WorldWideScience

Sample records for winter polar stratosphere

  1. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  2. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  3. Missing chemistry of reactive nitrogen in the upper stratospheric polar winter

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, S.R.; Douglass, A.R. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Kumer, J.B. [Lockheed Palo Alto Research Lab., CA (United States)] [and others

    1995-10-01

    Data from the CLAES on UARS indicate that a significant mechanism for production of HNO{sub 3} in the middle to upper stratosphere is missing from the chemical reaction set currently used by atmospheric models. Measured HNO{sub 3} in the polar vortex is strongly enhanced relative to the extra-vortex at 1200 K potential temperature (near 3 mbar) in January, 1992. The HNO{sub 3} vertical profile shows this enhancement forms a secondary altitude maximum from about 10 to 2 mbar (800-1500 K). A chemistry/transport model (CTM) simulation of this period produces no increase of HNO{sub 3} in the vortex near 3 mbar and no secondary maximum in the HNO{sub 3} profile. Furthermore, the CTM produces relatively high N{sub 2}O{sub 5} in the vortex, with a vertical peak near 3 mbar, while both CLAES and ISAMS show a shallow minimum there. The implication of this comparison is that some unmodeled process is acting to enhance HNO{sub 3} and reduce N{sub 2}O{sub 5} at high latitudes in the winter middle and upper stratosphere. Heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3} on hydrated ion clusters is proposed as a possibility for the missing mechanism. 15 refs., 5 figs.

  4. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  5. Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS

    Science.gov (United States)

    Lambert, Alyn; Santee, Michelle L.; Livesey, Nathaniel J.

    2016-12-01

    We use satellite-borne measurements collected over the last decade (2006-2015) from the Aura Microwave Limb Sounder (MLS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to investigate the nitric acid distribution and the properties of polar stratospheric clouds (PSCs) in the early winter Antarctic vortex. Frequently, at the very start of the winter, we find that synoptic-scale depletion of HNO3 can be detected in the inner vortex before the first lidar detection of geophysically associated PSCs. The generation of "sub-visible" PSCs can be explained as arising from the development of a solid particle population with low number densities and large particle sizes. Assumed to be composed of nitric acid trihydrate (NAT), the sub-visible PSCs form at ambient temperatures well above the ice frost point, but also above the temperature at which supercooled ternary solution (STS) grows out of the background supercooled binary solution (SBS) distribution. The temperature regime of their formation, inferred from the simultaneous uptake of ambient HNO3 into NAT and their Lagrangian temperature histories, is at a depression of a few kelvin with respect to the NAT existence threshold, TNAT. Therefore, their nucleation requires a considerable supersaturation of HNO3 over NAT, and is consistent with a recently described heterogeneous nucleation process on solid foreign nuclei immersed in liquid aerosol. We make a detailed investigation of the comparative limits of detection of PSCs and the resulting sequestration of HNO3 imposed by lidar, mid-infrared, and microwave techniques. We find that the temperature history of air parcels, in addition to the local ambient temperature, is an important factor in the relative frequency of formation of liquid/solid PSCs. We conclude that the initiation of NAT nucleation and the subsequent development of large NAT particles capable of sedimentation and denitrification in the early winter do not emanate from an ice

  6. The Effect of Zonally Asymmetric Ozone Heating on the Northern Hemisphere Winter Polar Stratosphere

    Science.gov (United States)

    2010-12-09

    solar ultraviolet ir- radiance, stratospheric ozone, and planetary wave activity that have often been cited as possible mechanisms linking solar... photochemistry both contribute to the ZAOH effect, up to ∼0.01 hPa (∼65 km) where the ZAOH effect is controlled by ozone photochemistry . Overall, the... photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972. December 9, 2010, 2:01pm X - 12 MCCORMACK ET

  7. A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008

    Directory of Open Access Journals (Sweden)

    A. Lambert

    2012-03-01

    Full Text Available A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP and Microwave Limb Sounder (MLS observations are used to investigate the development of polar stratospheric clouds (PSCs and the gas-phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas-phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS, but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to −7 K distributed about the NAT equilibrium curve. Rapid gas-phase HNO3 depletion is first seen by MLS from from 23–25 May 2008, consisting of a decrease in the volume mixing ratio from 14 ppbv (parts per billion by volume to 7 ppbv on the 46–32 hPa (hectopascal pressure levels and accompanied by a 2–3 ppbv increase by renitrification at the 68 hPa pressure level. The observed region of depleted HNO3 is substantially smaller than the region bounded by the NAT existence temperature threshold. Temperature-time histories of air parcels demonstrate that the depletion is more clearly correlated with prior exposure to temperatures a few kelvin above the frost-point. From the combined data we infer the presence

  8. Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003

    Directory of Open Access Journals (Sweden)

    R. Spang

    2005-01-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC

  9. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  10. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  11. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  12. Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter

    Science.gov (United States)

    Alfred, J.; Fromm, M.; Bevilacqua, R.; Nedoluha, G.; Strawa, A.; Poole, L.; Wickert, J.

    2007-05-01

    The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400-475 K and 475-550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March.

  13. Decadal variation of the impact of La Niña on the winter Arctic stratosphere

    Science.gov (United States)

    Yang, Shuangyan; Li, Tim; Hu, Jinggao; Shen, Xi

    2017-05-01

    The impact of La Niña on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Niña events considered. This study shows that this is mainly due to the decadal variation of La Niña's impact on the winter Arctic stratosphere since the late 1970s. Specifically, during the period 1951-78, the tropospheric La Niña teleconnection exhibits a typical negative Pacific-North America pattern, which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere, and leads to a significantly strengthened stratospheric polar vortex. In contrast, during 1979-2015, the La Niña teleconnection shifts eastwards, with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Niña teleconnection with climatological stationary waves seen in the earlier period reduces greatly, which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly, the stratospheric response shows a less disturbed stratospheric polar vortex in winter.

  14. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  15. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2016-07-01

    Full Text Available Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs. The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate ∕ carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ∼  5 µm taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  16. Regional stratospheric warmings in the Pacific-Western Canada (PWC sector during winter 2004/2005: implications for temperatures, winds, chemical constituents and the characterization of the Polar vortex

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2008-11-01

    Full Text Available The vortex during winter 2004/2005 was interesting for several reasons. It has been described as "cold" stratospherically, with relatively strong westerly winds. Losses of ozone until the final warming in March were considerable, and comparable to the cold 1999–2000 winter. There were also modest warming events, indicated by peaks in 10 hPa zonal mean temperatures at high latitudes, near 1 January and 1 February. Events associated with a significant regional stratospheric warming in the Pacific-Western Canada (PWC sector then began and peaked toward the end of February, providing strong longitudinal variations in dynamical characteristics (Chshyolkova et al., 2007; hereafter C07. The associated disturbed vortex of 25 February was displaced from the pole and either elongated (upper or split into two cyclonic centres (lower.

    Observations from Microwave Limb Sounder (MLS on Aura are used here to study the thermal characteristics of the stratosphere in the Canadian-US (253° E and Scandinavian-Europe (16° E sectors. Undisturbed high latitude stratopause (55 km zonal mean temperatures during the mid-winter (December–February reached 270 K, warmer than empirical-models such as CIRA-86, suggesting that seasonal polar warming due to dynamical influences affects the high altitude stratosphere as well as the mesosphere. There were also significant stratopause differences between Scandinavia and Canada during the warming events of 1 January and 1 February, with higher temperatures near 275 K at 16° E. During the 25 February "PWC" event a warming occurred at low and middle stratospheric heights (10–30 km: 220 K at 253° E and the stratopause cooled; while over Scandinavia-Europe the stratosphere below ~30 km was relatively cold at 195 K and the stratopause became even warmer (>295 K and lower (~45 km. The zonal winds followed the associated temperature gradients so that the vertical and latitudinal gradients of the winds differed strongly

  17. Airborne lidar observations of Arctic polar stratospheric clouds

    Science.gov (United States)

    Poole, L. R.; Kent, G. S.

    1986-01-01

    Polar stratospheric clouds (PSC's) have been detected repeatedly during Arctic and Antarctic winters since 1978/1979 by the SAM II (Stratospheric Aerosol Measurement II) instrument aboard the NIMBUS-7 satellite. PSC's are believed to form when supercooled sulfuric acid droplets freeze, and subsequently grow by deposition of ambient water vapor as the local stratospheric temperature falls below the frost point. In order to study the characteristics of PSC's at higher spatial and temporal resolution than that possible from the satellite observations, aircraft missions were conducted within the Arctic polar night vortex in Jan. 1984 and Jan. 1986 using the NASA Langley Research Center airborne dual polarization ruby lidar system. A synopsis of the 1984 and 1986 PSC observations is presented illustrating short range spatial changes in cloud structure, the variation of backscatter ratio with temperature, and the depolarization characterics of cloud layers. Implications are noted with regard to PSC particle characteristics and the physical process by which the clouds are thougth to form.

  18. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  19. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  20. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  1. Evolution of microwave limb sounder ozone and the polar vortex during winter

    Science.gov (United States)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  2. The potential for ozone depletion in the Arctic polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Brune, W.H. (Pennsylvania State Univ., University Park (United States)); Anderson, J.G.; Toohey, D.W. (Harvard Univ., Cambridge, MA (United States)); Fahey, D.W.; Kawa, S.R. (National Oceanic and Atmospheric Administration, Boulder, CO (United States)); Jones, R.L. (Univ. of Cambridge (England)); McKenna, D.S. (United Kingdom Meteorological Office, Berkshire (England)); Poole, L.R. (NASA Langley Research Center, Hampton, VA (United States))

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. most of the available chlorine (HCl and ClONO{sub 2}) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl{sub 2}O{sub 2} throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO{sub 3}, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  3. Nitric oxide measurements in the Arctic winter stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, D.W. (National Oceanic and Atmospheric Administration (USA)); Kawa, S.R. (National Oceanic and Atmospheric Administration (USA) Univ. of Colorado, Boulder (USA)); Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (USA))

    1990-03-01

    Measurements of nitric oxide (NO) from five flights of the NASA ER-2 aircraft during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The NO values and vertical gradient near 60{degree}N latitude are similar to previous measurements near 50{degree}N in winter (Ridley et al., 1984; 1987). The NO latitudinal gradient is distinctly negative outside of the polar vortex, approaching zero at the boundary of the vortex, and remaining below the 20 pptv detection limit inside the vortex. The low NO values in the vortex occur at solar zenith angles as low as 82{degree} indicating that NO{sub 2} values in the vortex are also low. Steady state NO{sub 2} and NO{sub x} (NO+NO{sub 2}) are calculated from measured NO, O{sub 3}, and ClO, and modeled photodissociation rates. NO{sub x} outside the vortex shows a negative dependence on latitude and solar zenith angle. The average ratio of NO{sub x} to NO{sub y} (at the same relative latitudes from different flight days) shows a strong latitude gradient with values near 0.08 at 12{degree} equatorward of the vortex edge, decreasing to less than 0.02 at the vortex boundary. Low NO{sub x} and NO{sub x}/NO{sub y} inside and near the vortex boundary may be indications of heterogeneous removal of ClONO{sub 2} and N{sub 2}O{sub 5}.

  4. Understanding and forecasting polar stratospheric variability with statistical models

    Directory of Open Access Journals (Sweden)

    C. Blume

    2012-07-01

    Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.

  5. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Science.gov (United States)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  6. On the cryogenic removal of NOy from the Antarctic polar stratosphere

    Directory of Open Access Journals (Sweden)

    S. Smyshlyaev

    2003-06-01

    Full Text Available We review current knowledge about the annual cycle of transport of nitrogen oxides to, and removal from, the polar stratosphere, with particular attention to Antarctica where the annual winter denitrifi cation process is both regular in occurrence and severe in effect. Evidence for a large downward fl ux of NOy from the mesosphere to the stratosphere, fi rst seen briefl y in the Limb Infrared Monitor of the Stratosphere (LIMS data from the Arctic winter of 1978-1979, has been found during the 1990s in both satellite and ground-based observations, though this still seems to be omitted from many atmospheric models. When incorporated in the Stony Brook- St. Petersburg two dimensional (2D transport and chemistry model, more realistic treatment of the NOy fl ux, along with sulfate transport from the mesosphere, sulfate aerosol formation where temperature is favorable, and the inclusion of a simple ion-cluster reaction, leads to good agreement with observed HNO3 formation in the mid-winter middle to upper stratosphere. To further emphasize the importance of large fl uxes of thermospheric and mesospheric NOy into the polar stratosphere, we have used observations, supplemented with model calculations, to defi ne new altitude dependent correlation curves between N2O and NOy. These are more suitable than those previously used in the literature to represent conditions within the Antarctic vortex region prior to and during denitrifi cation by Polar Stratospheric Cloud (PSC particles. Our NOy -N2O curves lead to a 40% increase in the average amount of NOy removed during the Antarctic winter with respect to estimates calculated using NOy-N2O curves from the Atmospheric Trace Molecule Spectroscopy (ATMOS/ATLAS-3 data set.

  7. Detection of polar stratospheric clouds with ERS2/GOME data

    International Nuclear Information System (INIS)

    Meerkoetter, R.; Schumann, U.

    1994-01-01

    Based on radiative transfer calculations it is studied whether Polar Stratospheric Clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) onboard the second European Research Satellite (ERS-2) planned to be launched in winter 1994/95. It is proposed to identify PSC covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.5 μm and 0.7 μm to one radiance measured in the center of the oxygen A-band at 0.76 μm. The presence of PSCs and under conditions of large solar zenith angles Θ>80 the NRD values are clearly below those derived under conditions of a cloud free stratosphere. In this case the method is successful for PSCs with optical depths greater than 0.03 at 0.55 μm. It is not affected by existing tropospheric clouds and by different tropospheric aerosol loadings or surface albedoes. For solar zenith angles Θ<80 PSCs located above a cloud free troposphere are detectable. PSC detection becomes difficult for Θ<80 when highly reflecting tropospheric clouds like dense cirrus or stratus clouds affect spectral radiances measured at the top of the atmosphere. (orig.)

  8. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-09-01

    We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004-2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.

  9. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-09-01

    Full Text Available We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2, bromine species, nitrogen species (HNO3, NOx and hydrogen species (HOx. For clarity, we focus on one Arctic winter (2004–2005 and one Antarctic winter (2006 in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM driven by the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen and activation and deactivation of chlorine.

  10. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  11. Pattern recognition analysis of polar clouds during summer and winter

    Science.gov (United States)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  12. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    Science.gov (United States)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  13. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    Science.gov (United States)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  14. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  15. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  16. Stratosphere/mesosphere coupling during the winter/summer transition at Davis, Antarctica

    Science.gov (United States)

    Lübken, Franz-Josef; Höffner, Josef; Viehl, Timo P.; Becker, Erich; Latteck, Ralph; Kaifler, Bernd; Morris, Ray J.

    2015-04-01

    The mobile scanning iron lidar of the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) was in operation at Davis, Antarctica, from December 15, 2010, until December 31, 2012. It measured iron densities, vertical winds, and temperatures in the iron layer, i. e. from approximately 80 to 100 km. The measurement principle is based on probing the Doppler broadened resonance line of iron atoms at 386 nm. The lidar can operate under daylight conditions. Typical values for temperature uncertainty, altitude and time resolution are 3-5 K, 1 km, and 1 hour, respectively. At Davis, the lidar has achieved at total of 2900 hours of temperature measurements which is presumably the largest nearly continuous data set in Antarctica. In this presentation we concentrate on the winter/summer transition in three consecutive years and compare with circulation changes in the stratosphere derived from MERRA (NASA's Modern-Era Retrospective analysis for Research and Applications). We also compare with the northern hemisphere (NH). We find that the thermal structure around the mesopause at Davis is closely coupled to the general circulation in the stratosphere, more precisely to the transition from winter to summer conditions. In contrast to theoretical expectations we occasionally find the mesopause significantly higher and colder(!) compared to the NH. The mesopause altitude changes by several kilometers throughout the summer season, which is significantly different from the summer in the northern hemispheric. Depending on altitude, temperatures can be warmer or colder compared to the NH summer. The Australian Antarctic Division has been operating a 55 MHz VHF radar at Davis since February 2003. We have studied the seasonal variation of polar mesosphere summer echoes (PMSE). PMSE are strong radar echoes related to ice particles and therefore require atmospheric temperatures lower than the frost point temperature. We note that (apart from low temperatures) more ingredients

  17. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  18. Technical Note: SWIFT - a fast semi-empirical model for polar stratospheric ozone loss

    Science.gov (United States)

    Rex, M.; Kremser, S.; Huck, P.; Bodeker, G.; Wohltmann, I.; Santee, M. L.; Bernath, P.

    2014-07-01

    An extremely fast model to estimate the degree of stratospheric ozone depletion during polar winters is described. It is based on a set of coupled differential equations that simulate the seasonal evolution of vortex-averaged hydrogen chloride (HCl), nitric acid (HNO3), chlorine nitrate (ClONO2), active forms of chlorine (ClOx = Cl + ClO + 2 ClOOCl) and ozone (O3) on isentropic levels within the polar vortices. Terms in these equations account for the chemical and physical processes driving the time rate of change of these species. Eight empirical fit coefficients associated with these terms are derived by iteratively fitting the equations to vortex-averaged satellite-based measurements of HCl, HNO3 and ClONO2 and observationally derived ozone loss rates. The system of differential equations is not stiff and can be solved with a time step of one day, allowing many years to be processed per second on a standard PC. The inputs required are the daily fractions of the vortex area covered by polar stratospheric clouds and the fractions of the vortex area exposed to sunlight. The resultant model, SWIFT (Semi-empirical Weighted Iterative Fit Technique), provides a fast yet accurate method to simulate ozone loss rates in polar regions. SWIFT's capabilities are demonstrated by comparing measured and modeled total ozone loss outside of the training period.

  19. Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-03-01

    Full Text Available Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10–20 days, clearly appear around the tropical tropopause layer (TTL during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere. However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.

  20. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  1. Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds

    Directory of Open Access Journals (Sweden)

    T. J. Fortin

    2003-01-01

    Full Text Available The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT. Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of S*ice = 1.3 to 1.02 over the temperature range 169.8-194.5 K. This corresponds to a necessary supercooling of 0.1-1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g., 10-3 cm-3 result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.

  2. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    Science.gov (United States)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated

  3. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  4. An overview of the combined second sage iii ozone loss and validation experiment (solve-ii) and the validations of international ozone loss - european polar stratospheric cloud and lee wave experiment (vintersol-euplex)

    Science.gov (United States)

    Newman, P.; Stroh, F.; Solve-Ii / Vintersol-Euplex Science Teams

    2003-04-01

    The SOLVE II/VINTERSOL-EUPLEX Field mission was an international field campaign designed to investigate polar ozone loss, polar stratospheric clouds, processes that lead to ozone loss, the dynamics of the polar stratosphere, and to acquire correlative data needed to validate satellite measurements of the polar stratosphere. The campaign was staged over the course of the winter of 2002-2003. Measurements were made from both aircraft (the NASA DC-8, the DLR Falcon, and the Russian M55 Geophysica), ozonesondes and other balloon payloads, ground-based instruments, and satellites. In particular SOLVE-II was designed to validate the Meteor-3M/Stratospheric Aerosol and Gas Experiment (SAGE) III satellite mission. In this presentation we will review the overall objectives of the combined campaigns, discuss some of the broad observations of the winter of 2002-2003, and highlight the major findings of this campaign.

  5. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  6. Simultaneous Observations fo Polar Stratospheric Clouds and HNO3 over Scandinavia in January, 1992

    Science.gov (United States)

    Massie, S. T.; Santee, M. L.; Read, W. G.; Grainger, R. G.; Lambert, A.; Mergenthaler, J. L.; Dye, J. E.; Baumbardner, D.; Randel, W. J.; Tabazadeh, A.; hide

    1996-01-01

    Simultaneous observations of Polar Stratospheric Cloud aerosol extinction and HNO3 mixing ratios over Scandinavia are examined for January 9-10, 1992. Data measured by the Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon, Spectrometer (CLAES), and Improved Stratospheric and Mesospheric Sounder (ISAMA) experiments on the Upper Atmosphere Research Satellite (UARS) are examined at locations adjacent to parcel trajectory positions.

  7. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  8. Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2005-01-01

    Full Text Available We present ozone measurements from the millimetre wave radiometer installed at the Swedish Institute of Space Physics (Institutet för rymdfysik, IRF in Kiruna (67.8° N, 20.4° E, 420 m asl. Nearly continuous operation in the winter of 2002/2003 allows us to give an overview of ozone evolution in the stratosphere between 15 and 55 km. In this study we present a detailed analysis of the Arctic winter 2002/2003. By means of a methodology using equivalent latitudes we investigate the meteorological processes in the stratosphere during the entire winter/spring period. During the course of the winter strong mixing into the vortex took place in the middle and upper stratosphere as a result of three minor and one major warming event, but no evidence was found for significant mixing in the lower stratosphere. Ozone depletion in the lower stratosphere during this winter was estimated by measurements on those days when Kiruna was well inside the Arctic polar vortex. The days were carefully chosen using a definition of the vortex edge based on equivalent latitudes. At the 475 K isentropic level a cumulative ozone loss of about 0.5 ppmv was found starting in January and lasting until mid-March. The early ozone loss is probably a result of the very cold temperatures in the lower stratosphere in December and the geographical extension of the vortex to lower latitudes where solar irradiation started photochemical ozone loss in the pre-processed air. In order to correct for dynamic effects of the ozone variation due to diabatic subsidence of air masses inside the vortex, we used N2O measurements from the Odin satellite for the same time period. The derived ozone loss in the lower stratosphere between mid-December and mid-March varies between 1.1±0.1 ppmv on the 150 ppbv N2O isopleth and 1.7±0.1 ppmv on the 50 ppbv N2O isopleth.

  9. CO as a marker and probe of polar vortex structure in the upper stratosphere and mesosphere

    Science.gov (United States)

    de Zafra, R. L.; Muscari, G.

    2003-04-01

    We present new ground-based measurements of polar stratospheric and mesospheric CO showing that it serves as an excellent tracer of vortex position, size, and descent at an altitude range where other information may be sparse or unreliable. Observations were made with a mm-wave spectrometer at Thule, Greenland (76.5o N, 68.7o W), and involved almost-daily measurements between January 17 and March 4, 2002. Our analysis is supplemented with occasional observations made at the geographic South Pole during both summer and winter periods of 1999. Mixing ratio profiles are retrieved from pressure-broadened line shape measurements of the 230 GHz rotational emission line, using a spectrometer with a bandwidth of 50 MHz and a resolution of about 65 kHz. Although Doppler broadening increasingly dominates over pressure broadening in the mesosphere, eventually frustrating profile retrieval, extensive testing shows that rather accurate retrievals (Lidar probe for temperature retrievals in 2003. We find CO to be a very good marker for the upper vortex (e.g. 50-70 km), in agreement with recent analysis of 1991-92 ISAMS data by Allen et al. [J. Atmos. Sci. 56, 563-583, 1999]. Large changes in the vertical profile are evident from outside to inside the polar vortex in this altitude range. Observed short-term changes at 50-70 km are consistent with vortex position below 50 km. Relative to its January height just outside the vortex, we find that the CO mixing ratio peak had descended by ˜10 km (to ˜55 km altitude) within the vortex by late January of 2002, while the external peak altitude is already much lower (˜65 km) than the CO peak at low latitudes or in polar summer. From earlier South Pole trial observations (with poorer signal/noise ratio) we find the total column density above 40 km in polar summer to be only 6-7% of its winter value. We have also compared our total column density values above 64 km to the same computations by Solomon et al. [J. Atmos. Sci., 42, 1072

  10. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  11. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    M. L. Santee

    2009-11-01

    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  12. Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material

    Science.gov (United States)

    James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.; Whale, Thomas F.; Plane, John M. C.; Murray, Benjamin J.

    2018-04-01

    Heterogeneous nucleation of crystalline nitric acid hydrates in polar stratospheric clouds (PSCs) enhances ozone depletion. However, the identity and mode of action of the particles responsible for nucleation remains unknown. It has been suggested that meteoric material may trigger nucleation of nitric acid trihydrate (NAT, or other nitric acid phases), but this has never been quantitatively demonstrated in the laboratory. Meteoric material is present in two forms in the stratosphere: smoke that results from the ablation and re-condensation of vapours, and fragments that result from the break-up of meteoroids entering the atmosphere. Here we show that analogues of both materials have a capacity to nucleate nitric acid hydrates. In combination with estimates from a global model of the amount of meteoric smoke and fragments in the polar stratosphere we show that meteoric material probably accounts for NAT observations in early season polar stratospheric clouds in the absence of water ice.

  13. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2012-11-01

    Full Text Available Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite

  14. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Science.gov (United States)

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  15. An assessment of CALIOP polar stratospheric cloud composition classification

    Directory of Open Access Journals (Sweden)

    M. C. Pitts

    2013-03-01

    Full Text Available This study assesses the robustness of the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization polar stratospheric cloud (PSC composition classification algorithm – which is based solely on the spaceborne lidar data – through the use of nearly coincident gas-phase HNO3 and H2O data from the Microwave Limb Sounder (MLS on Aura and Goddard Earth Observing System Model, Version 5 (GEOS-5 temperature analyses. Following the approach of Lambert et al. (2012, we compared the observed temperature-dependent HNO3 uptake by PSCs in the various CALIOP composition classes with modeled uptake for supercooled ternary solutions (STS and equilibrium nitric acid trihydrate (NAT. We examined the CALIOP PSC data record from both polar regions over the period from 2006 through 2011 and over a range of potential temperature levels spanning the 15–30 km altitude range. We found that most PSCs identified as STS exhibit gas phase uptake of HNO3 consistent with theory, but with a small temperature bias, similar to Lambert et al. (2012. Ice PSC classification is also robust in the CALIOP optical data, with the mode in the ice observations occurring about 0.5 K below the frost point. We found that CALIOP PSCs identified as NAT mixtures exhibit two distinct preferred modes which reflect the fact that the growth of NAT particles is kinetically limited. One mode is significantly out of thermodynamic equilibrium with respect to NAT due to short exposure times to temperatures below the NAT existence temperature, TNAT, with HNO3 uptake dominated by the more numerous liquid droplets. The other NAT mixture mode is much closer to NAT thermodynamic equilibrium, indicating that the particles have been exposed to temperatures below TNAT for extended periods of time. With a few notable exceptions, PSCs in the various composition classes conform well to their expected temperature existence regimes. We have a good understanding of the cause of the minor misclassifications that

  16. Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003

    Directory of Open Access Journals (Sweden)

    G. Günther

    2008-07-01

    Full Text Available Strong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex, filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement.

    Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relatively undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results.

    In the lower stratosphere export

  17. The thermal and dynamical state of the Antarctic mesopause region during winter/summer transition and the role of stratosphere/mesosphere coupling

    Science.gov (United States)

    Luebken, F. J.; Höffner, J.; Viehl, T. P.; Latteck, R.; Becker, E.; Kaifler, B.; Murphy, D. J.; Morris, R.

    2015-12-01

    The transition of stratospheric circulation at Antarctic latitudes from winter to summer conditions is highly variably from year to year. As has been realized recently, this also affects the winter/summer transition at mesopause altitudes. The Antarctic middle atmosphere therefore offers the unique possibility to study the physical processes involved in the vertical coupling between the stratosphere and the mesosphereduring winter/summer transition, in particular the role of gravity waves. We present new results from the mobile scanning iron lidar of the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) which was in operation at Davis, Antarctica, from December 15, 2010, until December 31, 2012. It measured temperatures in the iron layer (~80-100 km). The lidar can operate under daylight conditions. At Davis, the lidar has achieved at total of 2900 hours of temperature measurements which is presumably the largest nearly continuous data set in Antarctica. In this presentation we concentrate on the winter/summer transition and compare with circulation changes in the stratosphere derived from MERRA. We also compare with the northern hemisphere (NH). The thermal structure around the mesopause at Davis is closely coupled to the general circulation in the stratosphere, more precisely to the transition from winter to summer conditions. In contrast to theoretical expectations we occasionally find the mesopause significantly higher and colder(!) compared to the NH. The mesopause altitudechanges by several kilometers throughout the summer season, which is significantly different from the summer in the northern hemispheric. Depending on altitude, temperatures can be warmer or colder compared to the NH summer. We studied the seasonal variation of polar mesosphere summer echoes (PMSE). PMSE are strong radar echoes related to ice particles and therefore require very low atmospheric temperatures. The VHF radar frequently detected PMSE. We compare the seasonal

  18. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    Science.gov (United States)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  19. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    K. Schütze

    2017-10-01

    Full Text Available Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM  =  3872; SEM  =  330 were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air−1 and varied between 0.65 and 2.3 (mg air−1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation. Carbon and oxygen are the only detected major elements with an atomic O∕C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si∕C: 0.010 ± 0.011; S∕C: 0.0007 ± 0.0015; Fe∕C: 0.0052 ± 0.0074; Cr∕C: 0.0012 ± 0.0017; Ni∕C: 0.0006 ± 0.0011 (all mean values ± standard deviation.High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between

  20. Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat

    Directory of Open Access Journals (Sweden)

    E. Kyrölä

    2012-01-01

    Full Text Available Sudden stratospheric warmings (SSW are large-scale transient events, which have a profound effect on the Northern Hemisphere stratospheric circulation in winter. During the SSW events the temperature in stratosphere increases by several tens of Kelvins and zonal winds decelerate or reverse in direction. Changes in temperature and dynamics significantly affect the chemical composition of the middle atmosphere. In this paper, the response of the middle-atmosphere trace gases during several sudden stratospheric warmings in 2003–2008 is investigated using measurements from the GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite. We have analyzed spatial and temporal changes of NO2 and NO3 in the stratosphere, and of ozone in the whole middle atmosphere. To facilitate our analyses, we have used the temperature profiles data from the MLS (Microwave Limb Sounder instrument on board the Aura satellite, as well as simulations by the FinROSE chemistry-transport model and the Sodankylä Ion and Neutral Chemistry model (SIC. NO3 observations in the polar winter stratosphere during SSWs are reported for the first time. Changes in chemical composition are found not to be restricted to the stratosphere, but to extend to mesosphere and lower thermosphere. They often exhibit a complicated structure, because the distribution of trace gases is affected by changes in both chemistry and dynamics. The tertiary ozone maximum in the mesosphere often disappears with the onset of SSW, probably because of strong mixing processes. The strong horizontal mixing with outside-vortex air is well observed also in NO2 data, especially in cases of enhanced NO2 inside the polar vortex before SSW. Almost in all of the considered events, ozone near the secondary maximum decreases with onset of SSW. In both experimental data and FinROSE modelling, ozone changes are positively correlated with temperature changes in the lower stratosphere

  1. Global drivers of the stratospheric polar vortex via nonlinear causal discovery

    Science.gov (United States)

    Kretschmer, M.; Runge, J.; Coumou, D.

    2016-12-01

    The stratospheric polar vortex plays a major role in the Northern Hemisphere midlatitudes, especially in driving extreme weather conditions. Many different global drivers, from Arctic sea ice to tropical climate patterns, are hypothesized to influence its stability, including linear and nonlinear mechanisms. Here a novel causal discovery approach, extending previous work [1], that is adapted to the particular challenges posed by such a high-dimensional dataset comprised of multiple, possibly nonlinearly coupled time series is demonstrated. While links in the reconstructed network can be called causal only with respect to the set of analyzed variables, the absence of causal links allows to assess where physical mechanisms are unlikely.The present work confirms recent results obtained with a similar, but linear, approach [2], regarding the impact of Barents and Kara sea ice concentrations, and extends the analysis also to tropical drivers to cover more proposed mechanisms. [1] Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths, 2014: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models. J. Climate 27, 720-739, doi: 10.1175/JCLI-D-13-00159.1.[2] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Climate 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.

  2. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2016-03-01

    Full Text Available We examined observations of polar stratospheric clouds (PSCs by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT and super-cooled ternary solution (STS mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  3. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    Energy Technology Data Exchange (ETDEWEB)

    Maturilli, M. [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Fierli, F. [CNR (Italy). Inst. for Atmospheric Sciences and Climate; Yushkov, V.; Lukyanov, A.; Khaykin, S. [Central Aerological Observatory, Moscow (Russian Federation); Hauchecorne, A. [CNRS, Verrieres-le-Buisson (France). Service d' Aeronomie

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylae, Finland, in January and February 2004. The retrieved H{sub 2}O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models. (orig.)

  4. Stratospheric aerosol particle size distribution based on multi-color polarization measurements of the twilight sky

    Science.gov (United States)

    Ugolnikov, Oleg S.; Maslov, Igor A.

    2018-03-01

    Polarization measurements of the twilight background with Wide-Angle Polarization Camera (WAPC) are used to detect the depolarization effect caused by stratospheric aerosol near the altitude of 20 km. Based on a number of observations in central Russia in spring and summer 2016, we found the parameters of lognormal size distribution of aerosol particles. This confirmed the previously published results of the colorimetric method as applied to the same twilights. The mean particle radius (about 0.1 micrometers) and size distribution are also in agreement with the recent data of in situ and space-based remote sensing of stratospheric aerosol. Methods considered here provide two independent techniques of the stratospheric aerosol study based on the twilight sky analysis.

  5. Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology

    Science.gov (United States)

    Lin, Pu; Paynter, David; Polvani, Lorenzo; Correa, Gustavo J. P.; Ming, Yi; Ramaswamy, V.

    2017-06-01

    We contrast the responses to ozone depletion in two climate models: Community Atmospheric Model version 3 (CAM3) and Geophysical Fuild Dynamics Laboratory (GFDL) AM3. Although both models are forced with identical ozone concentration changes, the stratospheric cooling simulated in CAM3 is 30% stronger than in AM3 in annual mean, and twice as strong in December. We find that this difference originates from the dynamical response to ozone depletion, and its strength can be linked to the timing of the climatological springtime polar vortex breakdown. This mechanism is further supported by a variant of the AM3 simulation in which the southern stratospheric zonal wind climatology is nudged to be CAM3-like. Given that the delayed breakdown of the southern polar vortex is a common bias among many climate models, previous model-based assessments of the forced responses to ozone depletion may have been somewhat overestimated.

  6. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter

    Science.gov (United States)

    Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan

    2018-04-01

    The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.

  7. Detection and mapping of polar stratospheric clouds using limb scattering observations

    Directory of Open Access Journals (Sweden)

    C. von Savigny

    2005-01-01

    Full Text Available Satellite-based measurements of Visible/NIR limb-scattered solar radiation are well suited for the detection and mapping of polar stratospheric clouds (PSCs. This publication describes a method to detect PCSs from limb scattering observations with the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY on the European Space Agency's Envisat spacecraft. The method is based on a color-index approach and requires a priori knowledge of the stratospheric background aerosol loading in order to avoid false PSC identifications by stratospheric background aerosol. The method is applied to a sample data set including the 2003 PSC season in the Southern Hemisphere. The PSCs are correlated with coincident UKMO model temperature data, and with very few exceptions, the detected PSCs occur at temperatures below 195–198 K. Monthly averaged PSC descent rates are about 1.5 km/month for the −50° S to −75° S latitude range and assume a maximum between August and September with a value of about 2.5 km/month. The main cause of the PSC descent is the slow descent of the lower stratospheric temperature minimum.

  8. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010

    Directory of Open Access Journals (Sweden)

    G. Nikulin

    2012-09-01

    Full Text Available We present an analysis of the major sudden stratospheric warmings (SSWs in the Arctic winters 2003/04–2009/10. There were 6 major SSWs (major warmings [MWs] in 6 out of the 7 winters, in which the MWs of 2003/04, 2005/06, and 2008/09 were in January and those of 2006/07, 2007/08, and 2009/10 were in February. Although the winter 2009/10 was relatively cold from mid-December to mid-January, strong wave 1 activity led to a MW in early February, for which the largest momentum flux among the winters was estimated at 60° N/10 hPa, about 450 m2 s−2. The strongest MW, however, was observed in 2008/09 and the weakest in 2006/07. The MW in 2008/09 was triggered by intense wave 2 activity and was a vortex split event. In contrast, strong wave 1 activity led to the MWs of other winters and were vortex displacement events. Large amounts of Eliassen-Palm (EP and wave 1/2 EP fluxes (about 2–4 ×105 kg s−2 are estimated shortly before the MWs at 100 hPa averaged over 45–75° N in all winters, suggesting profound tropospheric forcing for the MWs. We observe an increase in the occurrence of MWs (~1.1 MWs/winter in recent years (1998/99–2009/10, as there were 13 MWs in the 12 Arctic winters, although the long-term average (1957/58–2009/10 of the frequency stays around its historical value (~0.7 MWs/winter, consistent with the findings of previous studies. An analysis of the chemical ozone loss in the past 17 Arctic winters (1993/94–2009/10 suggests that the loss is inversely proportional to the intensity and timing of MWs in each winter, where early (December–January MWs lead to minimal ozone loss. Therefore, this high frequency of MWs in recent Arctic winters has significant implications for stratospheric ozone trends in the northern hemisphere.

  9. Stratospheric H2O

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-01-01

    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  10. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics

    Science.gov (United States)

    Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2008-01-01

    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  11. A closer look at Arctic ozone loss and polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    N. R. P. Harris

    2010-09-01

    Full Text Available The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.

  12. The formation and evolution of Titan’s winter polar vortex

    NARCIS (Netherlands)

    Teanby, Nicholas; Bezard, Bruno; Vinatier, Sandrine; Sylvestre, Melody; Nixon, Conor; Irwin, Patrick; de Kok, R.J.; Calcutt, Simon; Flasar, Michael

    2017-01-01

    Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter

  13. Estimation of heterogeneous reaction rates for stratospheric trace gases with particular reference to the diffusional uptake of HCl and ClONO2 by polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    Full Text Available The stratosphere holds a variety of particulates like polar stratospheric clouds (PSCs and sulphate aerosols which catalyse chemical reactions. These reactions cause changes in the composition of the stratosphere, including the redistribution of active chlorine which might lead to ozone destruction. As a result during recent years a lot of effort has been directed towards the quantification of the uptake of trace gases like ClONO2, HCl, etc. into these particulates. However, it has been observed that many of the two and three dimensional models used in such studies are constrained by the lack of adequate rate constant data. This paper describes a theoretical approach to estimate the reaction rate constants for 23 gases on both types of polar stratospheric clouds (type I and II. It is found that for gases like N2O5, ClONO2 and HCl, diffusional uptake is important and contributes significantly to the heterogeneous reaction rate. A complete Lennard-Jones calculation is used to accurately compute the trace gas diffusion coefficients.

  14. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  15. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  16. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  17. Analysis of the physical state of one Arctic polar stratospheric cloud based on observations

    Science.gov (United States)

    Drdla, K.; Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z.; Dye, J. E.; Twohy, C.; Baumgardner, D.

    1994-01-01

    During the Arctic Airborne Stratospheric Expedition (AASE) simultaneous measurements of aerosol size distribution and NO(y)(HN03 + NO + NO2 + 2(N205)) were made along ER-2 flight paths. The flow characteristics of the NO(y) instrument allow us to derive the condensed NO(y) amount (assumed to be HN03) present during polar stratospheric cloud (PSC) events. Analysis of the January 24th flight indicates that this condensed HN03 amount does not agree well with the aerosol volume if the observed PSCs are composed of solid nitric acid trihydrate (NAT), as is generally assumed. However, the composition agrees well with that predicted for liquid H2S04/HN03/H20 solution droplets using a new Aerosol Physical Chemistry Model (APCM). The agreement corresponds in detail to variations in temperature and humidity. The weight percentages of H2SO4, HN03, and H2O derived from the measurements all correspond to those predicted for ternary, liquid solutions.

  18. Simulation of polar stratospheric clouds in the chemistry-climate-model EMAC via the submodel PSC

    Directory of Open Access Journals (Sweden)

    O. Kirner

    2011-03-01

    Full Text Available The submodel PSC of the ECHAM5/MESSy Atmospheric Chemistry model (EMAC has been developed to simulate the main types of polar stratospheric clouds (PSC. The parameterisation of the supercooled ternary solutions (STS, type 1b PSC in the submodel is based on Carslaw et al. (1995b, the thermodynamic approach to simulate ice particles (type 2 PSC on Marti and Mauersberger (1993. For the formation of nitric acid trihydrate (NAT particles (type 1a PSC two different parameterisations exist. The first is based on an instantaneous thermodynamic approach from Hanson and Mauersberger (1988, the second is new implemented and considers the growth of the NAT particles with the aid of a surface growth factor based on Carslaw et al. (2002. It is possible to choose one of this NAT parameterisation in the submodel. This publication explains the background of the submodel PSC and the use of the submodel with the goal of simulating realistic PSC in EMAC.

  19. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  20. Response of the polar atmosphere of the earth to variations of cosmic-ray intensity in the stratosphere

    Science.gov (United States)

    Ulianov, V. P.; Rudnev, Iu. F.; Novikov, A. M.

    The effect of cosmic-ray intensity variations in the polar stratosphere on the circulation in this region is investigated on the basis of data from the Tiksi and Murmansk stations. It is shown that an increase in solar activity manifested in Forbush effects at the end of February and the beginning of March leads in general to an earlier-than-usual spring reversal of stratospheric circulation. The reversal mechanism evidently has a complex character: a decrease in the intensity of the circumpolar vortex is observed three to five days after the Forbush effect; this decrease is succeeded by a significant increase eight to ten days after the effect.

  1. Equatorial counter electrojets and polar stratospheric sudden warmings – a classical example of high latitude-low latitude coupling?

    Directory of Open Access Journals (Sweden)

    C. Vineeth

    2009-08-01

    Full Text Available Favored occurrences of Equatorial Counter Electrojets (CEJs with a quasi 16-day periodicity over Trivandrum (8.5° N, 76.5° E, 0.5° N diplat. in association with the polar Stratospheric Sudden Warming (SSW events are presented. It is observed that, the stratospheric temperature at ~30 km over Trivandrum shows a sudden cooling prior to the SSWs and the CEJs of maximum intensity which occurs around this time. In general stronger CEJs are associated with more intense SSW events. The stratospheric zonal mean zonal wind over Trivandrum also exhibits a distinctly different pattern during the SSW period. These circulation changes are proposed to be conducive for the upward propagation of the lower atmospheric waves over the equatorial latitudes. The interaction of such waves with the tidal components at the upper mesosphere and its subsequent modification are suggested to be responsible for the occurrence of CEJs having planetary wave periods.

  2. Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy

    Science.gov (United States)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.

    1992-01-01

    The paper reports simultaneous measurements of the stratospheric burdens of H2O, HDO, OCS, CO2, O3, N2O, CO, CH4, CF2Cl2, CFCl3, CHF2Cl, C2H6, HCN, NO, NO2, HNO3, ClNO3, HOCl, HCl, and HF made by the JPL MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were obtained on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland, and Greenland. Analyses of the chemically active gases reveal highly perturbed conditions within the vortex. The ClNO3 abundance was chemically enhanced near the edge of the vortex but was then depleted inside. NO2 was severely depleted inside the vortex. In contrast to Antarctica, H2O and HNO3 were both more abundant inside the vortex than outside. It is suggested that although the Arctic vortex did not get cold enough to produce any dehydration, or as vertically extensive denitrification as occurred in Antarctica, nevertheless, enough heterogeneous chemistry occurred to convert over 90 percent of the inorganic chlorine to active forms in the 14- to 27-km altitude range by early February 1989.

  3. Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica

    Science.gov (United States)

    Lübken, Franz-Josef; Latteck, Ralph; Becker, Erich; Höffner, Josef; Murphy, Damian

    2017-09-01

    Recent high resolution temperature measurements by resonance lidar occasionally showed a sudden mesopause altitude increase by ∼5 km and an associated mesopause temperature decrease by ∼10 K at Davis (69°S). In this paper we present further observations which are closely related to this 'mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are strongly westward. Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies enhanced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex. Mesopause jumps are primarily, but not only, observed prior and close to solstice. Our study also shows that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30 m/s), and that the onset is not closely related to the transition of the stratospheric circulation. Unlike previously published results with polar mesospheric clouds, we find an overall poor correlation between PMSE onset and the date of the vortex breakdown.

  4. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  5. A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    Directory of Open Access Journals (Sweden)

    V. J. García-Garrido

    2017-06-01

    Full Text Available In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow.

  6. A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations

    Directory of Open Access Journals (Sweden)

    R. Spang

    2018-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument aboard the European Space Agency (ESA Envisat satellite operated from July 2002 to April 2012. The infrared limb emission measurements provide a unique dataset of day and night observations of polar stratospheric clouds (PSCs up to both poles. A recent classification method for PSC types in infrared (IR limb spectra using spectral measurements in different atmospheric window regions has been applied to the complete mission period of MIPAS. The method uses a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption on a combination of a well-established two-colour ratio method and multiple 2-D probability density functions of brightness temperature differences. The Bayesian classifier distinguishes between solid particles of ice, nitric acid trihydrate (NAT, and liquid droplets of supercooled ternary solution (STS, as well as mixed types. A climatology of MIPAS PSC occurrence and specific PSC classes has been compiled. Comparisons with results from the classification scheme of the spaceborne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on the Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations (CALIPSO satellite show excellent correspondence in the spatial and temporal evolution for the area of PSC coverage (APSC even for each PSC class. Probability density functions of the PSC temperature, retrieved for each class with respect to equilibrium temperature of ice and based on coincident temperatures from meteorological reanalyses, are in accordance with the microphysical knowledge of the formation processes with respect to temperature for all three PSC types.This paper represents unprecedented pole-covering day- and nighttime climatology of the PSC distributions and their composition of different particle types. The dataset allows analyses on the temporal and spatial development of the PSC formation

  7. A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations

    Science.gov (United States)

    Spang, Reinhold; Hoffmann, Lars; Müller, Rolf; Grooß, Jens-Uwe; Tritscher, Ines; Höpfner, Michael; Pitts, Michael; Orr, Andrew; Riese, Martin

    2018-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the European Space Agency (ESA) Envisat satellite operated from July 2002 to April 2012. The infrared limb emission measurements provide a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles. A recent classification method for PSC types in infrared (IR) limb spectra using spectral measurements in different atmospheric window regions has been applied to the complete mission period of MIPAS. The method uses a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption on a combination of a well-established two-colour ratio method and multiple 2-D probability density functions of brightness temperature differences. The Bayesian classifier distinguishes between solid particles of ice, nitric acid trihydrate (NAT), and liquid droplets of supercooled ternary solution (STS), as well as mixed types. A climatology of MIPAS PSC occurrence and specific PSC classes has been compiled. Comparisons with results from the classification scheme of the spaceborne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite show excellent correspondence in the spatial and temporal evolution for the area of PSC coverage (APSC) even for each PSC class. Probability density functions of the PSC temperature, retrieved for each class with respect to equilibrium temperature of ice and based on coincident temperatures from meteorological reanalyses, are in accordance with the microphysical knowledge of the formation processes with respect to temperature for all three PSC types.This paper represents unprecedented pole-covering day- and nighttime climatology of the PSC distributions and their composition of different particle types. The dataset allows analyses on the temporal and spatial development of the PSC formation process over

  8. Quantifying Chemical Ozone Loss in the Arctic Stratosphere with GEOS-STRATCHEM Data Assimilation System

    Science.gov (United States)

    Wargan, K.; Nielsen, J. E.

    2017-01-01

    A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.

  9. Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2013-09-01

    Full Text Available The main ionization source of the middle and low Earth's atmosphere is related to energetic particles coming from outer space. Usually it is ionization from cosmic rays that is always present in the atmosphere. But in a case of a very strong solar eruption, some solar energetic particles (SEPs can reach middle/low atmosphere increasing the ionization rate up to some orders of magnitude at polar latitudes. We continue investigating such a special class of solar events and their possible applications for natural variations of the aerosol content. After the case study of the extreme SEP event of January 2005 and its possible effect upon polar stratospheric aerosols, here we analyze atmospheric applications of the sequence of several events that took place over autumn 1989. Using aerosol data obtained over polar regions from two satellites with space-borne optical instruments SAGE II and SAM II that were operating during September–October 1989, we found that an extreme major SEP event might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, the effect of the additional ambient air ionization on the aerosol formation is minor, in comparison with temperature effect, and can take place only in the cold polar atmospheric conditions. The extra aerosol mass formed under the temperature effect allows attributing most of the changes to the "ion–aerosol clear sky mechanism".

  10. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    Science.gov (United States)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  11. Role of Stratospheric Sudden Warmings on the response to Central Pacific El Niño

    Science.gov (United States)

    Iza, Maddalen; Calvo, Natalia

    2015-04-01

    The Northern Hemisphere polar stratospheric response to Central Pacific El Niño (CP El Niño) remains unclear. Contradictory results have been found on its resemblance with the canonical East Pacific El Niño (EP El Niño), depending on the index used to characterize these events or the number of cases. Some studies found a stronger and colder polar vortex while others displayed a weaker and warmer polar stratosphere. Our results, based on reanalysis data, show that Stratospheric Sudden Warmings (SSWs) occurrence dominates the CP El Niño response in the Northern Hemisphere. A robust CP El Niño signal is observed when the events are classified according to the presence or absence of SSWs. CP El Niño winters without SSWs show significant cold anomalies in the Northern Hemisphere polar stratosphere in early winter. In contrast, CP El Niño winters with SSWs are associated with significant warm anomalies, which are in fact related to SSWs. Therefore, the polar stratospheric response to CP El Niño events is significant and opposite during winters with and without SSWs. In addition, and contrary to previous studies, CP and EP El Niño polar stratospheric responses are clearly distinguishable in early winter in the absence of SSWs. The analysis of the Pacific-North American (PNA) pattern and the tropospheric wave anomalies entering the stratosphere support the observed stratospheric signals. In the absence of SSWs, EP El Niño winters are characterized by a strengthened PNA pattern and enhanced propagation of planetary wave number 1 into the stratosphere, while during CP El Niño winters a weakened PNA pattern is resembled, related to inhibited upward wave propagation. This is consistent with a weaker polar vortex in EP El Niño winters and a stronger vortex in CP El Niño winters. Results are robust regardless of the CP El Niño definition or the size of the composite used. Similar conclusions are reached in CMIP5 historical simulations. Hence, our study reveals

  12. A Unified Satellite-Observation Polar Stratospheric Cloud (PSC) Database for Long-Term Climate-Change Studies

    Science.gov (United States)

    Fromm, Michael; Pitts, Michael; Alfred, Jerome

    2000-01-01

    This report summarizes the project team's activity and accomplishments during the period 12 February, 1999 - 12 February, 2000. The primary objective of this project was to create and test a generic algorithm for detecting polar stratospheric clouds (PSC), an algorithm that would permit creation of a unified, long term PSC database from a variety of solar occultation instruments that measure aerosol extinction near 1000 nm The second objective was to make a database of PSC observations and certain relevant related datasets. In this report we describe the algorithm, the data we are making available, and user access options. The remainder of this document provides the details of the algorithm and the database offering.

  13. Tracer Lamination in the Stratosphere: A Global Climatology

    Science.gov (United States)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  14. Climate Model Simulations of Tropical and Polar Stratospheric Aerosol Injection: Cooling but Drought

    Science.gov (United States)

    Robock, A.; Oman, L.; Stenchikov, G.

    2007-12-01

    In response to the global warming problem, there has been a recent renewed call for geoengineering "solutions" involving injecting particles into the stratosphere or blocking sunlight with satellites between the Sun and Earth. Here we describe different proposed geoengineering designs, and then show climate model calculations with the coupled atmosphere-ocean NASA GISS ModelE GCM that evaluate both their efficacy and their possible adverse consequences. We conduct experiments by simulating global warming with and without continuous emissions of sulfate aerosol precursors both into the tropical lower stratosphere and into the high latitude Northern Hemisphere lower stratosphere. We find that while stratospheric aerosols can cool the planet on a global average basis with tropical emissions or cool the Northern Hemisphere with high latitude emissions, there are also large regional climate changes in temperature and precipitation, with large areas of drought. At the current level of understanding, there are too many potential problems with geoengineering, and it would be much cheaper and easier to solve the global warming problem by reducing greenhouse gas emissions. These problems include cost, continued ocean acidification, obtaining global agreement on the optimum climate, regional climate changes, ozone depletion, reduction of solar energy for power generation, and unexpected consequences.

  15. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    Science.gov (United States)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  16. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    Science.gov (United States)

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  17. Depletion of stratospheric ozone over the Antarctic and Arctic : Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  18. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    NARCIS (Netherlands)

    Rozema, J.; Boelen, P.; Blokker, P.

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  19. Quantifying Subsidence in the 1999-2000 Arctic Winter Vortex

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Elkins, James W.; Moore, Fred L.; Ray, Eric A.; Sen, Bhaswar; Margitan, James J.; hide

    2000-01-01

    Quantifying the subsidence of the polar winter stratospheric vortex is essential to the analysis of ozone depletion, as chemical destruction often occurs against a large, altitude-dependent background ozone concentration. Using N2O measurements made during SOLVE on a variety of platforms (ER-2, in-situ balloon and remote balloon), the 1999-2000 Arctic winter subsidence is determined from N2O-potential temperature correlations along several N2O isopleths. The subsidence rates are compared to those determined in other winters, and comparison is also made with results from the SLIMCAT stratospheric chemical transport model.

  20. Characterization of polar stratospheric cloud (PSC using ground-based Fourier-transform infrared spectrometer (FTIR at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Hideaki Nakajima

    2010-12-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in ozone destruction via the occurrence of heterogeneous reactions on their surface that convert reservoir species of active chlorine and bromine (e.g., HCl, ClONO_2, HBr, or BrONO_2 into active Cl_2 or Br_2. However, a lack of direct measurements means that uncertainty remains regarding the characteristics, types, mixtures, and nature of PSCs. To address this problem, we conducted, for the first time, ground-based measurements of the features of PSCs using a low-resolution Fourier-transform infrared (FTIR spectrometer at Syowa Station, Antarctica, in 2007. Many PSCs were observed between July and August 2007. We succeeded in identifying the features of Ice (Type-II, NAD and or β-NAT (Type-Ia, and STS (Type-Ib PSCs in the zenith sky infrared spectra measured by FTIR.

  1. A new backscatter lidar for the whole-year study of temperatures and clouds in the polar stratosphere and mesosphere; Ein neues Rueckstreu-Lidar zur ganzjaehrigen Untersuchung von Temperaturen und Wolkenphaenomenen in der polaren Strato- und Mesosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.P.

    2000-01-01

    Temperatures in the polar middle atmosphere can fall to extremely low values leading to cloud formation in otherwise cloud-free regions: in summer near the mesopause i.e. noctiluent clouds (NLC) and in winter in the lower stratosphere, i.e. polar stratospheric clouds (PSC). Both clouds are environmentally important, PSCs in the ozone problem and NLCs as early indicators of climate change. To investigate these clouds and to measure temperature profiles the atmospheric physics group set up a backscatter lidar on the Esrange in northern Sweden. Based on our experience with a lidar in Norway the mechanics and optics were redesigned to allow for simultaneous measurements of the depolarization of the backscattered light, three colour measurements and measurements in daylight. A numerical simulation of the daylight filter characteristics suggests that the presently used tuning method should be replaced. The first measurements with this new lidar design on the Esrange were obtained in January 1997. PSCs were observed on 19 days from January to March. Surprisingly, PSCs of type 2 were detected several times even when though synoptic stratospheric temperatures were too warm for such clouds to exist. Temperatures in the lee of the Scandinavian mountains had been lowered by internal waves sufficiently to generate PSC type 2 clouds. Among the previous PSC-observations in January 1995 when the lidar was located on the Norwegian island Andoeya was a singular PSC of type 2 on on January 14, 1995, which had a surface area density two orders of magnitudes higher than typically assumed in theoretical models describing ozone depletion. (orig.)

  2. Stratospheric Pathway of El Niño-Southern Oscillation in CMIP5 Models

    Science.gov (United States)

    Iza, Maddalen; Calvo, Natalia; Hurwitz, Margaret; Cagnazzo, Chiara; Peña-Ortiz, Cristina; Butler, Amy; Ineson, Sarah; Manzini, Elisa; Garfinkel, Chaim

    2014-05-01

    Recent studies have shown the role of the stratosphere as an intermediary between the ENSO signal in the tropical troposphere and some tropospheric teleconnections in the Northern Hemisphere (NH) winter. An additional type of ENSO, distinct from the traditional Canonical ENSO has also been identified in the last years. It is characterized by sea surface temperature anomalies in the central Pacific and referred as Central Pacific El Niño (CP-ENSO), whereas the Canonical ENSO is referred as the eastern Pacific El Niño (EP-ENSO). While it has been shown that exclusively CP-ENSO has an effect on the SH polar lower stratosphere, it remains unclear whether the effects of CP- and EP-ENSO differ in the NH polar stratosphere. Up to now, the role of the stratosphere on the ENSO signal has been investigated in atmospheric general circulation models where the sea-surface temperatures were prescribed following observations. We investigate here the NH stratospheric signal of the two distinct types of El Niño events (EP and CP) in a group of atmosphere-ocean coupled models, as those provided by CMIP5. The role of the stratosphere in NH winter tropospheric teleconnections is also explored. Two sets of CMIP5 simulations are considered (preindustrial control and historical experiments) and compared to reanalysis data. Results show that the comparison of the stratospheric El Niño signal between high-top and low-top models is difficult to assess, as the early winter tropospheric teleconnections are already different in both sets of models. The results obtained for EP in the high-top model ensemble-mean show a robust signal in the NH polar stratosphere with a significant warming about 4 K, which propagates downwards throughout the winter season towards the troposphere, in agreement with observations. During CP events, the anomalous warming is limited to the NH upper polar stratosphere and does not propagate downwards. Thus, CMIP5 high-top models reveal significant differences in

  3. Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH4 and H2O measurements

    Directory of Open Access Journals (Sweden)

    G. Durry

    2005-01-01

    Full Text Available A balloon borne diode laser spectrometer was launched in southern France in June 2000 to yield in situ stratospheric CH4 and H2O measurements. In the altitude region ranging from 20km to 25km, striking large spatial structures were observed in the vertical concentration profiles of both species. We suggest these patterns are due to the presence of long-lived remnants of the wintertime polar vortex in the mid-latitude summer stratosphere. To support this interpretation, a high resolution advection model for potential vorticity is used to investigate the evolution of the Arctic vortex after its breakdown phase in spring 2000.

  4. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  5. Statistical characteristics of sudden stratospheric warming as observed over the observatoire de Haute Provence (44°N, 6°E) during the 1981-2001 period

    CSIR Research Space (South Africa)

    Sivakumar, V

    2006-04-01

    Full Text Available review on theory and observations of stratospheric warming using results reported from different Places. The results were suggested that the warming is confined to the Northern Hemisphere, especially during winter over polar region. Similarly... and very rarely for Mid and low latitudes. Objective of the present study • As case study result: SSW events observed in winter 1998-99 • Statistical charecteristics of SSW events observed in 20 winters During some winters, zonal-mean configuration...

  6. Polarization resolved classification of winter road condition in the near-infrared region.

    Science.gov (United States)

    Casselgren, Johan; Sjödahl, Mikael

    2012-05-20

    Three different configurations utilizing polarized short-wave infrared light to classify winter road conditions have been investigated. In the first configuration, polarized broadband light was detected in the specular and backward directions, and the quotient between the detected intensities was used as the classification parameter. Best results were obtained for the SS-configuration. This sensor was shown to be able to distinguish between the smooth road conditions of water and ice from the diffuse road conditions of snow and dry asphalt with a probability of wrong classification as low as 7%. The second sensor configuration was a pure backward architecture utilizing polarized light with two distinct wavelengths. This configuration was shown to be effective for the important problem of distinguishing water from ice with a probability of wrong classification of only 1.5%. The third configuration was a combination of the two previous ones. This combined sensor utilizing bispectral illumination and bidirectional detection resulted in a probability of wrong classification as low as 2% among all four surfaces.

  7. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  8. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  9. Facet shapes and thermo-stabilities of H₂SO₄•HNO₃ hydrates involved in polar stratospheric clouds.

    Science.gov (United States)

    Verdes, Marian; Paniagua, Miguel

    2015-09-01

    The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.

  10. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-06-01

    Full Text Available A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E, continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE on 60% of all winter days (from March to October. This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA, a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be

  11. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Lee, Y.S. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of)

    2015-10-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72 S, 2.5 E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm{sup -3}, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  12. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  13. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    Directory of Open Access Journals (Sweden)

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  14. A very deep ozone minihole in the Northern Hemisphere stratosphere at mid-latitudes during the winter of 2000

    OpenAIRE

    Semane, N.; Teitelbaum, H.; Basdevant, C.

    2011-01-01

    Ozone miniholes appear on total ozone maps as localized ozone minima with horizontal extentsof a few hundreds of kilometres. They are characterized by a rapid and small-scale appearanceof a columnar ozone decrease with an equally rapid recovery after a few days. They are frequentlyobserved at Northern Hemisphere mid-latitudes in winter. Evolving too rapidly to be the resultof an ozone chemical destruction, miniholes should be the result of meteorological processes.According to some authors, m...

  15. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    Science.gov (United States)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  16. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  17. Behavior of zonal mean aerosol extinction ratio and its relationship with zonal mean temperature during the winter 1978-1979 stratospheric warming

    Science.gov (United States)

    Wang, P.-H.; Mccormick, M. P.

    1985-01-01

    The behavior of the zonal mean aerosol extinction ratio in the lower stratosphere near 75 deg N and its relationship with the zonal mean temperature during the January-February 1979 stratospheric sudden warming have been investigated based on the satellite sensor SAM II (Stratospheric Aerosol Measurement) and auxiliary meteorological measurements. The results indicate that distinct changes in the zonal mean aerosol extinction ratio occurred during this stratospheric sudden warming. It is also found that horizontal eddy transport due to planetary waves may have played a significant role in determining the distribution of the zonal mean aerosol extinction ratio.

  18. A microwave satellite water vapour column retrieval for polar winter conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-01-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  19. Climatological features of stratospheric streamers in the FUB-CMAM with increased horizontal resolution

    Directory of Open Access Journals (Sweden)

    K. Krüger

    2005-01-01

    Full Text Available The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999 and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003. Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003. In the

  20. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission

    Science.gov (United States)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.

    2013-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to the total radiative forcing of the atmosphere, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows global measurements of aerosol properties, however validation of these measurements are crucial, and their retrieval algorithms require climatological assumptions that must be first measured in situ. In situ instruments are also needed to supplement remote sensing measurements, which frequently have a relatively low spatial resolution, particularly when assessing surface air quality. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed an instrument called the Polarized Imaging NEPHelometer (PI-Neph) to significantly aid in situ particle optical scattering measurements. The PI-Neph is based on a novel polar nephelometer design that uses a high-powered laser and wide field of view optical detection system (CCD camera) to measure the intensity of scattered laser light as a function of scattering angle. This allows for the measurement of scattering coefficient, phase function and polarized phase function over an angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. This simple layout also permits the construction of an instrument that is compact enough to be flown on a variety of airborne platforms. PI-Neph measurements have been validated by a variety of methods since its completion in the fall of 2011. Measurements of mono-disperse polystyrene spheres have yielded results that are in close agreement with Mie theory, while scattering coefficient measurements made in parallel with commercially available integrating nephelometers from TSI have agreed to within 5%. The PI-Neph has successfully participated in several field experiments, most recently completing the January/February portion of

  1. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    International Nuclear Information System (INIS)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions

  2. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rozema, Jelte [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)]. E-mail: jelte.rozema@ecology.falw.vu.nl; Boelen, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Blokker, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2005-10-15

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions.

  3. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Björn-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Froidevaux, Lucien; Ungermann, Jörn; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-11-01

    The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of

  4. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Directory of Open Access Journals (Sweden)

    F. Khosrawi

    2017-11-01

    Full Text Available The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC for the Polar Stratosphere in a Changing Climate (POLSTRACC campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS. The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar

  5. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    Abstract When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt. PMID:28835844

  6. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Whiteman, John P.; Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  7. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer.

    Science.gov (United States)

    Whiteman, John P; Harlow, Henry J; Durner, George M; Regehr, Eric V; Rourke, Bryan C; Robles, Manuel; Amstrup, Steven C; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April-May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these 'shore' bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These 'ice' bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  8. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

    Directory of Open Access Journals (Sweden)

    F.-J. Lübken

    2006-01-01

    Full Text Available In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N into strong VHF radar echoes called 'Polar Mesosphere Winter Echoes' (PMWE. The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively. Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km: viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on

  9. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  10. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  11. Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

    Directory of Open Access Journals (Sweden)

    U. Blum

    2006-12-01

    Full Text Available The importance of polar stratospheric clouds (PSC for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT particles observed at the cloud top above Esrange.

  12. Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

    Directory of Open Access Journals (Sweden)

    U. Blum

    2006-12-01

    Full Text Available The importance of polar stratospheric clouds (PSC for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT particles observed at the cloud top above Esrange.

  13. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both

  14. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Science.gov (United States)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference

  15. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis

    Science.gov (United States)

    Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; O'Hara, T. M.

    2007-01-01

    Ringed seals (Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals (Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear (Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales (Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.

  16. First Successful Hindcasts of the 2016 Disruption of the Stratospheric Quasi-biennial Oscillation

    Science.gov (United States)

    Watanabe, S.; Hamilton, K.; Osprey, S.; Kawatani, Y.; Nishimoto, E.

    2018-02-01

    In early 2016 the quasi-biennial oscillation in tropical stratospheric winds was disrupted by an anomalous easterly jet centered at 40 hPa, a development that was completely missed by all operational extended range weather forecast systems. This event and its predictability are investigated through 40 day ensemble hindcasts using a global model notable for its sophisticated representation of the upper atmosphere. Integrations starting at different times throughout January 2016—just before and during the initial development of the easterly jet—were performed. All integrations simulated the unusual developments in the stratospheric mean wind, despite considerable differences in other aspects of the flow evolution among the ensemble members, notably in the evolution of the winter polar vortex and the day-to-day variations in extratropical Rossby waves. Key to prediction of this event is simulating the slowly evolving mean winds in the winter subtropics that provide a waveguide for Rossby waves propagating from the winter hemisphere.

  17. Variability in daily, zonal mean lower-stratospheric temperatures

    Science.gov (United States)

    Christy, John R.; Drouilhet, S. James, Jr.

    1994-01-01

    Satellite data from the microwave sounding unit (MSU) channel 4, when carefully merged, provide daily zonal anomalies of lower-stratosphere temperature with a level of precision between 0.01 and 0.08 C per 2.5 deg latitude band. Global averages of these daily zonal anomalies reveal the prominent warming events due to volcanic aerosol in 1982 (El Chichon) and 1991 (Mt. Pinatubo), which are on the order of 1 C. The quasibiennial oscillation (QBO) may be extracted from these zonal data by applying a spatial filter between 15 deg N and 15 deg S latitude, which resembles the meridional curvature. Previously published relationships between the QBO and the north polar stratospheric temperatures during northern winter are examined but were not found to be reproduced in the MSU4 data. Sudden stratospheric warmings in the north polar region are represented in the MSU4 data for latitudes poleward of 70 deg N. In the Southern Hemisphere, there appears to be a moderate relationship between total ozone concentration and MSU4 temperatures, though it has been less apparent in 1991 and 1992. In terms of empirical modes of variability, the authors find a strong tendency in EOF 1 (39.2% of the variance) for anomalies in the Northern Hemisphere polar regions to be counterbalanced by anomalies equatorward of 40 deg N and 40 deg S latitudes. In addition, most of the modes revealed significant power in the 15-20 day period band.

  18. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    Science.gov (United States)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with

  19. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes. In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days. Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates that the temporal

  20. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes.

    In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days.

    Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates

  1. The prevalence of MSP-core sulphuric particles in the stratospheric Junge layer

    Science.gov (United States)

    Mann, Graham; Brooke, James; Plane, John; Dhomse, Sandip; Feng, Wuhu; Neely, Ryan; Bardeen, Chuck; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin; Abraham, Luke

    2017-04-01

    . Bardeen, C. G. et al. "Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere", J. Geophys. Res., 113, D17202, doi:10.1029/2007JD009515, 2008. Campbell, P. and Deshler, T. "Condensation nuclei measurements in the midlatitude (1982-2012) and Antarctic (1986-2010) stratosphere between 20 and 35km" vol. 119, 137-152, doi:10.1002/2013JD019710 Curtius, J. et al. "Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements", Atmos. Chem. Phys., 5, 3053-3069, 2005. Dhomse, S. S. et al. "Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model", Atmos. Chem. Phys., 14, 11221-11246, 2014. Engel, I. et al. "Arctic stratospheric dehydration - Part 2: Microphysical modelling", Atmos. Chem. Phys., 14, 3231-3246, 2014. Hoyle, C.R. et al., "Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)", Atmos. Chem. Phys., 13, 9577-9595, 2013. Murphy, D. M. et al., "In Situ Measurements of Organics, Meteoritic Material, Mercury, and Other Elements in Aerosols at 5 to 19 Kilometers, Science, VOL 282, 1664—1669,1998. Murphy, D. M. et al."Observations of the chemical composition of stratospheric aerosol particles" Q. J. R. Meteorol. Soc. 140: 1269-1278,,2014. Pitts, M. C. "The 2009-2010 Arctic polar stratospheric cloud season: a CALIPSO perspective", Atmos. Chem. Phys., 11, 2161-2177, 2011. Voigt C. et al., "Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs)" Atmos. Chem. Phys., 5, 1371-1380, 2005. Weigel R. et al. "Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?" Atmos. Chem. Phys., 14, 12319-12342, 2014.

  2. UV spectral measurements at moderately high resolution and of OH resonance scattering resolved by polarization during the MANTRA 2002-2004 stratospheric balloon flights

    International Nuclear Information System (INIS)

    Tarasick, D.W.; Wardle, D.I.; McElroy, C.T.; McLinden, C.; Brown, S.; Solheim, B.

    2009-01-01

    A moderately high-resolution (<0.1 nm) grating spectrometer designed to measure the solar radiation in the spectral range 295-315 nm was flown on the MANTRA stratospheric balloon payloads of 2002 and 2004. The instrument measures both the direct sunlight and the radiation scattered by the atmosphere. The latter can be observed in two orthogonal polarization directions, at 90 deg. from the solar azimuth and at several elevations above the horizon. As the OH molecule is the principal resonant scatterer in this spectral region, this permits the inference of both ozone and OH column amounts as well as limited profile information. This paper describes the instrument and its in-flight characterization, the basic data processing and the influence of several aspects of the flight profile. The direct sun measurements are analyzed both to characterize the spectrometer responsivity to scattered radiation and to estimate the ozone abundance at the flight altitude and above. An example of a high-resolution solar spectrum at 37 km altitude is presented and compared with others in the literature. The measured OH and Rayleigh-scattered spectra are used to derive OH radiation intensity measurements (the OH airglow), which are compared with others in the literature

  3. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus EST libraries

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2007-12-01

    Full Text Available Abstract Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus. This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a

  4. The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, V.; Hoffmann, P.; Stober, G. [Rostock Univ., Kuehlungsborn (Germany). Leibniz-Inst. of Atmospheric Physics; Manson, A.; Meek, C. [Saskatchewan Univ., Saskatoon, SK (Canada). Inst. of Space and Atmospheric Studies; Brown, P. [Western Ontario Univ., London, ON (Canada). Canada Research Chair in Meteor Science; Rapp, M. [Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Muenchen Univ. (Germany). Meteorologisches Inst.

    2013-10-01

    The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50 to 60 N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid- than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a ''normal'' event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20 N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PW activity between 30 N and 50 N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006. (orig.)

  5. The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings

    Directory of Open Access Journals (Sweden)

    V. Matthias

    2013-08-01

    Full Text Available The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs, which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs. The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid- than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications. We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PW activity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.

  6. The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter.

    Science.gov (United States)

    Mottram, Victoria; Middleton, Benita; Williams, Peter; Arendt, Josephine

    2011-03-01

    Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5±8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (Plight conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (PLight condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter. © 2010 European Sleep Research Society.

  7. Stationary planetary wave propagation in Northern Hemisphere winter – climatological analysis of the refractive index

    Directory of Open Access Journals (Sweden)

    Q. Li

    2007-01-01

    Full Text Available The probability density on a height-meridional plane of negative refractive index squared f(nk2<0 is introduced as a new analysis tool to investigate the climatology of the propagation conditions of stationary planetary waves based on NCEP/NCAR reanalysis data for 44 Northern Hemisphere boreal winters (1958–2002. This analysis addresses the control of the atmospheric state on planetary wave propagation. It is found that not only the variability of atmospheric stability with altitudes, but also the variability with latitudes has significant influence on planetary wave propagation. Eliassen-Palm flux and divergence are also analyzed to investigate the eddy activities and forcing on zonal mean flow. Only the ultra-long planetary waves with zonal wave number 1, 2 and 3 are investigated. In Northern Hemisphere winter the atmosphere shows a large possibility for stationary planetary waves to propagate from the troposphere to the stratosphere. On the other hand, waves induce eddy momentum flux in the subtropical troposphere and eddy heat flux in the subpolar stratosphere. Waves also exert eddy momentum forcing on the mean flow in the troposphere and stratosphere at middle and high latitudes. A similar analysis is also performed for stratospheric strong and weak polar vortex regimes, respectively. Anomalies of stratospheric circulation affect planetary wave propagation and waves also play an important role in constructing and maintaining of interannual variations of stratospheric circulation.

  8. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  9. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    Science.gov (United States)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  10. Key aspects of stratospheric tracer modeling using assimilated winds

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  11. Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Directory of Open Access Journals (Sweden)

    Giovanni Muscari

    2014-06-01

    Full Text Available Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC station at Thule Air Base (76.5°N, 68.8°W, on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY, in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3 which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the

  12. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    Science.gov (United States)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  13. Stratospheric Impact on the Onset of the Mesospheric Ice Season

    Science.gov (United States)

    Fiedler, J.; Baumgarten, G.; Berger, U.; Gabriel, A.; Latteck, R.; Luebken, F. J.

    2014-12-01

    Mesospheric ice layers, observed as noctilucent clouds (NLC) from ground, are the visible manifestation of extreme conditions in the polar summer mesopause region. Temperatures fall very low so that water vapor can freeze condence, which at 69°N usually occurs beginning of June. However, in 2013 the ALOMAR RMR lidar observed the first NLC on 21 May and the clouds reoccured during the following days. These were the earliest detections since 20 years and indicated an about 10 days earlier onset of the mesospheric ice season. This is supported by the colocated MAARSY radar which showed the occurrence rates of polar mesospheric summer echoes (PMSE) increasing faster than usual.The exceptional case was accompanied by ˜6 K lower temperatures and higher water vapor mixing ratios at NLC altitudes above ALOMAR from end of April until beginning of June as measured by the MLS instrument onboard the AURA satellite. Using MERRA reanalysis data we will show that the zonal mean temperature as well as the dynamic conditions in the Arctic middle atmosphere deviated in spring 2013 significantly from the mean conditions of the last 20 years. The planetary wave activity in the high latitude stratosphere was enhanced from 20 April to beginning of May. The colder and wetter upper mesosphere in May 2013 is attributed to this unusual late planetary wave activity in the stratosphere, introducing a strong upwelling in the mesosphere, lower temperatures and an upward transport of water vapor, which finally resulted into earlier existence conditions for mesospheric ice particles. For the southern hemisphere a high correlation between winter/summer transition in the stratosphere and onset of mesospheric ice is known as intra-hemispheric coupling. We regard the processes in the Arctic middle atmosphere in spring 2013 as a first evidence for intra-hemispheric coupling in the northern hemisphere, extending from the stratosphere into the mesopause region.

  14. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it

  15. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern

    Directory of Open Access Journals (Sweden)

    L. Moreira

    2016-08-01

    Full Text Available A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m. GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC. The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO, the quasi-biennial oscillation (QBO, the El Niño–Southern Oscillation (ENSO and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose

  16. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern

    Science.gov (United States)

    Moreira, Lorena; Hocke, Klemens; Navas-Guzmán, Francisco; Eckert, Ellen; von Clarmann, Thomas; Kämpfer, Niklaus

    2016-08-01

    A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m). GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC). The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km) and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO), the quasi-biennial oscillation (QBO), the El Niño-Southern Oscillation (ENSO) and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose that the strong amplitude is

  17. Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter

    Science.gov (United States)

    Manney, Gloria L.; Allen, Douglas R.; Kruger, Kirstin; Naujokat, Barbara; Santee, Michelle L.; Sabutis, Joseph L.; Pawson, Steven; Swinbank, Richard; Randall, Cora E.; Simmons, Adrian J.; hide

    2005-01-01

    Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport

  18. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  19. Impact of large solar zenith angles on lower stratospheric dynamical and chemical processes in a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    D. Lamago

    2003-01-01

    Full Text Available Actinic fluxes at large solar zenith angles (SZAs are important for atmospheric chemistry, especially under twilight conditions in polar winter and spring. The results of a sensitivity experiment employing the fully coupled 3D chemistry-climate model ECHAM4.L39(DLR/CHEM have been analysed to quantify the impact of SZAs larger than 87.5º on dynamical and chemical processes in the lower stratosphere, in particular their influence on the ozone layer. Although the actinic fluxes at SZAs larger than 87.5º are small, ozone concentrations are significantly affected because daytime photolytic ozone destruction is switched on earlier, especially at the end of polar night the conversion of Cl2 and Cl2O2 into ClO in the lower stratosphere. Comparing climatological mean ozone column values of a simulation considering SZAs up to 93º with those of the sensitivity run with SZAs confined to 87.5º total ozone is reduced by about 20% in the polar Southern Hemisphere, i.e., the ozone hole is "deeper'' if twilight conditions are considered in the model because there is about 4 weeks more time for ozone destruction. This causes an additional cooling of the polar lower stratosphere (50 hPa up to -4 K with obvious consequences for chemical processes. In the Northern Hemisphere the impact of large SZAs cannot be determined on the basis of climatological mean values due to the pronounced dynamic variability of the stratosphere in winter and spring. This study clearly shows the necessity of considering large SZAs for the calculation of photolysis rates in atmospheric models.

  20. The role of the winter residual circulation in the summer mesopause regions in WACCM

    Science.gov (United States)

    Sanne Kuilman, Maartje; Karlsson, Bodil

    2018-03-01

    High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.

  1. High time resolution observations of the polar stratosphere and mesosphere using a ground-based 230-250 GHz microwave radiometer

    Science.gov (United States)

    Newnham, D. A.; Espy, P. J.; Clilverd, M. A.; Maxfield, D. J.; Hartogh, P.; Holmén, K.; Blindheim, S.; Horne, R. B.

    2012-04-01

    Microwave radiometry is used to measure thermal emission by the Doppler- and pressure-broadened molecular rotational lines of atmospheric gases, from which vertical abundance profiles can be determined. Since solar radiation is not required for the measurement, the technique has the advantage that continuous observations are possible including throughout the polar winter. We describe the development of a passive microwave radiometer [Espy, P. J., P. Hartogh, and K. Holmen (2006), Proc. SPIE, 6362, 63620P, doi:10.1117/12.688953] for ground-based remote sensing of the polar middle atmosphere. The instrument measures nitric oxide (NO), ozone (O3), and carbon monoxide (CO) vertical profiles over the altitude range 35-90 km with time resolution as high as 15 minutes, allowing the diurnal variability of trace chemical species to be investigated. Heterodyne detection of atmospheric emission at 230 GHz and 250 GHz (wavelength ~1.25 mm) with a receiver noise temperature of 300 K is achieved using a superconductor-insulator-superconductor (SIS) mixer cooled to 4 K. The down-converted signals at 1.35 GHz and 2.10 GHz are analysed using both a moderate-resolution (28 kHz, 220 MHz bandwidth) and a high-resolution (14 kHz, 40 MHz bandwidth) chirp-transform spectrometer (CTS). The instrument was operated semi-autonomously at Troll station (72° 01'S 02° 32'E, 1270 m above sea level), Antarctica during 2008-10 and at the Arctic LIDAR Observatory for Middle Atmosphere Research (ALOMAR, 69° 16'N, 16° 00'E, 380 m above sea level), northern Norway during 2011-12. NO volume mixing ratio (VMR) profiles have been inverted from calibrated brightness temperature spectra of the NO line centred at 250.796 GHz, observed above Troll station, using the Microwave Observation Line Estimation and Retrieval (MOLIERE) version 5 code. A priori pressure, temperature, ozone, water vapour, and NO profiles above 30 km were calculated using the Sodankylä Ion and Neutral Chemistry (SIC, version 6

  2. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD: impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    Directory of Open Access Journals (Sweden)

    N. T. O'Neill

    2016-10-01

    Full Text Available We compared star-photometry-derived, polar winter aerosol optical depths (AODs, acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention for star photometry retrievals and GC estimates of AOD.

  3. The sensitivity of polar ozone depletion to proposed geoengineering schemes.

    Science.gov (United States)

    Tilmes, Simone; Müller, Rolf; Salawitch, Ross

    2008-05-30

    The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.

  4. Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds

    Science.gov (United States)

    Lambert, Alyn; Santee, Michelle L.

    2018-02-01

    We investigate the accuracy and precision of polar lower stratospheric temperatures (100-10 hPa during 2008-2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6-1.5 and 0.3-0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias 0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and

  5. Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming

    Science.gov (United States)

    Smith-Johnsen, Christine; Orsolini, Yvan; Stordal, Frode; Limpasuvan, Varavut; Pérot, Kristell

    2018-03-01

    Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH.

  6. An NOy Algorithm for Arctic Winter 2000

    Science.gov (United States)

    Loewenstein, M.; Jost, H.; Greenblatt, J. B.; Podolske, J. R.; Gao, R. S.; Popp, P. J.; Toon, G. C.; Webster, C. R.; Herman, R. L.; Hurst, D. F.; hide

    2000-01-01

    NOy, total reactive nitrogen, and the long-lived tracer N2O, nitrous oxide, were measured by both in situ and remote sensing instruments during the Arctic winter 1999-2000 SAGE III Ozone Loss and Validation Experiment (SOLVE). The correlation function NOy:N2O observed before the winter Arctic vortex forms, which is known as NOy(sup), is an important reference relationship for conditions in the evolving vortex. NOy(sup) can, with suitable care, be used to quantify vortex denitrification by sedimentation of polar stratospheric cloud particles when NOy data is taken throughout the winter. Observed NOy values less than the reference value can be interpreted in terms of semi-permanent removal of active nitrogen by condensation and sedimentation processes. In this paper we present a segmented function representing NOy(sup) applicable over the full range of altitudes sampled during SOLVE. We also assess the range of application of this function and some of its limitations.

  7. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    2003-03-01

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  8. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  9. Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming

    Directory of Open Access Journals (Sweden)

    R. J. de Wit

    2015-03-01

    Full Text Available The previously reported observation of anomalous eastward gravity wave forcing at mesopause heights around the onset of the January 2013 major sudden stratospheric warming (SSW over Trondheim, Norway (63° N, 10° E, is placed in a global perspective using Microwave Limb Sounder (MLS temperature observations from the Aura satellite. It is shown that this anomalous forcing results in a clear cooling over Trondheim about 10 km below mesopause heights. Conversely, near the mesopause itself, where the gravity wave forcing was measured, observations with meteor radar, OH airglow and MLS show no distinct cooling. Polar cap zonal mean temperatures show a similar vertical profile. Longitudinal variability in the high northern-latitude mesosphere and lower thermosphere (MLT is characterized by a quasi-stationary wave-1 structure, which reverses phase at altitudes below ~ 0.1 hPa. This wave-1 develops prior to the SSW onset, and starts to propagate westward at the SSW onset. The latitudinal pole-to-pole temperature structure associated with the major SSW shows a warming (cooling in the winter stratosphere (mesosphere which extends to about 40° N. In the stratosphere, a cooling extending over the equator and far into the summer hemisphere is observed, whereas in the mesosphere an equatorial warming is noted. In the Southern Hemisphere mesosphere, a warm anomaly overlaying a cold anomaly is present, which is shown to propagate downward in time. This observed structure is in accordance with the temperature perturbations predicted by the proposed interhemispheric coupling mechanism for cases of increased winter stratospheric planetary wave activity, of which major SSWs are an extreme case. These results provide observational evidence for the interhemispheric coupling mechanism, and for the wave-mean flow interaction believed to be responsible for the establishment of the anomalies in the summer hemisphere.

  10. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    Science.gov (United States)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  11. Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology

    Directory of Open Access Journals (Sweden)

    J. Urban

    2009-09-01

    Full Text Available The Sub-Millimetre Radiometer (SMR on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3 originating from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements of the global distribution of nitric acid in the stratosphere were performed approximately on two observation days per week. An HNO3 climatology based on more than 7 years of observations from August 2001 to April 2009 covering the vertical range between typically ~19 and 45 km (~1.5–60 hPa or ~500–1800 K in terms of potential temperature was created. The study highlights the spatial and seasonal variation of nitric acid in the stratosphere, characterised by a pronounced seasonal cycle at middle and high latitudes with maxima during late fall and minima during spring, strong denitrification in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible removal of NOy by the sedimentation of cloud particles containing HNO3, as well as large quantities of HNO3 formed every winter at high-latitudes in the middle and upper stratosphere. A strong inter-annual variability is observed in particular at high latitudes. A comparison with a stratospheric HNO3 climatology, based on over 7 years of UARS/MLS (Upper Atmosphere Research Satellite/Microwave Limb Sounder measurements from the 1990s, shows good consistency and agreement of the main morphological features in the potential temperature range ~465 to ~960 K, if the different characteristics of the data sets such as the better altitude resolution of Odin/SMR as well as the slightly different altitude ranges are considered. Odin/SMR reaches higher up and UARS/MLS lower down in the stratosphere. An overview from 1991 to 2009 of stratospheric nitric acid is provided (with a short gap between 1998 and 2001, if the global measurements of both experiments are taken together.

  12. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  13. How stratospheric are deep stratospheric intrusions?

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2014-09-01

    Full Text Available Preliminary attempts of quantifying the stratospheric ozone contribution in the observations at the Zugspitze summit (2962 m a.s.l. next to Garmisch-Partenkirchen in the German Alps had yielded an approximate doubling of the stratospheric fraction of the Zugspitze ozone during the time period 1978 to 2004. These investigations had been based on data filtering by using low relative humidity (RH and elevated 7Be as the criteria for selecting half-hour intervals of ozone data representative of stratospheric intrusion air. To quantify the residual stratospheric component in stratospherically influenced air masses, however, the mixing of tropospheric air into the stratospheric intrusion layers must be taken into account. In fact, the dewpoint mirror instrument at the Zugspitze summit station rarely registers RH values lower than 10% in stratospheric air intrusions. Since 2007 a programme of routine lidar sounding of ozone, water vapour and aerosol has been conducted in the Garmisch-Partenkirchen area. The lidar results demonstrate that the intrusion layers are drier by roughly one order of magnitude than indicated in the in situ measurements. Even in thin layers RH values clearly below 1% have frequently been observed. These thin, undiluted layers present an important challenge for atmospheric modelling. Although the ozone values never reach values typical of the lower-stratosphere it becomes, thus, obvious that, without strong wind shear or convective processes, mixing of stratospheric and tropospheric air must be very slow in most of the free troposphere. As a consequence, the analysis the Zugspitze data can be assumed to be more reliable than anticipated. Finally, the concentrations of Zugspitze carbon monoxide rarely drop inside intrusion layers and normally stay clearly above full stratospheric values. This indicates that most of the CO, and thus the intrusion air mass, originates in the shallow "mixing layer" around the thermal tropopause. The

  14. Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

    Science.gov (United States)

    Li, F.; Waugh, D. W.; Douglass, A. R.; Pawson, S.; Newman, P. A.; Stolarski, R. S.; Strahan, S. E.

    2012-12-01

    The stratospheric age spectrum is the probability distribution function of the transit times since a stratospheric air parcel had last contact with a tropospheric boundary region. The age spectrum provides valuable information on stratospheric transport timescales such as the mean age, modal age, spectral width, and stratospheric decay rate. However, knowledge of the age spectrum's seasonal variability is very limited. In this study, we investigate the seasonal variations of stratospheric age spectra using the pulse tracer method in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). The differences between the age spectrum and the Boundary Impulse Response (BIR), which is the direct product of the pulse tracer method, are clarified. We introduce a simplified method to reconstruct seasonally varying age spectra from seasonally varying BIRs. Age spectra in the GEOSCCM have significant seasonal variations throughout the stratosphere. The largest seasonal changes occur in the lowermost and lower stratosphere and the subtropical overworld. Up to 40% differences between the individual month and annually averaged mean age are commonly found in these regions. The modal ages and spectral shapes demonstrate even bigger changes in the polar stratosphere. The seasonal variations of the age spectra reflect the seasonal evolution and relative importance of the slow Brewer-Dobson circulation and the fast isentropic mixing. The seasonal and interannual variations of the BIRs are also investigated. Our results clearly show that computing an ensemble of seasonally dependent BIRs is necessary in order to capture the seasonal and annual mean properties of the stratospheric age spectra.

  15. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    Directory of Open Access Journals (Sweden)

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  16. Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/2003

    Directory of Open Access Journals (Sweden)

    S. Davies

    2006-01-01

    Full Text Available Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite (MIPAS-E were made during the cold Arctic winter of 2002/2003. Vortex temperatures were unusually low in early winter and remained favourable for polar stratospheric cloud formation and denitrification until mid-January. MIPAS-E observations provide the first dataset with sufficient coverage of the polar vortex in mid-winter which enables a reasonable estimate of the timing of onset and spatial distribution of denitrification of the Arctic lower stratosphere to be performed. We use the observations from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by Lagrangian Particle Sedimentation microphysical denitrification model coupled to the SLIMCAT chemical transport model. In addition, the predicted denitrification from a simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E. Modelled denitrification is compared with in-vortex NOy and N2O observations from the balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly observed by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex by early January 2003. The DLAPSE model is broadly able to capture both the timing of onset and the spatial distribution of the observed denitrification. A simple thermodynamic equilibrium scheme is able to reproduce the observed denitrification in the core of the vortex but overestimates denitrification closer to the vortex edge. This study also suggests that the onset of denitrification in simple thermodynamic schemes may be earlier than in the MIPAS-E observations.

  17. Seasonal Evolution of Titan's Stratosphere Near the Poles

    Science.gov (United States)

    Coustenis, A.; Jennings, D. E.; Achterberg, R. K.; Bampasidis, G.; Nixon, C. A.; Lavvas, P.; Cottini, V.; Flasar, F. M.

    2018-02-01

    In this Letter, we report the monitoring of seasonal evolution near Titan’s poles. We find Titan’s south pole to exhibit since 2010 a strong temperature decrease and a dramatic enhancement of several trace species such as complex hydrocarbons and nitriles (HC3N and C6H6 in particular) previously only observed at high northern latitudes. This results from the seasonal change on Titan going from winter (2002) to summer (2017) in the north and, at the same time, the onset of winter in the south pole. During this transition period atmospheric components with longer chemical lifetimes linger in the north, undergoing slow photochemical destruction, while those with shorter lifetimes decrease and reappear in the south. An opposite effect was expected in the north, but not observed with certainty until now. We present here an analysis of high-resolution nadir spectra acquired by Cassini/Cassini Composite Infrared Spectrometer in the past years and describe the temperature and composition variations near Titan’s poles. From 2013 until 2016, the northern polar region has shown a temperature increase of 10 K, while the south has shown a more significant decrease (up to 25 K) in a similar period of time. While the south polar region has been continuously enhanced since about 2012, the chemical content in the north is finally showing a clear depletion for most molecules only since 2015. This is indicative of a non-symmetrical response to the seasons in Titan’s stratosphere that can set constraints on photochemical and GCM models.

  18. Stratospheric Airships: New Opportunities

    Science.gov (United States)

    Smith, Ira; Perry, William; West, Mark

    Southwest Research Institute (SwRI) and Aerostar International, Inc. have been involved in developing a lightweight, expendable stratospheric airship since 1997. The concept of a stratospheric airship has been around almost as long as stratospheric free balloons. Airships are defined as lighter-than-air vehicles with propulsion and steering systems. The basic technology that makes stratospheric airships possible is rooted in the free floating stratospheric super pressure balloon technology developed for NASA and the U.S. Air Force over the last 40 years. The current efforts are the next step in a spiral development program for a family of portable launch, long-endurance autonomous solar-electric, stratospheric airships. These low-cost systems will be capable of lifting small to medium payloads (20-200 pounds) to near-space pressure altitudes of 50 mbs for a duration of 30 days or greater. Designed for launch from remote sites like a free balloon, these airships will not require large hangars or special facilities. The paper will include a brief history of stratospheric airship development, a discussion of the flight environment, key technologies and performance trade study results for stratospheric airships. An overview of the application of this technology to Earth and Space Sciences will be presented.

  19. Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere

    Directory of Open Access Journals (Sweden)

    P. Achtert

    2013-01-01

    Full Text Available The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange (68° N, 21° E near the Swedish city of Kiruna. This paper describes the design and first measurements of the new pure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution is 150 m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements, the aerosol extinction coefficient and the aerosol backscatter coefficient at 532 nm can be measured independently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height and the integration technique (30–80 km height, the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratosphere with daylight capability.

  20. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  1. Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    2009-03-01

    Full Text Available The UK Chemistry and Aerosols (UKCA model is a new aerosol-chemistry model coupled to the Met Office Unified Model capable of simulating composition and climate from the troposphere to the mesosphere. Here we introduce the model and assess its performance with a particular focus on the stratosphere. A 20-year perpetual year-2000 simulation forms the basis of our analysis. We assess basic and derived dynamical and chemical model fields and compare to ERA-40 reanalyses and satellite climatologies. Polar temperatures and the lifetime of the southern polar vortex are well captured, indicating that the model is suitable for assessing the ozone hole. Ozone and long-lived tracers compare favourably to observations. Chemical-dynamical coupling, as evidenced by the anticorrelation between winter-spring northern polar ozone columns and the strength of the polar jet, is also well captured. Remaining problems relate to a warm bias at the tropical tropopause, slow ascent in the tropical pipe with implications for the lifetimes of long-lived species, and a general overestimation of ozone columns in middle and high latitudes.

  2. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  3. The 11-year solar cycle, the 27-day Sun's rotation and the area of the stratospheric Aleutian high

    Directory of Open Access Journals (Sweden)

    Boris Soukharev

    2001-03-01

    Full Text Available The effect of the 11-year solar cycle on the 30-hPa geopotential height and temperature fields in the area of the Aleutian high caused by solar activity oscillations resulting from the Sun's rotation (27.2 d is investigated, applying methods of statistical cross-spectral analysis to daily data for the period from 1965 to 1998. The area of the stratospheric Aleutian high is considered as an 'indicator' of the solar influence on the winter stratosphere proceeding from the results by LABITZKE and VAN LOON (1988, and VAN LOON and LABITZKE (1990. An effect of the 11-year solar cycle on the response of the summer middle stratosphere to solar activity oscillations on the time scale of the Sun's rotation is not found. In contrast to summer, the atmospheric responses in winter demonstrate clear differences between maximum and minimum of the 11-year solar cycle for the 27.2 d solar rotation periodicity and for the two other oscillations of 29.4 d and 25.3 d, resulting from the modulation of the 27.2 d solar-induced periodicity by the annual atmospheric variation. The atmospheric response for the fourth periodicity studied, the 17 d oscillation, which is supposed to be a normal mode of the atmosphere, close to the known 16-day wave (MADDEN, 1978, also shows a clear dependence on the 11-year solar cycle. For all the periodicities studied the coherence between the 10.7 cm solar radio flux and the 30-hPa height/temperature fields in the Aleutian high area in winter is on the average stronger at maxima than at minima of the 11-year solar cycle. The corresponding amplitudes of the solar-induced geopotential height and temperature perturbations are also larger at high than at low solar activity, with the largest differences revealed at the moderate and polar latitudes. Thus, we conclude that the response of the winter 30-hPa height/temperature fields in the area of the Aleutian high to solar oscillations on the time scale of the Sun's rotation is on the average

  4. Winter Weather

    Science.gov (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  5. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  6. Response of equatorial and low latitude mesosphere lower thermospheric dynamics to the northern hemispheric sudden stratospheric warming events

    Science.gov (United States)

    Koushik, N.; Kumar, Karanam Kishore; Ramkumar, Geetha; Subrahmanyam, K. V.

    2018-04-01

    The changes in zonal mean circulation and meridional temperature gradient brought about by Sudden Stratospheric Warming (SSW) events in polar middle atmosphere are found to significantly affect the low latitude counterparts. Several studies have revealed the signatures of SSW events in the low latitude Mesosphere- Lower Thermosphere (MLT) region. Using meteor wind radar observations, the present study investigates the response of semidiurnal oscillations and quasi 2-day waves in the MLT region, simultaneously over low latitude and equatorial stations Thumba (8.5oN, 76.5oE) and Kototabang (0.2oS, 100oE). Unlike many case studies, the present analysis examines the response of low and equatorial latitude MLT region to typical polar stratospheric conditions viz., Quiet winter, Major SSW winter and Minor SSW winter. The present results show that (i) the amplitudes of semidiurnal oscillations and quasi 2-day waves in the equatorial and low latitude MLT region enhance in association with major SSW events, (ii) the semidiurnal oscillations show significant enhancement selectively in the zonal and meridional components over the Northern Hemispheric low latitude and the equatorial stations, respectively (iii) The minor SSW event of January 2012 resulted in anomalously large amplitudes of quasi 2- day waves without any notable increase in the amplitude of semidiurnal oscillations. The significance of the present study lies in comprehensively bringing out the signatures of SSW events in the semidiurnal oscillations and quasi 2-day waves in low latitude and equatorial MLT region, simultaneously for the first time over these latitudes.

  7. Winter MVC

    OpenAIRE

    Castellón Gadea, Pasqual

    2013-01-01

    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  8. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  9. Power spectra of mesospheric velocities in polar regions

    Science.gov (United States)

    Czechowsky, P.; Ruster, R.

    1985-01-01

    The mobile SOUSY radar was operated on Andoya in Northern Norway during the MAP/WINE campaign from November 1983 to February 1984 and for about two weeks in June 1984 to study the seasonal dependence of mesospheric structures and dynamics at polar latitudes. During the winter period, measurements were carried out on 57 days, primarily in coordination with the schedule of the rocket experiments. Echoes were detected in the troposphere and stratosphere up to 30 km and at mesospheric heights from about 50 to 90 km with a distinct maximum around noon. In summer, the radar system was operated continuously from 19th to the 28th of June 1984. Echoes occurred almost for 24 hours in the height range from 70 to 95 km showing no recognizable diurnal variation. Similar observations in polar latitudes were carried out for several years with the Poker Flat Radar in Alaska.

  10. Natural and anthropogenic perturbations of the stratospheric ozone layer

    Science.gov (United States)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  11. Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N2O isotope distribution

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2006-01-01

    Full Text Available A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O. Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N, mid-latitude (southern France, 44° N and tropical sites (Hyderabad/India, 18° N. Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992. Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two

  12. Stratospheric Airship Design Sensitivity

    Science.gov (United States)

    Smith, Ira Steve; Fortenberry, Michael; Noll, . James; Perry, William

    2012-07-01

    The concept of a stratospheric or high altitude powered platform has been around almost as long as stratospheric free balloons. Airships are defined as Lighter-Than-Air (LTA) vehicles with propulsion and steering systems. Over the past five (5) years there has been an increased interest by the U. S. Department of Defense as well as commercial enterprises in airships at all altitudes. One of these interests is in the area of stratospheric airships. Whereas DoD is primarily interested in things that look down, such platforms offer a platform for science applications, both downward and outward looking. Designing airships to operate in the stratosphere is very challenging due to the extreme high altitude environment. It is significantly different than low altitude airship designs such as observed in the familiar advertising or tourism airships or blimps. The stratospheric airship design is very dependent on the specific application and the particular requirements levied on the vehicle with mass and power limits. The design is a complex iterative process and is sensitive to many factors. In an effort to identify the key factors that have the greatest impacts on the design, a parametric analysis of a simplified airship design has been performed. The results of these studies will be presented.

  13. Retrieval of Stratospheric Aerosol Properties from SCIAMACHY limb observations

    Science.gov (United States)

    Doerner, S.; Kühl, S.; Pukite, J.; Penning de Vries, M. J.; Hoermann, C.; von Savigny, C.; Deutschmann, T.; Wagner, T.

    2012-12-01

    Since the start of the Stratospheric Aerosol Measurement program in 1975 satellites have been improving our understanding of the global distribution of trace gases, clouds and aerosols. Observations in occultation and limb geometry provide profile information on stratospheric aerosol, which have an important influence on the global radiation budget (e.g., after strong volcanic eruptions) and the stratospheric ozone chemistry (e.g., the chlorine activation inside the polar vortex). The Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) on ENVISAT performed measurements in limb geometry for almost ten years between 2002 and 2012. Its vertical resolution of about 3.3 km at the tangent point and the broad spectral range (UV/VIS/NIR) allow to retrieve profile information of stratospheric trace gases (e.g., O3, NO2, BrO or OClO) and stratospheric aerosol properties. Pioneering studies (e.g., Savigny et al., 2005) showed that in particular from color indices (including the near IR spectral range) signatures of stratospheric aerosols and polar stratospheric clouds (PSCs) can be retrieved. In our study we investigate the sensitivity of SCIAMACHY's broad spectral range to aerosol particle properties by comparing measured spectra with simulated results from the 3D full spherical Monte Carlo Atmospheric Radiative Transfer Model McArtim. In particular, we focus on the absorption properties in the UV spectral range, the extinction coefficient and the Angström exponent. The final aim of our study is to use SCIAMACHY limb measurements for the profile retrieval of optical parameters (e.g., absorption and phase function) from which microphysical properties (e.g., mean aerosol particle diameter) of the stratospheric aerosol particles can be deduced.

  14. Validation of a limited area model over Dome C, Antarctic Plateau, during winter

    Energy Technology Data Exchange (ETDEWEB)

    Gallee, Hubert; Gorodetskaya, Irina V. [Laboratoire de Glaciologie et de Geophysique de l' Environnement, CNRS, 54, rue Moliere, BP. 96, St Martin d' Heres Cedex (France)

    2010-01-15

    The limited area model MAR (Modele Atmospherique Regional) is validated over the Antarctic Plateau for the period 2004-2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux. (orig.)

  15. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    Science.gov (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2017-04-01

    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  16. Ozone and the stratosphere

    Science.gov (United States)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  17. Modeling Nitrogen Oxides in the Lower Stratosphere

    Science.gov (United States)

    Kawa, S. Randy; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This talk will focus on the status of current understanding (not a historical review) as regards modeling nitrogen oxides (NOy) in the lower stratosphere (LS). The presentation will be organized around three major areas of process understanding: 1) NOy sources, sinks, and transport to the LS, 2) NOy species partitioning, and 3) polar multiphase processes. In each area, process topics will be identified with an estimate of the degree of confidence associated with their representation in numerical models. Several exotic and/or speculative processes will also be discussed. Those topics associated with low confidence or knowledge gaps, weighted by their prospective importance in stratospheric chemical modeling, will be collected into recommendations for further study. Suggested approaches to further study will be presented for discussion.

  18. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  19. Comparison of the CMAM30 data set with ACE-FTS and OSIRIS: polar regions

    Science.gov (United States)

    Pendlebury, D.; Plummer, D.; Scinocca, J.; Sheese, P.; Strong, K.; Walker, K.; Degenstein, D.

    2015-11-01

    CMAM30 is a 30-year data set extending from 1979 to 2010 that is generated using a version of the Canadian Middle Atmosphere Model (CMAM) in which the winds and temperatures are relaxed to the Interim Reanalysis product from the European Centre for Medium-Range Weather Forecasts (ERA-Interim). The data set has dynamical fields that are very close to the reanalysis below 1 hPa and chemical tracers that are self-consistent with respect to the model winds and temperature. The chemical tracers are expected to be close to actual observations. The data set is here compared to two satellite records - the Atmospheric Chemistry Experiment Fourier transform spectrometer and the Odin Optical Spectrograph and Infrared Imaging System - for the purpose of validating the temperature, ozone, water vapour and methane fields. Data from the Aura microwave limb sounder are also used for validation of the chemical processing in the polar vortex. It is found that the CMAM30 temperature is warmer by up to 5 K in the stratosphere, with a low bias in the mesosphere of ~ 5-15 K. Ozone is reasonable (±15 %), except near the tropopause globally and in the Southern Hemisphere winter polar vortex. Water vapour is consistently low by 10-20 %, with corresponding high methane of 10-20 %, except in the Southern Hemisphere polar vortex. Discrepancies in this region are shown to stem from the treatment of polar stratospheric cloud formation in the model.

  20. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  1. Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004

    Directory of Open Access Journals (Sweden)

    D. Pancheva

    2008-03-01

    Full Text Available The coupling of the dynamical regimes in the high- and low-latitude stratosphere and mesosphere during the major SSW in the Arctic winter of 2003/2004 has been studied. The UKMO zonal wind data were used to explore the latitudinal coupling in the stratosphere, while the coupling in the mesosphere was investigated by neutral wind measurements from eleven radars situated at high, high-middle and tropical latitudes. It was found that the inverse relationship between the variability of the zonal mean flows at high- and low-latitude stratosphere related to the SSW is produced by global-scale zonally symmetric waves. Their origin and other main features have been investigated in detail. Similar latitudinal dynamical coupling has been found for the mesosphere as well. Indirect evidence for the presence of zonally symmetric waves in the mesosphere has been found.

  2. Stratospheric dynamics following the eruption of Mt. Pinatubo

    Science.gov (United States)

    Match, Aaron; Abalos, Marta; Sheng, Jianxiong; Stenke, Andrea; Paynter, David; Fueglistaler, Stephan

    2016-04-01

    Large volcanic eruptions at low latitudes such as that of Mt. Pinatubo in June 1991 can lead to massively enhanced stratospheric aerosol loading for up to about two years. The enhanced aerosol loading leads to a global cooling in the troposphere as a result of the larger albedo. In the lower stratosphere, the enhanced aerosol leads to a warming of several Kelvins as a result of enhanced absorbed radiation. It has been argued that the characteristic temperature change from volcanic aerosols in the stratosphere - a warming of the low latitudes relative to the high latitudes - tends to induce a more stable polar vortex, and as such a reduced residual circulation. More recently, however, a number of studies have presented calculations of the residual circulation from meteorological reanalyses that suggest that the residual circulation may have been anomalously strong following the Mt. Pinatubo eruption. Similarly, unexpected ozone anomalies in the Southern Hemisphere stratosphere have been linked to a stronger residual circulation. Here, we will present General Circulation Model results, using models ranging in complexity from a primitive equation model to Chemistry-Climate Models, in combination with reanalysis data that aim to provide a mechanistic understanding of the anomalous stratospheric state following the eruption of Mt. Pinatubo. Of particular interest are the impact on model results of the relatively large differences in heating rate perturbations between different data sets of stratospheric aerosol, and the responses in atmospheric dynamics arising from, on the one hand, the specific sea surface temperature pattern of that period and, on the other hand, the response arising from the stratospheric radiative heating perturbation. Our model results suggest that the adjustment in the stratospheric state in response to the in-situ radiative heating perturbation from the volcanic aerosol is probably insufficient to explain the enhanced residual circulation seen

  3. Dynamical Meteorology of the Equatorial and Extratropical Stratosphere

    Science.gov (United States)

    Dunkerton, Tomothy

    1999-01-01

    Observational studies were performed of westward propagating synoptic scale waves in the tropical troposphere, the structure of monsoon circulations in the upper troposphere and lower stratosphere, and zonally propagating features in deep tropical convection. The effect of the quasi-biennial oscillation (QBO) were investigated, and a numerical study of the QBO was performed using a two-dimensional model, highlighting the role of gravity waves in the momentum balance of the QBO. Vertical coupling of the troposphere and stratosphere was examined in polar regions on intraseasonal and interannual timescales. A deep circumpolar mode was discovered, now known as the Arctic Oscillation.

  4. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  5. Changes in stratospheric ozone.

    Science.gov (United States)

    Cicerone, R J

    1987-07-03

    The ozone layer in the upper atmosphere is a natural feature of the earth's environment. It performs several important functions, including shielding the earth from damaging solar ultraviolet radiation. Far from being static, ozone concentrations rise and fall under the forces of photochemical production, catalytic chemical destruction, and fluid dynamical transport. Human activities are projected to deplete substantially stratospheric ozone through anthropogenic increases in the global concentrations of key atmospheric chemicals. Human-induced perturbations may be occurring already.

  6. Troposphere-Stratosphere Temperature Trends Derived From Satellite Data Compared With Ensemble Simulations From WACCM

    Science.gov (United States)

    Randel, William J.; Polvani, Lorenzo; Wu, Fei; Kinnison, Douglas E.; Zou, Cheng-Zhi; Mears, Carl

    2017-09-01

    Decadal-scale trends in tropospheric and stratospheric temperatures derived from satellite measurements over 1979-2014 are compared with ensemble simulations from the Whole Atmosphere Community Climate Model (WACCM). The model is forced with observed sea surface temperatures, changes in greenhouse gases, and ozone-depleting substances, plus solar and volcanic effects, and results from five WACCM realizations (with slightly different initial conditions) are analyzed. We focus on the vertical structure of tropospheric warming and stratospheric cooling increasing with height, the latitudinal and seasonal dependence of trends, and on the temporal evolution of stratospheric temperatures in response to stratospheric ozone depletion and partial recovery. The model captures the observed trend structure in most respects, and the ensemble of simulations provides quantitative estimates of the impact of internal variability on trend estimates. In regions of low variability (e.g., over low latitudes) the ensemble mean trends agree with the observations, while in regions of high variability (e.g., the polar stratosphere) the observations mostly fall within the range of realizations. Temperature response to evolving stratospheric ozone is evaluated by computing separate trends over 1979-1997 (ozone depletion) and 1998-2014 (partial recovery). Robust changes in temperature trends between these periods occur in the global upper stratosphere and in the Antarctic spring lower stratosphere, with consistent behavior between model and observations. Observed lower stratospheric temperatures in the Antarctic show statistically significant warming after 1998, reflecting recently reported healing of the ozone hole.

  7. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  8. Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2013-04-01

    Full Text Available Stratospheric chemistry and denitrification are simulated for the Arctic winter 2009/2010 with the Lagrangian Chemistry and Transport Model ATLAS. A number of sensitivity runs is used to explore the impact of uncertainties in chlorine activation and denitrification on the model results. In particular, the efficiency of chlorine activation on different types of liquid aerosol versus activation on nitric acid trihydrate clouds is examined. Additionally, the impact of changes in reaction rate coefficients, in the particle number density of polar stratospheric clouds, in supersaturation, temperature or the extent of denitrification is investigated. Results are compared to satellite measurements of MLS and ACE-FTS and to in-situ measurements onboard the Geophysica aircraft during the RECONCILE measurement campaign. It is shown that even large changes in the underlying assumptions have only a small impact on the modelled ozone loss, even though they can cause considerable differences in chemical evolution of other species and in denitrification. Differences in column ozone between the sensitivity runs stay below 10% at the end of the winter. Chlorine activation on liquid aerosols alone is able to explain the observed magnitude and morphology of the mixing ratios of active chlorine, reservoir gases and ozone. This is even true for binary aerosols (no uptake of HNO3 from the gas-phase allowed in the model. Differences in chlorine activation between sensitivity runs are within 30%. Current estimates of nitric acid trihydrate (NAT number density and supersaturation imply that, at least for this winter, NAT clouds play a relatively small role compared to liquid clouds in chlorine activation. The change between different reaction rate coefficients for liquid or solid clouds has only a minor impact on ozone loss and chlorine activation in our sensitivity runs.

  9. Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE: activities and results

    Directory of Open Access Journals (Sweden)

    M. von Hobe

    2013-09-01

    Full Text Available The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii an improved scheme of polar stratospheric cloud (PSC processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv long transient simulations with a chemistry-climate model (CCM updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.

  10. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  11. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  12. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    Science.gov (United States)

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  13. Hybrid ensemble 4DVar assimilation of stratospheric ozone using a global shallow water model

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2016-07-01

    Full Text Available Wind extraction from stratospheric ozone (O3 assimilation is examined using a hybrid ensemble 4-D variational assimilation (4DVar shallow water model (SWM system coupled to the tracer advection equation. Stratospheric radiance observations are simulated using global observations of the SWM fluid height (Z, while O3 observations represent sampling by a typical polar-orbiting satellite. Four ensemble sizes were examined (25, 50, 100, and 1518 members, with the largest ensemble equal to the number of dynamical state variables. The optimal length scale for ensemble localization was found by tuning an ensemble Kalman filter (EnKF. This scale was then used for localizing the ensemble covariances that were blended with conventional covariances in the hybrid 4DVar experiments. Both optimal length scale and optimal blending coefficient increase with ensemble size, with optimal blending coefficients varying from 0.2–0.5 for small ensembles to 0.5–1.0 for large ensembles. The hybrid system outperforms conventional 4DVar for all ensemble sizes, while for large ensembles the hybrid produces similar results to the offline EnKF. Assimilating O3 in addition to Z benefits the winds in the hybrid system, with the fractional improvement in global vector wind increasing from  ∼  35 % with 25 and 50 members to  ∼  50 % with 1518 members. For the smallest ensembles (25 and 50 members, the hybrid 4DVar assimilation improves the zonal wind analysis over conventional 4DVar in the Northern Hemisphere (winter-like region and also at the Equator, where Z observations alone have difficulty constraining winds due to lack of geostrophy. For larger ensembles (100 and 1518 members, the hybrid system results in both zonal and meridional wind error reductions, relative to 4DVar, across the globe.

  14. Climatology and trends in the forcing of the stratospheric zonal-mean flow

    Directory of Open Access Journals (Sweden)

    E. Monier

    2011-12-01

    Full Text Available The momentum budget of the Transformed Eulerian-Mean (TEM equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis (ERA-40 and the National Centers for Environmental Prediction (NCEP Reanalysis 2 (R-2. This study outlines the considerable contribution of unresolved waves, deduced to be gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH stratospheric polar night jet has a tendency to occur later in the season in the more recent years. This temporal shift follows long-term changes in planetary wave activity that are mainly due to synoptic waves, with a lag of one month. In the Southern Hemisphere (SH, the polar vortex shows a tendency to persist further into the SH summertime. This also follows a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening the polar vortex through the thermal wind balance. However, the results of this work show that the SH polar vortex does not experience any significant long-term changes until the month of December, even though the intensification of the ozone hole occurs mainly between September and November. This study suggests that the decrease in planetary wave activity in November provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. In addition, the absence of strong eddy feedback before November explains the lack of significant trends in the polar vortex in the SH early spring. A long-term weakening in the Brewer-Dobson (B-D circulation in the polar region is identified in the NH winter and early spring and during the SH late spring and is likely driven by the decrease in planetary wave activity previously mentioned. During the rest of the year, there are large discrepancies in the representation of the B

  15. Tritium Records to Trace Stratospheric Moisture Inputs in Antarctica

    Science.gov (United States)

    Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.-R.

    2018-03-01

    Better assessing the dynamic of stratosphere-troposphere exchange is a key point to improve our understanding of the climate dynamic in the East Antarctica Plateau, a region where stratospheric inputs are expected to be important. Although tritium (3H or T), a nuclide naturally produced mainly in the stratosphere and rapidly entering the water cycle as HTO, seems a first-rate tracer to study these processes, tritium data are very sparse in this region. We present the first high-resolution measurements of tritium concentration over the last 50 years in three snow pits drilled at the Vostok station. Natural variability of the tritium records reveals two prominent frequencies, one at about 10 years (to be related to the solar Schwabe cycles) and the other one at a shorter periodicity: despite dating uncertainty at this short scale, a good correlation is observed between 3H and Na+ and an anticorrelation between 3H and δ18O measured on an individual pit. The outputs from the LMDZ Atmospheric General Circulation Model including stable water isotopes and tritium show the same 3H-δ18O anticorrelation and allow further investigation on the associated mechanism. At the interannual scale, the modeled 3H variability matches well with the Southern Annular Mode index. At the seasonal scale, we show that modeled stratospheric tritium inputs in the troposphere are favored in winter cold and dry conditions.

  16. Persistent gravity wave coupling from the stratosphere to the MLT versus secondary wave generation in Antarctica

    Science.gov (United States)

    Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.

    2017-12-01

    After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation

  17. Poleward Transport Variability in the Northern Hemisphere during Final Stratospheric Warmings simulated by CESM(WACCM)

    Science.gov (United States)

    Thiéblemont, Rémi; Matthes, Katja; Orsolini, Yvan; Hauchecorne, Alain; Huret, Nathalie

    2017-04-01

    Observational studies of Arctic stratospheric final warmings have shown that tropical/subtropical air masses can be advected to high latitudes and remain confined within a long-lived "frozen-in" anticyclone (FrIAC) for several months. It was suggested that the frequency of FrIACs may have increased since 2000 and that their interannual variability may be modulated by (i) the occurrence of major stratospheric warmings (mSSWs) in the preceding winter and (ii) the phase of the Quasi-Biennial Oscillation (QBO). In this study, we tested these observational-based hypotheses for the first time using a chemistry-climate model. Three 145-year sensitivity experiments were performed with the National Center of Atmospheric Research's Community Earth System Model (CESM): one control experiment including only natural variability, one with an extreme greenhouse gas emission scenario, and one without the QBO in the tropical stratosphere. In comparison with reanalysis, the model simulates a realistic frequency and characteristics of FrIACs, which occur under an abrupt and early winter-to-summer stratospheric circulation transition, driven by enhanced planetary wave activity. Furthermore, the model results support the suggestion that the development of FrIACs is favored by an easterly QBO in the middle stratosphere and by the absence of mSSWs during the preceding winter. The lower stratospheric persistence of background dynamical state anomalies induced by deep mSSWs leads to less favorable conditions for planetary waves to enter the high-latitude stratosphere in April, which in turn decreases the probability of FrIAC development. Our model results do not suggest that climate change conditions (RCP8.5 scenario) influence FrIAC occurrences.

  18. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  19. Stratospheric aerosol geoengineering

    International Nuclear Information System (INIS)

    Robock, Alan

    2015-01-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming

  20. Future Changes in Major Stratospheric Warmings in CCMI Models

    Science.gov (United States)

    Ayarzaguena, B.; Langematz, U.; Polvani, L. M; Abalichin, J.; Akiyoshi, H.; Klekociuk, A.; Michou, M.; Morgenstern, O.; Oman, L.

    2015-01-01

    Major stratospheric warmings (MSWs) are one of the most important phenomena of wintertime Arctic stratospheric variability. They consist of a warming of the Arctic stratosphere and a deceleration of the polar night jet, triggered by an anomalously high injection of tropospheric wave activity into the stratosphere. Due to the relevance and the impact of MSWs on the tropospheric circulation, several model studies have investigated their potential responses to climate change. However, a wide range of results has been obtained, extending from a future increase in the frequency of MSWs to a decrease. These discrepancies might be explained by different factors such as a competition of radiative and dynamical contributors with opposite effects on the Arctic polar vortex, biases of models to reproduce the related processes, or the metric chosen for the identification of MSWs. In this study, future changes in wintertime Arctic stratospheric variability are examined in order to obtaina more precise picture of future changes in the occurrence of MSWs. In particular, transient REFC2 simulations of different CCMs involved in the Chemistry Climate Model Initiative (CCMI) are used. These simulations extend from 1960 to 2100 and include forcings by halogens and greenhouse gases following the specifications of the CCMI-REF-C2 scenario. Sea surface temperatures (SSTs) and sea-ice distributions are either prescribed from coupled climate model integrations or calculated internally in the case of fully coupled atmosphere-ocean CCMs. Potential changes in the frequency and main characteristics of MSWs in the future are investigated with special focus on the dependence of the results on the criterion for the identification of MSWs and the tropospheric forcing of these phenomena.

  1. Monsoon Circulations and Tropical Heterogeneous Chlorine Chemistry in the Stratosphere

    Science.gov (United States)

    Kinnison, Doug; Solomon, Susan; Garcia, Rolando; Bandoro, Justin; Wilka, Catherine; Neeley, Ryan, III; Schmidt, Anja; Barnes, John; Vernier, Jean-Paul; Höpfner, Michael; Mills, Michael

    2017-04-01

    Heterogeneous chlorine chemistry on and in liquid polar stratospheric particles is thought to play a significant role in polar and subpolar ozone depletion. Previous studies have not provided evidence for heterogeneous chlorine chemistry occurring in the tropical stratosphere. Using the current best understanding of liquid stratospheric particle chemistry in a state-of-the-art numerical model, we examine whether such processes should be expected to affect tropical composition, particularly at and slightly above the cold tropical tropopause, in association with the Asian and North American summer (June-July-August) monsoons. The Specified Dynamics version of the Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) is used in this study. This model is nudged to externally specified dynamical fields for temperature, zonal and meridional winds, and surface pressure fields from the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA). Model simulations suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid (HCl) into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide (ClO) and chlorine nitrate (ClONO2) near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km.

  2. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  3. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  4. The superpressure stratospheric vehicle

    Science.gov (United States)

    Rand, J. L.; Seely, L. G.; Lew, T. M.

    1993-02-01

    The scientific community has been interested for many years in obtaining a reliable, long duration platform in the stratosphere from which measurements could be made of transient events. In addition, other applications have been envisioned which may include anything from communication relays to environmental sampling. Because of the wide variety of applications possible, Winzen International has undertaken the task of developing a balloon system which will not exhibit the failure modes of prior attempts and has the potential to be scaled up to sizes comparable to zero pressure balloons. In addition, new manufacturing techniques have been developed which will permit these balloons to be built almost as economically as polyethylene balloons. This paper will describe the use of biaxially oriented nylon film in the development of this unique system. This film exhibits a number of properties, both optical and mechanical, which work together to produce a feasible system. A method was then found to adapt the construction techniques with proven reliability for zero pressure balloons to this design to produce a leak free system. The results of inflation testing and flight testing will be presented along with plans for further flight testing.

  5. Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2006-01-01

    Full Text Available We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV, of temperature reanalyses (1958 to 2000, NCEP, and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR/CHEM (=E39/C, and MAECHAM4-CHEM. The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx, 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km. For a proper representation of middle atmosphere (MA dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km. It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe, from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak, the QBO (up to 20 DU, or 2 K peak to peak, and from

  6. Effects of Stratospheric Sulfate Geoengineering on Food Supply in China

    Science.gov (United States)

    Xia, L.; Robock, A.

    2010-12-01

    Possible food supply change is one of the most important concerns in the discussion of stratospheric geoengineering. In regions with high population density, climate changes such as precipitation reduction spurred by stratospheric sulfate injection may cause drought, reduce crop yield, and affect the food supply for hundreds of millions of people. Therefore, as part of the research into the benefits and risks of stratospheric geoengineering, it is necessary to fully investigate its effects on the regional climate system and crop yields, which is the goal of this study. In particular, we focus on China, not only because of its high risk to experience severe regional climate change after stratospheric geoengineering, but also because of its high vulnerability due to a large share of its population living on agriculture. To examine the effects of climate changes induced by geoengineering on Chinese agriculture, we use the DSSAT and CLICROP agricultural simulation models. We first evaluate these models by forcing them with daily weather data and management practices for the period 1978-2008 for all the provinces in China, and compare the results to observations of the yields of major crops in China (early season paddy, double crop paddy, spring wheat, winter wheat, corn, sorghum and soybean). Overall, there is a strong upward trend in both yield and fertilizer use, but interannual variations can be associated with temperature and precipitation variations. Using climate model simulations with the NASA GISS general circulation model forced by both a standard global warming scenario (A1B) and A1B combined with stratospheric geoengineering, we then apply scenarios of changes of precipitation and temperature from these runs to examine their effects on Chinese agricultural production. Compared to global warming only, the geoengineering runs produced summer precipitation reductions in northeastern China but precipitation increases in the Yangtze River region. Without changes

  7. Impacts of Stratospheric Sulfate Geoengineering on PM2.5

    Science.gov (United States)

    Robock, A.; Xia, L.; Tilmes, S.; Mills, M. J.; Richter, J.; Kravitz, B.; MacMartin, D.

    2017-12-01

    Particulate matter (PM) includes sulfate, nitrate, organic carbon, elemental carbon, soil dust, and sea salt. The first four components are mostly present near the ground as fine particulate matter with a diameter less than 2.5 µm (PM2.5), and these are of the most concern for human health. PM is efficiently scavenged by precipitation, which is its main atmospheric sink. Here we examine the impact of stratospheric climate engineering on this important pollutant and health risk, taking advantage of two sets of climate model simulations conducted at the National Center for Atmospheric Research. We use the full tropospheric and stratospheric chemistry version of the Community Earth System Model - Community Atmospheric Model 4 (CESM CAM4-chem) with a horizontal resolution of 0.9° x 1.25° lat-lon to simulate a stratospheric sulfate injection climate intervention of 8 Tg SO2 yr-1 combined with an RCP6.0 global warming forcing, the G4 Specified Stratospheric Aerosol (G4SSA) scenario. We also analyze the output from a 20-member ensemble of Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)) simulations, also at 0.9° x 1.25° lat-lon resolution, with sulfur dioxide injection at 15°N, 15°S, 30°N, and 30°S varying in time to balance RCP8.5 forcing. While the CESM CAM4-chem model has full tropospheric and stratospheric chemistry, CESM1(WACCM) has an internally generated quasi-biennial oscillation and a comprehensive tropospheric and stratospheric sulfate aerosol treatment, but only stratospheric chemistry. For G4SSA, there are a global temperature reduction of 0.8 K and global averaged precipitation decrease of 3% relative to RCP6.0. The global averaged surface PM2.5 reduces about 1% compared with RCP6.0, mainly over Eurasian and East Asian regions in Northern Hemisphere winter. The PM2.5 concentration change is a combination of effects from tropospheric chemistry and precipitation

  8. Mechanisms Governing Interannual Variability of Stratosphere-to-Troposphere Ozone Transport

    Science.gov (United States)

    Albers, John R.; Perlwitz, Judith; Butler, Amy H.; Birner, Thomas; Kiladis, George N.; Lawrence, Zachary D.; Manney, Gloria L.; Langford, Andrew O.; Dias, Juliana

    2018-01-01

    Factors governing the strength and frequency of stratospheric ozone intrusions over the Pacific-North American region are considered for their role in modulating tropospheric ozone on interannual timescales. The strength of the association between two major modes of climate variability—the El Niño-Southern Oscillation (ENSO) and the Northern Annular Mode (NAM)—and the amount of ozone contained in stratospheric intrusions are tested in the context of two mechanisms that modulate stratosphere-to-troposphere transport (STT) of ozone: (StratVarO3) the winter season buildup of ozone abundances in the lowermost stratosphere (LMS) and (JetVar) Pacific jet and wave breaking variability during spring. In essence, StratVarO3 corresponds to variability in the amount of ozone per intrusion, while JetVar governs the frequency of intrusions. The resulting analysis, based on two different reanalysis products, suggests that StratVarO3 is more important than JetVar for driving interannual variations in STT of ozone over the Pacific-North American region. In particular, the abundance of ozone in the LMS at the end of winter is shown to be a robust indicator of the amount of ozone that will be contained in stratospheric intrusions during the ensuing spring. Additionally, it is shown that the overall strength of the winter season stratospheric NAM is a useful predictor of ozone intrusion strength. The results also suggest a nuanced relationship between the phase of ENSO and STT of ozone. While ENSO-related jet variability is associated with STT variability, it is wave breaking frequency rather than typical ENSO teleconnection patterns that is responsible for the ENSO-STT relationship.

  9. Global distribution of mean age of stratospheric air from MIPAS SF6 measurements

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2008-02-01

    Full Text Available Global distributions of profiles of sulphur hexafluoride (SF6 have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4–6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily and monthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause and 7 years (except for situations of mesospheric intrusions and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH and April/May (SH, respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further

  10. Radiation chemistry in the Jovian stratosphere: laboratory simulations.

    Science.gov (United States)

    McDonald, G D; Thompson, W R; Sagan, C

    1992-09-01

    Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.

  11. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  12. Seasonal and inter-annual variability of lower stratospheric age of air spectra

    Science.gov (United States)

    Ploeger, Felix; Birner, Thomas

    2016-08-01

    Trace gas transport in the lower stratosphere is investigated by analysing seasonal and inter-annual variations of the age of air spectrum - the probability distribution of stratospheric transit times. Age spectra are obtained using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim winds and total diabatic heating rates, and using a time-evolving boundary-impulse-response (BIER) method based on multiple tracer pulses. Seasonal age spectra show large deviations from an idealized stationary uni-modal shape. Multiple modes emerge in the spectrum throughout the stratosphere, strongest at high latitudes, caused by the interplay of seasonally varying tropical upward mass flux, stratospheric transport barriers and recirculation. Inter-annual variations in transport (e.g. quasi-biennial oscillation) cause significant modulations of the age spectrum shape. In fact, one particular QBO phase may determine the spectrum's mode during the following 2-3 years. Interpretation of the age spectrum in terms of transport contributions due to the residual circulation and mixing is generally not straightforward. It turns out that advection by the residual circulation represents the dominant pathway in the deep tropics and in the winter hemisphere extratropics above 500 K, controlling the modal age in these regions. In contrast, in the summer hemisphere, particularly in the lowermost stratosphere, mixing represents the most probable pathway controlling the modal age.

  13. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  14. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Directory of Open Access Journals (Sweden)

    W. T. Ball

    2018-02-01

    Full Text Available Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC, forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°. Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  15. Winter Weather: Frostbite

    Science.gov (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  16. HAWC+/SOFIA Instrumental Polarization Calibration

    Science.gov (United States)

    Michail, Joseph M.; Chuss, David; Dowell, Charles D.; Santos, Fabio; Siah, Javad; Vaillancourt, John; HAWC+ Instrument Team

    2018-01-01

    HAWC+ is a new far-infrared polarimeter for the NASA/DLR SOFIA (Stratospheric Observatory for Infrared Astronomy) telescope. HAWC+ has the capability to measure the polarization of astronomical sources with unprecedented sensitivity and angular resolution in four bands from 50-250 microns. Using data obtained during commissioning flights, we implemented a calibration strategy that separates the astronomical polarization signal from the induced instrumental polarization. The result of this analysis is a map of the instrumental polarization as a function of position in the instrument's focal plane in each band. The results show consistency between bands, as well as with other methods used to determine preliminary instrumental polarization values.

  17. Stratospheric Platforms for Monitoring Purposes

    International Nuclear Information System (INIS)

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  18. Defining the Polar Vortex Edge from a N20: Potential Temperature Correlation

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.

    2002-01-01

    A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.

  19. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Directory of Open Access Journals (Sweden)

    H. E. Thornton

    2009-02-01

    Full Text Available This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF, the Belgian Institute for Space and Aeronomy (BIRA-IASB, the French Service d'Aéronomie (SA-IPSL and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE, the Polar Ozone and Aerosol Measurement (POAM III and the Stratospheric Aerosol and Gas Experiment (SAGE II. The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in

  20. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Science.gov (United States)

    Thornton, H. E.; Jackson, D. R.; Bekki, S.; Bormann, N.; Errera, Q.; Geer, A. J.; Lahoz, W. A.; Rharmili, S.

    2009-02-01

    This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET) project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF), the Belgian Institute for Space and Aeronomy (BIRA-IASB), the French Service d'Aéronomie (SA-IPSL) and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE), the Polar Ozone and Aerosol Measurement (POAM III) and the Stratospheric Aerosol and Gas Experiment (SAGE II). The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in the intercomparison

  1. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    Science.gov (United States)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  2. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode

    Science.gov (United States)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai

    2017-08-01

    We consider three indices to measure the polar stratospheric mass and stratospheric meridional mass circulation variability: anomalies of (1) total mass in the polar stratospheric cap (60-90°N, above the isentropic surface 400 K, PSM), (2) total adiabatic mass transport across 60°N into the polar stratosphere cap (AMT), (3) and total diabetic mass transport across 400 K from the polar stratosphere into the troposphere below (DMT). It is confirmed that the negative stratospheric Northern Annular Mode (NAM) and PSM indices have a nearly indistinguishable temporal evolution and a similar red-noise-like spectrum with a de-correlation timescale of 4 weeks. This enables us to examine the low-frequency nature of the NAM in the framework of mass circulation, namely, d/{dt}{PSM}={AMT} - {DMT} . The DMT index tends to be positively correlated with the PSM with a red-noise-like spectrum, representing slow radiative cooling processes giving rise to a de-correlation timescale of 3-4 weeks. The AMT is nearly perfectly correlated with the day-to-day tendency of PSM, reflecting a robust quasi 90° out-of-phase relation between the AMT and PSM at all frequency bands. Variations of vertically westward tilting of planetary waves contribute mainly to the high-frequency portion of AMT. It is the wave amplitude's slow vacillation that plays the leading role in the quasi 90° out-of-phase relation between the AMT and PSM. Based on this, we put forward a linear stochastic model with a low-frequency amplification feedback from low-frequency amplitude vacillations of planetary waves to explain the amplified low-frequency response of PSM/NAM to a stochastic forcing from the westward tilting variability.

  3. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    F. Friederich

    2013-03-01

    Full Text Available We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite, for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude-dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates.

  4. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  5. The role of planetary waves in the tropospheric jet response to stratospheric cooling

    Science.gov (United States)

    Smith, Karen L.; Scott, Richard K.

    2016-03-01

    An idealized general circulation model is used to assess the importance of planetary-scale waves in determining the position of the tropospheric jet, specifically its tendency to shift poleward as winter stratospheric cooling is increased. Full model integrations are compared against integrations in which planetary waves are truncated in the zonal direction, and only synoptic-scale waves are retained. Two series of truncated integrations are considered, using (i) a modified radiative equilibrium temperature or (ii) a nudged-bias correction technique. Both produce tropospheric climatologies that are similar to the full model when stratospheric cooling is weak. When stratospheric cooling is increased, the results indicate that the interaction between planetary- and synoptic-scale waves plays an important role in determining the structure of the tropospheric mean flow and rule out the possibility that the jet shift occurs purely as a response to changes in the planetary- or synoptic-scale wave fields alone.

  6. Sensitivity of Stratospheric Geoengineering with Black Carbon to Aerosol Size and Altitude of Injection

    Science.gov (United States)

    Kravitz, Ben; Robock, Alan; Shindell, Drew T.; Miller, Mark A.

    2012-01-01

    Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.

  7. Multiple subtropical stratospheric intrusions over Reunion Island: Observational, Lagrangian, and Eulerian numerical modeling approaches

    Science.gov (United States)

    Vérèmes, H.; Cammas, J.-P.; Baray, J.-L.; Keckhut, P.; Barthe, C.; Posny, F.; Tulet, P.; Dionisi, D.; Bielli, S.

    2016-12-01

    Signatures of multiple stratospheric intrusions were observed on simultaneous and collocated ozone and water vapor profiles retrieved by lidars and radiosondes at the Maïdo Observatory, Reunion Island (21°S, 55°E, 2160 m above sea level), during MAïdo LIdar Calibration CAmpaign in April 2013. A singular structure of the ozone vertical profile with three peaks (in excess of 90 ppbv, at 8, 10, and 13 km altitude) embedded in a thick dry layer of air suggested stratospheric intrusions with multiple origins. The hypothesis is corroborated by a synoptic analysis based on re-analyses. European Centre for Medium-Range Weather Forecasts ERA-Interim temporal series associated with 5 days Lagrangian back trajectories initialized on each ozone peak allows to capture their stratospheric origin. The ozone peak at the lowest altitude is associated with an irreversible tropopause folding process along the polar jet stream during an extratropical cutoff low formation. Simultaneous lidar water vapor profiles of this peak show that the anticorrelation with ozone has been removed, due to mixing processes. Back trajectories indicate that the two other ozone peaks observed at higher altitudes are associated with the dynamics of the subtropical jet stream and the lower stratosphere. The observations confirm the recent stratospheric origins. The highest ozone peak is explained by the horizontal distribution of the intrusion. Use of a Lagrangian Reverse Domain Filling model and of the Meso-NH Eulerian mesoscale model with a passive stratospheric tracer allow to further document the stratosphere-troposphere transport processes and to describe the detailed potential vorticity and ozone structures in which are embedded in the observed multiple stratospheric intrusions.

  8. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements

    Directory of Open Access Journals (Sweden)

    Tongmei Wang

    2018-01-01

    Full Text Available Stable Water Isotopologues (SWIs are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002–2009 of retrievals from Odin/SMR (Sub-Millimetre Radiometer, the global climatological features of three SWIs, H216O, HDO and H218O, the isotopic composition δD and δ18O in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer–Dobson circulation. Furthermore, we found that more H216O is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in H216O is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.

  9. Infrared polar brightenings on Jupiter. V - A thermal equilibrium model for the north polar hot spot

    Science.gov (United States)

    Halthore, Rangasayi; Burrows, Adam; Caldwell, John

    1988-01-01

    Voyager IRIS instrument records of the IR hydrocarbon emissions from Jupiter's north polar region are presently studied to determine the spatial and other characteristics of the north polar hot spot. Attention is given to a thermal equilibrium model that exploits the asymmetry found in 7.8-micron emission of stratospheric methane with respect to system III longitude in order to estimate stratospheric zonal wind velocity. This model accurately predicts the observed asymmetry in acetylene's 13.6-micron emission; this requires, however, enhanced acetylene abundance in the hot spot, as well as ethane depletion. Energetic charged particles are suggested to be the most probable cause of these effects.

  10. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Science.gov (United States)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  11. Recent stratospheric warmings at mid-latitudes and planetary-scale wave activity

    International Nuclear Information System (INIS)

    Cevolani, G.; Bortolotti, G.; Franceschi, C.; Gottardi, S.; Trivellone, G.; Petrella, C.

    1990-01-01

    Recent stratospheric warmings are herewith examined in association with the influence of long-period planetary waves. Investigations on height and time variations of geopotential and wind data obtained in the winters of 1980-87 at different tropo-stratospheric levels from messages of the radiosondes situated in the central Europe take necessarily into account the propagation of quasi-stationary and free planetary waves which in proper conditions mutually interfere with each other. The definiton and evolution of the different types of warming are connected with the structure of these waves and enable one to interpret more completely coupling phenomena among different regions of the neutral atmosphere during the most disturbed winters. Distinct spectral analysis methods permit to extract from geopotential data series prominent wave period within 1-3 weeks. Westerly winds in the stratosphere reach unusual amplitudes before a sudden stratospheric warming and this amplification is seen to be in connection with transient normal modes which are able to interact even with the mean circulation of the mesosphere and lower thermosphere

  12. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  13. Variability of tracer transport in spring/summer Arctic stratosphere simulated by CESM-WACCM

    Science.gov (United States)

    Thiéblemont, Rémi; Matthes, Katja; Hansen, Felicitas; Huret, Nathalie

    2014-05-01

    Recent observational and modeling transport studies of Arctic stratospheric final warmings have shown that tropical/subtropical air can be transported to high latitudes and remain confined within a long-lived "frozen-in" anticyclone (FrIAC), embedded in the summer easterlies for several months. A climatology of these sporadic events has shown that their frequency of occurrence considerably increased over the last decade: among the nine cases detected over the period 1960-2011, five occurred between 2002 and 2011.Although a stratospheric favorable preconditioning for their occurrence were identified, the causes of such an increase are not yet understood. In this study, a chemistry climate model is used for the first time to investigate FrIACs characteristics and variability. Simulations were performed with the NCAR's Community Earth System Model (CESM), a coupled model system including an interactive ocean (POP2), land (CLM4), sea ice (CICE), and atmosphere (NCAR's Whole Atmosphere Community Climate Model (WACCM)). To detect low-latitude air masses characterizing FrIACs, daily 3-D output of temperature, horizontal wind and pressure are used to calculate the potential vorticity equivalent latitude (PVEL) distribution onto various isentropic levels in the range 700 K - 1200 K. Additionally, anticyclones are identified by using an algorithm designed to detect systematically vortex edges. To classify an event as a FrIAC, we require that the intrusion contains air masses from low-latitudes (below PVEL=40°N), reaches the polar region (beyond 60°N), and is collocated with an anticyclonic eddy. Among the 145 years analyzed (1955-2099), from a simulation with natural forcing conditions only, 20 FrIACs are found. They occur predominantly under a strong and abrupt winter-to-summer dynamical transitions which are driven by large planetary wave activity. FrIACs characteristics (i.e. spatial extent and duration), are overall consistent by comparing with FrIACs detected in ERA

  14. The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2008-02-01

    Full Text Available The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE Validation Campaigns were conducted at Eureka (80° N, 86° W during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, and Aura Microwave Limb Sounder (MLS, along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher temperatures in the upper (lower stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high

  15. Comparison of the long-term trends in stratospheric dynamics of four reanalyses

    Directory of Open Access Journals (Sweden)

    M. Kozubek

    2017-02-01

    Full Text Available Since the long-term trends of different atmospheric parameters have been already studied separately in many papers, this study is focused on the stratospheric wind (zonal and meridional components and temperature over the whole globe at 10 hPa during 1979–2015. We present the trends for the whole winter (October–March, for each individual month of winter and separately for the period before and after the ozone trend turnaround during the mid-1990s. The change of ozone trends has a clear impact on trends in other investigated stratospheric parameters. Four reanalyses (MERRA, ERA-Interim, JRA-55 and NCEP-DOE are used for comparison. Every grid point is analysed, not zonal averages. The comparison of trends in meridional wind, which is closely connected with Brewer–Dobson circulation, shows a good agreement for all four reanalyses (main features and amplitudes of the trends in terms of winter averages, but there are some differences in individual months, particularly in trend amplitude. These results could be important for studying dynamics (transport in the whole stratosphere.

  16. Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: stratospheric ozone distributions and tropic/mid-latitude exchange

    International Nuclear Information System (INIS)

    Bencherif, H.; Vidyaranya Charyulu, D.; Semane, N.; Massart, S.; Hauchecorne, A.

    2007-01-01

    A major stratospheric sudden warming (SSW) over the southern hemisphere (SH) in 2002 was discussed. The final warming, which occurred in late September, was preceded by 3 minor warming events that occurred in late August and early September, and yielded vortex split and break-down over Antarctica. In this study, ozone (O 3 ) and nitrous oxide (N 2 O) profiles obtained during that period by the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite were assimilated into a global 3-dimensional chemistry transport model, MOCAGE, developed by Meteo-France. The 3-dimensional FGAT assimilated algorithm used software known as PALM (Projet d'Assimilation par Logiciel Multi-methode). The assimilated O 3 and N 2 O profiles and isentropic distributions were compared to ground-based measurements (LIDAR and balloon-sonde) and to maps of advected potential vorticity. O 3 concentrations retrieved by the MOCAGE-PALM assimilation system were in good agreement in the 20 to 28 km height range when compared with ground-based profiles. This altitude range corresponds to the intersection between the MOCAGE levels (0 to 28 km) and SMR O 3 retrievals (20 to 50 km). Comparison of N 2 O assimilated fields with MIMOSA APV maps also indicated that the split and subsequent break-down of the polar vortex, and the associated mixing of mid- and low-latitude stratospheric air, are well resolved and pictured by MOCAGE-PALM. It was shown that the dynamics and associated polar vortex deformations during the 2002-austral-winter had modified O 3 and N 2 O distributions at the vicinity of the polar vortex, and also over tropics and subtropics as well. 41 refs., 6 figs

  17. Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: stratospheric ozone distributions and tropic/mid-latitude exchange

    Energy Technology Data Exchange (ETDEWEB)

    Bencherif, H.; Vidyaranya Charyulu, D. [La Reunion Univ. (France). Laboratoire de l' Atmosphere et des Cyclones, UMR CNRS; El Amraoui, L.; Peuch, V.H. [Centre National de Recherches Meteorologiques, Tolouse (France); Semane, N. [Centre National de Recherches Meteorologiques-GAME, Toulouse (France); Meteo-France, Toulouse (France); National Center for Scientific Research URA, Toulouse (France); Centre National de Recherches Meteorologiques-DMN, Casablanca (Morocco); Massart, S. [Centre Europeen de Recherche et Formation Avancee en Calcul Scientifique, Toulouse (France); Hauchecorne, A. [National Center for Scientific Research, Service d' Aeronomie, Toulouse (France)

    2007-11-15

    A major stratospheric sudden warming (SSW) over the southern hemisphere (SH) in 2002 was discussed. The final warming, which occurred in late September, was preceded by 3 minor warming events that occurred in late August and early September, and yielded vortex split and break-down over Antarctica. In this study, ozone (O{sub 3}) and nitrous oxide (N{sub 2}O) profiles obtained during that period by the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite were assimilated into a global 3-dimensional chemistry transport model, MOCAGE, developed by Meteo-France. The 3-dimensional FGAT assimilated algorithm used software known as PALM (Projet d'Assimilation par Logiciel Multi-methode). The assimilated O{sub 3} and N{sub 2}O profiles and isentropic distributions were compared to ground-based measurements (LIDAR and balloon-sonde) and to maps of advected potential vorticity. O{sub 3} concentrations retrieved by the MOCAGE-PALM assimilation system were in good agreement in the 20 to 28 km height range when compared with ground-based profiles. This altitude range corresponds to the intersection between the MOCAGE levels (0 to 28 km) and SMR O{sub 3} retrievals (20 to 50 km). Comparison of N{sub 2}O assimilated fields with MIMOSA APV maps also indicated that the split and subsequent break-down of the polar vortex, and the associated mixing of mid- and low-latitude stratospheric air, are well resolved and pictured by MOCAGE-PALM. It was shown that the dynamics and associated polar vortex deformations during the 2002-austral-winter had modified O{sub 3} and N{sub 2}O distributions at the vicinity of the polar vortex, and also over tropics and subtropics as well. 41 refs., 6 figs.

  18. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Schnadt, C.

    2001-07-01

    The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)

  19. Defining the Polar Vortex Edge Using an N2O: Potential Temperature Correlation Versus the Nash Criterion: A Comparison

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.; hide

    2001-01-01

    A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.

  20. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health ... Although there are no guarantees of safety during winter weather emergencies, you can take actions to protect ...

  1. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  2. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  3. Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia

    Science.gov (United States)

    Polvani, Lorenzo; Sun, Lantao; Butler, Amy; Richter, Yaga; Deser, Clara

    2017-04-01

    Stratospheric conditions are increasingly being recognized as an important driver of North Atlantic and Eurasian climate variability. Mindful that the observational record is relatively short, and that internal climate variability can be large, we here analyze a new 10-member ensemble of integrations of a stratosphere-resolving, atmospheric general circulation model, forced with the observed evolution of sea surface temperature (SST) during 1952-2003. We confirm previous studies, and show that El Niño conditions enhance the frequency of occurrence of stratospheric sudden warmings (SSWs), whereas La Niña does not appear to affect it. We note, however, large differences among ensemble members, suggesting caution when interpreting the relatively short observational record. More importantly, we emphasize that the majority of SSWs are not caused by anomalous tropical Pacific SSTs. Comparing composites of winters with and without SSWs in each ENSO phase separately, we demonstrate that stratospheric variability gives rise to large and statistically significant anomalies in tropospheric circulation and surface conditions over the North Atlantic and Eurasia. This indicates that, for those regions, climate variability of stratospheric origin is comparable in magnitude to variability originating from tropical Pacific SSTs, so that the occurrence of a single SSW in a given winter is able to completely alter seasonal climate predictions based solely on ENSO conditions

  4. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  5. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Science.gov (United States)

    Stiller, G. P.; von Clarmann, T.; Haenel, F.; Funke, B.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; López-Puertas, M.

    2012-04-01

    An extensive observational data set from MIPAS measurements, consisting of more than one million SF6 vertical profiles distributed globally has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1-2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of: a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal age of air and its linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analyses of the amplitudes and phases of the seasonal variation shed light on the coupling between different stratospheric regions. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with a weakening of mixing barriers, especially in the Northern hemisphere, as possible explanations for the observed patterns. Reference: Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S

  6. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011

    Directory of Open Access Journals (Sweden)

    R. L. Mittermeier

    2012-04-01

    Full Text Available As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W, was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.

  7. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  8. LIDAR STUDIES OF THE DYNAMICS OF THE VERTICAL TEMPERATURE DISTRIBUTION IN THE STRATOSPHERE OVER TOMSK IN 2016 YEAR

    Directory of Open Access Journals (Sweden)

    V. N. Marichev

    2017-12-01

    Full Text Available One of the important applications of lidar technologies is the study of the thermal regime of the atmosphere. Such studies in the monitoring mode at the Institute of Atmospheric Optics of the SB RAS have been launched since 1994 and are continuing at the present time. Particular attention is paid to the study of the manifestation of sudden disturbances in the middle stratosphere caused by winter stratospheric warming (SW. The results obtained on this topic can be found in [1]-[7]. In this paper, studies of the vertical temperature distribution over Tomsk in the disturbed and calm periods of 2016 are presented.

  9. Simulation of stratospheric balloon environment

    International Nuclear Information System (INIS)

    Sable, C.

    1974-01-01

    The behavior of materials used for the construction of stratospheric balloons is studied at DERTS by means of irradiations performed in reals time and simulating the exact flight environment. Two chambers were designed in the laboratory and are described together with the experimental procedure. In order to reduce cost and save time, it is worth accelerating the simulation when only a preliminary evaluation of the sample's properties is required. For this reason, a systematic study was undertaken in order to evaluate the respective effects of different parameters on the material degradation. The results of this study are given [fr

  10. Total Ozone Prediction: Stratospheric Dynamics

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  11. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  12. Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming

    Directory of Open Access Journals (Sweden)

    W. H. Daffer

    2009-07-01

    Full Text Available An unusually strong and prolonged stratospheric sudden warming (SSW in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS data, the SLIMCAT Chemistry Transport Model (CTM, and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results

  13. Comparing simulated PSC optical properties with CALIPSO observations during the 2010 Antarctic winter

    Science.gov (United States)

    Zhu, Yunqian; Toon, Owen B.; Pitts, Michael C.; Lambert, Alyn; Bardeen, Charles; Kinnison, Douglas E.

    2017-01-01

    We simulate polar stratospheric clouds (PSCs) during the Antarctic winter of 2010 using the Specified Dynamics version of the Whole Atmosphere Community Climate Model/Community Aerosol and Radiation Model for Atmospheres (SD-WACCM/CARMA) model. The current PSC model contains microphysical schemes for supercooled ternary solutions (STS) and nitric acid trihydrate (NAT) particles, as well as a prognostic treatment for PSC ice particles and dehydration. Our simulations and CALIPSO satellite data suggest two major NAT particle formation mechanisms. The first mechanism is the nucleation of NAT from STS. Our model, with homogeneous nucleation rates of NAT from STS constrained by observations from the Arctic winter of 2010-2011, reproduces optical properties observed by CALIPSO over Antarctica in May and the timing of denitrification observed by the Microwave Limb Sounder within their uncertainties. On the other hand, the CALIPSO data indicate that our simulations are missing clouds containing small NAT particles with large number densities. We suggest these particles are most likely to form from ice clouds or STS in gravity waves, as found by previous investigations. The simulated cloud coverage agrees with the CALIPSO cloud coverage within a few percent on average with a correlation coefficient of 0.83. However, using the CALIPSO classification algorithm, simulated ice clouds often fall into Mix categories under the denitrified and dehydrated conditions. The model needs an improved ice microphysical representation, not only to allow ice particles to be a source of NAT but also to provide information on ice cloud particle number and size so that ice cloud optical properties can be more precisely calculated for comparison with CALIPSO data.

  14. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  15. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-04-01

    Full Text Available An extensive observational data set, consisting of more than 106 SF6 vertical profiles from MIPAS measurements distributed over the whole globe has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1–2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and its linear increase was assessed and found to be small.

    The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009 for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analysis of the amplitudes and phases of the seasonal variation shed light on the coupling of stratospheric regions to each other. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with weakening of mixing barriers, especially in the Northern Hemisphere, as a hypothetical model to explain the observed pattern of linear multi-year increase/decrease, and amplitudes

  16. Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Schranz, Franziska; Steinbrecht, Wolfgang; Haefele, Alexander

    2017-11-01

    In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA) has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014-September 2016) from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland). In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9) in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair) in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.

  17. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  18. Response of the extratropical middle atmosphere to the September 2002 major stratospheric sudden warming

    Science.gov (United States)

    Guharay, A.; Batista, P. P.; Clemesha, B. R.; Sarkhel, S.

    2014-01-01

    The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September-October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2-4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12-14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW.

  19. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  20. Mixtures of stratospheric and overshooting air measured using A-Train sensors

    Science.gov (United States)

    Iwasaki, S.; Shibata, T.; Okamoto, H.; Ishimoto, H.; Kubota, H.

    2012-06-01

    Synergetic spaceborne observations of overshooting air, defined as cloud intrusion through the level of neutral buoyancy above deep convection, are analyzed using various thresholds introduced in previous studies to detect overshooting. The brightness temperature of the overshooting air measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) is generally 2 K higher than that retrieved by the radiative transfer model, in which the size distribution of ice cloud particles is estimated from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and CloudSat data and the vertical temperature profile of cloud is assumed to follow that of the European Centre for Medium Range Weather Forecast (ECMWF). The lapse rate of overshooting whose cloud top is higher than the level of the cold-point temperature (CPT) is lower than that of an adiabatic expansion. These observations can be rationalized as being due to the overshooting air being locally warmed by a mixture of warmer stratospheric air. Analysis of CALIOP and CloudSat data by using a radar-lidar algorithm shows that the mode of averaged ice water content of the overshoot above the CPT height is 6.3-10 mg/m3. Therefore, if 5% or more of ice particles in the overshoot are sublimated and mixed into the lower stratosphere, the lower stratospheric air will be hydrated. The difference between the brightness temperatures of 6.7 and 11 μm channels observed with MODIS demonstrates that the overshoot enhances stratospheric water vapor. These results indicate that the warm stratospheric air moves downward at and around the overshoot and mixes with the overshooting air and that the overshooting hydrates the lower stratosphere.

  1. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  2. Volcanos and el Nino - signal separation in Winter

    International Nuclear Information System (INIS)

    Kirchner, I.; Graf, H.F.

    1993-01-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  3. Observatory for Planetary Investigations from the Stratosphere

    Data.gov (United States)

    National Aeronautics and Space Administration — The Observatory for Planetary Investigation from the Stratosphere (OPIS) project demonstrated the ability of the Wallops Arc Second Pointing (WASP) system to provide...

  4. SOFIA - Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  5. SOFIA: Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  6. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  7. Synopsis of the Fifth Conference on the Meteorology of the Stratosphere and Mesosphere

    Science.gov (United States)

    Schoeberl, M. R.

    1985-01-01

    The papers presented at the Fifth Conference on the Meteorology of the Stratosphere and Mesosphere held on April 23-26, 1985, are reviewed. The observational aspects of large-scale circulation, such as summer and winter circulation in the Southern Hemisphere, and analysis schemes, like the multivariate statistical analysis scheme, are discussed. The topics of numerical simulations of the general circulation and sudden-warming are examined. Papers concerning processes of O3, NO2, H2, and HNO3 are described. Research on large-scale mixing processes in the stratosphere is presented. The topic of equatorial dynamics and stability is analyzed. Papers focusing on the effect of gravity waves on the general circulation are studied.

  8. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.

  9. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.

  10. New observations of the NO[sub y]/N[sub 2]O correlation in the lower stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, M.; Podolske, J.R. (NASA Ames Research Center, Moffett Field, CA (United States)); Fahey, D.W.; Woodbridge, E.L.; Tin, P.; Weaver, A. (NOAA Aeronomy Lab., Boulder, CO (United States)); Newman, P.A.; Strahan, S.E.; Kawa, S.R.; Schoeberl, M.R.; Lait, L.R. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States))

    1993-11-19

    During the Airborne Arctic Stratospheric Expedition II (AASE II), September 1991 through March 1992, in situ measurements of reactive nitrogen (NO[sub y]) and N[sub 2]O were made in the Northern Hemisphere lower stratosphere. The authors present an analysis of this new data and compare it with results from similar data taken during AASE in the winter of 1989. In the Northern Hemisphere there is a consistent linear correlation of N[sub 2]O and NO[sub y] which shows no interannual variation. Cases of departure from a linear correlation are examined and classified as being due to denitrification (NO[sub y] loss) or sampling air from a region where the photochemical lifetime of NO[sub y] is decreased. The latter case was observed for the first time in the winter of 1992. 19 refs., 4 figs., 1 tab.

  11. Effects of the Mt. Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Grant, K.E.; Connell, P.S.; Wuebbles, D.J.

    1992-01-01

    The LLNL 2-D zonally averaged chemical-radiative transport model of the global atmosphere was used to study the effects of the June 15, 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE-11 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By the winter solstice, 1991, a maximum change in column ozone was observed in the equatorial region of -2% (with heterogeneous chemical reactions on sulfuric acid aerosols) and -5.5% (including heterogeneous reactions plus radiative feedbacks). Maximum local ozone decreases of 12% were derived in the equatorial region, at 25 km, for winter solstice 1991. Column NO 2 peaked (-14%) at 30 S in October 1991. Local concentrations of NO x , Cl x , and HO x , in the lower stratosphere, were calculated to have changed between 30 S and 30 N by -40%, +80%, and +60% respectively

  12. Development of algorithms for using satellite meteorological data sets to study global transport of stratospheric aerosols and ozone

    Science.gov (United States)

    Want, P. H.; Deepak, A.

    1985-01-01

    The utilization of stratospheric aerosol and ozone measurements obtained from the NASA developed SAM II and SAGE satellite instruments were investigated for their global scale transports. The stratospheric aerosols showed that during the stratospheric warming of the winter 1978 to 1979, the distribution of the zonal mean aerosol extinction ratio in the northern high latitude exhibited distinct changes. Dynamic processes might have played an important role in maintenance role in maintenance of this zonal mean distribution. As to the stratospheric ozone, large poleward ozone transports are shown to occur in the altitude region from 24 km to 38 km near 55N during this warming. This altitude region is shown to be a transition region of the phase relationship between ozone and temperature waves from an in-phase one above 38 km. It is shown that the ozone solar heating in the upper stratosphere might lead to enhancement of the damping rate of the planetary waves due to infrared radiation alone in agreement with theoretical analyses and an earlier observational study.

  13. Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2016-04-01

    Full Text Available In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of polar stratospheric clouds (PSCs. These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl (hydrochloric acid mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 (chlorine nitrate was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSCs indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSC particles and the observed chlorine activation can only be explained by an increase in surface area density due to PSC formation. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area density.

  14. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere

    Directory of Open Access Journals (Sweden)

    F. Xie

    2012-06-01

    Full Text Available The effects of El Niño Modoki events on the tropical tropopause layer (TTL and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF reanalysis data, oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during El Niño Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. The composite analysis based on ERA-interim data indicate that El Niño Modoki events have a reverse effect on middle-high latitudes stratosphere, as compared with the effect of typical El Niño events, i.e., the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. According to the simulation' results, we found that the reverse effect on the middle-high latitudes stratosphere is resulted from a complicated interaction between quasi-biennial oscillation (QBO signal of east phase and El Niño Modoki signal. This interaction is not a simply linear overlay of QBO signal and El Niño Modoki signal in the stratosphere, it is El Niño Modoki that leads to different tropospheric zonal wind anomalies with QBO forcing from that caused by typical El Niño, thus, the planetary wave propagation from troposphere to the stratosphere during El Niño Modoki events is

  15. Examining Variability in Model Skill During the 7 January 2013 Sudden Stratospheric Warming Event

    Science.gov (United States)

    Blufer, Jonathan L.

    Recent analyses of numerical weather prediction models have shown that stratospheric regime changes (e.g. strong and weak vortex events) are not skillfully predicted at medium-range lead times. Motivated by these recent analyses, this thesis investigates the sources of variability in stratospheric forecast skill amongst several operational models initiated at different lead times prior to the 7 January 2013 sudden stratospheric warming (SSW). This study extends upon a previous analysis by the Stratospheric Network for the Assessment of Predictability (SNAP), which concluded that a change in forecast lead-time from 15 to 10 days increased model skill in predicting the 2013 SSW by roughly 50 percent. The sources of such variability in predictive skill are investigated further in this thesis. Coordinated reforecasts from the SNAP dataset are used to examine model variability and forecast skill in six medium-range operational ensemble forecast models. Both elliptical diagnostics of the polar vortex that quantify the vortex eccentricity, center longitude and latitude, and area, as well as zonal mean metrics are used to assess model errors and biases in the stratosphere. Ensemble skill is categorized into low and high error composite groups according to two separate metrics: the strength of the 10-hPa zonal mean zonal wind at 60?N and the center latitude of the 10-hPa vortex ellipse. Analysis reveals that ensemble members forecasting an ellipse center located equatorward of 70°N prior to 7 January 2013 had greater skill in predicting an easterly 10-hPa zonal mean zonal wind regime at the time of verified SSW onset. It is hypothesized that model error in forecasting thermodynamic processes linked to the SSW precursor tropospheric blocking in the N. Atlantic resulted in systematic biases and variability in dynamical forcing (e.g. upward wave activity flux) into the polar stratosphere in forecasts of the 7 January 2013 SSW event. Results indicate that errors in maintaining

  16. Chemical Processing and Transport in the Stratospheric Vortex and Subvortex from Satellite Measurements and Modeling

    Science.gov (United States)

    Santee, Michelle; Manney, Gloria; MacKenzie, Ian; Chipperfield, Martyn; Feng, Wuhu; Sander, Stanley; Froidevaux, Lucien; Livesey, Nathaniel; Bernath, Peter; Walker, Kaley; Boone, Chris

    A suite of atmospheric composition measurements from the Microwave Limb Sounder (MLS) on NASA's Aura satellite and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 mission is used to study chemical processing in and dispersal of chemically-processed air from the lower stratospheric polar vortices. In particular, interannual and interhemispheric variability in chlorine activation and deactivation are investigated using measurements of ClO, HCl, and ClONO2. Theoretical understanding is assessed by comparing measurements to customized runs of the SLIMCAT 3D chemical transport model. Results are shown from a newly-updated version of the model that incorporates a sophisticated microphysical scheme as a fully-coupled module, allowing polar stratospheric cloud formation and sedimentation to be calculated interactively in full-chemistry simulations. The impact of recently-published ClOOCl absorption cross sections, which yield a stratospheric ClOOCl photolysis rate substantially lower than previous estimates, on the agreement between modelled and measured chlorine species is evaluated. In addition, measurements of HNO3 and O3 and SLIMCAT results are related to mixing diagnostics to track the springtime export of denitrified, ozone-depleted air from the "subvortex", the transition zone (potential temperatures of 350-450 K) between the region above of strong confinement inside the polar vortex and the region below of less restricted exchange with lower-latitude air. Particularly over Antarctica, such mixing of processed air out of the subvortex may significantly affect the composition of the midlatitude lowermost stratosphere and upper troposphere.

  17. The impact of high altitude aircraft on the ozone layer in the stratosphere

    Science.gov (United States)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  18. Experimental and theoretical investigation of stratospheric ozone depletion in the northern hemisphere caused by heterogeneous chemistry

    Science.gov (United States)

    Storvold, Rune

    University of Oslo SCTM-1 model. They were selected because the SLIMCAT is designed for process studies and comparison with measured data while the SCTM-1 is designed for prognostic and sensitivity studies aimed at predicting future development of the stratospheric ozone layer. We have used the models to study the sensitivity of the heterogeneous chemistry to stratospheric meteorological conditions and the effect of sulfuric acid aerosols and polar stratospheric clouds on the stratospheric ozone abundance and ozone chemistry at high- and mid-latitudes in the Northern Hemisphere.

  19. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine

    2013-06-17

    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  20. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  1. PMP-1: A coordinated study of the behavior of the middle atmosphere in winter

    Science.gov (United States)

    Labitzke, K.

    1982-01-01

    The following observations of the middle atmosphere were available regularly: radiosonde data distributed through arrangements made by the World Meteorological Organization (WMO); radiosonde data; and the infrared radiances of the SSU (stratospheric sounding unit onboard the operational NOAA satellites). Other data of more experimental nature which are or will become available are, data from the Nimbus-7 satellite, especially from the Stratosphere and Mesospheric Sounder (SAMS) and the Limb Infrared Monitor of the Stratosphere (LIMS), but only for the winter of 1978 to 1979. These data are collected and integrated into the large-scale meteorological field analysis. Parameters necessary for the understanding of the large-scale dynamics of the middle atmosphere are derived.

  2. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern...... hemisphere. Can climatic conditions alone explain the sizeable difference in reduction in building activity in the construction sector in European countries in the winter months, or are other factors such as technology, economic cycles and schemes for financial compensation influential as well? What...... possibilities exist for reducing seasonal variation in employment? In addition to a literature review related to winter construction, European and national employment and meteorological data were studied. Finally, ministerial acts, ministerial orders or other public policy documents related to winter...

  3. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  4. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  5. Activity report of the 40th Japanese Antarctic Research Expedition wintering party in 1999-2000

    Directory of Open Access Journals (Sweden)

    Hiroshi Miyaoka

    2011-03-01

    Full Text Available The 40th Japanese Antarctic Research Expedition (JARE-40 wintering party, with 40 members, has successfully conducted the third-year project of the Vth five-year JARE program, over the period from 1st February 1999 to 31st January 2000, at Syowa Station, Antarctica.The framework of the JARE-40 wintering party program was the same as those of JARE-38 and JARE-39, comprising three routine observation programs and project/monitoring research observation programs in upper atmospheric physics, atmospheric sciences and glaciology, geophysics, and biology. In addition to many continuing projects, several new observations were started: 50MHz/112MHz aurora radars and a VLF wave receiver as part of the ionosphere program, aerosol sonde observations of Polar Stratospheric Clouds (PSCs as part of the meteorological program, HF/MF radars as part of the upper atmospheric physics program, frequent VLBI experiments as part of the geophysics program, and biological field surveys (including two dives, including monitoring of the undersea behavior of Weddell seals using bio-logging devices.In terms of inland field surveys, two parties were organized: fuel transportation and glaciological/meteorological observations along the route to Mizuho Station in August-September and to Dome Fuji/Yamato air-basecamp in November-January. These surveys involved snow sampling, precise GPS positioning, and sub-glacial surveys using three types of ice radar.Logistical activities, conducted in cooperation with the JARE-40 summer party, included the construction of a second summer lodge, the startup of a second 300 kVA generator and co-generator system, the development of a sewage plant, solar power panels, an access road to the A-heliport, and the cleanup of disused buildings. During the wintering period, efforts were directed towards the maintenance of all facilities at Syowa Station, safety management, and practical support for field operations.The Antarctic Environmental

  6. Stratospheric solar geoengineering without ozone loss

    Science.gov (United States)

    Keith, David W.; Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 Wṡm-2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tgṡy-1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

  7. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  8. Bismuth Oxide Nanoparticles in the Stratosphere

    Science.gov (United States)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    Platey grains of cubic Bi2O3, alpha-Bi2O3, and Bi2O(2.75), nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p/cu m) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere.

  9. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    Science.gov (United States)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  10. Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clean Air Act mandates NASA to monitor stratospheric ozone, and stratospheric aerosol measurements are vital to our understanding of climate.  Maintaining...

  11. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives: DESIGNING STRATOSPHERIC GEOENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Ben [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; MacMartin, Douglas G. [Mechanical and Aerospace Engineering, Cornell University, Ithaca NY USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena CA USA; Mills, Michael J. [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Richter, Jadwiga H. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tilmes, Simone [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Lamarque, Jean-Francois [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA; Tribbia, Joseph J. [Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO USA; Vitt, Francis [Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder CO USA

    2017-12-07

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geeongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  12. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP

    Science.gov (United States)

    Davis, Sean M.; Hegglin, Michaela I.; Fujiwara, Masatomo; Dragani, Rossana; Harada, Yayoi; Kobayashi, Chiaki; Long, Craig; Manney, Gloria L.; Nash, Eric R.; Potter, Gerald L.; Tegtmeier, Susann; Wang, Tao; Wargan, Krzysztof; Wright, Jonathon S.

    2017-10-01

    Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere-troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields.The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses.In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that

  13. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  14. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    Science.gov (United States)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  15. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    Science.gov (United States)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  16. New stratospheric UV/visible radiance measurements

    Directory of Open Access Journals (Sweden)

    F. J. Marceau

    1994-01-01

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  17. What causes Mars' annular polar vortices?

    Science.gov (United States)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  18. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  19. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    Science.gov (United States)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  20. Freezing Behavior of Stratospheric Sulfate Aerosols Inferred from Trajectory Studies

    Science.gov (United States)

    Tabazadeh, A.; Toon, O. B.; Hamill, Patrick

    1995-01-01

    Temperature histories based on 10-day back growth trajectories for six ER-2 flights during AASE I (1989) and AAOE (1987) are presented. These trajectories along with the properties of the observed PSC (polar stratospheric cloud) particles are used here to infer the physical state of the pre-existing sulfuric acid aerosols. Of all the ER-2 flights described here, only the PSCs observed on the flights of January 24 and 25, 1989 are consistent with the thermodynamics of liquid ternary solutions of H2SO4/HNO3/H2O Ib PSCs). For these two days, back trajectories indicate that the air mass was exposed to SAT (sulfuric acid tetrahydrate) melting temperatures about 24 hours prior to being sampled by the ER-2. For the remaining ER-2 flights (January, 16, 19, and 20 for the AASE I campaign and August 17 for the AAOE campaign), the observed PSCs were probably composed of amorphous solid solutions of HNO3 and H2O (Type Ic PSCs). Formation of such Type Ic PSCs requires the presence of solid H2SO4 aerosols since liquid aerosols yield ternary solutions. The 10-day back trajectories of these flights indicate that the air mass was not exposed to SAT melting temperatures during the past week and had experienced cooling/warming cycles prior to being sampled by the ER-2. These temperature histories, recent laboratory measurements and the properties of glassy solids suggest that stratospheric H2SO4 aerosols may undergo a phase transition to SAT upon warming at approximately 198 K after going through a cooling cycle to about 194 K or lower.

  1. Nitrogen fertiliser and stratospheric ozone - Latitudinal effects

    Science.gov (United States)

    Whitten, R. C.; Borucki, W. J.; Capone, L. A.; Riegel, C. A.; Turco, R. P.

    1980-01-01

    Substantial increases in atmospheric N2O resulting from the increased use of nitrogen fertilizers might cause large (to 10%) decreases in the stratospheric ozone content. Such ozone decreases would be caused by catalytic reaction cycles involving odd-nitrogen that is formed by N2O decomposition in the upper stratosphere. Turco et al. (1978), using a background chlorine level of 2 ppbv, have shown that if the measured values of specified reactions are used a 50% increase in N2O would lead to a 2.7% increase in the stratospheric column density, although the ozone content above 30 km would be reduced by more than 5%; they also estimated (unpublished data) that the change in the ozone column density caused by doubling the N2O abundance would be very close to zero (within about 0.1%). The present paper extends these calculations of N2O/ozone effects to two dimensions, thereby identifying the latitude dependence expected for such ozone perturbations. The effects of changes in stratospheric chlorine levels on predicted ozone changes are also discussed.

  2. Benefits, risks, and costs of stratospheric geoengineering

    KAUST Repository

    Robock, Alan

    2009-10-02

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  3. Triton - Stratospheric molecules and organic sediments

    Science.gov (United States)

    Thompson, W. Reid; Singh, Sushil K.; Khare, B. N.; Sagan, Carl

    1989-01-01

    Continuous-flow plasma discharge techniques show production rates of hydrocarbons and nitriles in N2 + CH4 atmospheres appropriate to the stratosphere of Titan, and indicate that a simple eddy diffusion model together with the observed electron flux quantitatively matches the Voyager IRIS observations for all the hydrocarbons, except for the simplest ones. Charged particle chemistry is very important in Triton's stratosphere. In the more CH4-rich case of Titan, many hydrocarbons and nitriles are produced in high yield. If N2 is present, the CH4 fraction is low, but hydrocarbons and nitriles are produced in fair yield, abundances of HCN and C2H2 in Triton's stratosphere exceed 10 to the 19th molecules/sq cm per sec, and NCCN, C3H4, and other species are predicted to be present. These molecules may be detected by IRIS if the stratosphere is as warm as expected. Both organic haze and condensed gases will provide a substantial UV and visible opacity in Triton's atmosphere.

  4. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  5. Stratospheric solar geoengineering without ozone loss?

    Science.gov (United States)

    Keutsch, F. N.; Keith, D.; Weisenstein, D.; Dykema, J. A.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, a form of solar geoengineering, may reduce some climate risks, but it also entails new risks including ozone loss and heating of the lower tropical stratosphere which in turn increases water vapor concentration causing additional ozone loss and surface warming. Selection of a solid aerosol such as alumina or diamond for geoengineering purposes was found to minimize stratospheric heating for a given shortwave forcing, though ozone depletion via heterogeneous surface activation remains a potential problem. Here we investigate the use of solid aerosols composed of alkaline metal salts whose surfaces would convert halogens, nitric and sulfuric acid into stable salts, reducing the ozone depletion potential of these ubiquitous stratospheric substances and preventing heterogeneous activation on the geoengineering particles. Specifically, injection of calcite (CaCO3) aerosol might reduce net radiative forcing while simultaneously increasing column ozone towards its pre-anthropogenic baseline. A radiative forcing of -1 Wm-2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg yr-1 of 275 nm radius calcite aerosol with ten-fold less radiative heating compared to sulfate aerosol. Geoengineering injection of reactive alkali metal salts in combination with another high refractive index material may also enable solar geoengineering with lower risk than with sulfates.

  6. Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    Science.gov (United States)

    Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben; Watanabe, Shingo; Tilmes, Simone; Mancini, Eva; DeLuca, Natalia; DiGenova, Glauco

    2013-01-01

    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B.

  7. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    Science.gov (United States)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; hide

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  8. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  9. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  10. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP

    Directory of Open Access Journals (Sweden)

    S. M. Davis

    2017-10-01

    Full Text Available Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV and ozone (O3 in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate Reanalysis Intercomparison Project (S-RIP. The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields.The assimilation of total column ozone (TCO observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses.In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the

  11. Inorganic Iodine and Bromine in the Tropical Upper Troposphere/Lower Stratosphere Derived From Balloon Borne Observations

    Science.gov (United States)

    Dorf, M.; Butz, A.; Camy-Peyret, C.; Chipperfield, M.; Kreycy, S.; Kritten, L.; Prados-Roman, C.; Pfeilsticker, K.

    2008-12-01

    Due to the ozone destroying capabilities of bromine and iodine bearing compounds, the stratospheric budget of inorganic bromine and iodine is of major interest for modeling ozone depletion and assessing the future evolution of the ozone layer. In particular the contribution of very short lived substances (VSLS) to the bromine budget has recently been shown to enhance ozone depletion in mid-latitudes and polar regions. So far, iodine species have not been unambiguously detected in the stratosphere with upper limits for total inorganic iodine (Iy) of about 0.1 ppt. However, observations are sparse and mainly restricted to mid- and high-latitudes. Here, we assess the budget of iodine and bromine in the tropical Upper Troposphere/ Lower Stratosphere (UT/LS) where the halogen source gases enter the stratosphere and supply the stratosphere with halogen species. We report on two stratospheric balloon flights of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer) payload from a tropical station in northern Brazil (5°S, 43°W) in June 2005 and June 2008. There, the LPMA/DOAS payload conducted spectroscopic direct sun measurements in the UV/visible and infrared spectral range during balloon ascent and in solar occultation geometry. The LPMA/DOAS observations allow for the retrieval of IO and OIO from their absorption features in the visible spectral range. Neither species could be detected unambiguously with detection limits ranging between 0.01 and 0.2 ppt in the UT/LS. Constraining a stratospheric chemistry model by the inferred detection limits for IO and OIO, yields an upper limit for Iy of 0.1 to 0.3 ppt. Implications for stratospheric ozone are discussed on the basis of model studies. BrO is inferred from absorption bands in the UV spectral range yielding the first BrO vertical profile in the tropical UT/LS. For the balloon flight in June 2005, total inorganic bromine (Bry) is estimated to (21.5 ± 2.5) ppt in 4.5-year

  12. Regional and seasonal stratospheric temperature trends in the last decade (2002-2014) from AMSU observations

    Science.gov (United States)

    Funatsu, Beatriz M.; Claud, Chantal; Keckhut, Philippe; Hauchecorne, Alain; Leblanc, Thierry

    2016-07-01

    Stratospheric temperature trends for the period 2002-2014 have been estimated using NOAA's Integrated Microwave Inter-calibration Approach (IMICA) version of advanced microwave sounding unit (AMSU) on AQUA satellite. In this period the stratosphere continued cooling over most of the globe with a rate ranging from -0.4 ± 0.3 to -0.5 ± 0.4 K/decade above 25 km. Considering specific latitude bands, trends are highly variable with height. In the tropical region, trends vary from -0.5 ± 0.3 K/decade for channel 12 (˜30 km) to -0.7 ± 0.3 K/decade for higher channels and present small seasonal variability in the intensity of cooling. In the polar regions and in the midlatitudes, trends for all channels are negative but not significant; uncertainties are large due to the high dynamical variability particularly in high latitudes. There is also large seasonal variability, with southern midlatitudes seasonal trends significant during summer (December, January, February) and autumn (March, April, May) above ˜25 km, with values ranging from -1.0 ± 0.5 to -0.6 ± 0.5 K/decade. Regional trends estimated with AMSU and long-term lidar measurements (over two decades) confirm stratospheric cooling in the northern midlatitudes and tropical regions. The effect of the length of the short series on trends was found to be small outside polar regions. It was found to be large in polar regions with about 1 K changes in trend depending on start dates of the time series.

  13. Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60° N

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    2007-09-01

    Full Text Available A profiling algorithm based on the optimal estimation method is applied to ground-based zenith-sky UV-visible measurements from Harestua, Southern Norway (60° N, 11° E in order to retrieve BrO vertical profiles. The sensitivity of the zenith-sky observations to the tropospheric BrO detection is increased by using for the spectral analysis a fixed reference spectrum corresponding to clear-sky noon summer conditions. The information content and retrieval errors are characterized and it is shown that the retrieved stratospheric profiles and total columns are consistent with correlative balloon and satellite observations, respectively. Tropospheric BrO columns are derived from profiles retrieved at 80° solar zenith angle during sunrise and sunset for the 2000–2006 period. They show a marked seasonality with mean column value ranging from 1.52±0.62×1013 molec/cm² in late winter/early spring to 0.92±0.38×1013 molec/cm² in summer, which corresponds to 1.0±0.4 and 0.6±0.2 pptv, respectively, if we assume that BrO is uniformly mixed in the troposphere. These column values are also consistent with previous estimates made from balloon, satellite, and other ground-based observations. Daytime (10:30 LT tropospheric BrO columns are compared to the p-TOMCAT 3-D tropospheric chemical transport model (CTM for the 2002–2003 period. p-TOMCAT shows a good agreement with the retrieved columns except in late winter/early spring where an underestimation by the model is obtained. This finding could be explained by the non-inclusion of sea-ice bromine sources in the current version of p-TOMCAT. Therefore the model cannot reproduce the possible transport of air-masses with enhanced BrO concentration due to bromine explosion events from the polar region to Harestua. The daytime stratospheric BrO columns are compared to the SLIMCAT stratospheric 3-D-CTM. The model run used in this study, which assumes 21.2 pptv for the Bry loading (15 pptv for long

  14. Revising the retrieval technique of a long-term stratospheric HNO{sub 3} data set. From a constrained matrix inversion to the optimal estimation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, I.; Muscari, G. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); De Zafra, R.L. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2011-07-01

    The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O{sub 3}, HNO{sub 3}, CO and N{sub 2}O at polar and mid-latitudes. Its HNO{sub 3} data set shed light on HNO{sub 3} annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO{sub 3} data sets from 1993 South Pole observations to date, in order to produce HNO{sub 3} version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100{+-}20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1{sigma} uncertainty on HNO{sub 3} v2 mixing ratio vertical profiles depends on altitude and is estimated at {proportional_to}15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO{sub 3} vertical profiles

  15. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  16. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  17. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations

    Science.gov (United States)

    Khaykin, Sergey M.; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Jumelet, Julien; Vernier, Jean-Paul; Bourassa, Adam; Degenstein, Doug A.; Rieger, Landon A.; Bingen, Christine; Vanhellemont, Filip; Robert, Charles; DeLand, Matthew; Bhartia, Pawan K.

    2017-02-01

    The article presents new high-quality continuous stratospheric aerosol observations spanning 1994-2015 at the French Observatoire de Haute-Provence (OHP, 44° N, 6° E) obtained by two independent, regularly maintained lidar systems operating within the Network for Detection of Atmospheric Composition Change (NDACC). Lidar series are compared with global-coverage observations by Stratospheric Aerosol and Gas Experiment (SAGE II), Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and InfraRed Imaging System (OSIRIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and Ozone Mapping Profiling Suite (OMPS) satellite instruments, altogether covering the time span of OHP lidar measurements. Local OHP and zonal-mean satellite series of stratospheric aerosol optical depth are in excellent agreement, allowing for accurate characterization of stratospheric aerosol evolution and variability at northern midlatitudes during the last 2 decades. The combination of local and global observations is used for a careful separation between volcanically perturbed and quiescent periods. While the volcanic signatures dominate the stratospheric aerosol record, the background aerosol abundance is found to be modulated remotely by the poleward transport of convectively cleansed air from the deep tropics and aerosol-laden air from the Asian monsoon region. The annual cycle of background aerosol at midlatitudes, featuring a minimum during late spring and a maximum during late summer, correlates with that of water vapor from the Aura Microwave Limb Sounder (MLS). Observations covering two volcanically quiescent periods over the last 2 decades provide an indication of a growth in the nonvolcanic component of stratospheric aerosol. A statistically significant factor of 2 increase in nonvolcanic aerosol since 1998, seasonally restricted to late summer and fall, is associated with the influence of the Asian monsoon and growing pollution therein.

  18. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  19. Editorial - The winter Atomiades

    CERN Multimedia

    Staff Association

    2011-01-01

    As we wrote in our previous editorial, the Staff Association gives direct support to sports events, such as the Atomiades, a section of the Association of Sports Communities of European Research Institutes, which brings together sportsmen and women from 38 European research centres in 13 countries (Austria, Belgium, Czech Republic, United Kingdom, Finland, France, Germany, Hungary, Italy, Luxemburg, the Netherlands, Russia, and Switzerland). The summer Atomiades take place between the months of June and September every three years. Thirteen such events have taken place since 1973, the last one in June 2009 in Berlin. As far as the winter Atomiades are concerned, also organized every three years, and alternating with the summer Atomiades, there have been eleven since 1981, the last one at the end of January this year in neighbouring France. The following article tells the wonderful adventure of the CERN staff who took part in this event. A positive outcome for CERN skiers at the winter Atomiades The 11t...

  20. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  1. Spatio-temporal variability of the polar middle atmosphere. Insights from over 30 years of research satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Lahoz, W.A.; Orsolini, Y.J.; Manney, G.L.; Minschwaner, K.; Allen, D.R.; Errera, Q.; Jackson, D.R.; Lambert, A.; Lee, J.; Pumphrey, H.; Schwartz, M.; Wu, D.

    2012-07-01

    We discuss the insights that research satellite observations from the last 30 years have provided on the spatio-temporal variability of the polar middle atmosphere. Starting from the time of the NASA LIMS (Limb Infrared Monitor of the Stratosphere) and TOMS (Total Ozone Mapping Spectrometer) instruments, both launched in 1978, we show how these observations have augmented our knowledge of the polar middle atmosphere, in particular how information on ozone and tracers has augmented our knowledge of: (i) the spatial and temporal characteristics of the wintertime polar stratosphere and the summertime circulation; and (ii) the roles of chemistry and transport in determining the stratospheric ozone distribution. We address the increasing joint use of observations and models, in particular in data assimilation, in contributing to this understanding. Finally, we outline requirements to allow continuation of the wealth of information on the polar middle atmosphere provided by research satellites over the last 30 years.(Author)

  2. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  3. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum

    Science.gov (United States)

    Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.

    2017-12-01

    A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.

  4. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  5. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  6. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2014-09-01

    Full Text Available The long-term trends of the total column ozone (TCO over the Tibetan Plateau (TP and factors responsible for the trends are analysed in this study using various observations and a chemistry–climate model (CCM. The results indicate that the total column ozone low (TOL over the TP during winter and spring is deepening over the recent decade, which is opposite to the recovery signal in annual mean TCO over the TP after mid-1990s. The TOL intensity is increasing at a rate of 1.4 DU/decade and the TOL area is extending with 50,000 km2/decade during winter for the period 1979–2009. The enhanced transport of ozone-poor air into the stratosphere and elevated tropopause due to the rapid and significant warming over the TP during winter reduce ozone concentrations in the upper troposphere and lower stratosphere and hence lead to the deepening of the TOL. Based on the analysis of the multiple regression model, the thermal dynamical processes associated with the TP warming accounts for more than 50% of TCO decline during winter for the period 1979–2009. The solar variations during 1995–2009 further enlarge ozone decreases over the TP in the past decade. According to the CCM simulations, the increases in NOx emissions in East Asia and global tropospheric N2O mixing ratio for the period 1979–2009 contribute to no more than 20% reductions in TCO during this period.

  7. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  8. Stratospheric ozone: an introduction to its study

    International Nuclear Information System (INIS)

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  9. Stratospheric aerosol optical depths, 1850-1990

    Science.gov (United States)

    Sato, Makiko; Hansen, James E.; McCormick, M. Patrick; Pollack, James B.

    1993-12-01

    A global stratospheric aerosol database employed for climate simulations is described. For the period 1883-1990, aerosol optical depths are estimated from optical extinction data, whose quality increases with time over that period. For the period 1850-1882, aerosol optical depths are more crudely estimated from volcanological evidence for the volume of ejecta from major known volcanoes. The data set is available over Internet.

  10. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States.

    Science.gov (United States)

    Cohen, Judah; Pfeiffer, Karl; Francis, Jennifer A

    2018-03-13

    Recent boreal winters have exhibited a large-scale seesaw temperature pattern characterized by an unusually warm Arctic and cold continents. Whether there is any physical link between Arctic variability and Northern Hemisphere (NH) extreme weather is an active area of research. Using a recently developed index of severe winter weather, we show that the occurrence of severe winter weather in the United States is significantly related to anomalies in pan-Arctic geopotential heights and temperatures. As the Arctic transitions from a relatively cold state to a warmer one, the frequency of severe winter weather in mid-latitudes increases through the transition. However, this relationship is strongest in the eastern US and mixed to even opposite along the western US. We also show that during mid-winter to late-winter of recent decades, when the Arctic warming trend is greatest and extends into the upper troposphere and lower stratosphere, severe winter weather-including both cold spells and heavy snows-became more frequent in the eastern United States.

  11. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system

    Directory of Open Access Journals (Sweden)

    A. J. Geer

    2007-01-01

    Full Text Available This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1, LINOZ and Chem2D-OPP (v0.1 and v2.1 parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively. In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations.

  12. PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation

    Science.gov (United States)

    Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.

    PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.

  13. COS in the stratosphere. [sulfuric acid aerosol precursor

    Science.gov (United States)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  14. Sources of seasonal variability in tropical upper troposphere and lower stratosphere water vapor and ozone: Inferences from the Ticosonde data set at Costa Rica

    Science.gov (United States)

    Schoeberl, Mark R.; Selkirk, Henry B.; Vömel, Holger; Douglass, Anne R.

    2015-09-01

    We present an analysis of joint balloonsonde profiles of water vapor and ozone made at Costa Rica from 2005 to 2011 using compositing techniques, tracer-tracer diagrams, and back trajectory methods. Our analysis reveals important seasonal differences in structure in the upper troposphere and lower stratosphere. Water vapor amounts in boreal winter at Costa Rica are much lower than expected from local ice saturation temperatures. The boreal summer data show both higher average water vapor amounts and a much higher level of variability than the winter data. To understand this seasonal contrast, we consider three sources of tracer variability: wave-induced vertical motion across strong vertical gradients ("wave variability"), differences in source air masses resulting from horizontal transport ("source variability"), and changes induced along parcel paths due to physical processes ("path variability"). The winter and summer seasons show different mixes of these three sources of variability with more air originating in the tropical western Pacific during winter.

  15. Seasonal forecasts of northern hemisphere winter 2009/10

    International Nuclear Information System (INIS)

    Fereday, D R; Maidens, A; Arribas, A; Scaife, A A; Knight, J R

    2012-01-01

    Northern hemisphere winter 2009/10 was exceptional for atmospheric circulation: the North Atlantic Oscillation (NAO) index was the lowest on record for over a century. This contributed to cold conditions over large areas of Eurasia and North America. Here we use two versions of the Met Office GloSea4 seasonal forecast system to investigate the predictability of this exceptional winter. The first is the then operational version of GloSea4, which uses a low top model and successfully predicted a negative NAO in forecasts produced in September, October and November 2009. The second uses a new high top model, which better simulates sudden stratospheric warmings (SSWs). This is particularly relevant for 2009/10 due to its unusual combination of a strong El Niño and an easterly quasi-biennial oscillation (QBO) phase, favouring SSW development. SSWs are shown to play an influential role in surface conditions, producing a stronger sea level pressure signal and improving predictions of the 2009/10 winter. (letter)

  16. Interannual Modulation of Northern Hemisphere Winter Storm Tracks by the QBO

    Science.gov (United States)

    Wang, Jiabao; Kim, Hye-Mi; Chang, Edmund K. M.

    2018-03-01

    Storm tracks, defined as the preferred regions of extratropical synoptic-scale disturbances, have remarkable impacts on global weather and climate systems. Causes of interannual storm track variation have been investigated mostly from a troposphere perspective. As shown in this study, Northern Hemisphere winter storm tracks are significantly modulated by the tropical stratosphere through the quasi-biennial oscillation (QBO). The North Pacific storm track shifts poleward during the easterly QBO winters associated with a dipole change in the eddy refraction and baroclinicity. The North Atlantic storm track varies vertically with a downward shrinking (upward expansion) in easterly (westerly) QBO winters associated with the change of the tropopause height. These results not only fill the knowledge gap of QBO-storm track relationship but also suggest a potential route to improve the seasonal prediction of extratropical storm activities owing to the high predictability of the QBO.

  17. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  18. Winter School Les Houches

    CERN Document Server

    Lannoo, Michel; Bastard, Gérald; Voos, Michel; Boccara, Nino

    1986-01-01

    The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super­ lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron­ ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorgani...

  19. The propagation of orographic gravity waves into the stratosphere. Linear theory, idealized and realistic numerical simulation; Die Ausbreitung orographisch angeregter Schwerewellen in die Stratosphaere. Lineare Theorie, idealisierte und realitaetsnahe numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-07-01

    Flow over mountains in the stably stratified atmosphere excites gravity waves. The three-dimensional propagation of these waves into the stratosphere is studied using linear theority as well as idealized and realistic numerical simulations. Stagnation, momentum fluxes and temperature anomalies are analyzed for idealized types of flow. Isolated mountains with elliptical contours are considered. The unperturbed atmosphere has constant wind speed and constant static stability or two layers (troposphere/stratosphere) of constant stability each. Real flow over orography is investigated where gravity waves in the stratosphere have been observed. Characteristics of the gravity wave event over the southern tip of Greenland on 6 January 1992 were recorded on a flight of the ER-2 at an altitude of 20 km. In the second case polar stratospheric clouds (PSC) were observed by an airborne Lidar over Northern Scandinavia on 9 January 1997. The PSC were induced by temperature anomalies in orographic gravity waves. (orig.)

  20. Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2

    Directory of Open Access Journals (Sweden)

    D. R. Blake

    2010-03-01

    Full Text Available Recent in situ and satellite measurements suggest a contribution of ~5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3 and dibromomethane (CH2Br2, with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr−1 for CHBr3 and 57 Gg Br yr−1 for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes ~5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BryVSLS in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv of the bromine from the inclusion of CHBr3 and CH2Br2 near the tropical tropopause and its contribution rapidly increases to ~100% as altitude increases. More than 85% of the wet scavenging of BryVSLS occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that BryVSLS in the stratosphere is not sensitive to convection. Convective scavenging only accounts for

  1. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2

    Science.gov (United States)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.

    2010-01-01

    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  2. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, S.R.; Anderson, L.C. (National Oceanic and Atmospheric Administration (USA) Univ. of Colorado, Boulder (USA)); Fahey, D.W. (National Oceanic and Atmospheric Administration (USA)); Loewenstein, M.; Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (USA))

    1990-03-01

    Composite distributions of measured total reactive nitrogen (NO{sub y}) from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical, and microphysical processes. In the latitudinal profile from 58{degree}N to within about 4{degree} poleward of the polar vortex boundary, NO{sub y} conforms closely to predictions of NO{sub y} based on N{sub 2}O measurements. The features of the distribution are apparently dynamically controlled. Poleward of 5{degree} of latitude within the boundary, the average NO{sub y} decreases sharply and is significantly lower than that predicted from N{sub 2}O. This feature is consistent with loss of NO{sub y} through sedimentation of particles containing NO{sub y} in polar stratospheric clouds. The observed loss is not as systematic as in the Antarctic, consistent with the observed differences in season and meteorological conditions between the two campaigns.

  3. Measurements for winter road maintenance

    OpenAIRE

    Riehm, Mats

    2012-01-01

    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  4. Advances in the representation of stratospheric transport by the Brewer-Dobson circulation by use of Lagrangian modelling with CLaMS

    Science.gov (United States)

    Ploeger, Felix; Konopka, Paul; Diallo, Mohamadou; Birner, Thomas; Hoppe, Charlotte; Müller, Rolf; Haenel, Florian; Stiller, Gabriele; Poshyvailo, Liubov; Garny, Hella; Dietmüller, Simone; Jöckel, Patrick; Engel, Andreas; Boenisch, Harald

    2017-04-01

    The global stratospheric Brewer-Dobson circulation (BDC) is expected to accelerate with rising Greenhouse gas concentrations, in turn changing the stratospheric trace gas composition and providing an important feedback via radiation on climate change. However, trends in the BDC are largely uncertain, with current climate model results disagreeing with existing observations of mean age of air, the average transit time for an air parcel since entering the stratosphere. We present advances in representing stratospheric trace gas transport caused by the Brewer-Dobson circulation by using the Chemical Lagrangian model of the Stratosphere (CLaMS), a global Lagrangian chemistry transport model with a physically-based parameterization of small-scale mixing. Mean age simulated with CLaMS driven by reanalysis meteorology agrees well with satellite and in-situ observations. Regarding the inter-annual and decadal changes, like increasing age in the Northern hemisphere and decreasing age in the Southern hemisphere during 2002-2012, the natural variability (e.g., QBO, ENSO, volcanic aerosols) is found to play a key role. Age of air spectra simulated with CLaMS provide further insights into the processes involved. Our analysis reveals a crucial effect of mixing on mean age and its decadal change pattern, suggesting that differences between climate models and observations likely involve differences in the effect of mixing. This progress in modelling stratospheric transport has recently been transferred to climate modelling by coupling the Lagrangian transport scheme CLaMS into the global atmosphere-chemistry model EMAC. First results show improvements of stratospheric transport compared to the standard flux-form semi-Lagrangian transport scheme. These improvements are found particularly in regions of strong transport barriers like the polar vortex, with Lagrangian CLaMS transport resulting in a stronger and more realistic transport barrier.

  5. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  6. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  7. Winter fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city

  8. Stamena winter wheat variety

    Directory of Open Access Journals (Sweden)

    Mišić Todor

    2001-01-01

    Full Text Available Stamena is a winter wheat variety developed at the Institute of Field and Vegetable Crops in Novi Sad, Yugoslavia. It was released by the Federal Commission for varietals Approval in 1999. Stamena was developed by crossing genetically divergent and highly productive parents Lasta and Rodna (Breeders: T. Mišić. N. Mladenov, Z. Jerković and R. Jevtić. Spike is white, smooth, awn less, medium compact with 18-21 spike lets. The grain is vitreous and dark red (Triticum aestivum L. ssp. vulgar e var. lutescens. Stamena is a medium early variety, 1 day earlier than Partizanka and 3 days earlier than Jugoslavija (Table 4. It has excellent resistance to winterkilling, as in very winter hardy Partizanka. The average stem height is 78 cm, with a good resistance to lodging. Stamena has field resistance to leaf rust (Pucce, recondita tritict, horizontal resistance, which is the type of resistance that modern wheat breeding is interested in. The resistance to stem rust (Pucce, graminis tritict is good and to powdery mildew (Erysiphegraminis tritici very good. The 1000 grain mass is about 32 g and volume grain mass 81.3 kg/hi. (Table 2. Stamena is classified in the subgroup A-l. It has excellent milling and baking quality and it belong to the 1st technological group (quality enhancer. The quantity of dry gluten is about 9%. The variety Stamena is a very productive, with the genetic potential for grain above 11 t/ha suitable for growing on fertile and less fertile soils. It has started to be grown commercially in 2000.

  9. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    Directory of Open Access Journals (Sweden)

    V. Eyring

    2010-10-01

    return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060 whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.

  10. Stratospheric Aerosol and Gas Experiment III

    Science.gov (United States)

    Thomason, Larry W.; Chu, William P.; Pitts, Michael C.

    1998-12-01

    The SAGE III is the fourth generation of solar occultation instruments designed to measure aerosols and trace gas species in the stratosphere and upper troposphere. It will be launched aboard a Meteor-3M platform in the summer of 1999 and the International Space Station Alpha in 2001. SAGE III preserves the robust characteristics of the SAGE series, including self-calibration and high vertical resolution, and adds new capabilities including a lunar occultation mode. This paper will describe the SAGE III instrument and outline its potential contribution to global change research.

  11. Reconciling differences in stratospheric ozone composites

    Directory of Open Access Journals (Sweden)

    W. T. Ball

    2017-10-01

    Full Text Available Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i steps in the composite time series when the instrument source data changes and (ii artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km for 1985–2012. There are two main outcomes: (i we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM, which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of

  12. Photochemistry of materials in the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.S. [Lawrence Berkeley Laboratories, CA (United States)

    1993-12-01

    This research is concerned with global change in the atmosphere, including photochemical modeling and, in the past, experimental gas-phase photochemistry involving molecular dynamics and laboratory study of atmospheric chemical reactions. The experimental work on this project concluded in August 1991, but there is a back-log of several journal articles to be written and submitted for publication. The theoretical work involves photochemical modeling in collaboration with Lawrence Livermore National Laboratory (LLNL) and advising the Upper Atmosphere Research Program on Atmospheric Effects of Stratospheric Aircraft, National Aeronautics and Space Administration (NASA).

  13. Detecting recovery of the stratospheric ozone layer

    Science.gov (United States)

    Chipperfield, Martyn P.; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R. P.; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark

    2017-09-01

    As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

  14. Airborne stratospheric observations of major volcanic eruptions: past and future

    Science.gov (United States)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  15. Global variations of zonal mean ozone during stratospheric warming events

    Science.gov (United States)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  16. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  17. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  18. Another hint for a changing stratospheric circulation after 2001

    Science.gov (United States)

    Boenisch, H.; Engel, A.; Hoor, P.

    2009-04-01

    Aircraft data were used to study interannual changes of extratropical lower stratospheric tracer-tracer correlations. The focus is on the time periods before and after 2001 between which a remarkable step-like decrease of stratospheric water vapour has occurred (Randel et al., 2006). This feature associated with a cooling of temperatures near the tropical tropopause, and a decrease in tropical ozone at about the same time has been linked by Randel et al. (2006) to an increased stratospheric upwelling circulation in the tropics (the so-called Brewer-Dobson circulation) caused by enhanced wave driving after 2000 (Dhomse et al., 2006). Analysis of the extratropical tracer-tracer correlations shows different slopes before and after 2000. These changes could be explained by an enhanced horizontal tracer transport from the tropical lower stratosphere into the extratropics, taking into account that mean age of air has remained constant over the last 3 decades in the midlatitude stratosphere above 30 hPa (Engel et al., 2009). We will present a comparison of in-situ measured tracer-tracer correlations in the extratropical lower stratosphere before and after 2001 and discuss implications for a changing stratospheric circulation. References: Dhomse, S., Weber, M., and Burrows, J.: The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor, Atmos. Chem. Phys., 8, 471-480, 2008. Engel, A., T. Möbius, H. Bönisch, U. Schmidt, R. Heinz, I. Levin, E. Atlas, S. Aoki, T. Nakazawa, S. Sugawara, F. Moore, D. Hurst, J. Elkins, S. Schauffler, A. Andrews, and K. Boering (2009), Age of stratospheric air unchanged within uncertainties over the past 30 years, Nature Geosci., 2, 28-31. Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster (2006), Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation, J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

  19. Optimal Cross Hedging Winter Canola

    OpenAIRE

    Kim, Seon-Woong; Brorsen, B. Wade; Yoon, Byung-Sam

    2014-01-01

    Winter canola in the southern Great Plains has shown large price fluctuations and there have been questions about which futures market could be used to reduce price risk. Our results indicate that the optimal futures contract to cross hedge winter canola is soybean oil futures.

  20. Temperature Trends in the Tropical Upper Troposphere and Lower Stratosphere: Connections with Sea Surface Temperatures and Implications for Water Vapor and Ozone

    Science.gov (United States)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-01-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  1. Gravitational separation of major atmospheric components observed in the stratosphere over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ishidoya

    2010-12-01

    Full Text Available To investigate the gravitational separation of atmospheric components in the stratosphere, air samples collected using an aircraft during the Arctic Airborne Measurement Program 2002 (AAMP02 were analyzed for the O_2 N_2 ratios (δ(O_2 N_2, δ^N of N_2, δ^O of O_2 and Ar N_2 ratio (δ(Ar N_2. The relationship between observed stratospheric δ^N of N_2, δ^O of O_2 and δ(Ar N_2 over the Svalbard Islands and Barrow showed mass-dependent fractionation of atmospheric components in the stratosphere, which suggested that gravitational separation could be observable in the lowermost stratosphere inside the polar vortex. By examining the rates of change in δ(O_2 Nv and δ^C of CO_2 relative to the CO_2 concentration, such observed correlations were bound to be mainly attributable to upward propagation of their seasonal cycles produced in the troposphere and height-dependent air age as well as gravitational separation in the stratosphere. Air samples collected over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan using balloon-borne cryogenic air samplers were analyzed for δ^N of Nv and δ^O of O_2. Strength of the gravitational separation was a function of latitude, showing the largest separation inside the polar vortex over Kiruna. It is suggested that information on increase of gravitational separation with height is useful in understanding the vertical transport of air masses in the stratosphere. By comparing the gravitational separations, mean age of air and N_2O concentration at two height intervals with N_2O concentrations > 125 ppb and < 45 ppb, the effect of descending air was found to be more significant over Kiruna than over Syowa Station and Sanriku. The variation in the gravitational separation with height is found to be weaker in the region with N_2O concentrations between 45 and 125 ppb than in other regions, which might suggest that vertical mixing of air occurred in this region.

  2. Stratospheric ozone - Impact of human activity

    Science.gov (United States)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  3. Stratospheric Aerosol and Gas Experiment (SAGE 3)

    Science.gov (United States)

    Mccormick, M. P.

    1993-01-01

    The proposed SAGE III instrument would be the principal source of data for global changes of stratospheric aerosols, stratospheric water vapor, and ozone profiles, and a contributing source of data for upper tropospheric water vapor, aerosols, and clouds. The ability to obtain such data has been demonstrated by the predecessor instrument, SAGE II, but SAGE III will be substantially more capable, as discussed below. The capabilities for monitoring the profiles of atmospheric constituents have been verified in detail, including ground-based validations, for aerosol, ozone, and water vapor. Indeed, because of its self-calibrating characteristics, SAGE II was an essential component of the international ozone trend assessments, and SAGE II is now proving to be invaluable in tracking the aerosols from Mt. Pinatubo. Although SAGE profiles generally terminate at the height of the first tropospheric cloud layer, it has been found that the measurements extend down to 3 km altitude more than 40 percent of the time at most latitudes. Thus, useful information can also be obtained on upper tropospheric aerosols, water vapor, and ozone.

  4. Study of photolytic aerosols at stratospheric pressures

    International Nuclear Information System (INIS)

    Delattre, Patrick.

    1975-07-01

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO 2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H 2 O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO 2 or NOsub(x) traces. With water concentration below 1200ppm and SO 2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals [fr

  5. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  6. The oceanography of winter leads

    Science.gov (United States)

    Morison, J. H.; McPhee, M. G.; Curtin, T. B.; Paulson, C. A.

    1992-07-01

    Leads in pack ice have long been considered important to the thermodynamics of the polar regions. A winter lead affects the ocean around it because it is a density source. As the surface freezes, salt is rejected and forms more dense water which sinks under the lead. This sets up a circulation with freshwater flowing in from the sides near the surface and dense water flowing away from the lead at the base of the mixed layer. If the mixed layer is fully turbulent, this pattern may not occur; rather, the salt rejected at the surface may simply mix into the surface boundary layer. In either event the instability produced at the surface of leads is the primary source of unstable buoyancy flux and, as such, exerts a strong influence on the mixed layer. Here as many as possible of the disparate and almost anecdotal observations of lead oceanography are assembled and combined with theoretical arguments to predict the form and scale of oceanographic disturbances caused by winter leads. The experimental data suggest the velocity disturbances associated with lead convection are about 1-5 cm s-1. These appear as jets near the surface and the base of the mixed layer when ice velocities across the lead are less than about 5 cm s-1. The salinity disturbances are about 0.01 to 0.05 psu. Scaling arguments suggest that the geostrophic currents set up by the lead density disturbances are also of the order of 1-5 cm s-1. The disturbances are most obvious when freezing is rapid and ice velocity is low because the salinity and velocity disturbances in the upper ocean are not smeared out by turbulence. In this vein, lead convection may be characterized at one extreme as free convection in which the density disturbance forces the circulation. At the other extreme, lead convection may be characterized as forced convection in which the density disturbance is mixed rapidly by boundary layer turbulence. The lead number Lo, which is the ratio of the pressure term to the turbulence term in the

  7. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  8. Klaus Winter (1930 - 2015)

    CERN Multimedia

    2015-01-01

    We learned with great sadness that Klaus Winter passed away on 9 February 2015, after a long illness.   Klaus was born in 1930 in Hamburg, where he obtained his diploma in physics in 1955. From 1955 to 1958 he held a scholarship at the Collège de France, where he received his doctorate in nuclear physics under the guidance of Francis Perrin. Klaus joined CERN in 1958, where he first participated in experiments on π+ and K0 decay properties at the PS, and later became the spokesperson of the CHOV Collaboration at the ISR. Starting in 1976, his work focused on experiments with the SPS neutrino beam. In 1984 he joined Ugo Amaldi to head the CHARM experiment, designed for detailed studies of the neutral current interactions of high-energy neutrinos, which had been discovered in 1973 using the Gargamelle bubble chamber at the PS. The unique feature of the detector was its target calorimeter, which used large Carrara marble plates as an absorber material. From 1984 to 1991, Klau...

  9. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Observed perturbations of the Earth's Radiation Budget - A response to the El Chichon stratospheric aerosol layer?

    Science.gov (United States)

    Ardanuy, P. E.; Kyle, H. L.

    1986-01-01

    The Earth Radiation Budget experiment, launched aboard the Nimbus-7 polar-orbiting spacecraft in late 1978, has now taken over seven years of measurements. The dataset, which is global in coverage, consists of the individual components of the earth's radiation budget, including longwave emission, net radiation, and both total and near-infrared albedos. Starting some six months after the 1982 eruption of the El Chichon volcano, substantial long-lived positive shortwave irradiance anomalies were observed by the experiment in both the northern and southern polar regions. Analysis of the morphology of this phenomena indicates that the cause is the global stratospheric aerosol layer which formed from the cloud of volcanic effluents. There was little change in the emitted longwave in the polar regions. At the north pole the largest anomaly was in the near-infrared, but at the south pole the near UV-visible anomaly was larger. Assuming an exponential decay, the time constant for the north polar, near-infrared anomaly was 1.2 years. At mid- and low latitudes the effect of the El Chichon aerosol layer could not be separated from the strong reflected-shortwave and emitted-longwave perturbations issuing from the El Nino/Southern Oscillation event of 1982-83.

  11. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  12. The contribution of ozone to future stratospheric temperature trends

    Science.gov (United States)

    Maycock, Amanda

    2017-04-01

    The projected recovery of ozone from the effects of ozone depleting substances this century will modulate the stratospheric cooling due to CO2, thereby affecting the detection and attribution of stratospheric temperature trends. Here the impact of future ozone changes on stratospheric temperatures is quantified for three representative concentration pathways (RCPs) using simulations from the Fifth Coupled Model Intercomparison Project (CMIP5). For models with interactive chemistry, ozone trends offset 50% of the global annual mean upper stratospheric cooling due to CO2 for RCP4.5 and 20% for RCP8.5 between 2006-2015 and 2090-2099. For RCP2.6, ozone trends cause a net warming of the upper and lower stratosphere. The misspecification of ozone trends for RCP2.6/RCP4.5 in models that used the International Global Atmospheric Chemistry (IGAC)/Stratosphere-troposphere Processes and their Role in Climate (SPARC) Ozone Database causes anomalous warming (cooling) of the upper (lower) stratosphere compared to chemistry-climate models. The dependence of ozone chemistry on greenhouse gas concentrations should therefore be better represented in CMIP6.

  13. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  14. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  15. STEFLUX, a tool for investigating stratospheric intrusions: application to two WMO/GAW global stations

    Directory of Open Access Journals (Sweden)

    D. Putero

    2016-11-01

    Full Text Available Stratospheric intrusion (SI events are a topic of ongoing research, especially because of their ability to change the oxidation capacity of the troposphere and their contribution to tropospheric ozone levels. In this work, a novel tool called STEFLUX (Stratosphere-to-Troposphere Exchange Flux is presented, discussed, and used to provide a first long-term investigation of SI over two global hot-spot regions for climate change and air pollution: the southern Himalayas and the central Mediterranean Basin. The main purpose of STEFLUX is to obtain a fast-computing and reliable identification of the SI events occurring at a specific location and during a specified time window. It relies on a compiled stratosphere-to-troposphere exchange (STE climatology, which makes use of the ERA-Interim reanalysis dataset from the ECMWF, as well as a refined version of a well-established Lagrangian methodology. STEFLUX results are compared to the SI observations (SIO at two high-mountain WMO/GAW global stations in these climate hot spots, i.e., the Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l. and Mt. Cimone (2165 m a.s.l., which are often affected by SI events. Compared to the observational datasets at the two specific measurement sites, STEFLUX is able to detect SI events on a regional scale. Furthermore, it has the advantage of retaining additional information concerning the pathway of stratospheric-affected air masses, such as the location of tropopause crossing and other meteorological parameters along the trajectories. However, STEFLUX neglects mixing and dilution that air masses undergo along their transport within the troposphere. Therefore, the regional-scale STEFLUX events cannot be expected to perfectly reproduce the point measurements at NCO-P and Mt. Cimone, which are also affected by small-scale (orographic circulations. Still, the seasonal variability in SI events according to SIO and STEFLUX agrees fairly well. By exploiting the

  16. Winter Safety Tips for Older Adults

    Science.gov (United States)

    Winter Safety Tips for Older Adults Expert Information from Healthcare Professionals Who Specialize in the Care of ... thick clothing. Think about getting your thermals! –Essential winter wears: hats, gloves or preferably mittens, winter coat, ...

  17. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are at increased risk for overexposure ... associated with sun exposure. "It's easy to associate winter with frostbite and windburn, but most people are ...

  18. Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2013-07-01

    Full Text Available Aerosols from the Sarychev volcano eruption (Kuril Islands, northeast of Japan were observed in the Arctic lower stratosphere a few days after the strongest SO2 injection which occurred on 15 and 16 June 2009. From the observations provided by the Infrared Atmospheric Sounding Interferometer (IASI an estimated 0.9 Tg of sulphur dioxide was injected into the upper troposphere and lower stratosphere (UTLS. The resultant stratospheric sulphate aerosols were detected from satellites by the Optical Spectrograph and Infrared Imaging System (OSIRIS limb sounder and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP and from the surface by the Network for the Detection of Atmospheric Composition Changes (NDACC lidar deployed at OHP (Observatoire de Haute-Provence, France. By the first week of July the aerosol plume had spread out over the entire Arctic region. The Sarychev-induced stratospheric aerosol over the Kiruna region (north of Sweden was measured by the Stratospheric and Tropospheric Aerosol Counter (STAC during eight balloon flights planned in August and September 2009. During this balloon campaign the Micro Radiomètre Ballon (MicroRADIBAL and the Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON remote-sensing instruments also observed these aerosols. Aerosol concentrations returned to near-background levels by spring 2010. The effective radius, the surface area density (SAD, the aerosol extinction, and the total sulphur mass from STAC in situ measurements are enhanced with mean values in the range 0.15–0.21 μm, 5.5–14.7 μm2 cm−3, 5.5–29.5 × 10−4 km−1, and 4.9–12.6 × 10−10 kg[S] kg−1[air], respectively, between 14 km and 18 km. The observed and modelled e-folding time of sulphate aerosols from the Sarychev eruption is around 70–80 days, a value much shorter than the 12–14 months calculated for aerosols from the 1991 eruption of Mt Pinatubo. The OSIRIS

  19. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas

    Directory of Open Access Journals (Sweden)

    A. Laakso

    2017-06-01

    Full Text Available Stratospheric sulfur injections have often been suggested as a cost-effective geoengineering method to prevent or slow down global warming. In geoengineering studies, these injections are commonly targeted to the Equator, where the yearly mean intensity of the solar radiation is the highest and from where the aerosols disperse globally due to the Brewer–Dobson Circulation. However, compensating for greenhouse gas-induced zonal warming by reducing solar radiation would require a relatively larger radiative forcing to the mid- and high latitudes and a lower forcing to the low latitudes than what is achieved by continuous equatorial injections. In this study we employ alternative aerosol injection scenarios to investigate if the resulting radiative forcing can be targeted to be zonally more uniform without decreasing the global the mean radiative forcing of stratospheric sulfur geoengineering. We used a global aerosol–climate model together with an Earth system model to study the radiative and climate effects of stratospheric sulfur injection scenarios with different injection areas. According to our simulations, varying the SO2 injection area seasonally would result in a similar global mean cooling effect as injecting SO2 to the Equator, but with a more uniform zonal distribution of shortwave radiative forcing. Compared to the case of equatorial injections, in the seasonally varying injection scenario where the maximum sulfur production from injected SO2 followed the maximum of solar radiation, the shortwave radiative forcing decreased by 27 % over the Equator (the latitudes between 20° N and 20° S and increased by 15 % over higher latitudes. Compared to the continuous injections to the Equator, in summer months the radiative forcing was increased by 17 and 14 % and in winter months decreased by 14 and 16 % in Northern and Southern hemispheres, respectively. However, these forcings do not translate into as large changes in

  20. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas

    Science.gov (United States)

    Laakso, Anton; Korhonen, Hannele; Romakkaniemi, Sami; Kokkola, Harri

    2017-06-01

    Stratospheric sulfur injections have often been suggested as a cost-effective geoengineering method to prevent or slow down global warming. In geoengineering studies, these injections are commonly targeted to the Equator, where the yearly mean intensity of the solar radiation is the highest and from where the aerosols disperse globally due to the Brewer-Dobson Circulation. However, compensating for greenhouse gas-induced zonal warming by reducing solar radiation would require a relatively larger radiative forcing to the mid- and high latitudes and a lower forcing to the low latitudes than what is achieved by continuous equatorial injections. In this study we employ alternative aerosol injection scenarios to investigate if the resulting radiative forcing can be targeted to be zonally more uniform without decreasing the global the mean radiative forcing of stratospheric sulfur geoengineering. We used a global aerosol-climate model together with an Earth system model to study the radiative and climate effects of stratospheric sulfur injection scenarios with different injection areas. According to our simulations, varying the SO2 injection area seasonally would result in a similar global mean cooling effect as injecting SO2 to the Equator, but with a more uniform zonal distribution of shortwave radiative forcing. Compared to the case of equatorial injections, in the seasonally varying injection scenario where the maximum sulfur production from injected SO2 followed the maximum of solar radiation, the shortwave radiative forcing decreased by 27 % over the Equator (the latitudes between 20° N and 20° S) and increased by 15 % over higher latitudes. Compared to the continuous injections to the Equator, in summer months the radiative forcing was increased by 17 and 14 % and in winter months decreased by 14 and 16 % in Northern and Southern hemispheres, respectively. However, these forcings do not translate into as large changes in temperatures. The changes in forcing

  1. Stratospheric BrONO2 observed by MIPAS

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2009-03-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  2. Climate and smoke: an appraisal of nuclear winter.

    Science.gov (United States)

    Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C

    1990-01-12

    The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.

  3. Study on the impact of sudden stratosphere warming in the upper mesosphere-lower thermosphere regions using satellite and HF radar measurements [Conference paper

    CSIR Research Space (South Africa)

    Mbatha, N

    2009-07-01

    Full Text Available temperature disturbances, - zonal mean wind reversal (at 10hpa usual westerly winds are replaced by easterlies as far south as 60°N), - lead to a breakdown of the cyclonic polar vortex Minor Warming : - weaker zonal mean temperature perturbations..., - no zonal mean wind reversal - does not lead to a breakdown of the polar vortex Canadien Warming : Classification of SSW SAIP conference 2009 [UKZN] - often occur in early winter over Canada, - the polar vortex does not breakdown but strongly distorts...

  4. Stratospheric Ozone: Transport, Photochemical Production and Loss

    Science.gov (United States)

    Douglass, A. R.; Kawa, S. R.; Jackman, C. H.

    2003-01-01

    Observations from various satellite instruments (e.g., Total Ozone Mapping Spectrometer (TOMS), Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)) specify the latitude and seasonal variations of total ozone and ozone as a function of altitude. These seasonal variations change with latitude and altitude partly due to seasonal variation in transport and temperature, partly due to differences in the balance between photochemical production and loss processes, and partly due to differences in the relative importance of the various ozone loss processes. Comparisons of modeled seasonal ozone behavior with observations test the following: the seasonal dependence of dynamical processes where these dominate the ozone tendency; the seasonal dependence of photochemical processes in the upper stratosphere; and the seasonal change in the balance between photochemical and dynamical processes.

  5. Deuterium Enrichment in Stratospheric Molecular Hydrogen

    Science.gov (United States)

    Rahn, T.; Eiler, J.; McCarthy, M. C.; Boering, K. A.; Wennberg, P.; Atlas, E.; Donnelly, S.; Schauffler, S.

    2002-12-01

    Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~ 530 ppbv. Its largest source is believed to be photochemical oxidation of methane (C H4) and non-methane hydrocarbons (NMHCs); other recognized sources include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify various aspects of its production and destruction. The average deuterium content of H2 (expressed as δDH2) is enriched by ~110 ‰ relative to Vienna Standard Mean Ocean Water while CH4 in the troposphere, the precursor for photochemical H2 production, is depleted by ~ 90 ‰ relative to V-SMOW and similar values are expected for NMHCs. Both natural and anthropogenic combustion sources of H2 have been shown to be depleted in deuterium by 200 to 300 ‰ (Gerst and Quay, 2001; Rahn et al., 2002), and the ocean and N2 fixation sources are expected to be in near thermodynamic equilibrium with local H2O and should have deuterium levels of ~-700 ‰ (Rahn et al., 2002). In order to offset these deuterium depleted sources and account for the observed tropospheric δDH2, the balancing loss processes must discriminate against reaction with HD and/or the total fractionation associated with CH4 oxidation and the subsequent reactions leading to H2 must favor production of deuterated H2. We have analyzed a suite of stratospheric air samples in order to investigate the photochemical processes influencing the deuterium content of H2. While the mixing ratio of H2 is nearly constant, the deuterium content increases such that δD=440 ‰ in samples with a stratospheric mean age of ~6 years. The constant mixing ratio results from the fact that production due to CH4 oxidation and loss due to H2 oxidation are approximately equal. The observed trend in δD of stratospheric H2 can only be accounted for by an

  6. Stratonauts pioneers venturing into the stratosphere

    CERN Document Server

    Ehrenfried, Manfred "Dutch"

    2014-01-01

    Stratonauts chronicles humankind’s quest for ever higher altitudes from ancient times to the present. It is based upon history, science and technology, and tells some interesting and fascinating stories along the way. It pays tribute to those killed while attempting to reach the stratosphere over the past several centuries.   “Dutch” von Ehrenfried uses his personal experience as a NASA sensor operator on the RB-57F, flying to an altitude of 70,000 feet, as well as the input and experience from other RB-57F, U-2, A-12, SR-71 and F-104 pilots. Although many of the aircraft and balloons are described, more emphasis is placed on the crews and what they went through. This book is intended for aviators of all kinds and flying enthusiasts in general.

  7. A brief history of stratospheric ozone research

    Directory of Open Access Journals (Sweden)

    Rolf Müller

    2009-03-01

    Full Text Available Ozone is one of the most important trace species in the atmosphere. Therefore, the history of research on ozone has also received a good deal of attention. Here a short overview of ozone research (with a focus on the stratosphere is given, starting from the first atmospheric measurements and ending with current developments. It is valuable to study the history of ozone research, because much can be learned for current research from an understanding of how previous discoveries were made. Moreover, since the 1970s, the history of ozone research has also encompassed also the history of the human impact on the ozone layer and thus the history of policy measures taken to protect the ozone layer, notably the Montreal Protocol and its amendments and adjustments. The history of this development is particularly important because it may serve as a prototype for the development of policy measures for the protection of the Earth's climate.

  8. European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-Climat model?

    Science.gov (United States)

    Ouzeau, G.; Cattiaux, J.; Douville, H.; Ribes, A.; Saint-Martin, D.

    2011-06-01

    Boreal winter 2009-2010 made headlines for cold anomalies in many countries of the northern mid-latitudes. Northern Europe was severely hit by this harsh winter in line with a record persistence of the negative phase of the North Atlantic Oscillation (NAO). In the present study, we first provide a wider perspective on how unusual this winter was by using the recent 20th Century Reanalysis. A weather regime analysis shows that the frequency of the negative NAO was unprecedented since winter 1939-1940, which is then used as a dynamical analog of winter 2009-2010 to demonstrate that the latter might have been much colder without the background global warming observed during the twentieth century. We then use an original nudging technique in ensembles of global atmospheric simulations driven by observed sea surface temperature (SST) and radiative forcings to highlight the relevance of the stratosphere for understanding if not predicting such anomalous winter seasons. Our results demonstrate that an improved representation of the lower stratosphere is necessary to reproduce not only the seasonal mean negative NAO signal, but also its intraseasonal distribution and the corresponding increased probability of cold waves over northern Europe.

  9. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  10. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  11. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  12. Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS

    Directory of Open Access Journals (Sweden)

    S. C. Müller

    2008-06-01

    Full Text Available We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 0 to –20%, when compared to satellite experiments. Also a comparison between AMSOS and in-situ hygrosondes FISH and FLASH have been performed. A matching in the short overlap region in the upper troposphere of the lidar measurements from the DIAL instrument and the AMSOS dataset allowed water vapour profiling from the middle troposphere up to the mesosphere.

  13. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  14. Antarctic stratospheric ozone and seasonal predictability over southern Africa

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2015-09-01

    Full Text Available The impact of time-varying Antarctic stratospheric ozone on southern African summer climate variability is explored through atmospheric global circulation model (AGCM) sensitivity experiments. A control experiment following the design...

  15. Exposing Microorganisms in the Stratosphere for Planetary Protection

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth’s stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently...

  16. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  17. Aura Microwave Limb Sounder Observations of Dynamics and Transport During the Record-Breaking 2009 Arctic Stratospheric Major Warming

    Science.gov (United States)

    Manney, Gloria L.; Schwartz, Michael J.; Krueger, Kirstin; Santee, Michelle L.; Pawson, Steven; Lee, Jae N.; Daffer, William H.; Fuller, Ryan A.; Livesey, Nathaniel J.

    2009-01-01

    A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.

  18. Stratospheric gravity wave activities inferred through the GPS radio occultation technique; Ondas de gravidade na estratosfera terrestre inferida atraves da tecnica de radio ocultacao de GPS

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, Cristiano Max [Universidade do Vale do Paraiba (UNIVAP), Instituto de Pesquisa e Desenvolvimento (IPeD), Sao Jose dos Campos, SP (Brazil); Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Wickert, Jens, E-mail: cmw@univap.br, E-mail: hisaotak@laser.inpe.br, E-mail: joaquim@laser.inpe.br, E-mail: denardin@dae.inpe.br, E-mail: jens.wickert@gfz-potsdam.de [GeoForschungsZentrum, Potsdam (GFZ), Department of Geodesy and Remote Sensing (Germany)

    2007-07-01

    Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)

  19. Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2009-11-01

    Full Text Available The present study demonstrates the relationship between the high latitude northern hemispheric major sudden stratospheric warming (SSW events and the reversal in the afternoon equatorial electrojet (EEJ, often called the counter-electrojet (CEJ, during the winter months of 1998–1999, 2001–2002, 2003–2004 and 2005–2006. As the EEJ current system is driven by tidal winds, an investigation of tidal variabilities in the MF radar observed zonal winds during the winters of 1998–1999 and 2005–2006 at 88 km over Tirunelveli, a site close to the magnetic equator, shows that there is an enhancement of semi-diurnal tidal amplitude during the days of a major SSW event and a suppression of the same immediately after the event. The significance of the present results lies in demonstrating the latitudinal coupling between the high latitude SSW phenomenon and the equatorial ionospheric current system with clear evidence for major SSW events influencing the day-to-day variability of the CEJ.

  20. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  1. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    Science.gov (United States)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a

  2. Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century

    Science.gov (United States)

    Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.

    2016-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  3. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    Full Text Available Two-dimensional radiance maps from Channel 9 (~60–90 hPa of the Advanced Microwave Sounding Unit (AMSU-A, acquired over southern Scandinavia on 14 January 2003, show plane-wave-like oscillations with a wavelength λh of ~400–500 km and peak brightness temperature amplitudes of up to 0.9 K. The wave-like pattern is observed in AMSU-A radiances from 8 overpasses of this region by 4 different satellites, revealing a growth in the disturbance amplitude from 00:00 UTC to 12:00 UTC and a change in its horizontal structure between 12:00 UTC and 20:00 UTC. Forecast and hindcast runs for 14 January 2003 using high-resolution global and regional numerical weather prediction (NWP models generate a lower stratospheric mountain wave over southern Scandinavia with peak 90 hPa temperature amplitudes of ~5–7 K at 12:00 UTC and a similar horizontal wavelength, packet width, phase structure and time evolution to the disturbance observed in AMSU-A radiances. The wave's vertical wavelength is ~12 km. These NWP fields are validated against radiosonde wind and temperature profiles and airborne lidar profiles of temperature and aerosol backscatter ratios acquired from the NASA DC-8 during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. Both the amplitude and phase of the stratospheric mountain wave in the various NWP fields agree well with localized perturbation features in these suborbital measurements. In particular, we show that this wave formed the type II polar stratospheric clouds measured by the DC-8 lidar. To compare directly with the AMSU-A data, we convert these validated NWP temperature fields into swath-scanned brightness temperatures using three-dimensional Channel 9 weighting functions and the actual AMSU-A scan patterns from each of the 8 overpasses of this region. These NWP-based brightness temperatures contain two-dimensional oscillations due to this resolved stratospheric mountain wave that have an amplitude, wavelength

  4. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?

    Science.gov (United States)

    Dameris, Martin

    2010-10-25

    The discovery of the ozone hole over Antarctica in 1985 was a surprise for science. For a few years the reasons of the ozone hole was speculated about. Soon it was obvious that predominant meteorological conditions led to a specific situation developing in this part of the atmosphere: Very low temperatures initiate chemical processes that at the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such clouds develop at temperatures below about 195 K. Heterogeneous chemical reactions on cloud particles initiate the destruction of ozone molecules. The future evolution of the ozone layer will not only depend on the further development of concentrations of ozone-depleting substances, but also significantly on climate change.

  5. Impacts of Stratospheric Black Carbon on Agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those

  6. Molecular beam studies of stratospheric photochemistry

    Science.gov (United States)

    Moore, Teresa Anne

    1998-12-01

    Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm

  7. Winter warmings, tides and planetary waves: comparisions between CMAM (with interactive chemistry and MFR-MetO observations and data

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2006-10-01

    Full Text Available Following earlier comparisons using the Canadian Middle Atmosphere Model (CMAM, without interactive chemistry, the dynamical characteristics of the model are assessed with interactive chemistry activated. Time-sequences of temperatures and winds at Tromsø (70° N show that the model has more frequent and earlier stratospheric winter warmings than typically observed. Wavelets at mesospheric heights (76, 85 km and from equator to polar regions show that CMAM tides are generally larger, but planetary waves (PW smaller, than medium frequency (MF radar-derived values.

    Tides modelled for eight geographic locations during the four seasons are not strikingly different from the earlier CMAM experiment; although monthly data now allow these detailed seasonal variations (local combinations of migrating and non-migrating components within the mesosphere (circa 50–80 km to be demonstrated for the first time. The dominant semi-diurnal tide of middle latitudes is, as in the earlier papers, quite well realized in CMAM. Regarding the diurnal tide, it is shown here and in an earlier study by one of the authors, that the main characteristics of the diurnal tide at low latitudes (where the S (1,1 mode dominates are well captured by the model. However, in this experiment there are some other unobserved features for the diurnal tide, which are quite similar to those noted in the earlier CMAM experiment: low latitude amplitudes are larger than observed at 82 km, and middle latitudes feature an unobserved low altitude (73 km summer maximum. Phases, especially at low and middle (circa 42° N latitudes, do not match observations well.

    Mesospheric seasonal tidal variations available from the CUJO (Canada U.S. Japan Opportunity radar (MFR network (sites 40–45° N reveal interesting longitudinal differences between the CMAM and the MFR observations. In addition, model and observations differ in the character of the vertical phase variations at each network

  8. Winter warmings, tides and planetary waves: comparisions between CMAM (with interactive chemistry and MFR-MetO observations and data

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2006-10-01

    Full Text Available Following earlier comparisons using the Canadian Middle Atmosphere Model (CMAM, without interactive chemistry, the dynamical characteristics of the model are assessed with interactive chemistry activated. Time-sequences of temperatures and winds at Tromsø (70° N show that the model has more frequent and earlier stratospheric winter warmings than typically observed. Wavelets at mesospheric heights (76, 85 km and from equator to polar regions show that CMAM tides are generally larger, but planetary waves (PW smaller, than medium frequency (MF radar-derived values. Tides modelled for eight geographic locations during the four seasons are not strikingly different from the earlier CMAM experiment; although monthly data now allow these detailed seasonal variations (local combinations of migrating and non-migrating components within the mesosphere (circa 50–80 km to be demonstrated for the first time. The dominant semi-diurnal tide of middle latitudes is, as in the earlier papers, quite well realized in CMAM. Regarding the diurnal tide, it is shown here and in an earlier study by one of the authors, that the main characteristics of the diurnal tide at low latitudes (where the S (1,1 mode dominates are well captured by the model. However, in this experiment there are some other unobserved features for the diurnal tide, which are quite similar to those noted in the earlier CMAM experiment: low latitude amplitudes are larger than observed at 82 km, and middle latitudes feature an unobserved low altitude (73 km summer maximum. Phases, especially at low and middle (circa 42° N latitudes, do not match observations well. Mesospheric seasonal tidal variations available from the CUJO (Canada U.S.\\ Japan Opportunity radar (MFR network (sites 40–45° N reveal interesting longitudinal differences between the CMAM and the MFR observations. In addition, model and observations differ in the character of the vertical phase variations at each network

  9. Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012

    Directory of Open Access Journals (Sweden)

    B. Vogel

    2016-12-01

    Full Text Available Global simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS using artificial tracers of air mass origin are used to analyze transport mechanisms from the Asian monsoon region into the lower stratosphere. In a case study, the transport of air masses from the Asian monsoon anticyclone originating in India/China by an eastward-migrating anticyclone which broke off from the main anticyclone on 20 September 2012 and filaments separated at the northeastern flank of the anticyclone are analyzed. Enhanced contributions of young air masses (younger than 5 months are found within the separated anticyclone confined at the top by the thermal tropopause. Further, these air masses are confined by the anticyclonic circulation and, on the polar side, by the subtropical jet such that the vertical structure resembles a bubble within the upper troposphere. Subsequently, these air masses are transported eastwards along the subtropical jet and enter the lower stratosphere by quasi-horizontal transport in a region of double tropopauses most likely associated with Rossby wave breaking events. As a result, thin filaments with enhanced signatures of tropospheric trace gases were measured in the lower stratosphere over Europe during the TACTS/ESMVal campaign in September 2012 in very good agreement with CLaMS simulations. Our simulations demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere. Young, moist air masses, in particular at the end of the monsoon season in September/October 2012, flooded the extratropical lower stratosphere in the Northern Hemisphere with contributions of up to  ≈  30 % at 380 K (with the remaining fraction being aged air. In contrast, the contribution of young air masses to the Southern Hemisphere is much lower. At the end of October 2012, approximately 1.5 ppmv H2O is found in the lower

  10. Impact of the CO2 and H2O clouds of the Martian polar hood on the polar energy balance

    Science.gov (United States)

    Forget, Francois; Pollack, James B.

    1993-01-01

    Clouds covering extensive areas above the martian polar caps have regularly been observed during the fall and winter seasons of each hemisphere. These 'polar hoods' are thought to be made of H2O and CO2. In particular, the very cold temperatures observed during the polar night by Viking and Mariner 9 around both poles have been identified as CO2 clouds and several models, including GCM, have indicated that the CO2 can condense in the atmosphere at all polar latitudes. Estimating the impact of the polar hood clouds on the energy balance of the polar regions is necessary to model the CO2 cycle and address puzzling problems like the polar caps assymetry. For example, by altering the thermal radiation emitted to space, CO2 clouds alter the amount of CO2 that condenses during the fall and winter season. The complete set of Viking IRTM data was analyzed to define the spatial and temporal properties of the polar hoods, and how their presence affects the energy radiated by the atmosphere/caps system to space was estimated. The IRTM observations provide good spatial and temporal converage of both polar regions during fall, winter, and spring, when a combination of the first and the second Viking year is used. Only the IRTM brightness temperatures at 11, 15, and 20 microns are reliable at martian polar temperatures. To recover the integrated thermal fluxes from the IRTM data, a simple model of the polar hood, thought to consist of 'warm' H2O clouds lying above colder and opaque CO2 clouds was developed. Such a model is based on the analysis of the IRIS spectra, and is consistent with the IRTM data used.

  11. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  12. The Jovian stratosphere in the ultraviolet.

    Science.gov (United States)

    Wagener, R; Caldwell, J; Owen, T; Kim, S J; Encrenaz, T; Combes, M

    1985-01-01

    The center-of-disk reflectivity of Jupiter in the wavelength range from 1450 to 3150 angstroms has been computed from 30 low-dispersion IUE spectra taken during solar maximum in 1978-1980. A vertically inhomogeneous radiative transfer program is used to compute model reflectivities of various stratospheric compositions for comparison. Ammonia and acetylene are well determined because they show narrow absorption bands in the ultraviolet. Above 1800 angstroms, these two gases provide a good fit to the data, but not below. At shorter wavelengths the fit would be much improved by a small amount (0.5-1.5 ppb) of propadiene/allene (C3H4). Voyager IRIS spectra show that the IR bands of allene are not strong enough to be detected in such a small amount. Additional absorption around 1600 angstroms can be reproduced best with the presence of cyclopropane (C3H6, <15 ppb), although other absorbers (e.g., hydrocarbon molecules with more than three carbon atoms, oxygen- or nitrogen-containing molecules, or a high-altitude haze) could also explain the spectrum in this region. The data are too noisy to detect possible CO Cameron band absorption near 2000 angstroms.

  13. Solar Geoengineering Effects on Stratospheric Dynamics, QBO and Transport

    Science.gov (United States)

    Niemeier, U.

    2016-12-01

    Our research aims at a better understanding of effectiveness and risks of solar radiation management (SRM) methods and on the question what climate they would produce. Therefore, we try to understand the evolution of stratospheric sulfur after the injection and the consequences on stratospheric dynamics and on the transport of species.We simulated the evolution of sulfate after the injection of different amounts of SO2 into the stratosphere within the GCM ECHAM5, coupled to the aerosol microphysical module (HAM). The model simulates detailed aerosol microphysical processes, as well as their impact on radiative properties.Using a model version with 90 vertical levels, the model is capable to simulate the quasi biennial oscillation (QBO) in the tropical stratosphere. Our simulations showed an impact of the sulfate aerosol heating in the stratosphere on the QBO phases, which depends on injection rate and height. The westerly phase is prolonged in the lower stratosphere and becomes constant when further increasing the injected amount of sulfur. Injecting 8 Mt(S)/y has the consequence of a complete shut down of the oscillation. Meridional transport of particle is different in the QBO west phase compared to the east phase. The aerosol is stronger confined at the Equator and meridional transport is reduced with the consequence of smaller radiative forcing compared to the same injection rate but with easterly winds in the lower stratosphere.The impact of a changing QBO on transport and radiative forcing, as well as the related consequences on balancing anthropogenic forcing and on climate will be discussed.

  14. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  15. Recrystallization and damage of ice in winter sports.

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Lishman, Ben; Sammonds, Peter

    2017-02-13

    Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40-50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  16. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  17. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives

    Science.gov (United States)

    Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.

  18. Stratospheric Flight of Three Mars Surface Instrument Prototypes

    Science.gov (United States)

    Hudson, T. L.; Neidholdt, E.; Banfield, D. J.; Kokorowski, M.; Kobie, B.; Diaz, E.; Gordon, S.; Doan, D.; Salami, M.

    2012-12-01

    The Analog Site Testbed for Readiness Advancement (ASTRA) is a high-altitude balloon platform for the testing of Mars surface instrument systems. In September 2012 three prototype instruments, a mass spectrometer and two anemometers, were taken to the 6 mbar pressure level of Earth's stratosphere (~34.5 km) above New Mexico to demonstrate their current capabilities and identify the critical path-to-flight steps for future advancement. Each of the instrument systems deployed on ASTRA were rated at TRL 4 at the start of the project. Through laboratory development, environmental testing, and the ASTRA balloon flight, each has advanced to an overall system TRL of 5, with specific subsystems reaching TRL 6. The results from the Rapid Acquisition Mass Spectrometer (RAMS), the Hot-Wire Anemometer (HWA), and the Single-Axis Sonic Anemometer (SASA) from the mid-September flight are presented, with focus given to both scientific results of the terrestrial atmospheric investigations, and the engineering and technical performance of the individual instrument systems and the balloon platform. The RAMS instrument has unique ion-imaging optics which permit the acquisition of a complete mass spectrum in a single CCD frame (~50 ms minimum). This allows RAMS to see rapid fluctuations in atmospheric constituents (necessary for the study of, for instance, vapor fluxes to and from the Mars surface) and has potential applications for laser ablation mass spectroscopy. The HWA is the latest generation of hot-wire anemometer, with heritage from the Mars Pathfinder MET instrument, and the ATMIS sensors developed for the Mars Polar Lander and the NetLander project. In addition to wind speed, a thermocouple cage around the hot filament detects heat plume direction, thus permitting 2-D wind vectors to be established. The SASA is a proof-of-capability device for an eventual three-axis sonic anemometer design. Developed under PIDDP funding by Dr. Don Banfield of Cornell (thus a contributed

  19. IDRC Bulletin — Winter 2017

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-16

    Jan 16, 2018 ... In this issue, read the research results from our Safe and Inclusive Cities program and don't forget that the Joint Canada-Israel Health Research Program 2018 call is now open. IDRC Bulletin logo IDRC Bulletin — Winter 2017. Featured this month. View of Port-au-Prince in Haiti, March 30, 2016. Safe and ...

  20. Learning through a Winter's Tale

    Science.gov (United States)

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this…

  1. Winter School on Coding Theory

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. Winter School on Coding Theory. Information and Announcements Volume 8 Issue 8 August 2003 pp 111-111. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/08/0111-0111. Resonance ...

  2. Nuclear Winter: The Continuing Debate.

    Science.gov (United States)

    1987-03-23

    prospect of human annihilation. Speculation about the environmental results of a ’long darkness’ were considered by Paul Ehrlich .10 The term nuclear winter...Washington D.C., 1983 The Cold and the Dark: The World after Nuclear War, by Paul Ehrlich , et al. New York: Norton, 1984. (QH545 N83 C66 1983k Caldicott

  3. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  4. Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set is a merged record of stratospheric ozone and water vapor measurements taken by a number of...

  5. Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts

    Science.gov (United States)

    Gerber, E. P.; Orbe, C.; Polvani, L. M.

    2009-12-01

    The coupling between the stratosphere and troposphere following Stratospheric Sudden Warming (SSW) events is investigated in an idealized atmospheric General Circulation Model, with focus on the influence of stratospheric memory on the troposphere. Ensemble forecasts are performed to confirm the role of the stratosphere in the observed equatorward shift of the tropospheric midlatitude jet following an SSW. It is demonstrated that the tropospheric response to the weakening of the lower stratospheric vortex is robust, but weak in amplitude and thus easily masked by tropospheric variability. The amplitude of the response in the troposphere is crucially sensitive to the depth of the SSW. The persistence of the response in the troposphere is attributed to both the increased predictability of the stratosphere following an SSW, and the dynamical coupling between the tropospheric jet and lower stratosphere. These results suggest value in resolving the stratosphere and assimilating upper atmospheric data in forecast models.

  6. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2018-03-01

    perfect global ozone is assimilated in addition to radiance observations, wind and temperature error decreases of up to ∼ 3 m s−1 and ∼ 1 K occur in the tropical upper stratosphere. Assimilation of noisy global ozone (2 % errors applied results in error reductions of ∼ 1 m s−1 and ∼ 0.5 K in the tropics and slightly increased temperature errors in the Northern Hemisphere polar region. Reduction of the ozone sampling frequency also reduces the benefit of ozone throughout the stratosphere, with noisy polar-orbiting data having only minor impacts on wind and temperature when assimilated with radiances. An examination of ensemble cross-correlations between ozone and other variables shows that a single ozone observation behaves like a potential vorticity (PV charge, or a monopole of PV, with rotation about a vertical axis and vertically oriented temperature dipole. Further understanding of this relationship may help in designing observation systems that would optimize the impact of ozone on the dynamics.

  7. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    Science.gov (United States)

    Allen, Douglas R.; Hoppel, Karl W.; Kuhl, David D.

    2018-03-01

    assimilated in addition to radiance observations, wind and temperature error decreases of up to ˜ 3 m s-1 and ˜ 1 K occur in the tropical upper stratosphere. Assimilation of noisy global ozone (2 % errors applied) results in error reductions of ˜ 1 m s-1 and ˜ 0.5 K in the tropics and slightly increased temperature errors in the Northern Hemisphere polar region. Reduction of the ozone sampling frequency also reduces the benefit of ozone throughout the stratosphere, with noisy polar-orbiting data having only minor impacts on wind and temperature when assimilated with radiances. An examination of ensemble cross-correlations between ozone and other variables shows that a single ozone observation behaves like a potential vorticity (PV) charge, or a monopole of PV, with rotation about a vertical axis and vertically oriented temperature dipole. Further understanding of this relationship may help in designing observation systems that would optimize the impact of ozone on the dynamics.

  8. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Wolf, J.

    2004-05-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, will carry a 3-meter-class telescope onboard a Boeing 747SP aircraft to altitudes of 41,000 to 45,000 ft, above most of the atmosphere's IR-absorbing water vapor. The telescope was developed and built in Germany and has been delivered to the U.S. in September 2002. The integration into the B747SP has been com- pleted and functional tests are under way in Waco, Texas. In early 2005 flight-testing of the observatory will initially be dedi-cated to the re-certification of the modified aircraft, then performance tests of the telescope and the electronics and data systems will commence. Later in 2005 after transferring to its home base, NASA's Ames Research Center in Moffett Field, California, SOFIA will start astrophysical observations. A suite of specialized infrared cameras and spectrometers covering wave-lengths between 1 and 600 ?m is being developed by U.S. and German science institutions. In addition to the infrared instruments, a high-speed visible range CCD camera will use the airborne observatory to chase the shadows of celestial bodies during occultations. Once SOFIA will be in routine operations with a planned observing schedule of up to 960 hours at altitude per year, it might also be available as a platform to serendipitous observations not using the main telescope, such as recordings of meteor streams or the search for extra-solar planets transiting their central stars. These are areas of research in which amateur astronomers with relatively small telescopes and state-of-the-art imaging equipment can contribute.

  9. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  10. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation.

    Science.gov (United States)

    Black, Caitlin; Southwell, Colin; Emmerson, Louise; Lunn, Daniel; Hart, Tom

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter.

  11. Winter movement dynamics of black brant

    Science.gov (United States)

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture m