sites. Simulations of canopy sublimation losses slightly overestimated observed losses from a weighed cut tree, having a model efficiency of 0.41 for daily losses. Good model performance was demonstrated in simulating energy fluxes to snow at the clearings, but results were degraded from this under forest cover due to errors in simulating sub-canopy net longwave radiation. However, expressed as cumulative energy to snow over the winter, simulated values were 96% and 98% of that observed at the forest and clearing sites, respectively. Overall, the good representation of the substantial variations in mass and energy between forest and clearing sites suggests that CRHM may be useful as an analytical or predictive tool for snow processes in needleleaf forest environments.

  15. Snow cover monitoring in the Kyrgyz Republic through MODIS time series (2000-2010) (United States)

    Dedieu, J.-P.; Doutreleau, V.; Lessard-Fontaine, A.; Shalpykova, G.


    The Kyrgyz Republic is located at the convergence of two mountain systems (Tien Shan and Pamirs) in Central Asia. The region is of great interest all of Central Asia because of its consequent capital in water resources. Theses resources are of importance for electricity production (~15 TWH/year) and irrigation of agricultural land. Over 50% of the 52 km3 of Kyrgyz runoff water irrigates the Syr Darya River which flows over 2200 km from the confluence of Naryn and Kara Darya rivers to the Aral Sea. Around 40% of the Kyrgyz territory lies above 3000m; part of the water resource is cumulated as snow during large periods of the year. Snow cover is thus an important part of the Kyrgyz hydrological cycle. In this already water-stressed region, both climate change and irrigation expansion could trigger a greater scarcity of the resource in the future. One of the major impact could be a modification of the melting season period and the snow melt behavior. The use of passive optical remote sensing data could provide helpful complementary information for hydrological modeling of these effects, but currently, very few scientific publications concerning the Syr Darya headwaters in Kyrgyztan exist. Integrated in the EU-FP7 ACQWA Project (, this study proposes 11 years of snow cover analysis using MODIS snow cover product data. The following parameters are retrieved from MODIS data: Snow Cover Area (SCA), Snow Fraction (FRA), snow cover duration and depletion maps. A Digital Elevation Model (DEM) from the NASA-SRTM database is used to better understand the topographic influence on snow melt behavior and a Land Use database (GlobCover 2009) for the environmental context of snow cover evolution. A statistical analysis of snow cover dynamics is performed on a 2000-2010 8-days temporal resolution dataset. Yearly mean snow cover is 40 ± 5 % and melting runs with 5%.8j-1 average velocity. We observe a greater variation of the inter-annual snow cover extent in winter

  16. Regime shift of snow days in Switzerland (United States)

    Marty, Christoph


    The number of days with a snow depth above a certain threshold is the key factor for winter tourism in an Alpine country like Switzerland. An investigation of 34 long-term stations between 200 and 1800 m asl (above sea level) going back for at least the last 60 years (1948-2007) shows an unprecedented series of low snow winters in the last 20 years. The signal is uniform despite high regional differences. A shift detection analysis revealed a significant step-like decrease in snow days at the end of the 1980's with no clear trend since then. This abrupt change resulted in a loss of 20% to 60% of the total snow days. The stepwise increase of the mean winter temperature at the end of the 1980's and its close correlation with the snow day anomalies corroborate the sensitivity of the mid-latitude winter to the climate change induced temperature increase.

  17. The value of snow cover (United States)

    Sokratov, S. A.


    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  18. Seasonal and inter-annual variability of aerosol optical properties during 2005-2010 over Red Mountain Pass and Impact on the Snow Cover of the San Juan Mountains (United States)

    Singh, R. P.; Gautam, R.; Painter, T. H.


    Growing body of evidence suggests the significant role of aerosol solar absorption in accelerated seasonal snowmelt in the cryosphere and elevated mountain regions via snow contamination and radiative warming processes. Characterization of aerosol optical properties over seasonal snow cover and snowpacks is therefore important towards the better understanding of aerosol radiative effects and associated impact on snow albedo. In this study, we present seasonal variations in column-integrated aerosol optical properties retrieved from AERONET sunphotometer measurements (2005-2010) at Red Mountain Pass (37.90° N, 107.72° W, 3368 msl) in the San Juan Mountains, in the vicinity of the North American Great Basin and Colorado Plateau deserts. The aerosol optical depth (AOD) measured at 500nm is generally low (pollutant transport. In addition, the possibility of the observed increased coarse-mode influence associated with mineral dust influx cannot be ruled out, due to westerly-airmass driven transport from arid/desert regions as suggested by backward trajectory simulations. A meteorological coupling is also found in the summer season between AOD and column water vapor retrieved from AERONET with co-occurring enhanced water vapor and AOD. Based on column measurements, it is difficult to ascertain the aerosol composition, however, the summer-time enhanced aerosol loading as presented here is consistent with the increased dust deposition in the San Juan mountain snow cover as reported in recent studies. In summary, this study is expected to better understand the seasonal and inter-annual aerosol column variations and is an attempt to provide an insight into the effects of aerosol solar absorption on accelerated seasonal snowmelt in the San Juan mountains.

  19. Distribution and variability of total mercury in snow cover?a case study from a semi-urban site in Pozna?, Poland


    Siudek, Patrycja


    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Pozna? (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5?ng?L?1, with a mean value of 4.62?ng?L?1. The highest Hg conc...

  20. Snow Leopard

    Indian Academy of Sciences (India)

    the Central Asian mountains and the Indian Himalayan re- gion. Owing to their ... ographical range and associated ecological, social, and cultural ... Central Asia. Snow Leopard: Morphology. The ability of snow leopards to camouflage with the surrounding landscape of rocks, sparse low vegetation, and snow is crucial for.

  1. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.


    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  2. WRF prediction of two winter season Saharan dust events using PM10 concentrations: Boundary versus initial conditions (United States)

    Jenkins, Gregory S.; Diokhane, Aminita Mbow


    During the northern hemisphere winter and spring seasons Saharan dust events overspreading West Africa are frequent and linked to mid-latitude interactions. The dust events have the ability to produce low visibilities, poor air quality and can promote respiratory disease. While a number of case studies have been undertaken, the ability to forecast Saharan dust events is largely unknown. To investigate this matter, we have performed hindcasts using the weather research and forecasting (WRF) model with the Goddard Chemistry Aerosols Radiation Transport (GOCART) module, with 6-h boundary conditions from the NOAA ' National Center for Environmental Prediction (NCEP) final analysis (FNL). We use observed and forecasted PM10 concentrations to evaluate the hindcasts. The hindcasts begin with different conditions 3-8 days before two Saharan dust events where the maximum Particulate matter at 10 microns (PM10) concentrations are observed on 20 January and 7 February 2012 in Dakar, Senegal. The results show that all hindcasts are able to capture the timing of the peak on 20 January but the maximum peak during the second dust event occurs one day prior to the observed peak on 7 February with similar pattern from satellite based aerosol optical depth (AOD) estimates. The hindcasts have positive biases in PM10 concentrations relative to the observations in Dakar Senegal. The hindcasts suggest that WRF model has the potential to effectively forecasts Saharan dust events in real-time forecasts, however, they must be evaluated against additional surface PM10 observations at varying locations, which are currently sparse over West Africa.

  3. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    Directory of Open Access Journals (Sweden)

    Hai-Han Zhang


    Full Text Available The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before” in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”. The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01. Heatmap fingerprints and principle component analyses (PCA revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods.

  4. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015 (United States)

    Romero-Espinoza, Jose A.; Moreno-Valencia, Yazmin; Coronel-Tellez, Rodrigo H.; Castillejos-Lopez, Manuel; Hernandez, Andres; Dominguez, Aaron; Miliar-Garcia, Angel; Barbachano-Guerrero, Arturo; Perez-Padilla, Rogelio; Alejandre-Garcia, Alejandro


    Background Acute asthma exacerbations and pneumonia are important causes of morbidity and mortality in children and may coexist in the same children, although symptom overlap may lead to difficulties in diagnosis. Microbial and viral diversity and differential abundance of either may play an important role in infection susceptibility and the development of acute and chronic respiratory diseases. Objectives To describe the virome and bacteriome present in the upper respiratory tract of hospitalized children with a clinical diagnosis of asthma and pneumonia during an acute exacerbation and an acute respiratory illness ARI episode respectively. Methods During the winter seasons of 2013–2014 and 2014–2015, 134 nasopharyngeal swabs samples of children <15 years of age with ARI hospitalized at a referral hospital for respiratory diseases were selected based on clinical diagnosis of asthma or pneumonia. The virome and bacteriome were characterized using Whole Genome Sequencing (WGS) and in-house bioinformatics analysis pipeline. Results The Asthma group was represented mainly by RV-C, BoV-1 and RSV-B and the pneumonia group by Bacteriophage EJ-1 and TTMV. TTV was found in both groups with a similar amount of reads. About bacterial composition Moraxella catarrhalis, Propionibacterium acnes and Acinetobacter were present in asthma and Veillonella parvula and Mycoplasma pneumoniae in pneumonia. Streptococcus pneumoniae and Haemophilus influenzae were mostly found with both asthma and pneumonia. Conclusions Our results show a complex viral and bacterial composition in asthma and pneumonia groups with a strong association of RV-C presence in asthmatic children. We observed Streptococcus pneumoniae and Haemophilus influenzae concurrently in both groups. PMID:29447223

  5. Cloud-based Computing and Applications of New Snow Metrics for Societal Benefit (United States)

    Nolin, A. W.; Sproles, E. A.; Crumley, R. L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L.


    Seasonal and interannual variability in snow cover affects socio-environmental systems including water resources, forest ecology, freshwater and terrestrial habitat, and winter recreation. We have developed two new seasonal snow metrics: snow cover frequency (SCF) and snow disappearance date (SDD). These metrics are calculated at 500-m resolution using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10A1). SCF is the number of times snow is observed in a pixel over the user-defined observation period. SDD is the last date of observed snow in a water year. These pixel-level metrics are calculated rapidly and globally in the Google Earth Engine cloud-based environment. SCF and SDD can be interactively visualized in a map-based interface, allowing users to explore spatial and temporal snowcover patterns from 2000-present. These metrics are especially valuable in regions where snow data are sparse or non-existent. We have used these metrics in several ongoing projects. When SCF was linked with a simple hydrologic model in the La Laguna watershed in northern Chile, it successfully predicted summer low flows with a Nash-Sutcliffe value of 0.86. SCF has also been used to help explain changes in Dall sheep populations in Alaska where sheep populations are negatively impacted by late snow cover and low snowline elevation during the spring lambing season. In forest management, SCF and SDD appear to be valuable predictors of post-wildfire vegetation growth. We see a positive relationship between winter SCF and subsequent summer greening for several years post-fire. For western US winter recreation, we are exploring trends in SDD and SCF for regions where snow sports are economically important. In a world with declining snowpacks and increasing uncertainty, these metrics extend across elevations and fill data gaps to provide valuable information for decision-making. SCF and SDD are being produced so that anyone with Internet access and a Google

  6. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.


    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  7. Snow sublimation on a high-altitude Himalayan glacier (United States)

    Stigter, E.; Litt, M.; Steiner, J. F.; Bonekamp, P. N. J.; Bierkens, M. F.; Shea, J.; Immerzeel, W. W.


    Snow sublimation is a loss of water from a snowpack to the atmosphere due to direct phase transition of snow to water vapour. Conditions at high elevations in the Himalaya favour sublimation, i.e. low atmospheric pressure, high wind speed, dry air and high incoming solar radiation. Snow sublimation is a potential important component of the high-altitude water and glacier mass balance, but measurements are non-existent in the Himalaya and models generally ignore this process. Hence, we measured surface latent heat fluxes with an eddy covariance system on Yala Glacier (5350 m a.s.l) in the Nepalese Himalaya to quantify the role snow sublimation plays in the water budget. A one-month data set from October to November 2016 reveals that cumulative sublimation is substantial relative to the dry season precipitation (31 mm for a 32-day period). Sublimation parameterizations of different complexity were subsequently tested against our field measurements to quantify sublimation patterns in space and over longer periods based on nominal meteorological measurements. Results show that a multiple linear regression on wind speed and humidity performed best and this is used to simulate snow sublimation spatially distributed on Yala Glacier for the winter season 2016-2017. Averaged over an entire winter and over the entire glacier surface, sublimation plays a crucial role in the high altitude water balance and in the mass balance of glaciers. Future research should focus on quantifying the role of sublimation at the catchment scale, the development of larger scale parametrizations and efficient measurement strategies to validate the results.

  8. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps (United States)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.


    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  9. Food, energy, and water in an era of disappearing snow (United States)

    Mote, P.; Lettenmaier, D. P.; Li, S.; Xiao, M.


    Mountain snowpack stores a significant quantity of water in the western US, accumulating during the wet season and melting during the dry summers and supplying more than 65% of the water used for irrigated agriculture, energy production (both hydropower and thermal), and municipal and industrial uses. The importance of snow to western agriculture is demonstrated by the fact that most snow monitoring is performed by the US Department of Agriculture. In a paper published in 2005, we showed that roughly 70% of monitoring sites showed decreasing trends through 2002. Now, with 14 additional years of data, over 90% of snow monitoring sites with long records across the western US show declines through 2016, of which 33% are significant (vs 5% expected by chance) and 2% are significant and positive (vs 5% expected by chance). Declining trends are observed across all months, states, and climates, but are largest in spring, in the Pacific states, and in locations with mild winter climate. We corroborate and extend these observations using a gridded hydrology model, which also allows a robust estimate of total western snowpack and its decline. Averaged across the western US, the decline in total April 1 snow water equivalent since mid-century is roughly 15-30% or 25-50 km3, comparable in volume to the West's largest man-made reservoir, Lake Mead. In the absence of rapid reductions in emissions of greenhouse gases, these losses will accelerate; snow losses on this scale demonstrate the necessity of rethinking water storage, policy, and usage.

  10. Some relationships among air, snow, and soil temperatures and soil frost (United States)

    George Hart; Howard W. Lull


    Each winter gives examples of the insulating properties of snow cover. Seeds and soil fauna are protected from the cold by snow. Underground water pipes are less likely to freeze under snow cover. And, according to many observers, the occurrence, penetration, and thaw of soil frost are affected by snow cover. The depth of snow necessary to protect soil from freezing...

  11. Validation of NOAA-Interactive Multisensor Snow and Ice Mapping System (IMS by Comparison with Ground-Based Measurements over Continental United States

    Directory of Open Access Journals (Sweden)

    Reza Khanbilvardi


    Full Text Available In this study, daily maps of snow cover distribution and sea ice extent produced by NOAA’s interactive multisensor snow and ice mapping system (IMS were validated using in situ snow depth data from observing stations obtained from NOAA’s National Climatic Data Center (NCDC for calendar years 2006 to 2010. IMS provides daily maps of snow and sea ice extent within the Northern Hemisphere using data from combination of geostationary and polar orbiting satellites in visible, infrared and microwave spectrums. Statistical correspondence between the IMS and in situ point measurements has been evaluated assuming that ground measurements are discrete and continuously distributed over a 4 km IMS snow cover maps. Advanced Very High Resolution Radiometer (AVHRR land and snow classification data are supplemental datasets used in the further analysis of correspondence between the IMS product and in situ measurements. The comparison of IMS maps with in situ snow observations conducted over a period of four years has demonstrated a good correspondence of the data sets. The daily rate of agreement between the products mostly ranges between 80% and 90% during the Northern Hemisphere through the winter seasons when about a quarter to one third of the territory of continental US is covered with snow. Further, better agreement was observed for stations recording higher snow depth. The uncertainties in validation of IMS snow product with stationed NCDC data were discussed.

  12. Quantifying forest mortality with the remote sensing of snow (United States)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and

  13. Preliminary Estimation of Black Carbon Deposition from Nepal Climate Observatory-Pyramid Data and Its Possible Impact on Snow Albedo Changes Over Himalayan Glaciers During the Pre-Monsoon Season (United States)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.


    The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition

  14. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica (United States)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang


    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  15. Winter Arctic sea ice growth: current variability and projections for the coming decades (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.


    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  16. Assessing the efficiency of machine made snow production using observations in ski resorts (United States)

    Spandre, Pierre; Francois, Hugues; Thibert, Emmanuel; Morin, Samuel; George-Marcelpoil, Emmanuelle


    The interannual variability of snow conditions has encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However the efficiency of the method i.e. the ratio of water actually converted into snow on ski fields to the water used for production may highly differ depending on meteorological conditions and is still poorly known. Previous investigations of water losses accounting for sublimation and evaporation estimated that 5 to 10% of the water was lost during the snowmaking process. A recent study consisting in a field campaign on four distinct sites (2014-2015 winter season) estimated that water losses may exceed 50% and speculated this to be due to a combination of wind effects (suspension, further sublimation and transport beyond ski slopes limits) and trapping by the vegetation. The present study introduces a method we set up to assess water losses during the snowmaking process by using differential GPS measurements on machine made snow piles: snow depth observations are interpolated on a regular spatial grid from the originally variable grid. Snow and water volumes are deduced thanks to complementary density measurements. The uncertainty of the interpolation method was assessed using a high-resolution laser scanner of a given snow pile and with respect to a digital terrain. Uncertainties on snow depth, snow density and the resulting water equivalent volume are presented and discussed. The method provided relevant measurements of water volumes within a 20 to 30 m distance to the snowgun. Beyond this distance, the relative error due to increasing interpolation error and decreasing snow depth highlighted the limits of the method. However water volumes were derived in several occasions during the season and confirmed that a significant ratio of the water volume either falls beyond a 30 m distance to the snowgun or is lost due to sublimation and evaporation.

  17. Unexpected Patterns in Snow and Dirt (United States)

    Ackerson, Bruce J.


    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This snow comes from the final clearing of sidewalks and driveways. The patterns observed in these piles defied my intuition. This melting snow develops edges where dirt accumulates, in contrast to ice cubes, which lose sharp edges and become more spherical upon melting. Furthermore, dirt absorbs more radiation than snow and yet doesn't melt and round the sharp edges of snow, where dirt accumulates.

  18. Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice-wheat rotation (United States)

    Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad


    Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was <1.42. The contribution of WFPS and dissolved organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.

  19. Cognitive Change across Cognitive-Behavioral and Light Therapy Treatments for Seasonal Affective Disorder: What Accounts for Clinical Status the Next Winter? (United States)

    Evans, Maggie; Rohan, Kelly J; Sitnikov, Lilya; Mahon, Jennifer N; Nillni, Yael I; Lindsey, Kathryn Tierney; Vacek, Pamela M


    Efficacious treatments for seasonal affective disorder include light therapy and a seasonal affective disorder-tailored form of cognitive-behavioral therapy. Using data from a parent clinical trial, these secondary analyses examined the relationship between cognitive change over treatment with cognitive-behavioral therapy, light therapy, or combination treatment and mood outcomes the next winter. Sixty-nine participants were randomly assigned to 6-weeks of cognitive-behavioral therapy, light therapy, or combination treatment. Cognitive constructs (i.e., dysfunctional attitudes, negative automatic thoughts, and rumination) were assessed at pre- and post-treatment. Dysfunctional attitudes, negative automatic thoughts, and rumination improved over acute treatment, regardless of modality; however, in participants randomized to solo cognitive-behavioral therapy, a greater degree of improvement in dysfunctional attitudes and automatic thoughts was uniquely associated with less severe depressive symptoms the next winter. Change in maladaptive thoughts during acute treatment appears mechanistic of solo cognitive-behavioral therapy's enduring effects the next winter, but is simply a consequence of diminished depression in light therapy and combination treatment.

  20. Determination Of Ornithological Richness Of Erek Lake Dneme And Bendimahi Deltas VanTurkey In Winter Season And Mapping With Geographic Information System

    Directory of Open Access Journals (Sweden)

    Atilla Durmuamp351 Emrah elik


    Full Text Available Basin of Lake Van is very rich in all seasons in terms of ornithology. Birds that find alternative habitats in the basin outside winter season become dense in certain regions. Species and population sizes of water birds in Ercek lake Dneme and Bendimahi Deltas in winter were researched in this study. Bird species and their population sizes were determined as a result of observations covering November-February months of 2013-2014 and 2014-2015. As a result of two-year winter counts a total of 7563 individuals belonging to 20 species were counted in Dneme Delta 2489 individuals were counted in Erek Lake and Coot Fulica atra was determined as dominant species in both areas. A total of 1623 individuals belonging to 20 species were counted in Bendimahi Delta and Mallard Anas platyrhynchos was determined as dominant species. A total of 54 individuals from Common Pochard Aythya ferina species in VU Vulnerable category were counted in Bendimahi Delta according to International IUCN Red List criteria. Population densities of 5 different habitats in the area were determined and numerical thematic distribution maps were created by being processed in ArcMap 10.2.

  1. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg


    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps......This chapter explores the performative potential of snow for Alpine tourism, by drawing attention to its material and nonrepresentational significance for tourism practices. European imagination has been preoccupied with snow since medieval times and even today, snow features as the sine que non...

  2. Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery

    Directory of Open Access Journals (Sweden)

    A. Preußer


    Full Text Available Spatial and temporal characteristics of the Storfjorden polynya, which forms regularly in the proximity of the islands Spitsbergen, Barentsøya and Edgeøya in the Svalbard archipelago under the influence of strong northeasterly winds, have been investigated for the period of 2002/2003 to 2013/2014 using thermal infrared satellite imagery. Thin-ice thicknesses were calculated from MODIS ice-surface temperatures combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy-balance model. Associated quantities like polynya area and total ice production were derived and compared to previous remote sensing and modeling studies. A basic coverage-correction scheme was applied to account for cloud gaps in the daily composites. On average, both polynya area and ice production are thereby increased by about 30%. The sea ice in the Storfjorden area experiences a late fall freeze-up in several years over the 12-winter period, which becomes most apparent through an increasing frequency of large thin-ice areas until the end of December. In the course of an average winter season, ice thicknesses below 10 cm are dominating within the Storfjorden basin. During the regarded period, the mean polynya area is 4555.7 ± 1542.9 km2. Maximum daily ice production rates can reach as high as 26 cm d−1, while the average ice production is estimated at 28.3 ± 8.5 km3 per winter and therefore lower than in previous studies. Despite this comparatively short record of 12 winter seasons, a significant positive trend of 20.2 km3 per decade could be detected, which originates primarily from a delayed freeze-up in November and December in recent winter seasons. This contrasts earlier reports of a slightly negative trend in accumulated ice production prior to 2002. Although featuring more pronounced interannual variations between 2004/2005 and 2011/2012, our estimates underline the importance of this relatively small coastal polynya system considering its

  3. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen


    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  4. Snow Leopard

    Indian Academy of Sciences (India)

    Owing to their secretive nature and inaccessible habitat,little is known about its ecology and distribution. Due toits endangered status and high aesthetic value, the snow leopardis considered as an 'umbrella species' for wildlife conservationin the Indian Himalayas. This article summarizes thecurrent knowledge on snow ...

  5. Snow Leopard

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 7. Snow Leopard: Ecology and Conservation Issues in India. Abhishek Ghoshal. General Article Volume 22 Issue 7 July 2017 pp 677- ... Keywords. Ecology, carnivore, conservation, Himalayas, mammal, snow leopard, Panthera uncia, wildlife.

  6. Measurements of seasonal frost depth by frost tube in Japan (United States)

    Harada, K.; Yoshikawa, K.; Iwahana, G.; Stanilovskaya, J. V.; Sawada, Y.; Sone, T.


    Since 2011 winter season, frost depths have been measured as an outreach program in Hokkaido, northern part of Japan, where seasonal ground freezing occurs in winter. Frost depths were measured in elementary, junior high and high schools in order to emphasis their interest for earth sciences. At schools, using simple frost tube, measurements were conducted directly once a week by students or teacher during ground freezing under no snow-removal condition. A lecture was made in class and a frost tube was set at schoolyard, as the same tube and protocol as UAF's Permafrost Outreach Program, using clear tube with blue-colored water. In 2011 winter season, we started measurements at three schools, and the number of school extended to 32 in 2016 season, 26 elementary schools, 5 junior high schools and one high school. We visited schools in summer time or just before frost season to talk about the method of measurement, and measurements by students started just after ground freezing. After the end of frozen period, we visited schools again to explain results of each school or another schools in Japan, Alaska, Canada or Russia. The measured frost depths in Hokkaido ranged widely, from only a few centimeter to more than 50 cm. However, some schools had no frost depth due to heavy snow. We confirmed that the frost depth strongly depends on air temperature and snow depth. The lecture was made to student why the frost depth ranged widely, and the effect of snow was explained by using the example of igloo. In order to validate the effect of snow and to compare frost depths, we tried to measure frost depths under snow-removal and no snow-removal conditions at the same elementary school. At the end of December, depths had no significant difference between these conditions, and the difference went to 14 cm after one month, with about 30 cm of snow depth. After these measurements and lectures, students noticed snow has a role as insulator and affects the frost depth.

  7. Antarctic snow and global climate

    International Nuclear Information System (INIS)

    Granberg, H.B.


    Global circulation models (GCM) indicate that global warming will be most pronounced at polar regions and high latitudes, causing concern about the stability of the Antarctic ice cap. A project entitled the Seasonal Snow in Antarctica examined the properties of the near surface snow to determine the current conditions that influence snow cover development. The goal was to assess the response of the snow cover in Queen Maud Land (QML) to an increased atmospheric carbon dioxide content. The Antarctic snow cover in QML was examined as part of the FINNARP expeditions in 1999 and 2000 which examined the processes that influence the snow cover. Its energy and mass balance were also assessed by examining the near surface snow strata in shallow (1-2 m) pits and by taking measurements of environmental variables. This made it possible to determine if the glacier is in danger of melting at this northerly location in the Antarctic. The study also made it possible to determine which variables need to change and by how much, for significant melting to occur. It was shown that the Antarctic anticyclone creates particular conditions that protect the snow cover from melting. The anticyclone brings dry air from the stratosphere during most of the year and is exempt from the water vapour feedback. It was concluded that even a doubling of atmospheric carbon dioxide will not produce major snow melt runoff. 8 refs

  8. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, northern Alaska (United States)

    Robert R. Pattison; Jeffrey M. Welker


    Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous...

  9. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  10. Spatial Distribution And Synoptic Conditions Of Snow Accumulation And Snow Ablation In The West Siberian Plain

    Directory of Open Access Journals (Sweden)

    Bednorz Ewa


    Full Text Available The mean duration of snow coverage in the West Siberian Plain is approximately eight months in the north to about five months in the south. While the period of intense snow melting is short (one or two months between March and May, snow accumulation persists for most of the cold season. Snow accumulation is associated with negative anomalies of sea level pressure, which means increased cyclonal activity and weaker than normal Siberian High. Much lower anomalies of sea level pressure occur during snow ablation. This suggests smaller influence of air circulation on snow cover reduction in spring.

  11. Snow measurement Using P-Band Signals of Opportunity Reflectometry (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.


    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  12. Estimation of the condition of snow cover in Voronezh according to the chemical analysis of water from melted snow


    Prozhorina Tatyana Ivanovna; Bespalova Elena Vladimirovna; Yakunina Nadezhda


    Snow cover possesses high sorption ability and represents informative object to identify technogenic pollution of an urban environment. In this article the investigation data of a chemical composition of snow fallen in Voronezh during the winter period of 2014 are given. Relationships between existence of pollutants in snow and the level of technogenic effect are analyzed.

  13. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Frédérique C. Pivot


    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  14. Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal.

    Directory of Open Access Journals (Sweden)

    Madhu Chetri

    Full Text Available Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57, collected within 26 sampling grid cells (5×5 km that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples, whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%. Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%, but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%, and wild ungulates more frequently in scats from females (males: 48%, females: 70%. The sexual difference agrees with

  15. Russian Federation Snow Depth and Ice Crust Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Russian Federation Snow Depth and Ice Crust Surveys, dataset DSI-9808, contains routine snow surveys that run throughout the cold season every 10 days (every five...

  16. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy (United States)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.


    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data

  17. Airborne Snow Observatory: measuring basin-wide seasonal snowpack with LiDAR and an imaging spectrometer to improve runoff forecasting and reservoir operation (Invited) (United States)

    McGurk, B. J.; Painter, T. H.


    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission collected detailed snow information for portions of the Tuolumne Basin in California and the Uncompahgre Basin in Colorado in spring of 2013. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were used in a hydrologic simulation model to improve the accuracy and timing of runoff forecasting tools used to manage Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.5 million people on the San Francisco Peninsula. The USGS PRMS simulation model was calibrated to the 459 square mile basin and was updated with both weather forecast data and distributed snow information from ASO flights to inform the reservoir operators of predicted inflow volumes and timing. Information produced by the ASO data collection was used to update distributed SWE and albedo state variables in the PRMS model and improved inflow forecasts for Hetch Hetchy. Data from operational ASO programs is expected to improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be more assured of meeting operational mandates. This presentation will provide results from the project after its first year.

  18. Modeling of observed mineral dust aerosols in the arctic and the impact on winter season low-level clouds (United States)

    Fan, Song-Miao


    Mineral dust aerosol is the main ice nucleus (IN) in the Arctic. Observed dust concentrations at Alert, Canada, are lowest in winter and summer and highest in spring and autumn. In this study, we simulate transport and deposition of dust in a global chemical transport model. The model predicts the spring maximum caused by natural dust from desert sources in Asia and Sahara but underestimates the observations in autumn. Both natural and pollution sources contribute to the wintertime dust burden, as suggested by previous measurements of elemental compositions. Cloud parcel model simulations were carried out to study the impact of dust aerosol on the formation of mixed-phase and ice clouds in the Arctic lower troposphere. The liquid water path of low-level cloud is most sensitive to dust aerosol concentration from winter to early spring when air temperature is at its lowest in the annual cycle. The global and parcel models together suggest that low concentrations and acid coating of dust particles are favorable conditions for occurrence of mixed-phase clouds and that anthropogenic pollution can cause significant perturbations to Arctic IN and clouds in winter.

  19. Snow Cover Variability in the Black Forest Region as an Example of a German Low Mountain Range under the Influence of Climate Change (United States)

    Schoenbein, J.; Schneider, C.


    of 10 cm is likely to be shortened by 20 days per winter season until 2025 in the Black Forest. That is to say snow cover duration in the summit region will be shortened by one third in comparison to the snow cover duration in the 1990s. Regions below 800 m altitude a.s.l. will no longer regularly receive a snow cover lasting for at least a fortnight during the winter season. The analysis was extended to allow for the possibilities of artificial snowing within skiing resorts. Based on air temperature and air humidity data the mean seasonal number of days suitable for artificial snowing was calculated depending on region and altitude. The conditions for operating artificial snow production units are much better within more continental toned climates in the east of Germany than in the southern and western parts of the country. Together with a digital elevation model (DEM) of Germany the data within a Geographic Information System (GIS)serves to identify key regions of possible investments into winter sport facilities.

  20. Sensitivity Analysis of Snow Cover to Climate Change Scenarios and Their Impact on Plant Habitats in Alpine Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Keller, F.; Goyette, S.; Beniston, M. [Department of Geosciences, Geography, Fribourg (Switzerland)


    In high altitude areas snow cover duration largely determines the length of the growing season of the vegetation. A sensitivity study of snow cover to various scenarios of temperature and precipitation has been conducted to assess how snow cover and vegetation may respond for a very localized area of the high Swiss Alps (2050-2500 m above sea level). A surface energy balance model has been upgraded to compute snow depth and duration, taking into account solar radiation geometry over complex topography. Plant habitat zones have been defined and 23 species, whose photoperiodic preferences were documented in an earlier study, were grouped into each zone. The sensitivity of snowmelt to a change in mean, minimum and maximum temperature alone and a change in mean temperature combined with a precipitation change of +10% in winter and -10% in summer is investigated. A seasonal increase in the mean temperature of 3 to 5 K reduces snow cover depth and duration by more than a month on average. Snow melts two months earlier in the rock habitat zone with the mean temperature scenario than under current climate conditions. This allows the species in this habitat to flower earlier in a warmer climate, but not all plants are able to adapt to such changes.

  1. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold


    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  2. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. (United States)

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo


    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991-1996) and a positive effect on Betula nana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed 'greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming. © 2015 John Wiley & Sons

  3. Adult Fanniidae associated to pig carcasses during the winter season in a semiarid environment: initial examination of their potential as complementary PMI indicators. (United States)

    Aballay, Fernando H; Domínguez, M Cecilia; Fernández Campón, Florencia


    Besides the dominant necrophagous dipteran of the families Sarcophagidae and Calliphoridae usually used for post mortem interval (PMI) estimations, species of other families such as Fanniidae have frequently been reported in forensic studies. Though less abundant, these species are prevalent in decomposing carcasses with most reports being anecdotal. In this study we identified adults of the fly family Fanniidae associated to pig carcasses located under different local environmental conditions (sun and shade) in a semiarid area at Mendoza, Argentina during the winter season. We examined the potential of species of this family as indicators of PMI by measuring abundance, time of occurrence and residency time at the carcasses. We identified six species of Fanniidae: Euryomma peregrinum Meigen, Fannia albitarsis Stein, Fannia femoralis Stein, Fannia fusconotata Rondani, Fannia heydenii Wiedemann and Fannia sanihue Domínguez and Aballay. Overall, fly abundance was higher at the sunlit than at the shaded carcass. The most abundant species at the sun was F. fusconotata while at the shaded carcass F. femoralis was the most abundant species. Based on their residency time, however, species with higher potential as PMI indicators seem to be F. heydenii and F. sanihue as their residency time at the carcass was restricted to a short period of the decomposition process. Other species were present throughout most of the decomposition process or in such a low abundance (E. peregrinum) that they were not useful as indicators. These preliminary results indicate that adults of some species of Fanniidae could act as a good complementary indicator species during the winter season. In particular, F. heydenii and F. sanihue should be the focus of further studies which should also expand to other seasons. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Technical Note: Seasonality in alpine water resources management - a regional assessment (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.


    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  5. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li


    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  6. Measurements for winter road maintenance


    Riehm, Mats


    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  7. Sensing winter soil respiration dynamics in near-real time (United States)

    Contosta, A.; Burakowski, E. A.; Varner, R. K.; Frey, S. D.


    Some of the largest reductions in seasonal snow cover are projected to occur in temperate latitudes. Limited measurements from these ecosystems indicate that winter soil respiration releases as much as 30% of carbon fixed during the previous growing season. This respiration is possible with a snowpack that insulates soil from ambient fluctuations in climate. However, relationships among snowpack, soil temperature, soil moisture, and winter soil respiration in temperate regions are not well-understood. Most studies have infrequently sampled soil respiration and its drivers, and most measurements have been limited to the soil surface. We made near-real time, continuous measurements of temperature, moisture, and CO2 fluxes from the soil profile, through the snowpack, and into the atmosphere in a deciduous forest of New Hampshire, USA. We coupled these data with daily sampling of snow depth and snow water equivalent (SWE). Our objectives were to continuously measure soil CO2 production (Psoil) and CO2 flux through the snowpack (Fsnow) and to compare Fsnow and Psoil with environmental drivers. We found that Fsnow was more dynamic than Psoil, changing as much as 30% over several days with shifting environmental conditions. Multiple regression indicated that SWE, air temperature, surface soil temperature, surface soil CO2 concentrations, and soil moisture at 15 cm were significant predictors of Fsnow. The transition of surface temperature from below to above 0°C was particularly important as it represented a phase change from ice to liquid water. Only air temperature and soil moisture at 15 cm were significant drivers of Psoil, where higher moisture at 15 cm resulted in lower Psoil rates. Time series analysis showed that Fsnow lagged 40 days behind Psoil. This lag may be due to slow CO2 diffusion through soil to overlying snow under high moisture conditions. Our results suggest that surface soil CO2 losses are driven by rapid changes in snow cover, surface temperature

  8. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew


    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  9. Turning shy on a winter's day : Effects of season on personality and stress response in Microtus arvalis

    NARCIS (Netherlands)

    Gracceva, Giulia; Herde, Antje; Groothuis, Ton G. G.; Koolhaas, Jaap M.; Palme, Rupert; Eccard, Jana A.

    Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal

  10. Consequences of declining snow accumulation for water balance of mid-latitude dry regions (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.


    Widespread documentation of positive winter temperature anomalies, declining snowpack and earlier snow melt in the Northern Hemisphere have raised concerns about the consequences for regional water resources as well as wildfire. A topic that has not been addressed with respect to declining snowpack is effects on ecosystem water balance. Changes in water balance dynamics will be particularly pronounced at low elevations of mid-latitude dry regions because these areas will be the first to be affected by declining snow as a result of rising temperatures. As a model system, we used simulation experiments to investigate big sagebrush ecosystems that dominate a large fraction of the semiarid western United States. Our results suggest that effects on future ecosystem water balance will increase along a climatic gradient from dry, warm and snow-poor to wet, cold and snow-rich. Beyond a threshold within this climatic gradient, predicted consequences for vegetation switched from no change to increasing transpiration. Responses were sensitive to uncertainties in climatic prediction; particularly, a shift of precipitation to the colder season could reduce impacts of a warmer and snow-poorer future, depending on the degree to which ecosystem phenology tracks precipitation changes. Our results suggest that big sagebrush and other similar semiarid ecosystems could decrease in viability or disappear in dry to medium areas and likely increase only in the snow-richest areas, i.e. higher elevations and higher latitudes. Unlike cold locations at high elevations or in the arctic, ecosystems at low elevations respond in a different and complex way to future conditions because of opposing effects of increasing water-limitation and a longer snow-free season. Outcomes of such nonlinear interactions for future ecosystems will likely include changes in plant composition and productivity, dynamics of water balance, and availability of water resources.

  11. Drivers and environmental responses to the changing annual snow cycle of northern Alaska (United States)

    Cox, Christopher J.; Stone, Robert S.; Douglas, David C.; Stanitski, Diane; Divoky, George J.; Dutton, Geoff S.; Sweeney, Colm; George, J. Craig; Longenecker, David U.


    On the North Slope of Alaska, earlier spring snowmelt and later onset of autumn snow accumulation are tied to atmospheric dynamics and sea ice conditions, and result in environmental responses.Linkages between atmospheric, ecological and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation and cloud cover, as well as the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik due mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-year snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid- 1970s (-2.86 days/decade, 1975-2016). At nearby Cooper Island, where a colony of seabirds, Black Guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-year record. Ice-out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend towards later dates (+4.6 days/decade, 1975-2016), with 2016 the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales, and to anticipate coupled environmental responses.

  12. season.

    African Journals Online (AJOL)

    Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean plays a role of replacing exported salt via mixing. ..... The human impact on the.

  13. A vertically integrated snow/ice model over land/sea for climate models. I - Development. II - Impact on orbital change experiments (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.


    A vertically integrated formulation (VIF) model for sea ice/snow and land snow is discussed which can simulate the nonlinear effects of heat storage and transfer through the layers of snow and ice. The VIF demonstates the accuracy of the multilayer formulation, while benefitting from the computational flexibility of linear formulations. In the second part, the model is implemented in a seasonal dynamic zonally averaged climate model. It is found that, in response to a change between extreme high and low summer insolation orbits, the winter orbital change dominates over the opposite summer change for sea ice. For snow over land the shorter but more pronounced summer orbital change is shown to dominate.

  14. Molecular and phylogenetic analyses of influenza B viruses isolated from pediatric inpatients in South Korea during the 2011-2012 winter season. (United States)

    Nam, Jeong-Hyun; Song, Eun-Jung; Song, Daesub; Españo, Erica; Shim, Sang-Mu; Jeong, Seo-Hee; Webster, Robert G; Kim, Woo-Joo; Kim, Jeong-Ki


    Influenza B virus remains a major cause of respiratory diseases worldwide. Because of limited epidemiological and genetic data, the local and global transmission patterns of influenza B virus are not fully understood. Here we report the molecular and phylogenetic characterization of 163 influenza B virus isolates from pediatric inpatients with influenza-like illness in the winter of 2011-2012 in South Korea. Analysis of haemagglutinin and neuraminidase genes of the influenza B isolates revealed that both B/Victoria (62 %) and B/Yamagata lineages (38 %) co-circulated during that influenza season, and a considerable number of the isolates carried several amino acid substitutions in the four major antigenic epitopes of their haemagglutinin protein.

  15. A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall-winter drought in the southeastern United States

    International Nuclear Information System (INIS)

    Shepherd, Marshall; Mote, Thomas L; Niyogi, Dev


    Using rain gauge and satellite-based rainfall climatologies and the NOAA Storm Prediction Center tornado database (1952-2007), this study found a statistically significant tendency for fall-winter drought conditions to be correlated with below-normal tornado days the following spring in north Georgia (i.e. 93% of the years) and other regions of the Southeast. Non-drought years had nearly twice as many tornado days in the study area as drought years and were also five to six times more likely to have multiple tornado days. Individual tornadic events are largely a function of the convective-mesoscale thermodynamic and dynamic environments, thus the study does not attempt to overstate predictability. Yet, the results may provide seasonal guidance in an analogous manner to the well known Sahelian rainfall and Cape Verde hurricane activity relationships.

  16. Seasonal Noise Versus Subseasonal Signal: Forecasts of California Precipitation During the Unusual Winters of 2015-2016 and 2016-2017 (United States)

    Wang, Shuguang; Anichowski, Alek; Tippett, Michael K.; Sobel, Adam H.


    Subseasonal forecasts of California precipitation during the unusual winters of 2015-2016 and 2016-2017 are examined in this study. It is shown that two different ensemble forecast systems were able to predict monthly precipitation anomalies in California during these periods with some skill in forecasts initialized near or at the start of the month. The unexpected anomalies in February 2016, as well as in January and February 2017, were associated with shifts in the position of the jet stream over the northeast Pacific in a manner broadly consistent with associations found in larger ensembles of forecasts. These results support the broader notion that what is unpredictable atmospheric noise at the seasonal time scale can become predictable signal at the subseasonal time scale, despite that the lead times and verification averaging times associated with these forecasts are outside the predictability horizons of canonical midrange weather forecasting.

  17. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    NARCIS (Netherlands)

    Aerts, R.; Callaghan, T.V.; Dorrepaal, E.; van Logtestijn, R.S.P; Cornelissen, J.H.C.


    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on

  18. Tree-Ring Widths and Snow Cover Depth in High Tauern (United States)

    Falarz, Malgorzata


    The aim of the study is to examine the correlation of Norway spruce tree-ring widths and the snow cover depth in the High Tauern mountains. The average standardized tree-ring widths indices for Nowary spruce posted by Bednarz and Niedzwiedz (2006) were taken into account. Increment cores were collected from 39 Norway spruces growing in the High Tauern near the upper limit of the forest at altitude of 1700-1800 m, 3 km from the meteorological station at Sonnblick. Moreover, the maximum of snow cover depth in Sonnblick (3105 m a.s.l.) for each winter season in the period from 1938/39 to 1994/95 (57 winter seasons) was taken into account. The main results of the research are as follows: (1) tree-ring widths in a given year does not reveal statistically significant dependency on the maximum snow cover depth observed in the winter season, which ended this year; (2) however, the tested relationship is statistically significant in the case of correlating of the tree-ring widths in a given year with a maximum snow cover depth in a season of previous year. The correlation coefficient for the entire period of the study is not very high (r=0.27) but shows a statistical significance at the 0.05 level; (3) the described relationship is not stable over time. 30-year moving correlations showed no significant dependencies till 1942 and after 1982 (probably due to the so-called divergence phenomenon). However, during the period of 1943-1981 the values of correlation coefficient for moving 30-year periods are statistically significant and range from 0.37 to 0.45; (4) the correlation coefficient between real and calibrated (on the base of the regression equation) values of maximum snow cover depth is statistically significant for calibration period and not significant for verification one; (5) due to a quite short period of statistically significant correlations and not very strict dependencies, the reconstruction of snow cover on Sonnblick for the period before regular measurements

  19. On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter (United States)

    Yang, Xiaosong; Jia, Liwei; Kapnick, Sarah B.; Delworth, Thomas L.; Vecchi, Gabriel A.; Gudgel, Rich; Underwood, Seth; Zeng, Fanrong


    A "typical" El Niño leads to wet (dry) wintertime anomalies over the southern (northern) half of the Western United States (WUS). However, during the strong El Niño of 2015/16, the WUS winter precipitation pattern was roughly opposite to this canonical (average of the record) anomaly pattern. To understand why this happened, and whether it was predictable, we use a suite of high-resolution seasonal prediction experiments with coupled climate models. We find that the unusual 2015/16 precipitation pattern was predictable at zero-lead time horizon when the ocean/atmosphere/land components were initialized with observations. However, when the ocean alone is initialized the coupled model fails to predict the 2015/16 pattern, although ocean initial conditions alone can reproduce the observed WUS precipitation during the 1997/98 strong El Niño. Further observational analysis shows that the amplitudes of the El Niño induced tropical circulation anomalies during 2015/16 were weakened by about 50% relative to those of 1997/98. This was caused by relative cold (warm) anomalies in the eastern (western) tropical Pacific suppressing (enhancing) deep convection anomalies in the eastern (western) tropical Pacific during 2015/16. The reduced El Niño teleconnection led to a weakening of the subtropical westerly jet over the southeast North Pacific and southern WUS, resulting in the unusual 2015/16 winter precipitation pattern over the WUS. This study highlights the importance of initial conditions not only in the ocean, but in the land and atmosphere as well, for predicting the unusual El Niño teleconnection and its influence on the winter WUS precipitation anomalies during 2015/16.

  20. Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China

    Directory of Open Access Journals (Sweden)

    Pingping Liu


    Full Text Available In this study, 24 h PM2.5 (particles with an equivalent diameter equal to or below 2.5 μm samples were collected in winter and summer in Xi’an, Northwestern China to characterize the seasonal variations of eleven elements (As, Cd, Cr, Fe, K, Mn, Mo, Pb, Ni, Zn, and Cu and to evaluate their health risks by using the US EPA (U.S. Environmental Protection Agency method. Mass concentrations of the elements (except Ni in winter were much higher than those in summer, with similar variations for both seasons. The levels of elements followed a decreasing order of K > Zn > Fe > Pb > Cr > As > Mn > Cu > Mo > Ni > Cd. According to the enrichment factor (EF analysis, the highest EF value for Cd inferred that it should be linked with the metal smelting and other anthropogenic sources. In contrast, the EF values of K and Mn (1 < EF < 5 suggested that they were influenced by both natural and anthropogenic sources. The daily average exposure dose for children and adults by different exposure pathways were both ingestion > dermal contact > inhalation. The non-cancer risks for different exposure pathways showed different orders. The non-cancer risks (hazard quotients were lower than the average risk threshold (1.0 except for As, Pb, and Cr, which require greater attention. Elements of As and Cr were higher than the cancer risk threshold value (1 × 10−6, indicating that the cancer risks of PM2.5 elements in Xi’an should be a concern.

  1. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems? (United States)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.


    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and

  2. The self-organization of snow surfaces and the growth of sastrugi (United States)

    Kochanski, K.; Bertholet, C.; Anderson, R. S.; Tucker, G. E.


    Seasonal snow covers approximately 15% of the surface of the Earth. The majority of this snow is found on tundra, ice sheets, and sea ice. These windswept snow surfaces self-organize into depositional bedforms, such as ripples, barchan dunes, and transverse waves, and erosional bedforms, such as anvil-shaped sastrugi. Previous researchers have shown that these bedforms influence the reflectivity, thermal conductivity, and aerodynamic roughness of the surface. For the past two winters, we have observed the growth and movement of snow bedforms on Niwot Ridge, Colorado, at an elevation of 3500m. We have observed that (1) when wind speeds are below 3m/s, snow surfaces can be smooth, (2) when winds are higher than 3m/s during and immediately following a storm, the smooth surface is unstable and self-organizes into a field of dunes, (3) as snow begins to harden, it forms erosional bedforms that are characterized by vertical edges facing upwind (4) between 12 and 48 hours after each snowfall, alternating stripes of erosional and depositional bedforms occur, and (5) within 60 hours of each storm, the surface self-organizes into a field of sastrugi, which remains stable until it melts or becomes buried by the next snowfall. Polar researchers should therefore expect snow-covered surfaces to be characterized by fields of bedforms, which evolve in response to variations in snow delivery, windspeed, and periods of sintering. Smooth drifts may be found in sheltered and forested regions. On most ice sheets and sea ice where snowfall is frequent, the typical surface is likely to consist of an evolving mix of depositional and erosional bedforms. Where snowfall is infrequent, for example in Antarctica, the surface will be dominated by sastrugi fields.

  3. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. (United States)

    Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten


    Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier

    Directory of Open Access Journals (Sweden)

    Ward Van Pelt


    Full Text Available Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104 is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA of 31 m decade−1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.

  5. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003-2100 (United States)

    E.S. Euskirchen; A.D. McGuire; T.S. Rupp; F.S. Chapin; J.E. Walsh


    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003-2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1)...

  6. Quantifying small-scale spatio-temporal variability of snow stratigraphy in forests based on high-resolution snow penetrometry (United States)

    Teich, M.; Hagenmuller, P.; Bebi, P.; Jenkins, M. J.; Giunta, A. D.; Schneebeli, M.


    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception, wind speed reduction, and changes to the energy balance. The lack of snowpack observations in forests limits our ability to understand the evolution of snow stratigraphy and its spatio-temporal variability as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack under canopies of a spruce forest in the central Rocky Mountains, USA, using the SnowMicroPen (SMP), a high resolution digital penetrometer. Weekly-repeated penetration force measurements were recorded along 10 m transects every 0.3 m in winter 2015 and bi-weekly along 20 m transects every 0.5 m in 2016 in three study plots beneath canopies of undisturbed, bark beetle-disturbed and harvested forest stands, and an open meadow. To disentangle information about layer hardness and depth variabilities, and to quantitatively compare the different SMP profiles, we applied a matching algorithm to our dataset, which combines several profiles by automatically adjusting their layer thicknesses. We linked spatial and temporal variabilities of penetration force and depth, and thus snow stratigraphy to forest and meteorological conditions. Throughout the season, snow stratigraphy was more heterogeneous in undisturbed but also beneath bark beetle-disturbed forests. In contrast, and despite remaining small diameter trees and woody debris, snow stratigraphy was rather homogenous at the harvested plot. As expected, layering at the non-forested plot varied only slightly over the small spatial extent sampled. At the open and harvested plots, persistent crusts and ice lenses were clearly present in the snowpack, while such hard layers barely occurred beneath undisturbed and disturbed canopies. Due to settling, hardness significantly increased with depth at

  7. Physiochemical characterization of insoluble residues in California Sierra Nevada snow (United States)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew


    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  8. Seasonal variation of persistent organochlorine accumulation in birds from Lake Baikal, Russia, and the role of the south Asian region as a source of pollution for wintering migrants. (United States)

    Kunisue, Tatsuya; Minh, Tu Binh; Fukuda, Kayo; Watanabe, Mafumi; Tanabe, Shinsuke; Titenko, Alexei M


    Concentrations of persistent organochlorines (OCs) such as polychlorinated biphenyls (PCBs), DDT and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), and chlordane compounds (CHLs) were determined in whole body soft tissue homogenates and in muscles of resident and migratory birds collected from Lake Baikal, Russia. The residue pattern in both resident and migratory birds was in the following order: PCBs > DDTs > HCHs > CHLs. OC concentrations in migratory birds varied, depending on the feeding habit. The maximum levels of OCs were found in piscivores, followed by insectivores, omnivores, and herbivores. OC residue levels in Lake Baikal birds were lower than those in the Great Lakes region as well as in other lakes in Europe and Japan. Concentrations of HCHs and DDTs in most of the migratory birds collected in the spring were higher than for those collected in the autumn, indicating a notable accumulation in wintering grounds. Compilation and analysis of the available data in fish and birds from Asia suggested that the tropical and subtropical regions in south Asian countries may be a source of pollution for the wintering accumulation of migratory birds from Lake Baikal. Relatively higher compositions of alpha- and gamma-HCH in total HCHs, p,p'-DDT in total DOTs were observed in some migratory species, indicating recent exposure to HCHs and DDTs in Lake Baikal or wintering areas. PCB isomer patterns were different between residents and migrants, with the predominance of lower chlorinated congeners in migratory species, suggesting recent PCB accumulation in stopover sites during wintering. TEQ concentrations of toxic non- and mono-ortho coplanar PCBs in common terns from Lake Baikal were comparable to those reported in some species from Japan, the United States, and Europe. Relative contributions of non-ortho coplanar congeners to toxic equivalents (TEQs) were predominant, in which CB-126 accounted for the highest toxicity contribution. Estimated TEQ

  9. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ 13C of elemental carbon in aerosols in Japan (United States)

    Kawashima, Hiroto; Haneishi, Yuya


    We investigated suspended particulate matter (SPM, particles with a 100% cut-off aerodynamic diameter of 10 μm) and PM2.5 (particles with a 50% cut-off aerodynamic diameter of 2.5 μm) concentrations in aerosols sampled in Akita Prefecture, Japan, from April 2008 to January 2010, and the carbon isotope ratios (δ 13C) of elemental carbon (EC) in both SPM and PM2.5 and in samples from possible sources. We also determined the ion contents of SPM and estimated the back trajectories of air masses arriving at Akita Prefecture during the study period. The SPM concentration was very low (annual average, 15.2 μg m -3), and it tended to be higher in spring and lower in winter. We attributed the higher SPM in spring to dust storms brought from the Asian continent. The average annual PM2.5 concentration was 8.6 μg m -3. δ 13C of source samples (gasoline and diesel vehicle exhaust, fireplace soot, open biomass burning emissions, street dust, soil, charcoal, and coal) ranged from -34.7‰ to -1.8‰. δ 13C values of soot from gasoline light-duty (-24.4 ± 0.7‰) and passenger vehicles (-24.1 ± 0.6‰) were very similar to that of soot from all diesel vehicles (-24.3 ± 0.3‰). δ 13C was enriched in SPM in winter compared with summer values, moreover, only a slight seasonal trend was detected in δ 13C in PM2.5. From these data and the source results, we hypothesized that the enrichment of δ 13C of SPM and PM2.5 in winter was a long-range effect of overseas combustion processes such as coal combustion. In addition, δ 13C of SPM was correlated with Cl - and Mg 2+ contents in SPM, suggesting the influence of sea salt. We verified this hypothesis by back trajectory analyses. The results indicated a continental influence effects on EC of SPM and PM2.5 in winter.

  10. Snow clearance

    CERN Multimedia

    Mauro Nonis


    In reply to the numerous questions received, we should like to inform you of the actions and measures taken in an effort to maintain the movements of vehicles and pedestrians since the heavy snow fall on Sunday 23 January. Our contractor's employees began clearing the snow during the morning of Sunday 23 January on the main CERN sites (Meyrin, Prévessin), but an accident prevented them from continuing. The vehicle in question was repaired by Monday morning when two other vehicles joined it to resume snow clearing; priority was given to access points to the main sites and the LHC sites, as well as to the main roads inside the sites. The salt sprinklers were also brought into action that same day; the very low temperature during the night from Monday to Tuesday prevented the snow from melting and compacted the ice; the continuing cold during the day on Tuesday (-6°C at 10:00 on the Meyrin site) meant that all efforts to remove the ice were doomed to failure. In order to ensure more efficie...

  11. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg


    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps...

  12. Snow Leopard

    Indian Academy of Sciences (India)

    around the same time in Kinnaur district. Studies on snow leop- ard habitats over the past two decades show that the economy of the region has rapidly shifted from traditional agro-pastoralism to market-driven agriculture. Consequently, human population growth, agricultural expanse, and excessive livestock grazing (Fig-.

  13. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Wang Yingsong; Li Delu; Li Aiguo; Li Yan; Zhang Guilin


    The samples of PM2.5 and PM10 inhalable particulate matter had been collected during the period of December 2002-January 2003 at nineteen representative sites of Shanghai urban and suburb area in order to investigate the chemical characterization of aerosol particle in winter. The samples were analyzed to determine the average concentrations for up to twenty elements by means of particle induced X-ray emission (PIXE). It was found that the average elemental concentrations in the urban center are higher than those in the suburb, except for Ti and P. The particulate mass data demonstrate that the ratio range of PM2.5/PM10 is from 0.32 to 0.85 and its average ratio is 0.6. The result of the enrichment factor shows that the inhalable particles may be divided into two categories, i.e., soil elements from the earth crust and anthropogenic pollution elements. It is noticed that toxic or harmful elements such as S, As, Pb, Ni, Mn and Se are enriched mainly in fine particles with diameter less than 2.5 μm. The fingerprints of major pollution sources such as coal (or oil) burning, vehicle exhaust emission and industry are also presented and discussed. (author)

  14. Nitrogen and carbohydrate fractions on Tifton-85 pastures overseeded with annual winter and summer forage species in different seasons

    Directory of Open Access Journals (Sweden)

    Andréia Luciane Moreira


    Full Text Available An experiment was conducted during the 2001-2002 winter-spring-summer to determine the nitrogen and carbohydrate fractions in Tifton-85 pastures exclusively or overseeded with oats, millet and sorghum-sudangrass hybrids. The treatments were Tifton-85 overseeded with millet + bristle oat; sorghum-sudangrass + bristle oat, on 06/19/2002 and 07/02/2002, respectively; and Tifton-85 (Control. The experiment was conducted in a randomized block design with three replications. Nitrogen and carbohydrate fractions were affected by the nitrogen and total carbohydrate contents observed in the pasture overseeded at different seeding times, and by the different growth periods. The highest nitrogen fractions (A + B1 were observed in the early growth periods. Overseeding affected the forage nitrogen and carbohydrate fraction contents positively. The high solubility of both carbohydrate and protein from millet + bristle oat and bristle oat + sorghum-sudangrass mixtures indicates the quality of these forages and their potential use as an important supplement in forage systems based on tropical pastures.

  15. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009

    Directory of Open Access Journals (Sweden)

    Ruibo Lei


    Full Text Available A field programme on light conditions in ice-covered lakes and optical properties of lake ice was performed in seven lakes of Finland and Estonia in February–April 2009. On the basis of irradiance measurements above and below ice, spectral reflectance and transmittance were determined for the ice sheet; time evolution of photosynthetically active radiation (PAR transmittance was examined from irradiance recordings at several levels inside the ice sheet. Snow cover was the dominant factor for transmission of PAR into the lake water body. Reflectance was 0.74–0.92 in winter, going down to 0.18–0.22 in the melting season. The bulk attenuation coefficient of dry snow was 14–25 m–1; the level decreased as the spring was coming. The reflectance and bulk attenuation coefficient of snow-free ice were 0.1–0.4 and 1–5 m–1. Both were considerably smaller than those of snow cover. Seasonal evolution of light transmission was mainly due to snow melting. Snow and ice cover not only depress the PAR level in a lake but also influence the spectral and directional distribution of light.

  16. Identification of mineral dust layers in high alpine snow packs (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne


    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  17. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators (United States)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.


    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of

  18. Tracking Snow Variations in the Northern Hemisphere Using Multi-Source Remote Sensing Data (2000–2015

    Directory of Open Access Journals (Sweden)

    Yunlong Wang


    Full Text Available Multi-source remote sensing data were used to generate 500-m resolution cloud-free daily snow cover images for the Northern Hemisphere. Simultaneously, the spatial and temporal dynamic variations of snow in the Northern Hemisphere were evaluated from 2000 to 2015. The results indicated that (1 the maximum, minimum, and annual average snow-covered area (SCA in the Northern Hemisphere exhibited a fluctuating downward trend; the variation of snow cover in the Northern Hemisphere had well-defined inter-annual and regional differences; (2 the average SCA in the Northern Hemisphere was the largest in January and the smallest in August; the SCA exhibited a downward trend for the monthly variations from February to April; and the seasonal variation in the SCA exhibited a downward trend in the spring, summer, and fall in the Northern Hemisphere (no pronounced variation trend in the winter was observed during the 2000–2015 period; (3 the spatial distribution of the annual average snow-covered day (SCD was related to the latitudinal zonality, and the areas exhibiting an upward trend were mainly at the mid to low latitudes with unstable SCA variations; and (4 the snow reduction was significant in the perennial SCA in the Northern Hemisphere, including high-latitude and high-elevation mountainous regions (between 35° and 50°N, such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia, the Alps in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America.

  19. Linking pollen deposition and snow accumulation on the Alto dell'Ortles glacier (South Tyrol, Italy) for sub-seasonal dating of a firn core (United States)

    Festi, Daniela; Carturan, Luca; Kofler, Werner; dalla Fontana, Giancarlo; de Blasi, Fabrizio; Cazorzi, Federico; Bucher, Edith; Mair, Volkmar; Gabrielli, Paolo; Oeggl, Klaus


    Dating of ice cores from non-polar glaciers is challenging and often problematic. Yet, a proper timescale is essential for a correct interpretation of the proxies measured in the cores. Here we present a multi-disciplinary approach developed to obtain a high resolution timescale for a 10 m firn core retrieved from the Alto dell'Ortles Glacier (Italy). Results indicate that the core encompasses five accumulation years. A high resolution timescale was established by means of statistical analyses, comparing glacier pollen assemblages with daily pollen monitoring assemblages from Solda (base of Mt. Ortles). Ortles snow samples are characterised by their depth and pollen spectra, while Solda's samples are characterised by their pollen spectra and specific date. Thus, by finding for an Ortles sample the most similar Solda's sample according to their pollen content, we established a direct depth-to-day link. In this way every snow sample containing pollen has been dated. Finally, the timescale was compared with results from a mass balance model run at the drilling site. The comparison of the two independent dating methods enabled a better understanding of depositional and post depositional processes affecting pollen, dD, snow and firn at the study site. Finally, we provide an example of useful application of the timescale related to the direct comparison of measured meteorological parameters and the stable isotopes composition of the core.

  20. Assessment of the economic risk for the ski resorts of changes in snow cover duration

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov


    Full Text Available Winter tourism that is intensively developed in the Russian Federation in recent years strongly depends on the snow availability and properties in the region. Climate changes exert significant influence on the functioning of mountain ski resorts, especially if they are located in areas with relatively high air temperatures in winter season. At the present time, a snowy cluster of mountain ski resorts is intensively progressing in vicinity of Krasnaya Polyana. This region in the West Caucasus (Russia is characterized by relatively warm climate conditions. The snow cover thickness (of 1% insurance in area of the Aibga mountain range may reach 8.1 m. But the snow cover thickness is not the only characteristic of the mountain skiing attractiveness. According to the Swiss standards a mountain ski resort can be considered reliable if during seven seasons of ten ones the snow cover with minimal thickness of 30–50 cm exists for a time not shorter than 100 days during a period from 1st December till 15th April.According to the forecast, during future decades the calculated amount of solid precipitation should reduce by 25–30% in mountain regions on the south macro-slope of the Great Caucasus. As the calculations show, by 2041–2050 the maximal decade thickness of snow cover will decrease by 29–35% while a number of days with snow – by 35–40%. If this is the case, artificial snow will be needed in addition to the natural one. But, under warm climate conditions using of plants for artificial snow production will require a certain perfecting of the nowadays technologies, and very likely, with use of chemicals. That is why a shadowing of existing mountain ski routes by means of the tree planting along them could be ecologically more promising. As for the mountain ski resorts of the West Caucasus, we should mention a possible weakening of the avalanche activity as a potential positive effect of the climate warming predicted by models.

  1. Insights on nitrate sources at Dome C (East Antarctic Plateau from multi-year aerosol and snow records

    Directory of Open Access Journals (Sweden)

    Rita Traversi


    Full Text Available Here we present the first multi-year record of nitrate in the atmospheric aerosol (2005–2008 and surface snow (2006–08 from central Antarctica. PM10 and size-segregated aerosol, together with superficial snow, have been collected all year-round at high resolution (daily for all the snow samples and for most of aerosol samples at Dome C since the 2004/05 field season and analysed for main and trace ionic markers. The suitability of the sampling location in terms of possible contamination from the base is shown in detail. In spite of the relevance of nitrate in Antarctic atmosphere, both for better understanding the chemistry of N cycle in the plateau boundary layer and for improving the interpretation of long-term nitrate records from deep ice core records, nitrate sources in Antarctica are not well constrained yet, neither in extent nor in timing. A recurring seasonal pattern was pointed out in both aerosol and snow records, showing summer maxima and winter minima, although aerosol maxima lead the snow ones of 1–2 months, possibly due to a higher acidity in the atmosphere in mid-summer, favouring the repartition of nitrate as nitric acid and thus its uptake by the surface snow layers. On the basis of a meteorological analysis of one major nitrate event, of data related to PSC I extent and of irradiance values, we propose that the high nitrate summer levels in aerosol and snow are likely due to a synergy of enhanced source of nitrate and/or its precursors (such as the stratospheric inputs, higher solar irradiance and higher oxidation rates in this season. Moreover, we show here a further evidence of the substantial contribution of HNO3/NOx re-emission from the snowpack, already shown in previous works, and which can explain a significant fraction of atmospheric nitrate, maintaining the same seasonal pattern in the snow. As concerning snow specifically, the presented data suggest that nitrate is likely to be controlled mainly by atmospheric

  2. Prediction of Tourist Arrivals to the Island of Bali with Holt Method of Winter and Seasonal Autoregressive Integrated Moving Average (SARIMA

    Directory of Open Access Journals (Sweden)

    Agus Supriatna


    Full Text Available The tourism sector is one of the contributors of foreign exchange is quite influential in improving the economy of Indonesia. The development of this sector will have a positive impact, including employment opportunities and opportunities for entrepreneurship in various industries such as adventure tourism, craft or hospitality. The beauty and natural resources owned by Indonesia become a tourist attraction for domestic and foreign tourists. One of the many tourist destination is the island of Bali. The island of Bali is not only famous for its natural, cultural diversity and arts but there are also add the value of tourism. In 2015 the increase in the number of tourist arrivals amounted to 6.24% from the previous year. In improving the quality of services, facing a surge of visitors, or prepare a strategy in attracting tourists need a prediction of arrival so that planning can be more efficient and effective. This research used  Holt Winter's method and Seasonal Autoregressive Integrated Moving Average (SARIMA method  to predict tourist arrivals. Based on data of foreign tourist arrivals who visited the Bali island in January 2007 until June 2016, the result of Holt Winter's method with parameter values α=0.1 ,β=0.1 ,γ=0.3 has an error MAPE is 6,171873. While the result of SARIMA method with (0,1,1〖(1,0,0〗12 model has an error MAPE is 5,788615 and it can be concluded that SARIMA method is better. Keywords: Foreign Tourist, Prediction, Bali Island, Holt-Winter’s, SARIMA.

  3. Water and life from snow: A trillion dollar science question (United States)

    Sturm, Matthew; Goldstein, Michael A.; Parr, Charles


    Snow provides essential resources/services in the form of water for human use, and climate regulation in the form of enhanced cooling of the Earth. In addition, it supports a thriving winter outdoor recreation industry. To date, the financial evaluation of the importance of snow is incomplete and hence the need for accelerated snow research is not as clear as it could be. With snow cover changing worldwide in several worrisome ways, there is pressing need to determine global, regional, and local rates of snow cover change, and to link these to financial analyses that allow for rational decision making, as risks related to those decisions involve trillions of dollars.

  4. Cool Season Paleotemperatures at Tree Line in Taiwan (United States)

    Wright, W. E.; Chan, M.


    Taiwan has over 200 mountains whose peaks exceed 3,000 meters in elevation. Despite straddling the Tropic of Cancer, the higher peaks have snow and freezing temperatures every winter. Trees growing above 3,500 meters show clear temperature variation, even producing frost rings. Yet unlike temperate tree-line species, with their warm season temperature signal, trees growing at Taiwan's tree line show sensitivity to cool season temperatures. Juniperus squamata growing above 3,500 meters in central Taiwan have ring width time series that commonly exceed 600 years. Presented are the first dendroclimatological analyses from Taiwanese Juniperus squamata.

  5. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan


    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  6. Uncertainty in the Future of Seasonal Snowpack over North America. (United States)

    McCrary, R. R.; Mearns, L.


    The uncertainty in future changes in seasonal snowpack (snow water equivalent, SWE) and snow cover extent (SCE) for North America are explored using the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate models (RCMs) and their driving CMIP3 global circulation models (GCMs). The higher resolution of the NARCCAP RCMs is found to add significant value to the details of future projections of SWE in topographically complex regions such as the Pacific Northwest and the Rocky Mountains. The NARCCAP models also add detailed information regarding changes in the southernmost extent of snow cover. 11 of the 12 NARCCAP ensemble members contributed SWE output which we use to explore the uncertainty in future snowpack at higher resolution. In this study, we quantify the uncertainty in future projections by looking at the spread of the interquartile range of the different models. By mid-Century the RCMs consistently predict that winter SWE amounts will decrease over most of North America. The only exception to this is in Northern Canada, where increased moisture supply leads to increases in SWE in all but one of the RCMs. While the models generally agree on the sign of the change in SWE, there is considerable spread in the magnitude (absolute and percent) of the change. The RCMs also agree that the number of days with measureable snow on the ground is projected to decrease, with snow accumulation occurring later in the Fall/Winter and melting starting earlier in the Spring/Summer. As with SWE amount, spread across the models is large for changes in the timing of the snow season and can vary by over a month between models. While most of the NARCCAP models project a total loss of measurable snow along the southernmost edge of their historical range, there is considerable uncertainty about where this will occur within the ensemble due to the bias in snow cover extent in the historical simulations. We explore methods to increase our


    Directory of Open Access Journals (Sweden)

    I. D. Korlyakov


    Full Text Available The influence of urban development parameters on the pollution of snow with heavy metals and metalloids (HMM has been assessed.The aim of the work is to assess the barrier functions of urban development by means of a joint analysis of data on the content of HMM in the snow cover and the parameters of the artificial relief. The residential area of the Ulan-Ude city was chosen as an object of the study, where 27 snow samples were selected. According to the data of the snow survey in 2014, the total content of HMM in the snow suspension was determined, the priority pollutants of the snow were received and the total indicator of immission at the sampling points was calculated. Data processing in the OpenStreetMap, 2GIS, ArcGis 10.0 and Statistica 7.0 software packages made it possible to determine the main parameters of the buildings near the sampling points. Correlation analysis has shown a significant influence of building parameters on the HMM immission in the snow cover. With an increase in the total and average building area, proximity of buildings to the sampling point, an increase in the immission of most or all HMMs has been observed. The height of houses is a secondary factor which positively affects the immission of Cu and Bi. The maximum correlation links are established in radii of 50, 100 and 150 m. The parameters of development affect the total precipitation of pollutants both in all cardinal directions, and in the south-western, northeast, southeast directions, which can be explained by the wind regime features during the winter season

  8. The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter

    Directory of Open Access Journals (Sweden)

    J. Boike


    Full Text Available In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.

  9. Regional meteorological drivers and long term trends of winter-spring nitrate dynamics across watersheds in northeastern North America (United States)

    Crossman, Jill; Eimers, M Catherine; Casson, Nora J.; Burns, Douglas A.; Campbell, John L.; Likens, Gene E; Mitchell, Myron J; Nelson, Sarah J.; Shanley, James B.; Watmough, Shaun A.; Webster, Kara L


    This study evaluated the contribution of winter rain-on-snow (ROS) events to annual and seasonal nitrate (N-NO3) export and identified the regional meteorological drivers of inter-annual variability in ROS N-NO3 export (ROS-N) at 9 headwater streams located across Ontario, Canada and the northeastern United States. Although on average only 3.3 % of annual precipitation fell as ROS during winter over the study period, these events contributed a significant proportion of annual and winter N-NO3 export at the majority of sites (average of 12 and 42 %, respectively); with the exception of the most northern catchment, where total winter precipitation was exceptionally low (average 77 mm). In years with a greater magnitude of ROS events, the timing of the peak N-NO3 export period (during spring melt) was redistributed to earlier in the year. Variability in ROS frequency and magnitude amongst sites was high and a generalised linear model demonstrated that this spatial variability could be explained by interactive effects between regional and site-specific drivers. Snowpack coverage was particularly important for explaining the site-specific ROS response. Specifically, ROS events were less common when higher temperatures eliminated snow cover despite increasing the proportion of winter rainfall, whereas ROS event frequency was greater at sites where sufficient snow cover remained. This research suggests that catchment response to changes in N deposition is sensitive to climate change; a vulnerability which appears to vary in intensity throughout the seasonally snow-covered temperate region. Furthermore, the sensitivity of stream N-NO3 export to ROS events and potential shifts (earlier) in the timing of N-NO3 export relative to other nutrients affect downstream nutrient stoichiometry and the community composition of phytoplankton and other algae.

  10. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland. (United States)

    Siudek, Patrycja


    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  11. Movements and habitat use locations of manatees within Kings Bay Florida during the Crystal River National Wildlife Refuge winter season (November 15–March 31) (United States)

    Slone, Daniel H.; Butler, Susan M.; Reid, James P.


    Kings Bay, Florida, is one of the most important natural winter habitat locations for the federally threatened Trichechus manatus latirostris (Florida manatee). Crystal River National Wildlife Refuge was established in 1983 specifically to provide protection for manatees and their critical habitat. To aid managers at the refuge and other agencies with this task, spatial analyses of local habitat use locations and travel corridors of manatees in Kings Bay during manatee season (November 15–March 31) are presented based on Global Positioning System telemetry of 41 manatees over a 12-year timespan (2006−18). Local habitat use areas and travel corridors differed spatially when Gulf of Mexico water temperatures were cold (less than or equal to 17 degrees Celsius) versus when they were warm (greater than 17 degrees Celsius). During times of cold water, manatees were found in higher concentrations in the main springs and canals throughout the eastern side of the bay, whereas when waters were warm, they were found more generally throughout the bay and into Crystal River, except for the central open part of the bay and the southwest corner.

  12. Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. (United States)

    Footitt, Steven; Clay, Heather A; Dent, Katherine; Finch-Savage, William E


    Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn. Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco-physiological responses were recorded. DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence. Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re-imposed as seeds become part of the persistent seed bank. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes (United States)

    Footitt, Steven; Clay, Heather A; Dent, Katherine; Finch-Savage, William E


    Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn.Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco-physiological responses were recorded.DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence.Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re-imposed as seeds become part of the persistent seed bank. PMID:24444091

  14. Surveillance and risk factors of norovirus gastroenteritis among children in a southern city of China in the fall-winter seasons of 2003-2006. (United States)

    Dai, Ying-Chun; Xia, Ming; Zhan, Hui-Chun; Liu, Yi; Li, Jian-Dong; Chen, Qing; Yu, Shou-Yi; Nie, Jun; Farkas, Tibor; Jiang, Xi


    Noroviruses (NoVs) are an important cause of acute gastroenteritis but knowledge on the disease burden and epidemiology in children in the developing countries remains limited. In this study, we performed a surveillance of NoV gastroenteritis in children of China to address some of the questions. Faecal specimens from children (fall-winter seasons in 2003-2006 were tested for rotaviruses (RVs) and NoVs. A questionnaire on clinical records and hygiene habits was collected from each patient. Among 957 stool specimens tested, 488 (51%) specimens were positive for RVs. NoVs were detected in 112 (24%) of the 469 RV negative specimens. The Genogroup II (GII), particularly GII-4, viruses were predominant. No significant difference of clinical symptoms, hospitalisation and patient care expenses were found between children infected with NoVs and RVs. Consumption of uncooked food is a risk for NoV infection. Contact with diarrhoea patients is a suspected risk factor. Cutting nails frequently is a protective factor against NoV infection. NoVs are an important cause of acute gastroenteritis in children which need special attention of patient care at the clinics in addition to RVs. The awareness of those risk factors may help future disease control and prevention.

  15. CAR SnowEx17 Level 1C Snow Mass and Energy Measurements (CAR_SNOWEX17_L1C) at GES DISC (United States)

    National Aeronautics and Space Administration — SnowEx is a multi-year airborne project to help advance capabilities, and plan for a near-future space mission to monitor global seasonal snow water equivalent —...

  16. Deriving Snow Cover Metrics for Alaska from MODIS

    Directory of Open Access Journals (Sweden)

    Chuck Lindsay


    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at

  17. Connecting Current Research on Climate and Snow with Individuals Who Care (United States)

    Moore, C. E.; Denning, S.


    A growing body of research explores the effects of climate change on snow in the Southern Rocky Mountains. This research includes observing climate and weather patterns, modeling potential future winter climate and snowpack, and exploring how these changes will affect the ecosystems, people, and industries that rely on frozen reservoirs of seasonal snow. We review existing resources for non-scientists on this topic, and explain how climate and snow are changing in the Southern Rocky Mountains. The Southern Rockies urban corridor is home to a growing population of people who rely directly on snowmelt runoff for daily life, health, and prosperity. Many of these people also seek refuge from growing urbanization by escaping to the mountains. Meanwhile, high elevations in the Rockies are already experiencing noticeable effects of climate change. Individuals with personal connections to the mountains make a ready audience to receive accessible science communication grounded in current research. People who care about mountains may be inspired to join the conversation and take action in their own lives as they learn what is already changing and what they might expect to find in winters to come.

  18. Food preferences of winter bird communities in different forest types.

    Directory of Open Access Journals (Sweden)

    Swen C Renner

    Full Text Available Food availability for forest birds is a function of habitat type, forest management regime, and season. In winter, it is also impacted by variations in the weather. In the current study we assessed the food preferences of wild bird populations in two types of forest (spruce and beech during the months of November 2010 to April 2011 in the Schwäbische Alb Biodiversity Exploratory, south-western Germany. Our aim was to investigate whether local bird communities preferred fat-rich, carbohydrate-rich or wild fruits and to determine how forest structure, seasonality and local weather conditions affected food preferences. We found higher bird activity in beech forests for the eleven resident species. We observed a clear preference for fat-rich food for all birds in both forest types. Snow cover affected activity at food stations but did not affect food preferences. Periods of extreme low temperatures increased activity.

  19. Food preferences of winter bird communities in different forest types. (United States)

    Renner, Swen C; Baur, Sofia; Possler, Astrid; Winkler, Julia; Kalko, Elisabeth K V; Bates, Paul J J; Mello, Marco A R


    Food availability for forest birds is a function of habitat type, forest management regime, and season. In winter, it is also impacted by variations in the weather. In the current study we assessed the food preferences of wild bird populations in two types of forest (spruce and beech) during the months of November 2010 to April 2011 in the Schwäbische Alb Biodiversity Exploratory, south-western Germany. Our aim was to investigate whether local bird communities preferred fat-rich, carbohydrate-rich or wild fruits and to determine how forest structure, seasonality and local weather conditions affected food preferences. We found higher bird activity in beech forests for the eleven resident species. We observed a clear preference for fat-rich food for all birds in both forest types. Snow cover affected activity at food stations but did not affect food preferences. Periods of extreme low temperatures increased activity.

  20. Quantifying the impacts of snow on surface energy balance through assimilating snow cover fraction and snow depth (United States)

    Meng, Chunlei


    Seasonal snow plays an important part in Earth's climate system. Snow cover regulates the land surface energy balance through altering the albedo of the land surface. To utilize the satellite-retrieved snow cover fraction (SCF) and snow depth (SD) data sufficiently and avoid inconsistency, this paper developed a very simple but robust quality control method to assimilate Fengyun satellite-retrieved SCF and SD simultaneously. The results show that the assimilation method which this paper implemented can not only utilize the satellite-retrieved SCF and SD data sufficiently but also avoid the inconsistency of them. Two experiments were designed and performed to quantify the impacts of snow on land surface energy balance using the integrated urban land model. With the increase of the SCF and SD, the net radiation decreased significantly during the day and increased a little at night; the sensible heat flux decreased significantly during the day; the evapotranspiration and ground heat flux decreased during the day too.

  1. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig


    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern...... hemisphere. Can climatic conditions alone explain the sizeable difference in reduction in building activity in the construction sector in European countries in the winter months, or are other factors such as technology, economic cycles and schemes for financial compensation influential as well? What...... possibilities exist for reducing seasonal variation in employment? In addition to a literature review related to winter construction, European and national employment and meteorological data were studied. Finally, ministerial acts, ministerial orders or other public policy documents related to winter...

  2. Winter mass balance of Drangajökull ice cap (NW Iceland derived from satellite sub-meter stereo images

    Directory of Open Access Journals (Sweden)

    J. M. C. Belart


    Full Text Available Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland from Pléiades and WorldView2 (WV2 are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy ( <  0.5 m with and without ground control points (GCPs, demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015 mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent, with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1 the time difference between in situ and satellite observations, (2 firn densification and (3 elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.

  3. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method (United States)

    Takeda, K.; Ochiai, H.; Takeuchi, S.


    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  4. Frequency of respiratory viruses among patients admitted to 26 Intensive Care Units in seven consecutive winter-spring seasons (2009-2016) in Northern Italy. (United States)

    Piralla, Antonio; Mariani, Bianca; Rovida, Francesca; Baldanti, Fausto


    The role of respiratory viruses in the etiology of community-acquired pneumonia (CAP) is still debated. The advent of molecular assays has improved the identification of viruses in patients with CAP and according to published studies, viruses account for 11-55% of adult CAP cases. In the present study, the frequency of respiratory viruses was evaluated in respiratory samples collected from 414 patients with CAP admitted to 26 ICUs in the Lombardy Region (10 million inhabitants) during seven winter-spring seasons (2009-2016). In 226 (54.6%) patients one or more respiratory viruses were identified, while 188 (45.4%) patients were negative. A single virus infection was observed in 214/226 (94.7%) patients; while, in 12/226 (5.3%) at least two respiratory viruses were detected. Influenza A was the most common virus in 140/226 patients (61.9%) followed by rhinoviruses (33/226, 14.6%), respiratory syncytial virus (13/226, 5.8%), influenza B virus (9/226, 4.0%), human coronaviruses (9/226, 4.0%), cytomegalovirus (9/226, 4.0%) and human metapneumovirus (1/226, 0.4%). Viral infections are present in a consistent proportion of patients admitted to the ICU for CAP. Influenza A and rhinovirus accounted for three-quarters of all CAP in ICU patients. The use of lower respiratory instead of upper respiratory samples might be useful in the diagnosis of viral CAP. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of winter road grooming on bison in YNP (United States)

    Bjornlie, Daniel D.; Garrott, R.A.


    The effects of winter recreation—specifically snowmobiling—on wildlife in Yellowstone National Park (YNP) have become high-profile management issues. The road grooming needed to support oversnow travel in YNP is also being examined for its effects on bison (Bison bison) ecology. Data were collected from November 1997 through May 1998 and from December 1998 through May 1999 on the effects of road grooming on bison in Madison–Gibbon–Firehole (MGF) area of YNP Peak bison numbers occurred during late March—early April and were strongly correlated with the snow water equivalent measurements in the Hayden Valley area (1997–1998: r* = 0.62, p:0.001: 1998–1999: r2 = 0.64, P-0.001). Data from an infrared trail monitor on the Mary Mountain trail between the Hayden and Firehole valleys suggest that this trail is the sole corridor for major bison distributional shifts between these locations. Of the 28,293 observations of individual bison made during the study, 8% were traveling and 69% were foraging. These percentages were nearly identical during the period of winter road grooming (7% and 68%, respectively). During this period, 77% of bison foraging activity and 12% of bison traveling activity involved displacing snow. Most travel took place off roads (Pgrooming, with peak use in April and lowest use during the road-grooming period. Bison in the MGF area of YNF neither seek out nor avoid groomed roads. The minimal use of roads compared to off-road areas, the short distances traveled on the roads, the decreased use of roads during the over snow vehicle (OSV) season, and the increased costs of negative interactions with OSVs suggest that grooming roads during winter does not have a major influence on bison ecology.

  6. Snow cover - characteristics and trends for the meteorological mountain stations in Romania (United States)

    Manea, A.; Ralita, I.; Dumitrescu, Al.; Boroneant, C.


    Snow cover represents an important climatological parameter for the specialized analysis because it can provide useful information regarding the climatological evolution of one region, taking into account the variability of the climate. The latest years brought milder winters for Romania. The number of days with snow cover and the depth of snow cover are very important factors for the mountain tourism and the winter sports. This paper presents the trends of the number of days with snow cover and the snow depth over the 1961-2007 period for 18 mountain meteorological stations in Romania. In this case, "mountain station" refers to a station located at an altitude higher than 1000 m.

  7. Assessing Climate Change under Future Warming Scenarios with Improved Canopy Snow Representation in CESM (United States)

    Perket, J.; Flanner, M.; Lawrence, D. M.; Clark, M. P.


    Boreal forests are a major source of land surface shortwave radiation bias in current generation earth system models. We incorporate a modified canopy scheme into the Community Land Model with snow interception as a prognostic variable to alleviate the source of some biases. Maximum interception limits and snow unloading are adjusted to in-situ canopy measurements. The canopy radiation scheme has been updated from a direct temperature dependence of optical parameters to a dependence on the prognostic snow storage. With these improvements, boreal forest zones show large, significant albedo error reductions relative to MODIS observations. Model gridcell error reduction during spring results from a more gradual seasonal transition in albedo, while error reduction in winter is from a lower albedo. Error is also reduced overall for North Hemisphere land area. We assess the impacts of the snow canopy vegetation treatment in coupled model warming scenarios. Little change in global albedo feedback or climate sensitivity were shown, but significant regional and temporal variations resulted, partly from changing circulation patterns


    AbstractSnow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  9. Snow and ice control at extreme temperatures. (United States)


    As expected, most state and provincial DOTs that we spoke with are using traditional methods to prevent and : remove snow and ice at very low temperatures. In addition to a review of current research, we spoke with six winter : maintenance profession...

  10. Snow as an accumulator of air pollutants (United States)

    Robert T. Brown


    Using simple analytical techniques, the amounts of air pollutants accumulated in winter snow were determined and the results correlated with lichen survival on trees. Pollutants measured were particulate matter, sulfate, and chloride. An inverse relationship was found between amounts of each of these pollutants and the abundance of various lichens.

  11. Hillslope runoff temperatures and their influence on winter stream temperature for a coastal forested catchment (United States)

    Leach, J. A.; Moore, R. D.; McKenzie, J. M.


    Stream temperature dynamics during winter have been understudied compared to summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. Our previous research revealed that the advective energy input associated with hillslope runoff overwhelms the effects of energy exchanges at the stream surface in a forested headwater catchment, and that the temperature of hillslope runoff varies substantially in space and time. The objective of this study was to examine the dominant controls on the spatiotemporal variability of hillslope runoff temperatures as a basis for developing a process-based stream temperature predictive model. Field work was conducted at a forested headwater catchment located in the rain-on-snow zone near Vancouver, British Columbia, during the winters of 2011/12 and 2012/13. Detailed hydrologic and meteorologic field measurements were made, including hourly subsurface temperature and water table fluctuations at the foot of 40 separate hillslopes with different topographic and geomorphic settings. Data were analysed using both statistical models and by applying the SUTRA numerical groundwater model for physically based simulations of subsurface heat transport. Vertical heat conduction is less important than heat advection associated with lateral flow from upslope on controlling the temperature of runoff discharging into the stream. In addition, hillslope form and shape appear to influence timing of water delivery, and thus heat transport, from hillslope to stream. The SUTRA results, with and without the presence of transient snow cover, highlight that transient snow cover has a detectable cooling influence on subsurface temperatures. These results demonstrate that hillslope runoff processes and snow dynamics must be considered when predicting the influence of climate and land cover changes on winter stream temperatures in coastal headwater catchments.

  12. Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas

    KAUST Repository

    Azmat, Muhammad


    This study examines the change in climate variables and snow cover dynamics and their impact on the hydrological regime of the Jhelum River basin in Western Himalayas. This study utilized daily streamflow records from Mangla dam, spanning a time period of 19 years (1995–2013), along with precipitation and temperature data over 52 years (1961–2013) from 12 different climate stations in the catchment. Additionally, moderate-resolution imaging spectroradiometer (MODIS) remote sensing product MOD10A2 was utilized to analyze the change in snow cover dynamics during 2000–2013. The Pearson and Kendall rank correlation tests were used to scrutinize snow cover trends and correlation between temperature, precipitation, snow cover area (SCA) and streamflows records. Basin-wide trend analysis showed a slightly increasing tendency in temperature (τ = 0.098) and precipitation (τ = 0.094), during the years 1961–2013. The changes in streamflow indicated a positive (r > 0.12) relationship with respect to temperature but variable trends (r = −0.45–0.41) with respect to precipitation during both the winter and monsoon seasons. This indicates that temperature has a significant impact on the hydrological regime of the basin. MODIS data-based investigations suggested an expansion in SCA during 2000–2013. The changes in SCA of high-altitude zones (>2000 m a.s.l.) depicted a stronger positive correlation with climate variables and streamflow compared with those obtained for low-altitude regions (<2000 m a.s.l.). Overall, these results signify that high-altitude areas contribute to the streamflow largely in the form of snow- and glacier-melt during the early summer season. The streamflow is then further augmented by monsoon rainfall in the low-elevation regions during late summer.

  13. Velocity distribution in snow avalanches (United States)

    Nishimura, K.; Ito, Y.


    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  14. The Snowcloud System: Architecture and Algorithms for Snow Hydrology Studies (United States)

    Skalka, C.; Brown, I.; Frolik, J.


    Snowcloud is an embedded data collection system for snow hydrology field research campaigns conducted in harsh climates and remote areas. The system combines distributed wireless sensor network technology and computational techniques to provide data at lower cost and higher spatio-temporal resolution than ground-based systems using traditional methods. Snowcloud has seen multiple Winter deployments in settings ranging from high desert to arctic, resulting in over a dozen node-years of practical experience. The Snowcloud system architecture consists of multiple TinyOS mesh-networked sensor stations collecting environmental data above and, in some deployments, below the snowpack. Monitored data modalities include snow depth, ground and air temperature, PAR and leaf-area index (LAI), and soil moisture. To enable power cycling and control of multiple sensors a custom power and sensor conditioning board was developed. The electronics and structural systems for individual stations have been designed and tested (in the lab and in situ) for ease of assembly and robustness to harsh winter conditions. Battery systems and solar chargers enable seasonal operation even under low/no light arctic conditions. Station costs range between 500 and 1000 depending on the instrumentation suite. For remote field locations, a custom designed hand-held device and data retrieval protocol serves as the primary data collection method. We are also developing and testing a Gateway device that will report data in near-real-time (NRT) over a cellular connection. Data is made available to users via web interfaces that also provide basic data analysis and visualization tools. For applications to snow hydrology studies, the better spatiotemporal resolution of snowpack data provided by Snowcloud is beneficial in several aspects. It provides insight into snowpack evolution, and allows us to investigate differences across different spatial and temporal scales in deployment areas. It enables the

  15. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental US (CONUS) (United States)

    Dong, Jiarui; Ek, Mike; Hall, Dorothy K.; Peters-Lidard, Christa; Cosgrove, Brian; Miller, Jeff; Riggs, George A.; Xia, Youlong


    In the middle to high latitude and alpine regions, the seasonal snow pack can dominate the surface energy and water budgets due to its high albedo, low thermal conductivity, high emissivity, considerable spatial and temporal variability, and ability to store and then later release a winters cumulative snowfall (Cohen, 1994; Hall, 1998). With this in mind, the snow drought across the U.S. has raised questions about impacts on water supply, ski resorts and agriculture. Knowledge of various snow pack properties is crucial for short-term weather forecasts, climate change prediction, and hydrologic forecasting for producing reliable daily to seasonal forecasts. One potential source of this information is the multi-institution North American Land Data Assimilation System (NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for drought monitoring to support the National Integrated Drought Information System (NIDIS) and as initial conditions for a future NCEP drought forecast system. Additionally, efforts are currently underway to assimilate remotely-sensed estimates of land-surface states such as snowpack information into NLDAS. It is believed that this assimilation will not only produce improved snowpack states that better represent snow evolving conditions, but will directly improve the monitoring of drought.

  16. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M


    closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing...

  17. Synoptic climatological analyses on the seasonal transition from winter to spring in Europe also with attention to the day-to-day variability (Comparing with that in East Asia) (United States)

    Kato, Kuranoshin; Hamaki, Tatsuya; Haga, Yuichi; Otani, Kazuo; Kato, Haruko


    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the many kinds of arts also in Europe around the western edge of the Eurasian Continent. Especially around Germany, there are so many music or literature works in which the "May" is treated as the special season. However, more detailed examination and its comparison with that in East Asia about the seasonal evolution from winter to spring including before May would be interesting. Deeper knowledge on the seasonal cycle would contribute greatly to the cultural understanding as mentioned above, as well as for considering the detailed response of the regional climate to the global-scale impacts such as the global warming. As such, the present study examined, based mainly on the NCEP/NCAR reanalysis data during 1971-2010, the synoptic climatological features on the seasonal transition from winter to spring in Europe also with attention to the day-to-day variability, by comparing with those in East Asia (detailed analyses were made mainly for 2000/01 - 2010/11 winters). Around the region from Germany to Turkey, the surface air temperature (TS) showed rather larger day-to-day variation (including the interannual or intraseasonal variation) throughout a year than in the Japan Islands area in East Asia. Especially from December to March (the minimum period of the climatological TS in the European side), the day-to-day variation was extremely great around Germany and its northern region (to the north of around 45N/10E). Thus, the extremely low temperature events sometimes appeared around Germany till the end of March, although the seasonal mean TS was not so considerably low. The day-to-day variation of sea level pressure (SLP) was also very large where such large amplitude of TS

  18. Two types of matter economy for the wintering of evergreen shrubs in regions of heavy snowfall. (United States)

    Ino, Yoshio; Maekawa, Tomoyuki; Shibayama, Tomohiro; Sakamaki, Yoshiaki


    Plant adaptation to an environment subject to heavy snowfalls was investigated in four species of evergreen shrubs growing in a Fagus crenata forest in an area of Honshu on the Sea of Japan. These shrubs stored carbohydrates in some organs before the snowy season and were covered with snow for 4-5 months. Aucuba japonica var. borealis, Camellia rusticana, and Ilex crenata var. paludosa maintained a reserve of carbohydrates during the snowy season. In Daphniphyllum macropodum var. humile, the reserve of carbohydrates decreased during winter. The respiration rates in the first three species decreased from autumn to winter, whereas the decrease in D. macropodum was slight. It was found that the first three species could use reserve carbohydrates for the growth of new shoots after the thaw, whereas in the last species the growth of new shoots depends on high photosynthetic activity in late spring. Our findings suggest some types of matter economy in evergreen shrubs for wintering in an environment of heavy snow.

  19. Linking pollen deposition and snow accumulation on the Alto dell'Ortles glacier (South Tyrol, Italy) for sub-seasonal dating of a firn temperate core (United States)

    Festi, Daniela; Carturan, Luca; Kofler, Werner; dalla Fontana, Giancarlo; de Blasi, Fabrizio; Cazorzi, Federico; Bucher, Edith; Mair, Volkmar; Gabrielli, Paolo; Oeggl, Klaus


    Dating of ice cores from temperate non-polar glaciers is challenging and often problematic. However, a proper timescale is essential for a correct interpretation of the proxies measured in the cores. Here, we introduce a new method developed to obtain a sub-seasonal timescale relying on statistically measured similarities between pollen spectra obtained from core samples and daily airborne pollen monitoring samples collected in the same area. This approach was developed on a 10 m core retrieved from the temperate-firn portion of Alto dell'Ortles glacier (Eastern Italian Alps), for which a 5-year annual/seasonal timescale already exists. The aim was to considerably improve this timescale, reaching the highest possible temporal resolution and testing the efficiency and limits of pollen as a chronological tool. A test of the new timescale was performed by comparing our results to the output (date of layer formation) of the mass balance model EISModel, during the period encompassed by the timescale. The correspondence of the results supports the new sub-seasonal timescale based on pollen analysis. This comparison also allows us to draw important conclusions on the post-depositional effects of meltwater percolation on the pollen content of the firn core as well as on the climatic interpretation of the pollen signal.

  20. Andes Mountain Snow Distribution, Properties, and Trend: 1979-2014 (United States)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.


    Andes snow presence, absence, properties, and water amount are key components of Earth's changing climate system that incur far-reaching physical ramifications. Modeling developments permit relatively high-resolution (4-km horizontal grid; 3-h time step) Andes snow estimates for 1979-2014. SnowModel, in conjunction with land cover, topography, and 35-years of NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, was used to create a spatially distributed, time-evolving, snow-related dataset that included air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent depth, and average snow density. Regional variability is a dominant feature of the modeled snow-property trends from an area northeast of Quito (latitude: 2.65°S to 0.23°N) to Patagonia (latitude: 52.15°S to 46.44°S). For example, the Quito area annual snow cover area changed -45%, -43% around Cusco (latitude: 14.75°S to 12.52°S), -5% east of Santiago (including the Olivares Basin), and 25% in Patagonia. The annual snow covered area for the entire Andes decreased 13%, mainly in the elevation band between 4,000-5,000 m a.s.l. In spite of strong regional variability, the data clearly show a general positive trend in mean annual air temperature and precipitation, and a decreasing trend in snow precipitation, snow precipitation days, and snow density. Also, the snow-cover onset is later and the snow-cover duration - the number of snow cover days - decreased.

  1. Seasonal changes in the radiation balance of subarctic forest and tundra

    International Nuclear Information System (INIS)

    Lafleur, P.M.; Renzetti, A.V.; Bello, R.


    This paper examines the seasonal behavior of the components of the radiation budget of subarctic tundra and open forest near Churchill, Manitoba. Data were collected between late February and August 1990. The presence of the winter snowpack is the most important factor which affects the difference in radiation balances of tundra and forest. Overall, net radiation was about four to five times larger over the forest when snow covered the ground. Albedo differences were primarily responsible for this difference in net radiation; however, somewhat smaller net longwave losses were experienced at the tundra site. The step decrease in albedo from winter to summer (i.e. snow-covered to snow-free conditions) was significant at both sites. The forest albedo decreased by about three-fold while the tundra experienced a seven-fold decrease. Net radiation at both sites increased in direct response to the albedo change. Transmissivity of the atmosphere near Churchill also appeared to change at about the same time as the loss of the snow cover and may be related to changing air masses which bring about the final snow melt

  2. Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data

    Directory of Open Access Journals (Sweden)

    T. B. Titkova


    Full Text Available Time of the snow cover appearance, existence and disappearance on the Russia’s territory in the early 21st century (2000–2015 was corrected using the MODIS/Terra satellite data (the 8-day discreteness, and the 0.5×0.5° resolution. The satellite data errors were estimated from data of the ground stations observations. The errors were found to be maximal in autumn and minimal in spring. The relationship between the snow cover characteristics and the climate ones was investigated using data obtained at the ground-based stations together with correlation between dates of snow appearance and loss and the climate parameters. The dependences obtained were tested by means of correlation and regression analysis over the longitudinal sectors. Significant coefficients of correlation (the Student criterion of probability was equal to 0.95 were found between time of the snow cover presence and dates of the temperature drop below 0 °С and the amount of days with negative temperatures. Changes in the climate characteristics result in that due to decreasing of the solid precipitation in winter time the snow presence duration becomes shorter over the European part of Russia and in the Western Siberia. The shortening in the Middle Siberia is caused by the spring warming. Durations of the snow occurrence in the Far East area are different. On the Chukotka peninsula the duration is longer because of the autumn fall in temperature while in the Kamchatka region the snow occurrence time is shorter due to significant decrease of a period with negative temperatures in both the autumn and spring seasons.

  3. Experimental log hauling through a traditional caribou wintering area

    Directory of Open Access Journals (Sweden)

    Harold G. Cumming


    Full Text Available A 3-year field experiment (fall 1990-spring 1993 showed that woodland caribou (Rangifer tarandus caribou altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

  4. Snow observations in Mount Lebanon (2011–2016

    Directory of Open Access Journals (Sweden)

    A. Fayad


    Full Text Available We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m. The dataset consists of (1 continuous meteorological and snow height observations, (2 snowpack field measurements, and (3 medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l. include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November–June between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS, snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014–2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA and snow cover duration (SCD maps derived from MODIS snow products are provided for the same period (2011–2016. We used the dataset to characterize mean snow height, snow water equivalent (SWE, and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m−3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l. and 62 % for high mountain regions (elevation 2200–2900 m a.s.l.. The dataset is suitable for

  5. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.


    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  6. Plastic response by a small cervid to supplemental feeding in winter across a wide environmental gradient

    Czech Academy of Sciences Publication Activity Database

    Ossi, F.; Gaillard, J.-M.; Hebblewhite, M.; Morellet, N.; Ranc, N.; Sandfort, R.; Kroeschel, M.; Kjellander, P.; Mysterud, A.; Linnell, J. D. C.; Heurich, M.; Soennichsen, L.; Šustr, Pavel; Berger, A.; Rocca, M.; Urbano, F.; Cagnacci, F.


    Roč. 8, č. 1 (2017), č. článku e01629. ISSN 2150-8925 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:86652079 Keywords : deer capreolus-capreolus * white-tailed deer * home-range size * moose alces-alces * roe deer * climate-change * habitat selection * red deer * seasonal migration * snow-cover * artificial feeding * climate behavioral responses * climate change * roe deer * winter severity * ungulate management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.490, year: 2016

  7. Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012 (United States)

    Ryberg, Karen R.; Akyüz, F. Adnan; Wiche, Gregg J.; Lin, Wei


    Changes in the seasonality and timing of annual peak streamflow in the north-central USA are likely because of changes in precipitation and temperature regimes. A source of long-term information about flood events across the study area is the U.S. Geological Survey peak streamflow database. However, one challenge of answering climate-related questions with this dataset is that even in snowmelt-dominated areas, it is a mixed population of snowmelt/spring rain generated peaks and summer/fall rain generated peaks. Therefore, a process was developed to divide the annual peaks into two populations, or seasons, snowmelt/spring, and summer/fall. The two series were then tested for the hypotheses that because of changes in precipitation regimes, the odds of summer/fall peaks have increased and, because of temperature changes, snowmelt/spring peaks happen earlier. Over climatologically and geographically similar regions in the north-central USA, logistic regression was used to model the odds of getting a summer/fall peak. When controlling for antecedent wet and dry conditions and geographical differences, the odds of summer/fall peaks occurring have increased across the study area. With respect to timing within the seasons, trend analysis showed that in northern portions of the study region, snowmelt/spring peaks are occurring earlier. The timing of snowmelt/spring peaks in three regions in the northern part of the study area is earlier by 8.7– 14.3 days. These changes have implications for water interests, such as potential changes in lead-time for flood forecasting or changes in the operation of flood-control dams.

  8. Carboxylic acids in high elevation Alpine glacier snow (United States)

    Maupetit, FrançOis; Delmas, Robert J.


    Fresh-snow samples were collected on an event basis on the Glacier de la Girose (3360 m above sea level (asl)) in the southern French Alps, during winters and early springs 1990 and 1991. In addition, a 13-m firn core was recovered in 1991 at the Col du Dôme (4250 m asl), a cold glacier in the northern French Alps, offering the complete seasonal record of alpine precipitation during 3.5 years. All samples were analyzed for total formate and acetate and for major ions using ion chromatography. The acidity-alkalinity was accurately measured using a titration technique. An almost perfect ion balance was achieved for this data set. In absence of Saharan dust transport, the high alpine snow is slightly acid (H+ ˜ 2-20 μEq L-1). HCOOT and CH3COOT are generally present in alpine acid snow at very low concentrations: 0.3-0.6 μEq L-1 in winter (January to February) and 0.6-2 μEq L-1 in early spring (March to April). At Col du Dôme, total acetate concentrations of ˜1 μEq L-1 are observed in summer. It remains unclear from our results what the major sources of carboxylic acids are, and in particular of acetic acid, in the wintertime continental free troposphere, while it appears that formic and acetic acids are presumably mainly derived from natural sources in spring and summer. The total contribution of formic and acetic acids to free acidity is, on average, less than 15-20%. Contrary to major ions which are present in wider concentration ranges and show large variations from one snowfall to the other, HCOOT and CH3COOT are surprisingly stable in acid alpine snow. The only significant deviation of HCOOT and CH3COOT from their mean values (up to 9 and 5 μEq L-1, respectively) are observed in case of Saharan dust transport, when precipitation pH is shifted from acid toward alkaline conditions. These observations suggest a pH partitioning effect between the aqueous and gas phases, formic and acetic acids being dissolved and neutralized as salts in alkaline cloudwater

  9. Enhancement of the MODIS Daily Snow Albedo Product (United States)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.


    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  10. Winter Weather (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  11. The study of seasonal composition and dynamics of wetland ecosystems and wintering bird habitat at Poyang Lake, PR China using object-based image analysis and field observations (United States)

    Dronova, Iryna

    Wetlands are among the most productive ecosystems in the world which support critical ecological services and high biological diversity yet are vulnerable to climate change and human activities. In this thesis, I investigated the capabilities of satellite remote sensing with medium spatial resolution and object-based image analysis (OBIA) methods to elucidate seasonal composition and dynamics of wetland ecosystems and indicators of habitat for wintering waterbirds in a large conservation hotspot of Poyang Lake, PR China. I first examined changes in major wetland cover types during the low water period when Poyang Lake provides habitat to large numbers of migratory birds from the East Asian pathway. I used OBIA to map and analyze the transitions among water, vegetation, mudflat and sand classes from four 32-m Beijing-1 microsatellite images between late fall 2007 and early spring 2008. This analysis revealed that, while transitions among wetland classes were strongly associated with precipitation and flood-driven hydrological variation, the overall dynamics were a more complex interplay of vegetation phenology, disturbance and post-flood exposure. Remote sensing signals of environmental processes were more effectively captured by changes in fuzzy memberships to each class per location than by changes in spatial extents of the best-matching classes alone. The highest uncertainty in the image analysis corresponded to transitional wetland states at the end of the major flood recession in November and to heterogeneous mudflat areas at the land-water interface during the whole study period. Results suggest seasonally exposed mudflat features as important targets for future research due to heterogeneity and uncertainty of their composition, variable spatial distribution and sensitivity to hydrological dynamics. I further explored the potential of OBIA to overcome the limitations of the traditional pixel-based image classification methods in characterizing Poyang Lake

  12. Seasonality in the alpine water logistic system on a regional basis (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.


    In this study the water logistic system is defined as the interaction of the subsystems water resources, water supply and water demand in terms of water flow. The analysis of a water balance in alpine regions is strongly influenced by both temporal and spatial seasonal fluctuations within these elements, the latter due to the vertical dimension of mountainous areas. Therefore the determination of different seasons plays a key role within the assessment of alpine water logistic systems. In most studies a water balance for a certain region is generated on an annual, monthly or classic 4-seasonal basis. This paper presents a GIS-based multi criteria method to determine an optimal winter and summer period, taking into account different water demand stakeholders, alpine hydrology and the characteristic present day water supply infrastructure of the Alps. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon the geographical datasets mean snow cover start and end date, winter was defined as the period from December to March, and summer as the period from April to November.

  13. ESA GlobSnow Snow Water Equivalent (SWE) (United States)

    National Aeronautics and Space Administration — The European Space Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) snow water equivalent (SWE) v2.0 data record contains snow information derived...

  14. Investigations on socio economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes (United States)

    Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu


    Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the

  15. Winter MVC


    Castellón Gadea, Pasqual


    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  16. Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model

    Directory of Open Access Journals (Sweden)

    T. M. Saloranta


    Full Text Available Daily maps of snow conditions have been produced in Norway with the seNorge snow model since 2004. The seNorge snow model operates with 1 × 1 km resolution, uses gridded observations of daily temperature and precipitation as its input forcing, and simulates, among others, snow water equivalent (SWE, snow depth (SD, and the snow bulk density (ρ. In this paper the set of equations contained in the seNorge model code is described and a thorough spatiotemporal statistical evaluation of the model performance from 1957–2011 is made using the two major sets of extensive in situ snow measurements that exist for Norway. The evaluation results show that the seNorge model generally overestimates both SWE and ρ, and that the overestimation of SWE increases with elevation throughout the snow season. However, the R2-values for model fit are 0.60 for (log-transformed SWE and 0.45 for ρ, indicating that after removal of the detected systematic model biases (e.g. by recalibrating the model or expressing snow conditions in relative units the model performs rather well. The seNorge model provides a relatively simple, not very data-demanding, yet nonetheless process-based method to construct snow maps of high spatiotemporal resolution. It is an especially well suited alternative for operational snow mapping in regions with rugged topography and large spatiotemporal variability in snow conditions, as is the case in the mountainous Norway.

  17. Winters fuels report

    International Nuclear Information System (INIS)


    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  18. A distributed snow-evolution modeling system (SnowModel) (United States)

    Glen E. Liston; Kelly. Elder


    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  19. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  20. Monitoring and projecting snow on Hawaii Island (United States)

    Zhang, Chunxi; Hamilton, Kevin; Wang, Yuqing


    The highest mountain peaks on Hawaii Island are snow covered for part of almost every year. This snow has aesthetic and recreational value as well as cultural significance for residents and visitors. Thus far there have been almost no systematic observations of snowfall, snow cover, or snow depth in Hawaii. Here we use satellite observations to construct a daily index of Hawaii Island snow cover starting from 2000. The seasonal mean of our index displays large interannual variations that are correlated with the seasonal mean freezing level and frequency of trade wind inversions as determined from nearby balloon soundings. Our snow cover index provides a diagnostic for monitoring climate variability and trends within the extensive area of the globe dominated by the North Pacific trade wind meteorological regime. We have also conducted simulations of the Hawaii climate with a regional atmospheric model. Retrospective simulations for 1990-2015 were run with boundary conditions prescribed from gridded observational analyses. Simulations for the end of 21st century employed boundary conditions based on global climate model projections that included standard scenarios for anticipated anthropogenic climate forcing. The future projections indicate that snowfall will nearly disappear by the end of the current century.

  1. Modelling of snow exceedances (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan


    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  2. Snow snake performance monitoring. (United States)


    A recent study, Three-Dimensional Roughness Elements for Snow Retention (FHWA-WY-06/04F) (Tabler 2006), demonstrated : positive evidence for the effectiveness of Snow Snakes, a new type of snow fence suitable for use within the highway right-of...

  3. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz


    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100years long Betulanana ring-width chronology from Disko Island in western Greenland that demonstrates...... and spring soil temperatures have increased significantly suggesting that the most recent increase in Betulanana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help...... to explain the recently observed greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming....

  4. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth (United States)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin


    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  5. Physical activity levels of community-dwelling older adults are influenced by winter weather variables. (United States)

    Jones, G R; Brandon, C; Gill, D P


    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. (United States)

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi


    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail:

  7. A Coupled Snow Operations-Skier Demand Model for the Ontario (Canada) Ski Region (United States)

    Pons, Marc; Scott, Daniel; Steiger, Robert; Rutty, Michelle; Johnson, Peter; Vilella, Marc


    The multi-billion dollar global ski industry is one of the tourism subsectors most directly impacted by climate variability and change. In the decades ahead, the scholarly literature consistently projects decreased reliability of natural snow cover, shortened and more variable ski seasons, as well as increased reliance on snowmaking with associated increases in operational costs. In order to develop the coupled snow, ski operations and demand model for the Ontario ski region (which represents approximately 18% of Canada's ski market), the research utilized multiple methods, including: a in situ survey of over 2400 skiers, daily operations data from ski resorts over the last 10 years, climate station data (1981-2013), climate change scenario ensemble (AR5 - RCP 8.5), an updated SkiSim model (building on Scott et al. 2003; Steiger 2010), and an agent-based model (building on Pons et al. 2014). Daily snow and ski operations for all ski areas in southern Ontario were modeled with the updated SkiSim model, which utilized current differential snowmaking capacity of individual resorts, as determined from daily ski area operations data. Snowmaking capacities and decision rules were informed by interviews with ski area managers and daily operations data. Model outputs were validated with local climate station and ski operations data. The coupled SkiSim-ABM model was run with historical weather data for seasons representative of an average winter for the 1981-2010 period, as well as an anomalously cold winter (2012-13) and the record warm winter in the region (2011-12). The impact on total skier visits and revenues, and the geographic and temporal distribution of skier visits were compared. The implications of further climate adaptation (i.e., improving the snowmaking capacity of all ski areas to the level of leading resorts in the region) were also explored. This research advances system modelling, especially improving the integration of snow and ski operations models with

  8. Impact of climate change in Switzerland on socioeconomic snow indices (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael


    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  9. The Asian-Bering-North American teleconnection: seasonality, maintenance, and climate impact on North America (United States)

    Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.


    The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.

  10. Bacterial-based additives for the production of artificial snow: What are the risks to human health?

    International Nuclear Information System (INIS)

    Lagriffoul, A.; Boudenne, J.L.; Absi, R.; Ballet, J.J.; Berjeaud, J.M.; Chevalier, S.; Creppy, E.E.; Gilli, E.; Gadonna, J.P.; Gadonna-Widehem, P.; Morris, C.E.; Zini, S.


    For around two decades, artificial snow has been used by numerous winter sports resorts to ensure good snow cover at low altitude areas or more generally, to lengthen the skiing season. Biological additives derived from certain bacteria are regularly used to make artificial snow. However, the use of these additives has raised doubts concerning the potential impact on human health and the environment. In this context, the French health authorities have requested the French Agency for Environmental and Occupational Health Safety (Afsset) to assess the health risks resulting from the use of such additives. The health risk assessment was based on a review of the scientific literature, supplemented by professional consultations and expertise. Biological or chemical hazards from additives derived from the ice nucleation active bacterium Pseudomonas syringae were characterised. Potential health hazards to humans were considered in terms of infectious, toxic and allergenic capacities with respect to human populations liable to be exposed and the means of possible exposure. Taking into account these data, a qualitative risk assessment was carried out, according to four exposure scenarios, involving the different populations exposed, and the conditions and routes of exposure. It was concluded that certain health risks can exist for specific categories of professional workers (mainly snowmakers during additive mixing and dilution tank cleaning steps, with risks estimated to be negligible to low if workers comply with safety precautions). P. syringae does not present any pathogenic capacity to humans and that the level of its endotoxins found in artificial snow do not represent a danger beyond that of exposure to P. syringae endotoxins naturally present in snow. However, the risk of possible allergy in some particularly sensitive individuals cannot be excluded. Another important conclusion of this study concerns use of poor microbiological water quality to make artificial snow.

  11. Bacterial-based additives for the production of artificial snow: What are the risks to human health?

    Energy Technology Data Exchange (ETDEWEB)

    Lagriffoul, A. [Agence Francaise de Securite Sanitaire de l' Environnement et du Travail, 253, avenue du General Leclerc, 94701 Maisons-Alfort (France); Boudenne, J.L. [Universite de Provence, Laboratoire Chimie Provence, UMR6264, 3 Place Victor Hugo case 29 13331 Marseille CEDEX 3 (France); Absi, R. [Institut Polytechnique Saint-Louis, Ecole de Biologie Industrielle, Laboratoire EBInnov, 32 Boulevard du Port, 95094 Cergy-Pontoise (France); Ballet, J.J. [Laboratoire d' immunologie et immunopathologie, Centre hospitalo-universitaire de Caen, avenue de la cote de nacre 14000 Caen (France); Berjeaud, J.M. [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau, UMR6008, 40 avenue du recteur Pineau, 86022 Poitiers CEDEX (France); Chevalier, S. [Universite de Rouen, Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Securite Sanitaire, 55 rue St Germain, 27000 Evreux (France); Creppy, E.E. [Universite Bordeaux 2, UFR des Sciences Pharmaceutiques, Laboratoire de Toxicologie, 146, rue Leo-Saignat, 33076 Bordeaux CEDEX (France); Gilli, E. [Universite Paris 8, Departement de geographie, 2, rue de la Liberte, 93526 Saint Denis CEDEX (France); UMR Espace 6012, 98 bd Edouard Herriot, 06204, Nice, CEDEX 3 (France); Gadonna, J.P. [Institut Polytechnique Saint-Louis, Ecole de Biologie Industrielle, Laboratoire EBInnov, 32 Boulevard du Port, 95094 Cergy-Pontoise (France); Gadonna-Widehem, P. [Institut Polytechnique LaSalle Beauvais, departement STAI, rue P. Waguet BP 30313, 60026 Beauvais CEDEX (France); Morris, C.E. [INRA, Unite de Pathologie Vegetale UR407, F-84140 Montfavet (France); Zini, S., E-mail: [Agence Francaise de Securite Sanitaire de l' Environnement et du Travail, 253, avenue du