WorldWideScience

Sample records for winter middle atmosphere

  1. Large-scale structure of the middle atmosphere during the winter 1983/84

    Science.gov (United States)

    Petzoldt, K.

    The circulation of the stratosphere and mesosphere in the winter 83/84 is shown as an example of the dynamical processes which lead to the fluctuations in the middle atmosphere over high latitudes. Winds and temperatures measured by rockets, radiosondes, and satellites during the MAP/WINE campaign are combined. The coupling of the atmosphere over high latitudes with the transient planetary waves over middle and low latitudes can be seen by the flux of wave activity. The connected eddy heat and momentum transports are essential for the interaction with the mean zonal wind.

  2. Polar warming in the middle atmosphere of Mars

    Science.gov (United States)

    Deming, D.; Mumma, M. J.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1986-01-01

    During the 1984 Mars opposition, ground-based laser heterodyne spectroscopy was obtained for the nonthermal core emission of the 10.33-micron R(8) and 10.72-micron P(32) lines of C-12(O-16)2 at 23 locations on the Martian disk. It is deduced on the basis of these data that the temperature of the middle Martian atmosphere varies with latitude, and a meridional gradient of 0.4-0.9 K/deg latitude is indicated. The highest temperatures are noted to lie at high latitudes in the winter hemisphere; as in the terrestrial case of seasonal effects at the menopause, this winter polar warming in the Martian middle atmosphere requires departures from radiative equilibrium. Two-dimensional circulation model comparisons with these results indicate that atmospheric dust may enhance this dynamical heating at high winter latitudes.

  3. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  4. Response of the middle atmosphere to the geomagnetic storm of November 2004

    Science.gov (United States)

    Hocke, Klemens

    2017-02-01

    Ozone and temperature profiles of the satellite microwave limb sounder Aura/MLS are used for the derivation of the middle atmospheric response to the geomagnetic superstorm of 9 November 2004. We find a destruction of the tertiary ozone layer at 0.022 hPa (77 km) in the northern winter hemisphere lasting for about one week. This effect is surely due to the solar proton event (SPE) of November 2004. At the same time, the zonal mean temperature is enhanced by 5-10 K in the northern polar mesosphere. On the other hand, the zonal mean temperature is decreased by 5-10 K in the northern polar stratosphere. We do not think that the strong temperature perturbations are directly related to the SPE. It seems that the polar vortex was moved by the geomagnetic storm, and this vortex movement caused the strong temperature variations in the zonal mean. However, internal variability of temperature in the polar middle atmosphere in winter without any significant link to the geomagnetic storm cannot be excluded.

  5. Spring Changeover of the Middle Atmosphere Circulation Compared with Rocket Wind Data up to 80 Km

    Science.gov (United States)

    Entzian, G.; Tarasenko, D. A.; Lauter, E. A.

    1984-01-01

    The middle atmosphere circulation is governed by two seasonal basic states in winter and summer, twice a year separated by relatively shortlived reversal periods. These seasonal basic states of circulation and the spring changeover period between them are investigated.

  6. On the differences between early and middle winter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic

    International Nuclear Information System (INIS)

    Peng, S.; Mysak, L.A.; Derome, J.; Ritchie, H.; Dugas, B.

    1994-01-01

    Using an atmospheric global spectral model at RPN with T42 horizontal resolution, we have shown that the winter atmosphere in the mid-latitude is capable of reacting to the SST anomalies prescribed in the northwest Atlantic with two different responses. The nature of the response is determined by the climatological conditions of the winter system. Experiments are conducted using either the perpetual November or January conditions, with or without the SST anomalies prescribed. Six 50-day integrations, with positive (or negative) SST anomalies prescribed, initialized from independent November analyses and similarly, four runs initialized from January analyses, have been examined in comparison with their control runs

  7. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  8. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  9. ARIS-Campaign: intercomparison of three ground based 22 GHz radiometers for middle atmospheric water vapor at the Zugspitze in winter 2009

    Directory of Open Access Journals (Sweden)

    C. Straub

    2011-09-01

    Full Text Available This paper presents the Alpine Radiometer Intercomparison at the Schneefernerhaus (ARIS, which took place in winter 2009 at the high altitude station at the Zugspitze, Germany (47.42° N, 10.98° E, 2650 m. This campaign was the first direct intercomparison between three new ground based 22 GHz water vapor radiometers for middle atmospheric profiling with the following instruments participating: MIRA 5 (Karlsruhe Institute of Technology, cWASPAM3 (Max Planck Institute for Solar System Research, Katlenburg-Lindau and MIAWARA-C (Institute of Applied Physics, University of Bern. Even though the three radiometers all measure middle atmospheric water vapor using the same rotational transition line and similar fundamental set-ups, there are major differences between the front ends, the back ends, the calibration concepts and the profile retrieval. The spectrum comparison shows that all three radiometers measure spectra without severe baseline artifacts and that the measurements are in good general agreement. The measurement noise shows good agreement to the values theoretically expected from the radiometer noise formula. At the same time the comparison of the noise levels shows that there is room for instrumental and calibration improvement, emphasizing the importance of low elevation angles for the observation, a low receiver noise temperature and an efficient calibration scheme.

    The comparisons of the retrieved profiles show that the agreement between the profiles of MIAWARA-C and cWASPAM3 with the ones of MLS is better than 0.3 ppmv (6% at all altitudes. MIRA 5 has a dry bias of approximately 0.5 ppm (8% below 0.1 hPa with respect to all other instruments. The profiles of cWASPAM3 and MIAWARA-C could not be directly compared because the vertical region of overlap was too small. The comparison of the time series at different altitude levels show a similar evolution of the H2O volume mixing ratio (VMR for the ground based

  10. On the winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in middle to high latitudes

    Science.gov (United States)

    Sonnemann, G. R.; Hartogh, P.; Jarchow, Ch.; Grygalashvyly, M.; Berger, U.

    Long-term measurements of ozone by means of the microwave technique performed at Lindau (51.66°N, 10.13°E), Germany, revealed a winter anomaly of the night-to-day ratio (NDR) which is more clearly pronounced as the so-called tertiary nighttime ozone maximum. The domain of occurrence also differs somewhat from that of the nighttime ozone enhancement. The maximum winter-to-summer ratio amounts to a value of two to three in 70 km height. The annual variation of the NDR is modulated by oscillations of planetary time scale. 3D-calculations on the basis of the advanced GCM LIMA essentially reflect the observations but also show some typical differences which probably result from a somewhat too humid model atmosphere in middle latitudes. We analyzed the most important impacts on the middle mesospheric ozone. The strongest impacts are connected with the annual variation of water vapor and the so-called Doppler-Sonnemann effect considering the influence of the zonal wind on the chemistry due to the fact that ozone is subjected to an effective dissociation longer than molecular oxygen for an increasing solar zenith angle. Because of that the net odd oxygen production decreases faster than the formation of atomic oxygen from ozone which is involved in an odd oxygen destructing catalytic cycle. A shortening of the time of sunset by a west wind regime increases the nighttime ozone level relatively, whereas the daytime ozone is less influenced by the zonal wind in the domain considered.

  11. Humidity estimate for the middle Eocene Arctic rain forest

    Science.gov (United States)

    Jahren, A. Hope; Silveira Lobo Sternberg, Leonel

    2003-05-01

    The exquisite preservation of fossilized Metasequoia trees that grew near 80°N latitude during the middle Eocene (ca. 45 Ma) in Nunavut, Canada, allowed for δD and δ18O analyses of cellulose, techniques previously restricted to wood <30,000 yr old. From the isotopic results, we determined that the middle Eocene Arctic atmosphere contained ˜2× the water found in the region's atmosphere today. This water vapor contributed to a middle Eocene greenhouse effect that insulated the polar region during dark polar winters.

  12. The Middle Atmosphere Program: Winter In Northern Europe (MAP/WINE)

    Science.gov (United States)

    Vonzahn, U.

    1982-04-01

    The goals of map/wind (winter in Northern Europe) are to better understand: (1) the interaction of planetary waves of tropospheric origin; (2) the temporal and spatial development of sudden stratospheric warmings; (3) the temporal and spatial development of mesospheric cooling events in conjunction with stratospheric warmings; (4) the vertical and horizontal transport of minor constituents; (5) the effects on the chemistry of neutral and charged species of the large temperature changes occurring during stratospheric warmings and mesospheric cooling; (6) sources of turbulent energy; (7) the temporal and spatial development of turbulent layers; and (8) the contributions of dynamical processes to the heating and cooling of the mesospheric and turbopause region.

  13. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation

    Directory of Open Access Journals (Sweden)

    D. Handorf

    2012-01-01

    Full Text Available The response of the Arctic atmosphere to low and high sea ice concentration phases based on European Center for Medium-Range Weather Forecast (ECMWF Re-Analysis Interim (ERA-Interim atmospheric data and Hadley Centre's sea ice dataset (HadISST1 from 1989 until 2010 has been studied. Time slices of winter atmospheric circulation with high (1990–2000 and low (2001–2010 sea ice concentration in the preceding August/September have been analysed with respect to tropospheric interactions between planetary and baroclinic waves. It is shown that a changed sea ice concentration over the Arctic Ocean impacts differently the development of synoptic and planetary atmospheric circulation systems. During the low ice phase, stronger heat release to the atmosphere over the Arctic Ocean reduces the atmospheric vertical static stability. This leads to an earlier onset of baroclinic instability that further modulates the non-linear interactions between baroclinic wave energy fluxes on time scales of 2.5–6 d and planetary scales of 10–90 d. Our analysis suggests that Arctic sea ice concentration changes exert a remote impact on the large-scale atmospheric circulation during winter, exhibiting a barotropic structure with similar patterns of pressure anomalies at the surface and in the mid-troposphere. These are connected to pronounced planetary wave train changes notably over the North Pacific.

  14. Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project

    Science.gov (United States)

    Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.

    2018-03-01

    This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.

  15. The effects of solar particle events on the middle atmosphere

    International Nuclear Information System (INIS)

    Jackman, C.H.; Douglass, A.R.; Meade, P.E.

    1989-01-01

    Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels

  16. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  17. Sulphate and desertification signals in Middle Eastern temperature trends

    International Nuclear Information System (INIS)

    Nasrallah, H.A.; Balling, R.C. Jr.

    1994-01-01

    Analysis of Middle Eastern annual temperature anomalies over the past 40 years reveals statistically significant warming over this time period of 0.07 C per decade. The warming is most pronounced over the spring season and least apparent in the winter season. Spatial analysis reveals a positive relationship between Middle Eastern warming and the degree of human-induced desertification and a negative relationship between local warming and the atmospheric concentration of sulphate

  18. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  19. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2011-11-01

    Full Text Available We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  20. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  1. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  2. Trace gas transport in the 1999/2000 Arctic winter: comparison of nudged GCM runs with observations

    Directory of Open Access Journals (Sweden)

    M. K. van Aalst

    2004-01-01

    Full Text Available We have compared satellite and balloon observations of methane (CH4 and hydrogen fluoride (HF during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM. For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of chemistry and transport processes. However, caution must be used inside the polar vortex, particularly late in the winter. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents some aspects of the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match observations well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.

  3. Direct energy inputs to the middle atmosphere

    Science.gov (United States)

    Rosenberg, T. J.; Lanzerotti, L. J.

    1979-01-01

    As a working definition of the extent of the middle atmosphere (MA), the height range from 30 to 100 km was adopted. The neutral and ionic composition and the dynamics within this height range are, for the most part, poorly understood. From available information, the importance of various particle and photon energy sources, including their variability, for ionization of the neutral atmosphere in this height range is assessed. The following topics are discussed: (1) penetration of the MA by particle and electromagnetic energy; (2) ionization sources for the MA; (3) galactic cosmic rays; (4) solar H Ly alpha, other EUV, and X-rays; (5) magnetospheric electrons and bremsstrahlung X-rays; and (6) solar cosmic rays.

  4. SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT

    NARCIS (Netherlands)

    CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR

    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was

  5. Climatology and energy budget of the northern hemisphere middle stratosphere during 1972

    Energy Technology Data Exchange (ETDEWEB)

    Tahnk, W R [Air Force Geophysics Lab., Bedforo, MA; Newell, R E

    1975-01-01

    The 10-2 mb (approx. 30 to 40 km) layer of the atmosphere in winter receives energy from two different sources: mechanical energy is carried up from the troposphere and lower stratosphere while energy is generated in situ by the gradients of radiative heating and cooling. We show here from data for 1972 that the latter primarily governs the energy budget of the middle stratosphere in early winter while the former becomes of comparable size, and often dominates, in the middle and late winter. Radiative energy sources for the summer hemisphere are very small, as there is considerable compensation between solar heating through ozone absorption and infrared cooling by carbon dioxide and ozone. Standing and travelling waves are quite clear-cut at 5 and 2 mb in winter, as much of the chaos of lower regions is filtered out in the lower stratosphere; the standing waves at 2 mb may reflect surface properties more effectively than flow patterns at lower levels. A westward-travelling wave, with a period of about a month, was evident in early 1972.

  6. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  7. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  8. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-10-01

    Full Text Available Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius' law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(v=0...9+O3 and OH(v=0...9+O to estimate the effective (i.e. population weighted reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(v=0...9+O3 can be larger by a factor of up to 1470 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of Ox and O3 compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or Ox sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1% effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%, while its effect on the HO2 source is larger in the lower thermosphere (up to 1.5% for polar winter and 2.5% for midlatitude night conditions. For OH(v=0...9+O the effective rate coefficients are lower by up to 11% than those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −3% (midlatitudinal nighttime lowermost thermosphere, i.e. neglecting vibrational excitation overestimates the odd

  9. A new numerical model of the middle atmosphere. 2: Ozone and related species

    Science.gov (United States)

    Garcia, Rolando R.; Solomon, Susan

    1994-01-01

    A new two-dimensional model with detailed photochemistry is presented. The model includes descriptions of planetary wave and gravity wave propagation and dissipation to characterize the wave forcing and associated mixing in the stratosphere and mesosphere. Such a representation allows for explicit calculation of the regions of strong mixing in the middle atmosphere required for accurate simulation of trace gas transport. The new model also includes a detailed description of photochemical processes in the stratosphere and mesosphere. The downward transport of H2, H2O, and NO(y) from the mesosphere to the stratosphere is examined, and it is shown that mesospheric processes can influence the distributions of these chemical species in polar regions. For HNO3 we also find that small concentrations of liquid aerosols above 30 km could play a major role in determining the abundance in polar winter at high latitudes. The model is also used to examine the chemical budget of ozone in the midlatitude stratosphere and to set constraints on the effectiveness of bromine relative to chlorine for ozone loss and the role of the HO2 + BrO reaction. Recent laboratory data used in this modeling study suggest that this process greatly enhances the effectiveness of bromine for ozone destruction, making bromine-catalyzed chemistry second only to HO(x)-catalyzed ozone destruction in the contemporary stratosphere at midlatitudes below about 18 km. The calculated vertical distribution of ozone in the lower stratosphere agrees well with observations, as does the total column ozone during most seasons and latitudes, with the important exception of southern hemisphere winter and spring.

  10. Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades

    Science.gov (United States)

    Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.

    2017-08-01

    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.

  11. Impacts of SST anomalies on the North Atlantic atmospheric circulation: a case study for the northern winter 1995/1996

    Energy Technology Data Exchange (ETDEWEB)

    Losada, T.; Rodriguez-Fonseca, B. [Universidad Complutense de Madrid, Departmento de Geofisica y Meteorologia, Madrid (Spain); Mechoso, C.R.; Ma, H.Y. [University of California Los Angeles, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States)

    2007-12-15

    The present paper selects the northern winter of December 1995-February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Nina event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased

  12. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  13. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  14. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    Science.gov (United States)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T

  15. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2001-05-01

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  16. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  17. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  18. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  19. Fossil fuel CO2 estimation by atmospheric 14C measurement and CO2 mixing ratios in the city of Debrecen, Hungary

    International Nuclear Information System (INIS)

    Molnar, M.; Svingor, E.; Haszpra, L.; Ivo Svetlik; Veres, M.

    2010-01-01

    A field unit was installed in the city of Debrecen (East Hungary) during the summer of 2008 to monitor urban atmospheric fossil fuel CO 2 . To establish a reference level simultaneous CO 2 sampling has been carried out at a rural site (Hegyhatsal) in Western Hungary. Using the Hungarian background 14 CO 2 observations from the rural site atmospheric fossil fuel CO 2 component for the city of Debrecen was reported in a regional 'Hungarian' scale. A well visible fossil fuel CO 2 peak (10-15 ppm) with a maximum in the middle of winter 2008 (January) was observed in Debrecen air. Significant local maximum (∼20 ppm) in fossil fuel CO 2 during Octobers of 2008 and 2009 was also detected. Stable isotope results are in agreement with the 14 C based fossil fuel CO 2 observations as the winter of 2008 and 2009 was different in atmospheric δ 13 C variations too. The more negative δ 13 C of atmospheric CO 2 in the winter of 2008 means more fossil carbon in the atmosphere than during the winter of 2009. (author)

  20. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  1. Links between North Atlantic atmospheric blocking and recent trends in European winter precipitation

    Science.gov (United States)

    Ummenhofer, Caroline; Seo, Hyodae; Kwon, Young-Oh; Joyce, Terrence

    2015-04-01

    European precipitation has sustained robust trends during wintertime (January - March) over recent decades. Central, western, and northern Europe have become wetter by an average 0.1-0.3% per annum for the period 1901-2010, while southern Europe, including the Iberian Peninsula, much of Italy and the Balkan States, has sustained drying of -0.2% per annum or more over the same period. The overall pattern is consistent across different observational precipitation products, while the magnitude of the precipitation trends varies amongst data sets. Using cluster analysis, which identifies recurrent states (or regimes) of European winter precipitation by grouping them according to an objective similarity criterion, changes in the frequency of dominant winter precipitation patterns over the past century are evaluated. Considerable multi-decadal variability exists in the frequency of dominant winter precipitation patterns: more recent decades are characterised by significantly fewer winters with anomalous wet conditions over southern, western, and central Europe. In contrast, winters with dry conditions in western and southern Europe, but above-average rainfall in western Scandinavia and the northern British Isles, have been more common recently. We evaluate the associated multi-decadal large-scale circulation changes across the broader extratropical North Atlantic region, which accompany the observed wintertime precipitation variability using the 20th Century reanalysis product. Some influence of the North Atlantic Oscillation (NAO) is apparent in modulating the frequency of dominant precipitation patterns. However, recent trends in the characteristics of atmospheric blocking across the North Atlantic sector indicate a change in the dominant blocking centres (near Greenland, the British Isles, and west of the Iberian Peninsula). Associated changes in sea level pressure, storm track position and strength, and oceanic heat fluxes across the North Atlantic region are also

  2. Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2009-07-01

    Full Text Available The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios.

    From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1 a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.

  3. Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.

    Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.

  4. Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project

    Czech Academy of Sciences Publication Activity Database

    Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L.G.; Kvaerna, T.; Laštovička, Jan; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J.D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Šindelářová, Tereza; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, Jaroslav

    2018-01-01

    Roč. 39, č. 2 (2018), s. 171-225 ISSN 0169-3298 EU Projects: European Commission(XE) 284387 - ARISE; European Commission(XE) 653980 - ARISE2 Institutional support: RVO:68378289 Keywords : Atmospheric dynamics * Middle atmosphere * Infrasound * Gravity waves * Volcanoes * Atmospheric disturbances * Extreme events * stratospheric temperature trends * total solar eclipse * wave momentum flux * natural infrasound * acoustic-waves * polar-low * model simulations * sudden warmings * Doppler lidar Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.413, year: 2016 https://link.springer.com/article/10.1007/s10712-017-9444-0

  5. Eustachian tube function and middle ear barotrauma associated with extremes in atmospheric pressure.

    Science.gov (United States)

    Miyazawa, T; Ueda, H; Yanagita, N

    1996-11-01

    Eustachian tube (ET) function was studied by means of sonotubometry and tubotympano-aerodynamography (TTAG) prior to and following exposure to hypobaric or hyperbaric conditions. Forty normal adults were subjected to hypobaric pressure. Fifty adults who underwent hyperbaric oxygen (HBO) therapy also were studied. Following hypobaric exposure, 14 of 80 ears (17.5%) exhibited middle ear barotrauma. Following hyperbaric exposure, 34 of 100 ears (34%) exhibited middle ear barotrauma. Dysfunction of the ET, characterized by altered active and passive opening capacity, was more prevalent following exposure to extremes in atmospheric pressure compared to baseline. The ET function, which was impaired after the first HBO treatment, improved gradually over the next 2 hours. Overall, however, ET function was worse after the seventh treatment. The patients who developed barotrauma exhibited worse ET function prior to hypobaric or hyperbaric exposure. Thus, abnormal ET function can be used to predict middle ear barotrauma prior to exposure to hypobaric or hyperbaric atmospheric pressure.

  6. Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. F. Scinocca

    2008-12-01

    Full Text Available The Canadian Centre for Climate Modelling and Analysis third generation atmospheric general circulation model (AGCM3 is described. The discussion summarizes the details of the complete physics package emphasizing the changes made relative to the second generation version of the model. AGCM3 is the underlying model for applications which include the IPCC fourth assessment, coupled atmosphere-ocean seasonal forecasting, the first generation of the CCCma earth system model (CanESM1, and middle-atmosphere chemistry-climate modelling (CCM. Here we shall focus on issues related to an upwardly extended version of AGCM3, the Canadian Middle-Atmosphere Model (CMAM. The CCM version of CMAM participated in the 2006 WMO/UNEP Scientific Assessment of Ozone Depletion and issues concerning its climate such as the impact of gravity-wave drag, the modelling of a spontaneous QBO, and the seasonality of the breakdown of the Southern Hemisphere polar vortex are discussed here.

  7. Response of the middle atmosphere to solar UV and dynamical perturbations

    International Nuclear Information System (INIS)

    Chandra, S.

    1989-01-01

    Recent studies of solar UV related changes of ozone and temperature have considerably improved the understanding of the solar UV and ozone relationship in the middle atmosphere on time scales of a solar rotation. These studies have shown that during periods of high solar activity, ozone in the upper stratosphere has a measurable response to changes in the solar UV flux in accordance with theoretical predictions. The problem of measuring solar response of the stratospheric ozone and temperature on time scales of a solar cycle is more difficult. In the altitude range of 2 mb, the model based calculations, based on plausible scenarios of solar UV variation, suggest a change of less than 4 percent in ozone mixing ratio and 1 to 2 K in temperature. The relative response was studied of the middle atmosphere to solar forcing at 155 and 27 day periods as indicated from the spectral analyses of a number of solar indices

  8. Future changes in atmospheric rivers and their implications for winter flooding in Britain

    International Nuclear Information System (INIS)

    Lavers, David A; Allan, Richard P; Brayshaw, David J; Villarini, Gabriele; Lloyd-Hughes, Benjamin; Wade, Andrew J

    2013-01-01

    Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about $1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074–2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing. (letter)

  9. Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere.

    Science.gov (United States)

    Lastovicka, J.

    1996-05-01

    Geomagnetic storm effects at heights of about 0-100 km are briefly (not comprehensively) reviewed, with emphasis being paid to middle latitudes, particularly to Europe. Effects of galactic cosmic rays, solar particle events, relativistic and highly relativistic electrons, and IMF sector boundary crossings are briefly mentioned as well. Geomagnetic storms disturb the lower ionosphere heavily at high latitudes and very significantly also at middle latitudes. The effect is almost simultaneous at high latitudes, while an after-effect dominates at middle latitudes. The lower thermosphere is disturbed significantly. In the mesosphere and stratosphere, the effects become weaker and eventually non-detectable. There is an effect in total ozone but only under special conditions. Surprisingly enough, correlations with geomagnetic storms seem to reappear in the troposphere, particularly in the Northern Hemisphere. Atmospheric electricity is affected by geomagnetic storms, as well. We essentially understand the effects of geomagnetic storms in the lower ionosphere, but there is a lack of mechanisms to explain correlations found deeper in the atmosphere, particularly in the troposphere. There seem to be two different groups of effects with possibly different mechanisms - those observed in the lower ionosphere, lower thermosphere and mesosphere, and those observed in the troposphere.

  10. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  11. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

    Directory of Open Access Journals (Sweden)

    F.-J. Lübken

    2006-01-01

    Full Text Available In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N into strong VHF radar echoes called 'Polar Mesosphere Winter Echoes' (PMWE. The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively. Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km: viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on

  12. Middle atmosphere electrical energy coupling

    Science.gov (United States)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  13. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  14. Dispersion of atmospheric air pollution in summer and winter season.

    Science.gov (United States)

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech

    2017-11-04

    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  15. Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations

    Science.gov (United States)

    Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R. D.; Case, J. L.; Iguchi, T.; Kemp, E.; Putman, W.; Wang, W.; Wu, D.; Tian, B.

    2018-01-01

    Winter precipitation (PR) characteristics in western United States (WUS) related to atmospheric river (AR) landfalls are examined using the observation-based PRISM data. The observed AR-related precipitation characteristics are in turn used to evaluate model precipitation data from the NASA MERRA2 reanalysis and from seven dynamical downscaling simulations driven by the MERRA2. Multiple metrics including mean bias, Taylor diagram, and two skill scores are used to measure model performance for three climatological sub-regions in WUS, Pacific Northwest (PNW), Pacific Southwest (PSW) and Great Basin (GB). All model data well represent the winter-mean PR with spatial pattern correlations of 0.8 or higher with PRISM for the three sub-regions. Higher spatial resolutions and/or the use of spectral nudging generally yield higher skill scores in simulating the geographical distribution of PR for the entire winter. The PRISM data shows that the AR-related fraction of winter PR and associated daily PR PDFs in each region vary strongly for landfall locations; AR landfalls in the northern WUS coast (NC) affect mostly PNW while those in the southern WUS coast (SC) affect both PSW and GB. NC (SC) landfalls increase the frequency of heavy PR in PNW (PSW and GB) but reduce it in PSW (PNW). All model data reasonably represent these observed variations in the AR-related winter PR fractions and the daily PR PDFs according to AR landfall locations. However, unlike for the entire winter period, no systematic effects of resolution and/or spectral nudging are identified in these AR-related PR characteristics. Dynamical downscaling in this study generally yield positive added values to the MERRA2 PR in the AR-related PR fraction for most sub-regions and landfall locations, most noticeably for PSW by NU-WRF. The downscaling also generate positive added value in p95 for PNW, but negative values for PSW and GB due to overestimation of heavy precipitation events.

  16. Temperature and ice layer trends in the summer middle atmosphere

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  17. Spatio-temporal variability of the polar middle atmosphere. Insights from over 30 years of research satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Lahoz, W.A.; Orsolini, Y.J.; Manney, G.L.; Minschwaner, K.; Allen, D.R.; Errera, Q.; Jackson, D.R.; Lambert, A.; Lee, J.; Pumphrey, H.; Schwartz, M.; Wu, D.

    2012-07-01

    We discuss the insights that research satellite observations from the last 30 years have provided on the spatio-temporal variability of the polar middle atmosphere. Starting from the time of the NASA LIMS (Limb Infrared Monitor of the Stratosphere) and TOMS (Total Ozone Mapping Spectrometer) instruments, both launched in 1978, we show how these observations have augmented our knowledge of the polar middle atmosphere, in particular how information on ozone and tracers has augmented our knowledge of: (i) the spatial and temporal characteristics of the wintertime polar stratosphere and the summertime circulation; and (ii) the roles of chemistry and transport in determining the stratospheric ozone distribution. We address the increasing joint use of observations and models, in particular in data assimilation, in contributing to this understanding. Finally, we outline requirements to allow continuation of the wealth of information on the polar middle atmosphere provided by research satellites over the last 30 years.(Author)

  18. Dynamics of the middle atmosphere as observed by the ARISE project

    Science.gov (United States)

    Blanc, E.

    2015-12-01

    It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the

  19. A perspective of Middle-Atmosphere Dynamics (MAD) studies at the New International Equatorial Observatory (NIEO)

    Science.gov (United States)

    Yamanaka, M. D.; Fukao, S.

    1989-01-01

    The equatorial region has attracted many MAD studies mainly based on data of limited locations and resolutions. Established at NIEO are: (1) Climatology of the equatorial middle atmosphere (all of the mean zonal flow, the meridional and/or east-west circulations and the planetary/gravity waves are described based on massive, reliable data statistics); (2) Troposphere-stratosphere coupling at the equator (the candidate location of NIEO is just at the stratospheric fountain area where the tracers and waves are pumped up into the middle atmosphere); and (3) Mesosphere-thermosphere coupling at the equator; thermospheric superrotation, which may be caused either by ion drag or by tidal breaking, is examined in detail by observations covering a wide altitude range from the mesosphere through the thermosphere.

  20. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  1. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  2. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  3. A study on characteristics and sources of winter time atmospheric aerosols in Kyoto and Seoul using PIXE and supplementary analysis

    International Nuclear Information System (INIS)

    Ma, C.-J.; Kasahara, M.; Tohno, S.; Yeo, H.-G.

    1999-01-01

    Atmospheric aerosols were collected using a two stages filter sampler to classify into the fine and coarse fraction in Kyoto and Seoul in winter season. Elemental concentrations of aerosols were analyzed by PIXE and EAS as well as ion concentrations by IC. Analyzed data were used to source of aerosol particles. (author)

  4. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    Science.gov (United States)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  5. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  6. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  7. Trends in laminae in ozone profiles in relation to trends in some other middle atmospheric parameters

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter

    2006-01-01

    Roč. 31, 1-3 (2006), s. 46-53 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3042101 Grant - others:European Commission(XE) EVK2-CT-2001-00133 (CANDIDOS) Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Middle atmosphere * Ozone * Atmospheric dynamics Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.846, year: 2006

  8. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  9. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    Science.gov (United States)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation

  10. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  11. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  12. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  13. A trajectory analysis of atmospheric transport of black carbon aerosols to Canadian high Arctic in winter and spring (1990–2005

    Directory of Open Access Journals (Sweden)

    L. Huang

    2010-06-01

    Full Text Available Black carbon (BC particles accumulated in the Arctic troposphere and deposited on snow have been calculated to have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, seven distinct transport pathways (or clusters affecting Alert (82.5° N, 62.5° W, Nunavut in Canada are identified in this work. Transport frequency associated with each pathway is obtained as the fraction of trajectories in that cluster. Based on atmospheric transport frequency and BC surface flux from surrounding regions (i.e. North America, Europe, and former USSR, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measurements at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively. Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Other factors, such as deposition, could also contribute to the variability in BC concentrations but were not considered in this analysis. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that former USSR is the major contributor to the near-surface BC levels at the Canadian high Arctic site with an average contribution of about 67% during the 16-year period, followed by European Union (18% and North America (15%. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more

  14. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  15. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    Science.gov (United States)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  16. Direct observations of reactive atmospheric gases at ZOTTO station in the middle of Siberia as a base for large-scale modeling of atmospheric chemistry over Northern Eurasia

    Science.gov (United States)

    Skorokhod, Andrey; Belikov, Igor; Shtabkin, Yury; Moiseenko, Konstantin; Pankratova, Natalia; Vasileva, Anastasia; Rakitin, Vadim; Heimann, Martin

    2015-04-01

    Direct observations of atmospheric air composition are very important for a comprehensive understanding of atmospheric chemistry over Northern Eurasia and its variability and trends driven by abrupt climatic and ecosystem changes and anthropogenic pressure. Atmospheric air composition (including greenhouse gases and aerosols), its trends and variability is still insufficiently known for most of the nearly uninhabited areas of Northern Eurasia. This limits the accuracy of both global and regional models, which simulate climatological and ecosystem changes in this highly important region. From that point of view, the Zotino Tall Tower Observatory (ZOTTO) in the middle of Siberia (near 60N, 90E), launched in 2006 and governed by a scientific international consortium plays an important role providing unique information about concentrations of greenhouse and reactive trace gases, as well as aerosols. Simulations of surface concentrations of O3, NOx and CO performed by global chemical-transport model GEOS-Chem using up-to-date anthropogenic and biogenic emissions databases show very good agreement with values observed at ZOTTO in 2007-2012. Observed concentration of ozone has a pronounced seasonal variation with a clear peak in spring (40-45 ppbv in average and up to 80 ppbv in extreme cases) and minimum in winter. Average ozone level is about 20 ppbv that corresponds to the background conditions. Enhanced concentration in March-July is due to increased stratospheric-tropospheric exchange. In autumn and winter distribution of ozone is close to uniform. NOx concentration does not exceed 1 ppb that is typical for background areas but may vary by order and some more in few hours. Higher surface NOx(=NO+NO2) concentrations during day time generally correspond to higher ozone when NO/NO2 ratio indicates on clean or slightly polluted conditions. CO surface concentration has a vivid seasonal course and varies from about 100 ppb in summer till 150 ppb in winter. But during

  17. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  18. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  19. Long-term trends in the middle atmosphere dynamics at northern middle latitudes – one regime or two different regimes?

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter; Kozubek, Michal

    2010-01-01

    Roč. 10, č. 2 (2010), s. 2633-2668 ISSN 1680-7367 R&D Projects: GA ČR(CZ) GC205/07/J052 Institutional research plan: CEZ:AV0Z30420517 Keywords : greenhouse gases * ozone layer * stratosphere * ionospheric electron density * middle atmosphere * ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.atmos-chem-phys-discuss.net/10/2633/2010/acpd-10-2633-2010.pdf

  20. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    V. Sivakumar

    2006-05-01

    Full Text Available The low-latitude middle atmospheric gravity wave characteristics are presented using 310 nights of Rayleigh lidar observations made at Gadanki (13.5° N, 79.2° E over the period from March 1998 to December 2002. The gravity wave characteristics are presented in terms of vertical wave number and frequency spectra, along with the estimated potential energy for the four seasons, namely, spring, summer, autumn and winter. The computed wave number spectra for both the stratosphere and the mesosphere are found to differ significantly from a saturated model predicted spectrum. The spectra were found to be shallower at lower wave numbers and steeper at higher wave numbers with transition at ~8.85×10-4 cy/m. The computed frequency spectra seem to follow the model plot with a power law index of -5/3 above a frequency of ~2×10-4 Hz. The estimated potential energy per unit mass increases gradually up to ~60 km and then rather rapidly above this height to reach values of the order of 200J/kg at ~70 km.

  1. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  2. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  3. Simultaneous observations of SAO and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba (8.5 N, 77 E)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Karanam Kishore; Swain, Debadatta; John, Sherine Rachel; Ramkumar, Geetha [Vikram Sarabhai Space Center, Space Physics Laboratory, Thiruvananthapuram (India)

    2011-11-15

    Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002-2007 at Thumba (8.5 N, 77 E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100 km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20-100 km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone

  4. Coming to grips with nuclear winter

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1985-01-01

    This editorial examines the politics related to the concept of nuclear winter which is a term used to describe temperature changes brought on by the injection of smoke into the atmosphere by the massive fires set off by nuclear explosions. The climate change alone could cause crop failures and lead to massive starvation. The author suggests that the prospect of a nuclear winter should be a deterrent to any nuclear exchange

  5. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'

    Science.gov (United States)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.

    2018-04-01

    Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.

  6. Indian programme on middle atmosphere - Some results

    Science.gov (United States)

    Mitra, A. P.

    An account of the very extensive program on the middle atmosphere carried out in India since 1982 is presented. Three rocket ranges (Thumba, SHAR and Balasore), a high altitude balloon facility at Hyderabad, a lidar at Thumba, a laser heterodyning system at Delhi, a meteor radar in Thumba, a network of UVB and multiwavelength radiometers, and a host of conventional ground based facilities scattered over the entire subcontinent were used. These facilities covered a range of latitudes from 8 deg N to 34 deg N and largely around the same longitude zone of 75 deg E. The nature of the Indian effort is the emphasis on campaign mode operations, knitting special rocket and balloon efforts with more conventional ground based activities around specific themes. Major campaigns carried out included: (1) Indo-Soviet Ozone Intercomparison campaigns in 1983 and 1987, (2) Aerosol campaign (3), Ionization and conductivity campaigns, (4) Equatorial Wave Campaign, (5) Antarctic Ozone Hole campaign in Dakshin Gangotri. A few of the more important findings are outlined.

  7. Sources of atmospheric aerosols controlling PM10 levels in Heraklion, Crete during winter time

    Science.gov (United States)

    Kalivitis, Nikolaos; Kouvarakis, Giorgos; Stavroulas, Iasonas; Kandilogiannaki, Maria; Vavadaki, Katerina; Mihalopoulos, Nikolaos

    2016-04-01

    High concentrations of Particulate Matter (PM) in the atmosphere have negative impact to human health. Thresholds for ambient concentrations that are defined by the directive 2008/50/EC are frequently exceeded even at background conditions in the Mediterranean region as shown in earlier studies. The sources of atmospheric particles in the urban environment of a medium size city of eastern Mediterranean are studied in the present work in order to better understand the causes and characteristics of exceedances of the daily mean PM10limit value of 50 μg m-3. Measurements were performed at the atmospheric quality measurement station of the Region of Crete, at the Heraklion city center on Crete island, during the winter/spring period of 2014-2015 and 2015-2016. Special emphasis was given to the study of the contribution of Black Carbon (BC) to the levels of PM10. Continuous measurements were performed using a beta-attenuation PM10monitor and a 7-wavelength Aethalometer with a time resolution of 30 and 5 minutes respectively. For direct comparison to background regional conditions, concurrent routine measurements at the atmospheric research station of University of Crete at Finokalia were used as background reference. Analysis of exceedances in the daily PM10 mass concentration showed that the total of the exceedances was related to long range transport of Saharan dust rather than local sources. However, compared to the Finokalia station it was found that there were 20% more exceedances in Heraklion, the addition of transported dust on the local pollution was the reason for the additional exceedance days. Excluding dust events, it was found that the PM10variability was dependent on the BC abundance, traffic during rush hours in the morning and biomass burning for domestic heating in the evening contributed significantly to PM10levels in Heraklion.

  8. Response of the middle atmosphere to Sco X-1

    International Nuclear Information System (INIS)

    Goldberg, R.A.; Barcus, J.R.; Mitchell, J.D.

    1985-01-01

    On the night of 9 March 1983 (UT) at Punta Lobos Launch Site, Peru, a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. Each of these payloads carried instrumentation during parachute descent to measure X-ray and electron fluxes, ion density, conductivity and mobility, and in situ electric fields. In addition, several smaller payloads capable of measuring the atmospheric electrical parameters were launched at times interspersed among the large rockets. An enhanced flux of X-rays was observed on the second Nike Orion flight. This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight. The results are discussed. (author)

  9. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  10. Some aspects of composition of the lower Martian atmosphere: input for MIRA

    Science.gov (United States)

    Moroz, V.; Korablev, O.; Krasnopolsky, V.; Rorin, A.

    Recent spacecraft missions and high-resolution spectroscopic observations from the Earth-based, airborne and spaceborne observatories have justified the chemical contents of the Martian atmosphere at a new level of confidence. Both the lower and middle atmosphere of Mars reveal very limited chemical activity, while the variations of the abundance of minor constituents may be attributed to phase transitions of volatiles. Water vapor, which mixing ratio is controlled by complex hydrological cycle in the lower atmosphere and at the surface of the planet, affects seasonally varying depletion of ozone. Measured ratio of D/H can be explained with general models of the early evolution of the planet, though this estimate in the bulk atmosphere may not be ultimately representative due to altitude dependant fractionation of water isotopes. CO, as a chemically passive nonvolatile component, reveals increase of mixing ratio in the vicinity of winter polar caps during active condensation of the bulk CO2 atmosphere. No reliable evidence o any organicf matter in the atmosphere of Mars has been obtained.

  11. Winter atmospheric circulation signature for the timing of the spring bloom of diatoms in the North Sea

    Science.gov (United States)

    Lohmann, Gerrit; Wiltshire, Karen

    2015-04-01

    Analysing long-term diatom data from the German Bight and observational climate data for the period 1962-2005, we found a close connection of the inter-annual variation of the timing of the spring bloom with the boreal winter atmospheric circulation. We examined the fact that high diatom counts of the spring bloom tended to occur later when the atmospheric circulation was characterized by winter blocking over Scandinavia. The associated pattern in the sea level pressure showed a pressure dipole with two centres located over the Azores and Norway and was tilted compared to the North Atlantic Oscillation. The bloom was earlier when the cyclonic circulation over Scandinavia allowed an increased inflow of Atlantic water into the North Sea which is associated with clearer, more marine water, and warmer conditions. The bloom was later when a more continental atmospheric flow from the east was detected. At Helgoland Roads, it seems that under turbid water conditions (= low light) zooplankton grazing can affect the timing of the phytoplankton bloom negatively. Warmer water temperatures will facilitate this. Under clear water conditions, light will be the main governing factor with regard to the timing of the spring bloom. These different water conditions are shown here to be mainly related to large-scale weather patterns. We found that the mean diatom bloom could be predicted from the sea level pressure one to three months in advance. Using historical pressure data, we derived a proxy for the timing of the spring bloom over the last centuries, showing an increased number of late (proxy-) blooms during the eighteenth century when the climate was considerably colder than today. We argue that these variations are important for the interpretation of inter-annual to centennial variations of biological processes. This is of particular interest when considering future scenarios, as well to considerations on past and future effects on the primary production and food webs.

  12. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4

    Science.gov (United States)

    Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.

    2015-06-01

    The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.

  13. Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

    Directory of Open Access Journals (Sweden)

    A. Belova

    2008-11-01

    Full Text Available A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976 do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005 that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

  14. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-08-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  15. The contribution of residential coal combustion to atmospheric PM2. 5 in northern China during winter

    Directory of Open Access Journals (Sweden)

    P. Liu

    2017-09-01

    Full Text Available A vast area in northern China, especially during wintertime, is currently suffering from severe haze events due to the high levels of atmospheric PM2. 5. To recognize the reasons for the high levels of PM2. 5, daily samples of PM2. 5 were simultaneously collected at the four sampling sites of Beijing city (BJ, Baoding city (BD, Wangdu county (WD and Dongbaituo (DBT during the winter and spring of 2014–2015. The concentrations of the typical water-soluble ions (WSIs, such as Cl−, NO3−, SO42− and NH4+ at DBT were found to be remarkably higher than those at BJ in the two winters, but almost the same as those at BJ in the two springs. The evidently greater concentrations of OC, EC and secondary inorganic ions (NO3−, SO42−, NH4+ and Cl− at DBT than at WD, BD and BJ during the winter of 2015 indicated that the pollutants in the rural area were not due to transportation from neighbouring cities but dominated by local emissions. As the distinct source of atmospheric OC and EC in the rural area, the residential coal combustion also made a contribution to secondary inorganic ions through the emissions of their precursors (NOx, SO2, NH3 and HCl as well as heterogeneous or multiphase reactions on the surface of OC and EC. The average mass proportions of OC, EC, NO3− and SO42− at BD and WD were found to be very close to those at DBT, but were evidently different from those at BJ, implying that the pollutants in the cities of WD and BD, which are fully surrounded by the countryside, were strongly affected by the residential coal combustion. The OC ∕ EC ratios at the four sampling sites were almost the same value (4.8 when the concentrations of PM2. 5 were greater than 150 µg m−3, suggesting that the residential coal combustion could also make a dominant contribution to atmospheric PM2. 5 at BJ during the severe pollution period when the air parcels were usually from southwest–south regions, where a high density of

  16. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    Science.gov (United States)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  17. Middle atmospheric thermal structures in Eastern and Western hemispheres over a solar cycle

    International Nuclear Information System (INIS)

    Mohanakumar, K.; Devanarayanan, S.

    1987-01-01

    Temperature variations of the 25-60 km region of the atmosphere over stations in the Eastern and Western Hemispheres were compared for an 11-year solar cycle period (1971-1981). The temperature of the two hemispheres did not show similar variations at the same height and time. A cross-correlation analysis between the variations in temperature of the two hemispheres showed insignificant correlation, except at 30 km over the tropics and at 40 km over the midlatitude. Up to 40 km, the temperature changes in the two hemispheres are identical. At higher levels, Western Hemispheric temperatures were higher than those of the Eastern Hemisphere. The diurnal variation of minor constituents and their vertical transport in the middle atmosphere might be responsible for the differences in temperature observed in the two hemispheres. (author)

  18. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  19. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    Science.gov (United States)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  20. High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2

    Science.gov (United States)

    Maxbauer, D. P.; Royer, D. L.; LePage, B. A.

    2013-12-01

    Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.

  1. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China

    Directory of Open Access Journals (Sweden)

    J. J. Cao

    2005-01-01

    Full Text Available Continuous measurements of atmospheric organic and elemental carbon (OC and EC were taken during the high-pollution fall and winter seasons at Xi'an, Shaanxi Province, China from September 2003 through February 2004. Battery-powered mini-volume samplers collected PM2.5 samples daily and PM10 samples every third day. Samples were also obtained from the plumes of residential coal combustion, motor-vehicle exhaust, and biomass burning sources. These samples were analyzed for OC/EC by thermal/optical reflectance (TOR following the Interagency Monitoring of Protected Visual Environments (IMPROVE protocol. OC and EC levels at Xi'an are higher than most urban cities in Asia. Average PM2.5 OC concentrations in fall and winter were 34.1±18.0 μg m−3 and 61.9±;33.2 μg m−3, respectively; while EC concentrations were 11.3±6.9 μg m−3 and 12.3±5.3 μg m−3, respectively. Most of the OC and EC were in the PM2.5 fraction. OC was strongly correlated (R>0.95 with EC in the autumn and moderately correlated (R=0.81 with EC during winter. Carbonaceous aerosol (OC×1.6+EC accounted for 48.8%±10.1% of the PM2.5 mass during fall and 45.9±7.5% during winter. The average OC/EC ratio was 3.3 in fall and 5.1 in winter, with individual OC/EC ratios nearly always exceeding 2.0. The higher wintertime OC/EC corresponded to increased residential coal combustion for heating. Total carbon (TC was associated with source contributions using absolute principal component analysis (APCA with eight thermally-derived carbon fractions. During fall, 73% of TC was attributed to gasoline engine exhaust, 23% to diesel exhaust, and 4% to biomass burning. During winter, 44% of TC was attributed to gasoline engine exhaust, 44% to coal burning, 9% to biomass burning, and 3% to diesel engine exhaust.

  2. Investigation of the middle atmosphere of Venus as a key to understand its dynamics

    Science.gov (United States)

    Zasova, L. V.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.; Formisano, V.; Bellucci, G.

    2001-11-01

    Middle atmosphere of Venus (50 - 100km) is a very important part of the atmosphere. More than 70 % of the absorbed solar energy deposits there, providing an important source of energy to support thermal structure and dynamics. We investigate the thermal tides distribution, which is possibly responsible for the support of the superrotation. Temperature and aerosol vertical profiles were retrieved in a self consistent way from Venera-15 IR spectrometry data with vertical resolution of several kilometers. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days with amplitude and phase depending on latitude and altitude. In particular, in the upper clouds, where most of the solar energy absorbs, all four tidal components have significant amplitudes. For the midlatitude jet the solar related periods were also found with maximal amplitude of 1/2 days period. It was also discovered that the jet changes its position in such a way that the laws of the conservation of momentum and flux are satisfied. The Fourier spectrometer on Venera-15 may be considered as a precursor of the instrument of this kind for the future missions. A functioning of the Planetary Fourier Spectrometer, with spectral range 1-50 mkm, proposed for Venus Express mission together with UV (0.2-0.5 mm) mapping spectrometer, will be enable to get answers to the fundamental questions of the middle atmosphere: clouds formation, nature of the ``unknown" UV-absorber and the mechanism of support of the superrotation. This work was supported by the grant RFFI - 02-01-17841.

  3. Nuclear Winter: Implications for civil defense

    Energy Technology Data Exchange (ETDEWEB)

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1988-05-01

    ''Nuclear Winter'' is the term given to the cooling hypothesized to occur in the Northern Hemisphere following a nuclear war as the result of the injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the paper was published in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. Three-dimensional global circulation models have resulted in reduced estimates of cooling---15 to 25/degree/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought is likely to be a direct threat to human survival for populations with the wherewithal to survive normal January temperatures. The principal threat from nuclear winter is to food production, and this could present problems to third parties who are without food reserves. Loss of a crop year is neither a new nor an unexpected threat from nuclear war to the United States and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the United States due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year.

  4. Heavy Metals in the Atmosphere over the Northern Coast of Eurasia: Interannual Variations in Winter and Summer

    Science.gov (United States)

    Vinogradova, A. A.; Ivanova, Yu. A.

    2017-12-01

    Interannual variations in the level of anthropogenic contamination of the surface air in the northern areas of Russia are studied, which are related to a change in the direction of air mass transport. The transport of air and heavy metals to four sites located on territories of nature reserves on the coast of the Arctic Ocean (from the Kola Peninsula to a delta of the Lena River) in winter (January) and summer (July) is analyzed for 2000-2013. Indices of atmospheric circulation and data on the emission of pollutants into the atmosphere in cities and regions of Russia are involved in the analysis. Concentrations of seven heavy metals in the surface air are evaluated in the Arctic regions under study and their interannual, spatial, and seasonal variations are discussed. A strong interannual variability of atmospheric circulation differently influences the variations in the atmosphere contamination with different anthropogenic heavy metals in various areas of the north of Russia. The concentration ratios of heavy metals under study are different for each site in different years. The interannual and seasonal variations in the contamination level have maximum values for heavy metals arriving from most distant sources. Thus, the results of measuring the content of anthropogenic contaminants in the air of reference areas during one season or even one year should not serve a basis for longterm conclusions and forecasts. It would be also unjustified to make general conclusions on the contamination level of the environment from observation results for only one contaminant and/or only at a single site.

  5. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  6. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

    Science.gov (United States)

    van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.

    2005-02-01

    We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

  7. Chapter 13. Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete

  8. Nuclear Winter: The implications for civil defense

    International Nuclear Information System (INIS)

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    ''Nuclear Winter'' is the term given to hypothesized cooling in the northern hemisphere following a nuclear war due to injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the original paper in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. The widespread use of 3-dimensional global circulation models have resulted in reduced estimates of cooling; 15 to 25 0 C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought are likely to be direct threats to human survival for populations with the wherewithal to survive normal January temperatures; The principal threat from nuclear winter is to food production, and could present problems to third parties without food reserves; and Loss of a crop year is neither a new nor unexpected threat from nuclear war to the US and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the US due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year. 6 refs

  9. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  10. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  11. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition

    Science.gov (United States)

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.

  12. A middle Eocene carbon cycle conundrum

    NARCIS (Netherlands)

    Sluijs, A.; Zeebe, R.; Bijl, P.K.; Bohaty, S.M.

    2013-01-01

    The Middle Eocene Climatic Optimum (MECO) was an approximately 500,000-year-long episode of widespread ocean-atmosphere warming about 40 million years ago, superimposed on a long-term middle Eocene cooling trend. It was marked by a rise in atmospheric CO2 concentrations, biotic changes and prolonged

  13. Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model

    KAUST Repository

    Schmidt, H.; Rast, S.; Bunzel, F.; Esch, M.; Giorgetta, M.; Kinne, S.; Krismer, T.; Stenchikov, Georgiy L.; Timmreck, C.; Tomassini, L.; Walz, M.

    2013-01-01

    The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Nino-Southern Oscillation, largely agree with the observations. 2013. American Geophysical Union. All Rights Reserved.

  14. Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model

    KAUST Repository

    Schmidt, H.

    2013-03-06

    The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Nino-Southern Oscillation, largely agree with the observations. 2013. American Geophysical Union. All Rights Reserved.

  15. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    2002-02-01

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  16. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  17. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.; Abualnaja, Yasser; Josey, Simon A.; Bower, Amy; Raitsos, Dionysios E.; Kontoyiannis, Harilaos; Hoteit, Ibrahim

    2013-01-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  18. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2013-03-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  19. Size-Dependent Characterization of Atmospheric Particles during Winter in Beijing

    Directory of Open Access Journals (Sweden)

    Haiyan Li

    2016-03-01

    Full Text Available Two real-time instruments, NCSA (Nanoparticle Chemical Speciation Analyzer and ACSA (Aerosol Chemical Speciation Analyzer, were both deployed in Beijing, China to explore the sized-dependent characterization of atmospheric particles. The mass concentrations of PM1, PM2.5, PM10, and sulfate and nitrate in the three size fractions were hourly measured in situ from 13 December 2013 to 7 January 2014. Generally, “sawtooth cycles” are common during winter in Beijing, with the PM concentrations increasing slowly over a few days, then falling to a low level abruptly in only a few hours. The secondary species, sulfate and nitrate, play important roles in haze formation and account for 10.5% and 11.1% of total PM1 mass on average. Based on the variation of PM1 mass concentrations, we classify the study periods into three categories, clean, slightly polluted, and polluted. The oxidation ratios of sulfur and nitrogen both increase from clean to polluted periods, indicating the significant contribution of secondary transformation to haze evolution. While the PM2.5/PM10 ratio shows high dependence on PM pollution level, the ratio of PM1/PM2.5 remains almost stable during the entire study, with an average of 0.90. With respect to the mass-size distribution of chemical components, both sulfate and nitrate show dominant contributions in PM1 size fraction, accounting for 80.7% and 60.3% of total sulfate and nitrate, respectively. Our results also reveal that the elevated sulfate in PM1, and the enhanced nitrate in PM1 and PM2.5–1 size fraction, prompt the formation of haze pollution.

  20. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    Science.gov (United States)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  1. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    Science.gov (United States)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; hide

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  2. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  3. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  4. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2018-06-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  5. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  6. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    Science.gov (United States)

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  7. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century

    International Nuclear Information System (INIS)

    Zhao Yong; Huang Anning; Zhou Yang; Huang Ying; Zhu Xinsheng

    2013-01-01

    The relationship between the frequency of spring dust storms over Tarim Basin in northwest China and the winter North Atlantic Oscillation (NAO) is investigated by using the observed dust storm frequency (DSF) and the 10 m wind velocity at 36 stations in Tarim Basin and the National Centers for Environment Prediction/National Center for Atmospheric Research reanalysis data for the period 1961–2007. The spring DSF (winter NAO) index shows a clear decreasing (increasing) linear trend over 1961–2007. The winter NAO correlates well with the subsequent spring DSF over Tarim Basin on both interannual and interdecadal time scales and its interannual to interdecadal variation plays an important role in the spring DSF. Two possible physical mechanisms are identified. One is related to the large scale anomalous circulations in spring in the middle to high troposphere modulated by the winter NAO, providing the background of dynamical conditions for the dust storm occurrences. The other is related to the shifts in the local horizontal sea level pressure (SLP) gradients and 10 m wind speed, corresponding to changes in the large scale circulations in spring. The decrease in the local 10 m wind speed due to the reduced horizontal SLP gradients over Tarim Basin during the strong winter NAO years contributes to the decline of the DSF in the subsequent spring. (letter)

  8. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  9. Latitudinal trends in human primary activities: characterizing the winter day as a synchronizer.

    Science.gov (United States)

    Martín-Olalla, José María

    2018-03-28

    This work analyzes time use surveys from 19 countries (17 European and 2 American) in the middle latitude (38-61 degree) accounting for 45% of world population in this range. Time marks for primary activities are contrasted against light/dark conditions. The analysis reveals winter sunrise synchronizes labor start time below 54 degree, occurring within winter civil twilight. Winter sunset is a source of synchronization for labor end times. Winter terminator punctuate meal times in Europe: dinner occurs 3 h after winter sunset time within 1 h; 40% narrower than variability of dinner local times. The sleep-wake cycle of laborers is shown to be related to winter sunrise whereas standard population's appears to be irrespective of latitude. The significance of the winter terminator depends on two competing factors average labor time (~7 h30 m) and the shortest photoperiod. Winter terminator gains significance when both roughly matches. That is within a latitude range from 38 degree to 54 degree. The significance of winter terminator as a source of synchronization is also related to contemporary year round time schedules: the shortest photoperiod represents the worst case scenario the society faces.

  10. Parameterization of planetary wave breaking in the middle atmosphere

    Science.gov (United States)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  11. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    Science.gov (United States)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  12. Parameterisation of the chemical effects of sprites in the middle atmosphere

    DEFF Research Database (Denmark)

    Enell, C.F.; Arnone, E.; Adachi, T.

    2008-01-01

    ion-neutral chemical model has been extended for this purpose and applied together with estimated rates of ionisation, excitation and dissociation based on spectroscopic ratios from ISUAL on FORMOSAT-2. This approach is used to estimate the NOx and ozone changes for two type cases. The NOx......Transient luminous events, such as red sprites, occur in the middle atmosphere in the electric field above thunderstorms. We here address the question whether these processes may be a significant source of odd nitrogen and affect ozone or other important trace species. A well-established coupled...... enhancements are at most one order of magnitude in the streamers, which means a production of at most 10 mol per event, or ( given a global rate of occurrence of three events per minute) some 150-1500 kg per day. The present study therefore indicates that sprites are insignificant as a global source of NOx...

  13. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  14. NEFSC 2000 Winter Bottom Trawl Survey (AL0001, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of the cruise are to: (1) determine the winter distribution and relative abundance of fish and selected invertebrate species; (2) collect biological...

  15. NEFSC 1999 Winter Bottom Trawl Survey (AL9902, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of the cruise are to: (1) determine the winter distribution and relative abundance of fish and selected invertebrate species; (2) collect biological...

  16. NEFSC 2001 Winter Bottom Trawl Survey (AL0102, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of the cruise are to: (1) determine the winter distribution and relative abundance of fish and selected invertebrate species; (2) collect biological...

  17. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy L.; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-01-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  18. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-07-27

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory\\'s High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  19. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    Science.gov (United States)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  20. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation

    Science.gov (United States)

    Vuille, M.

    1999-11-01

    The atmospheric circulation over the Bolivian Altiplano during composite WET and DRY periods and during HIGH and LOW index phases of the Southern Oscillation was investigated using daily radiosonde data from Antofagasta (Chile), Salta (Argentina), Lima (Peru) and La Paz (Bolivia), daily precipitation data from the Bolivian/Chilean border between 18° and 19°S and monthly NCEP (National Centers for Environmental Prediction) reanalysis data between 1960 and 1998. In austral summer (DJF) the atmosphere during WET periods is characterized by easterly wind anomalies in the middle and upper troposphere over the Altiplano, resulting in increased moisture influx from the interior of the continent near the Altiplano surface. The Bolivian High is intensified and displaced southward. On the other hand, westerly winds usually prevail during DRY summer periods, preventing the moisture transport from the east from reaching the western Altiplano. Precipitation tends to be deficient over the western Bolivian Altiplano during LOW index summers and above average during HIGH and LOW+1 summers, but the relation is weak and statistically insignificant. LOW summers feature broadly similar atmospheric circulation anomalies as DRY periods and can be regarded as an extended DRY period or as a summer with increased occurrence of DRY episodes. HIGH summers, and to a lesser degree LOW+1 summers, are characterized by broadly opposite atmospheric characteristics, featuring a more pronounced Bolivian High located significantly further south, and easterly wind anomalies over the Altiplano. In winter (JJA) precipitation events are rare; these are associated with increased northerly and westerly wind components, reduced pressure and temperature, and increased specific humidity over the entire Altiplano. Atmospheric circulation anomalies during LOW periods are less pronounced in austral winter (JJA) than in summer, but generally feature similar changes (increased temperatures and a vertically

  1. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  2. Atmospheric Science: It's More than Meteorology.

    Science.gov (United States)

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  3. A new numerical model of the middle atmosphere. I - Dynamics and transport of tropospheric source gases

    Science.gov (United States)

    Garcia, Rolando R.; Stordal, Frode; Solomon, Susan; Kiehl, Jeffrey T.

    1992-01-01

    Attention is given to a new model of the middle atmosphere which includes, in addition to the equations governing the zonal mean state, a potential vorticity equation for a single planetary-scale Rossby wave, and an IR radiative transfer code for the stratosphere and lower mesosphere, which replaces the Newtonian cooling parameterization used previously. It is shown that explicit computation of the planetary-scale wave field yields a more realistic representation of the zonal mean dynamics and the distribution of trace chemical species. Wave breaking produces a well-mixed 'surf zone' equatorward of the polar night vortex and drives a meridional circulation with downwelling on the poleward side of the vortex. This combination of mixing and downwelling produces shallow meridional gradients of trace gases in the subtropics and middle latitudes, and very steep gradients at the edge of the polar vortex. Computed distributions of methane and nitrous oxide are shown to agree well with observations.

  4. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    Science.gov (United States)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum

  5. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  6. A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11

    Science.gov (United States)

    Cradden, Lucy C.; McDermott, Frank

    2018-05-01

    Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.

  7. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    Science.gov (United States)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  8. Fish assemblage composition and mapped mesohabitat features over a range of streamflows in the Middle Rio Grande, New Mexico, winter 2011-12, summer 2012

    Science.gov (United States)

    Pearson, Daniel K.; Braun, Christopher L.; Moring, J. Bruce

    2016-01-21

    This report documents differences in the mapped spatial extents and physical characteristics of in-channel fish habitat evaluated at the mesohabitat scale during winter 2011–12 (moderate streamflow) and summer 2012 (low streamflow) at 15 sites on the Middle Rio Grande in New Mexico starting about 3 kilometers downstream from Cochiti Dam and ending about 40 kilometers upstream from Elephant Butte Reservoir. The results of mesohabitat mapping, physical characterization, and fish assemblage surveys are summarized from the data that were collected. The report also presents general comparisons of physical mesohabitat data, such as wetted area and substrate type, and biological mesohabitat data, which included fish assemblage composition, species richness, Rio Grande silvery minnow relative abundance, and Rio Grande silvery minnow catch per unit effort.

  9. Review of middle eastern hydro climatology and seasonal tele connections

    International Nuclear Information System (INIS)

    Pagano, T. C.; Mahani, S.; Nazemosadat, M. J.; Sorooshian, S.

    2003-01-01

    International hydro climatic variability in the Middle East is explored. A review is done on studies linking local climate with large-scale tele connections. These studies suggest that El Nino has a weak tendency of bringing better than normal conditions to the region during fall / winter. This signal is unstable in time and has considerable decadal variability. No consensus exists on the general start and end dates of various climate epochs, nor is there an explanation of the physical causes of the decad al variability, suggesting that the inter annual signal of El Nino in the Middle East may be transient and difficult to predict. In contrast, the influence of the North Atlantic Oscillation on temperature, precipitation and strea flow is strong, with high North Atlantic Oscillation winters favoring dry and cool conditions in the region. Recommendations are made on how to improve the ability to understand and forecast Middle Eastern inter annual variability, namely, 1) improve access to instrumental data, 2) coordinate research, forecasts and user involvement through a regional forum and 3) further explore the impacts of North Atlantic Oscillation in the Middle East

  10. Physical characteristics and fish assemblage composition at site and mesohabitat scales over a range of streamflows in the Middle Rio Grande, New Mexico, winter 2011-12, summer 2012

    Science.gov (United States)

    Braun, Christopher L.; Pearson, Daniel K.; Porter, Michael D.; Moring, J. Bruce

    2015-01-01

    In winter 2011–12 and summer 2012, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Albuquerque District and the U.S. Fish and Wildlife Service New Mexico Fish and Wildlife Conservation Office in Albuquerque, New Mexico, evaluated the physical characteristics and fish assemblage composition of available mesohabitats over a range of streamflows at 15 sites on the Middle Rio Grande in New Mexico. The fish assemblage of the Middle Rio Grande includes several minnow species adapted to hydrologically variable but seasonably predictable rivers, including theHybognathus amarus (Rio Grande silvery minnow), a federally listed endangered species. Gaining a better understanding of habitat usage by the Rio Grande silvery minnow was the impetus for studying physical characteristics and fish assemblages in the Middle Rio Grande during different streamflow conditions. Data were collected at all 15 sites during winter 2011–12 (moderate streamflow), and a subset was collected at the 13 most downstream sites in summer 2012 (low streamflow). Sites were grouped into four river reaches separated by diversion dams listed in downstream order (names of the diversion dams are followed by short names of the sites nearest each dam in parentheses, listed in downstream order): (1) Cochiti (Peña Blanca), (2) Angostura (Bernalillo, La Orilla, Barelas, Los Padillas), (3) Isleta (Los Lunas I, Los Lunas II, Abeytas, La Joya, Rio Salado), and (4) San Acacia (Lemitar, Arroyo del Tajo, San Pedro, Bosque del Apache I, and Bosque del Apache II). Stream habitat was mapped in the field by using a geographic information system in conjunction with a Global Positioning System. Fish assemblage composition was determined during both streamflow regimes, and fish were collected by seining in each mesohabitat where physical characteristic data (depth, velocity, dominant substrate type and size, and percent embeddedness) and water-quality properties (temperature

  11. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  12. Response of the middle atmosphere to Sco X-1

    Science.gov (United States)

    Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.

    1985-10-01

    On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.

  13. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  14. Seasonal forecasts of northern hemisphere winter 2009/10

    International Nuclear Information System (INIS)

    Fereday, D R; Maidens, A; Arribas, A; Scaife, A A; Knight, J R

    2012-01-01

    Northern hemisphere winter 2009/10 was exceptional for atmospheric circulation: the North Atlantic Oscillation (NAO) index was the lowest on record for over a century. This contributed to cold conditions over large areas of Eurasia and North America. Here we use two versions of the Met Office GloSea4 seasonal forecast system to investigate the predictability of this exceptional winter. The first is the then operational version of GloSea4, which uses a low top model and successfully predicted a negative NAO in forecasts produced in September, October and November 2009. The second uses a new high top model, which better simulates sudden stratospheric warmings (SSWs). This is particularly relevant for 2009/10 due to its unusual combination of a strong El Niño and an easterly quasi-biennial oscillation (QBO) phase, favouring SSW development. SSWs are shown to play an influential role in surface conditions, producing a stronger sea level pressure signal and improving predictions of the 2009/10 winter. (letter)

  15. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  16. On the relation between ionospheric winter anomalies and solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Rumi, G.C. [Lecco, (Italy)

    2001-06-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of {gamma}, the coefficient of collisional detachment of the electrons from the O{sub 2} {sup -} ions, is presented in the Appendix.

  17. Interannual variability of the North Pacific winter storm track and its relationship with extratropical atmospheric circulation

    Science.gov (United States)

    Ma, Xiaojiao; Zhang, Yaocun

    2018-01-01

    Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.

  18. Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004

    Directory of Open Access Journals (Sweden)

    D. Pancheva

    2009-03-01

    Full Text Available This paper is focused on the nonmigrating tidal activity seen in the SABER/TIMED temperatures that is related to the major sudden stratospheric warming (SSW taking place in the Arctic winter of 2003/2004. The emphasis is on the nonmigrating diurnal tides observed in the stratosphere and lower mesosphere which is usually accepted to be insignificant in comparison with that in the upper mesosphere and thermosphere. By using different independent spectral methods we found a significant amplification in December–January of the following nonmigrating 24-h tides: zonally symmetric (s=0, eastward propagating with zonal wavenumber 1 (E1, and westward propagating with zonal wavenumbers 2 and 3 (W2 and W3 tides. It has been found that the double peak nonmigrating tidal amplifications located in the stratosphere (~40 km and in the lower mesosphere (~70 km are a consequence of the maintained hydrostatic relation. By detailed comparison of the evolution and spatial structure of the nonmigrating diurnal tides with those of the migrating diurnal tide and stationary planetary waves (SPWs evidence for a SPW-migrating tide interaction as a source of nonmigrating tides has been presented. Therefore, the nonmigrating 24-h tides turn out to be an important component of the middle atmosphere dynamics during the major SSW in the Arctic winter of 2003/2004.

  19. Exploring atmospheric blocking with GPS radio occultation observations

    Directory of Open Access Journals (Sweden)

    L. Brunner

    2016-04-01

    Full Text Available Atmospheric blocking has been closely investigated in recent years due to its impact on weather and climate, such as heat waves, droughts, and flooding. We use, for the first time, satellite-based observations from Global Positioning System (GPS radio occultation (RO and explore their ability to resolve blocking in order to potentially open up new avenues complementing models and reanalyses. RO delivers globally available and vertically highly resolved profiles of atmospheric variables such as temperature and geopotential height (GPH. Applying a standard blocking detection algorithm, we find that RO data robustly capture blocking as demonstrated for two well-known blocking events over Russia in summer 2010 and over Greenland in late winter 2013. During blocking episodes, vertically resolved GPH gradients show a distinct anomalous behavior compared to climatological conditions up to 300 hPa and sometimes even further up into the tropopause. The accompanying increase in GPH of up to 300 m in the upper troposphere yields a pronounced tropopause height increase. Corresponding temperatures rise up to 10 K in the middle and lower troposphere. These results demonstrate the feasibility and potential of RO to detect and resolve blocking and in particular to explore the vertical structure of the atmosphere during blocking episodes. This new observation-based view is available globally at the same quality so that blocking in the Southern Hemisphere can also be studied with the same reliability as in the Northern Hemisphere.

  20. Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula

    Science.gov (United States)

    Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente

    2017-05-01

    Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.

  1. Monitoring Of The Middle Atmosphere: Grille Spectrometer Experiment Results On Board SPACELAB 1 And Scientific Program Of ATLAS 1 Mission

    Science.gov (United States)

    Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.

    1989-10-01

    Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.

  2. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  3. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  4. Impacts of the January 2005 solar particle events on middle atmospheric chlorine species

    Science.gov (United States)

    Winkler, Holger; Sinnhuber, Miriam; Notholt, Justus; Maik Wissing, Jan; Kallenrode, May-Britt; Santee, Michelle

    It is well established that solar particle events (SPEs) are sources of significant chemical dis-turbances in the Earth's polar atmosphere. The observed SPE effects on nitrogen, hydrogen and oxygen compounds have been investigated in some detail in recent years, and they can be reproduced by atmospheric models using basic parametrizations for NOx and HOx produc-tion as a funtion of the particle impact ionisation. However, there are considerable differences between model predictions and measurements concerning several other trace gases including chlorine species. Two major SPEs occurred on January 17, and January 20, 2005. The latter had an exceptionally hard energy spectrum which caused maximum particle impact ionization at stratospheric altitudes. The Microwave Limb Sounder (MLS) instrument on-board the Aura satellite has measured a short-term decrease of HCl in the northern polar region corresponding to January 2005 SPEs. The peak HCl depletion is ˜300 ppt at 35-40 km. This is comparable to the depletion of messopheric HCl observed by the HALOE instrument during the July 2000 SPE. We will present simulation results of the University of Bremen Ion Chemistry (UBIC) model for the SPEs in January 2005 focusing on chlorine species. The simulations indicate that the observed short-term decrease of middle atmospheric HCl is due to a conversion into active chlorine species such as Cl, ClO and HOCl. The magnitude of the observed HCl loss can only be reproduced if reactions of negative chlorine species and the production of O(1 D) from the reaction N(2 D) + O2 are taken into account. The model results will be compared to MLS/Aura data of HCl, HOCl and ClO. Additionally, the impacts of the observed chlorine activation, e.g. on ozone, will be assessed.

  5. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  6. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    Science.gov (United States)

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2005-02-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  7. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability.

    Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric

  8. How Winter Time Atmospheric Stability Influences PM2.5 Concentration in Different Complex Terrains; Beijing in China vs Fairbanks in Alaska

    Science.gov (United States)

    Karandana Gamalathge, T. D.; Green, M.

    2017-12-01

    Consequences of air pollution is known to majority of the global population. Small particles or aerosols play a significant role in global climate change, and increasing the number of people suffer from poor health. Specially during winter seasons, people live in valleys or close to mountains experience hazy conditions and severe health problems. As a result, aerosol related research works have gained more attention over the last couple of decades. We considered PM2.5-particulate matter less than 2.5 µm of aerodynamic diameter, to see how PM2.5 varies with different atmospheric conditions during winter seasons over two different regions of the world. We selected five winter seasons from November to February from 2011 to 2015 both in Beijing and in Fairbanks. Both locations can be considered as complex terrains, as those regions are surrounded by or close to mountains. Using University of Wyoming's sounding data, we calculated a parameter called Heat Deficit (HD). Higher HD is associated with less turbulence, thus high PM2.5 concentration. On the other hand, low HD is associated with high turbulence, thus low PM2.5 concentration. So, we considered HD as a measure of stability in the region of interest. Despite geographical differences, Fairbanks was covered by snow every day over the study period while Beijing had almost no snow cover. Analysis was done in two ways, with and without paying attention to precipitation. HD was also evaluated with different levels of PM2.5, set up to multiples of average PM2.5 concentration. This was done to check whether HD correlates well with a particular range of PM2.5. A day of precipitation for Fairbanks was considered to be when the daily snowfall >1 inch, while for Beijing when any type of daily precipitation >0.1 inch. Precipitation for Beijing was rare and only 9 days were met even with the 0.1 inch criteria while Fairbanks had 61 days of exceeding the 1 inch criteria. Results revealed that precipitation doesn't impact the

  9. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  10. Some studies relating to solar-terrestrial physics and the middle atmosphere

    International Nuclear Information System (INIS)

    Theobald, A.G.

    1977-12-01

    A review is given of observed variations in the Earth's rotation rate, and mechanisms by which the Sun might affect the length of day are discussed. Solar activity and means by which the planets might influence this activity are considered. Observed solar activity - weather correlations, in particular in relation to the sun-based, interplanetary magnetic sector structure and some of the suggested mechanisms for producing these correlations are discussed. The simple photochemical production of ozone in the middle atmosphere and the manner in which cosmic rays, through the production of nitrogen compounds, alter the ozone concentration at high altitudes is described. A computer model is developed which calculates ozone concentrations and energy absorption at any altitude, latitude, longitude and time of year and used to predict ozone and temperature change profiles over a 14-day cycle of ultra-violet changes. The existence of a solar magnetic sector linked variation of the high latitude, high altitude NO concentration is postulated and this is incorporated into the computer model to predict a temperature oscillation over a 14-day cycle which varies with geographic latitude and longitude. This effect is investigated in detail. (UK)

  11. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures

    Science.gov (United States)

    Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar

    2018-06-01

    In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.

  12. On the quality of MIPAS kinetic temperature in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2012-07-01

    Full Text Available The kinetic temperature and line of sight elevation information are retrieved from the MIPAS Middle Atmosphere (MA, Upper Atmosphere (UA and NoctiLucent-Cloud (NLC modes of high spectral resolution limb observations of the CO2 15 μm emission using the dedicated IMK/IAA retrieval algorithm, which considers non-local thermodynamic equilibrium conditions. These variables are accurately derived from about 20 km (MA and 40 km (UA and NLC to 105 km globally and both at daytime and nighttime. Typical temperature random errors are smaller than 0.5 K below 50 km, 0.5–2 K at 50–70 km, and 2–7 K above. The systematic error is typically 1 K below 70 km, 1–3 K from 70 to 85 km and 3–11 K from 85 to 100 km. The average vertical resolution is typically 4 km below 35 km, 3 km at 35–50 km, 4–6 km at 50–90 km, and 6–10 km above. We compared our MIPAS temperature retrievals from 2005 to 2009 with co-located ground-based measurements from the lidars located at the Table Mountain Facility and Mauna Loa Observatory, the SATI spectrograph in Granada (Spain and the Davis station spectrometer, and satellite observations from ACE-FTS, Aura-MLS and TIMED-SABER from 20 km to 100 km. We also compared MIPAS temperatures with the high latitudes climatology from falling sphere measurements. The comparisons show very good agreement, with differences smaller than 3 K below 85–90 km in mid-latitudes. Differences over the poles in this altitude range are larger but can be generally explained in terms of known biases of the other instruments. The comparisons above 90 km worsen and MIPAS retrieved temperatures are always larger than other instrument measurements.

  13. Atmospheric chloride: Its implication for foliar uptake and damage

    Science.gov (United States)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  14. On the potential for abrupt Arctic winter sea-ice loss

    NARCIS (Netherlands)

    Bathiany, S.; Notz, Dirk; Mauritsen, T.; Raedel, G.; Brovkin, V.

    2016-01-01

    The authors examine the transition from a seasonally ice-covered Arctic to an Arctic Ocean that is sea ice free all year round under increasing atmospheric CO2 levels. It is shown that in comprehensive climate models, such loss of Arctic winter sea ice area is faster than the preceding loss of

  15. Summer/winter variability of the surfactants in aerosols from Grenoble, France

    Science.gov (United States)

    Baduel, Christine; Nozière, Barbara; Jaffrezo, Jean-Luc

    2012-02-01

    Many atmospheric aerosols seem to contain strong organic surfactants likely to enhance their cloud-forming properties. Yet, few techniques allow for the identification and characterization of these compounds. Recently, we introduced a double extraction method to isolate the surfactant fraction of atmospheric aerosol samples, and evidenced their very low surface tension (≤30 mN m -1). In this work, this analytical procedure was further optimized. In addition to an optimized extraction and a reduction of the analytical time, the improved method led to a high reproducibility in the surface tension curves obtained (shapes and minimal values), illustrated by the low uncertainties on the values, ±10% or less. The improved method was applied to PM 10 aerosols from the urban area of Grenoble, France collected from June 2009 to January 2010. Significant variability was observed between the samples. The minimum surface tension obtained from the summer samples was systematically lower (30 mN m -1) than that of the winter samples (35-45 mN m -1). Sharp transitions in the curves together with the very low surface tensions suggested that the dominating surfactants in the summer samples were biosurfactants, which would be consistent with the high biogenic activity in that season. One group of samples from the winter also displayed sharp transitions, which, together with the slightly higher surface tension, suggested the presence of weaker, possibly man-made, surfactants. A second group of curves from the winter did not display any clear transition but were similar to those of macromolecular surfactants such as polysaccharides or humic substances from wood burning. These surfactants are thus likely to originate from wood burning, the dominating source for aerosols in Grenoble in winter. These observations thus confirm the presence of surfactants from combustion processes in urban aerosols reported by other groups and illustrates the ability of our method to distinguish between

  16. Volcanos and el Nino - signal separation in Winter

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, I.; Graf, H.F.

    1993-12-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  17. Volcanos and el Nino - signal separation in Winter

    International Nuclear Information System (INIS)

    Kirchner, I.; Graf, H.F.

    1993-01-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  18. Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies

    DEFF Research Database (Denmark)

    Björkman, M.P.; Morgner, E.; Cooper, E.J.

    2010-01-01

    removal, (3) diffusion measurements, F2-point, within the snowpack, and (4) a trace gas technique, FSF6, with multiple gas sampling within the snowpack. According to measurements collected from shallow and deep snow cover in High Arctic Svalbard and subarctic Sweden during the winter of 2007......The winter CO2 efflux from subnivean environments is an important component of annual C budgets in Arctic ecosystems and consequently makes prediction and estimations of winter processes as well as incorporations of these processes into existing models important. Several methods have been used......, Fsoil is assumed to measure soil production, whereas FSF6, Fsnow, and F2-point are considered better approaches for quantifying exchange processes between the soil, snow, and the atmosphere. This study indicates that estimates of winter CO2 emissions may vary more as a result of the method used than...

  19. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    Science.gov (United States)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  20. Projected changes in winter climate in Beskids Mountains during 21st century

    Czech Academy of Sciences Publication Activity Database

    Farda, Aleš; Štěpánek, Petr; Zahradníček, Pavel; Skalák, Petr; Meitner, Jan

    2017-01-01

    Roč. 10, 1-2 (2017), s. 123-134 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Keywords : climate change * winter season * Euro-Cordex * Lysá Hora Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences

  1. Long-term variations of 14C and 137Cs in the Bratislava air – implications of different atmospheric transport processes

    International Nuclear Information System (INIS)

    Povinec, P.P.; Holý, K.; Chudý, M.; Šivo, A.; Sýkora, I.; Ješkovský, M.; Richtáriková, M.

    2012-01-01

    This study summarizes measurements of atmospheric 14 C and 137 Cs in the Bratislava air since 1976. Higher 14 C levels observed in spring and early summer months until the 1980’s confirm injection of the stratospheric air into the troposphere. Later, deep winter minima were observed in 14 C concentrations, probably due to the depletion of the atmospheric 14 C levels in winter months by the injection of large quantities of fossil CO 2 . Presently observed 14 C maxima in summer and minima in winter were caused by the depletion of the atmospheric 14 C in winter months, amplified by temperature inversions during winter, rather than by the injection of the stratospheric air into the troposphere. The observed 137 Cs activity concentrations also showed an impact of the stratospheric air on the 137 Cs levels until the early 1980’s, documented by typical spring/early summer maxima and winter minima. The global fallout 137 Cs record was then disturbed by the Chernobyl accident (1986) when large quantities of 137 Cs were released to the atmosphere. The recent 137 Cs variations observed in the atmosphere, characterised by winter maxima and summer minima, are assumed to be mainly due to the resuspension of 137 Cs from the soil. A correlation was found between the 137 Cs activity concentration and the dust level in the air (the correlation coefficient r = 0.74), as well as an anticorrelation with the temperature (r = −0.56). - Highlights: ► The recent 14 C variations in the Bratislava air were caused by the depletion of the atmospheric 14 C levels in winter months due to inputs of fossil CO 2 into the atmosphere. ► The recent 137 Cs variations observed in the Bratislava air were mainly due to the resuspension of 137 Cs from the soil. ► The 137 Cs activity concentration correlated with the dust level in the air (the correlation coefficient r = 0.74), and anticorrelated with the temperature (r = −0.56).

  2. Control of particle precipitation into the middle atmosphere by regular changes of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Bremer, J.

    1987-01-01

    After DUNGEY (1961) negative B Z -components induced by the interplanetary magnetic field (IMF) in the solar-magnetospheric coordinate system should favour precipitation of high energetic particles into the middle atmosphere whereas positive B Z -values should inhibit such precipitation. In high subauroral and auroral latitudes this expected dependence of particle precipitation on IMF structure can be confirmed. In mid-latitudes, however, the most important precipitation events, the so-called aftereffects after strong geomagnetic disturbances, are only partly controlled by IMF sector structure. In particular, during the second part of the aftereffect after the main phase, internal magnetospheric loss processes which seem to be independent of solar sector structure play a dominant role. (author)

  3. Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere

    Science.gov (United States)

    Christiansen, B.

    2001-12-01

    We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that

  4. Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport

    Science.gov (United States)

    Li, Jun; Zhang, Gan; Guo, Lingli; Xu, Weihai; Li, Xiangdong; Lee, Celine S. L.; Ding, Aijun; Wang, Tao

    Organochlorine pesticides (OCPs) were measured in the atmosphere over the period of December 2003-December 2004 at four sampling sites in Guangzhou and Hong Kong. Gas phase and particle phase concentrations of 8 OCP species, including trans-chlordane ( t-CHL), cis-chlordane ( c-CHL), p, p'-DDT, p, p'-DDE, o, p'-DDT, α-endosulfan, α- and γ-hexachlorocyclohexane (HCH), were studied. OCPs were found predominantly in the gas phase in all seasons. t-CHL, c-CHL, o, p'-DDT, p, p'-DDT and α-endosulfan had significantly ( pGuangzhou could be attributed to the present usage of lindane and dicofol in the Pearl River Delta (PRD) region. The very high concentrations of p, p'-DDT and α-endosulfan were observed at all sampling sites. The results of 7 days air back trajectory analysis indicated that the unusual high p, p'-DDT levels in summer in both cities could be related to the seasonal usage of DDT containing antifouling paints for fishing ships in the upwind seaports of the region. The high concentrations of α-endosulfan in winter in the study area suggested an atmospheric transport by the winter monsoon from the East China, where endosulfan is being used as insecticide in cotton fields. The consistency of the seasonal variation of concentrations and isomeric ratios of DDTs and α-endosulfan with the alternation of winter monsoon and summer monsoon suggested that the Asian monsoon plays an important role in the long-range atmospheric transport of OCPs.

  5. Factors and sources influencing ionic composition of atmospheric condensate during winter season in lower troposphere over Delhi, India.

    Science.gov (United States)

    Kumar, Pawan; Yadav, Sudesh

    2013-03-01

    Atmospheric condensate (AC) and rainwater samples were collected during 2010-2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH (4) (+)  > Ca(2+) > Na(+) > K(+) > Mg(2+) and HCO (3) (-)  > SO (4) (2-)  > Cl(-) > NO (2) (-)  > NO (3) (-)  > F(-), respectively. All samples were alkaline in nature and Σ (cation)/Σ (anion) ratio was found to be close to one. NH (4) (+) emissions followed by Ca(2+) and Mg(2+) were largely responsible for neutralization of acidity caused by high NO( x ) and SO(2) emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO(2) and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO(4), NO(3), and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.

  6. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations

    Science.gov (United States)

    Gan, Quan; Du, Jian; Fomichev, Victor I.; Ward, William E.; Beagley, Stephen R.; Zhang, Shaodong; Yue, Jia

    2017-04-01

    A recent 31 year simulation (1979-2010) by extended Canadian Middle Atmosphere Model (eCMAM30) and the 14 year (2002-2015) observation by the Thermosphere Ionosphere Mesosphere and Dynamics/Sounding of the Atmosphere using Broadband Emssion Radiometry (TIMED/SABER) are utilized to investigate the temperature response to the 11 year solar cycle on the mesosphere. Overall, the zonal mean responses tend to increase with height, and the amplitudes are on the order of 1-2 K/100 solar flux unit (1 sfu = 10-22 W m-2 Hz-1) below 80 km and 2-4 K/100 sfu in the mesopause region (80-100 km) from the eCMAM30, comparatively weaker than those from the SABER except in the midlatitude lower mesosphere. A pretty good consistence takes place at around 75-80 km with a response of 1.5 K/100 sfu within 10°S/N. Also, a symmetric pattern of the responses about the equator agrees reasonably well between the two. It is noteworthy that the eCMAM30 displays an alternate structure with the upper stratospheric cooling and the lower mesospheric warming at midlatitudes of the winter hemisphere, in favor of the long-term Rayleigh lidar observation reported by the previous studies. Through diagnosing multiple dynamical parameters, it is manifested that this localized feature is induced by the anomalous residual circulation as a consequence of the wave-mean flow interaction during the solar maximum year.

  7. Effects of El Nino Modoki on winter precipitation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Woo [Korea Meteorological Administration, National Institute of Meteorological Research, Seoul (Korea, Republic of); Choi, Ki-Seon [Korea Meteorological Administration, National Typhoon Center, Jeju (Korea, Republic of); Byun, Hi-Ryong [Pukyong National University, Department of Environmental Atmospheric Sciences, Nam-gu, Busan (Korea, Republic of)

    2012-04-15

    This study compares the impacts of El Nino Modoki and El Nino on precipitation over Korea during the boreal winters from 1954 to 2009. Precipitation in Korea tends to be equal to or greater than the normal level during an El Nino Modoki winter, whereas there is no significant change during an El Nino winter. Greater than normal precipitation during El Nino Modoki was also found over the lower reaches of the Yangtze River, China and much of southern Japan. The latitudes of these regions are 5-10 further north than in southern China, where precipitation increases during El Nino. The following two anomalous atmospheric circulations were found to be causes that led to different precipitation distributions over East Asia. First, an atmospheric wave train in the lower troposphere, which propagated from the central tropical Pacific (cyclonic) through the southern Philippine Sea (anticyclonic) to East Asia (cyclonic), reached the southern China and northern Philippine Sea during El Nino, whereas it reached Korea and southern Japan during El Nino Modoki. Second, an anomalous local meridional circulation, which consists of air sinking in the tropics, flowing poleward in the lower troposphere, and rising in the subtropics, developed between the southern Philippine Sea and northern Philippine Sea during El Nino. During El Nino Modoki, however, this circulation expanded further to the north and was formed between the southern Philippine Sea and regions of Korea and southern Japan. (orig.)

  8. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  9. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    Science.gov (United States)

    Li, K. F.; Yao, K.; Taketa, C.; Zhang, X.; Liang, M. C.; Jiang, X.; Newman, C. E.; Tung, K. K.; Yung, Y. L.

    2015-12-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As examples, we apply this model to Titan and Venus. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss the application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  10. Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2: latitude and time variations

    International Nuclear Information System (INIS)

    Arnone, E; Carlotti, M; Papandrea, E; Ridolfi, M; Kero, A; Enell, C-F; Turunen, E; Rodger, Craig J; Arnold, N F; Dinelli, B M

    2009-01-01

    Recent research on sprites shows these and other transient luminous events can exert a local impact on atmospheric chemistry, although with minor effects at global scales. In particular, both modelling and remote sensing work suggest perturbations to the background NO x up to a few tens of per cent can occur above active sprite-producing thunderstorms. In this study we present a detailed investigation of MIPAS/ENVISAT satellite measurements of middle atmospheric NO 2 in regions of high likelihood of sprite occurrence during the period August to December 2003. As a proxy of sprite activity we used ground based WWLLN detections of large tropospheric thunderstorms. By investigating the sensitivity of the analysis to the characteristics of the adopted strategy, we confirm the indication of sprite-induced NO 2 enhancements of about 10% at 52 km height and tens of per cent at 60 km height immediately after thunderstorm activity, as previously reported by Arnone et al (2008b Geophys. Res. Lett. 35 5807). A further analysis showed the enhancement to be dominated by the contribution from regions north of the Equator (5 deg. N to 20 deg. N) during the first 30 to 40 days of the sample (i.e. the tail of Northern Hemisphere summer) and in coincidence with low background winds.

  11. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro

    2014-01-01

    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  12. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  13. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers

    Directory of Open Access Journals (Sweden)

    N. Kämpfer

    2012-08-01

    Full Text Available In this study, we present middle atmospheric water vapor (H2O and ozone (O3 measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N, Onsala (57° N and Sodankylä (67° N during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground

  14. Increasing atmospheric carbon dioxide and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, J G

    1982-09-16

    The effects of increasing CO/sub 2/ concentrations in the atmosphere are estimated using general circulation models (GCMs), which have the ability to portray many of the nonlinear feedback processes which serve to regulate atmospheric (and hence climatic) changes. GCMs predict that a doubling of atmospheric CO/sub 2/ would result in a 2-3 k increase of globally averaged surface air temperature. The largest warming will occur in the winter in high latitudes. Detection studies are now being directed towards isolating those parts of observed climate fluctuations that are attributable to increasing atmospheric CO/sub 2/. (KRM)

  15. Polar mesosphere winter echoes during MaCWAVE

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2006-07-01

    Full Text Available During the MaCWAVE winter campaign in January 2003, layers of enhanced echo power known as PMWE (Polar Mesosphere Winter Echoes were detected by the ESRAD 52 MHz radar on several occasions. The cause of these echoes is unclear and here we use observations by meteorological and sounding rockets and by lidar to test whether neutral turbulence or aerosol layers might be responsible. PMWE were detected within 30 min of meteorological rocket soundings (falling spheres on 5 separate days. The observations from the meteorological rockets show that, in most cases, conditions likely to be associated with neutral atmospheric turbulence are not observed at the heights of the PMWE. Observations by instrumented sounding rockets confirm low levels of turbulence and indicate considerable small-scale structure in charge density profiles. Comparison of falling sphere and lidar data, on the other hand, show that any contribution of aerosol scatter to the lidar signal at PMWE heights is less than the detection threshold of about 10%.

  16. VARIABILITY OF THE WINTER SNOWINESS AT THE SOUTHEAST OF KAMCHATKA PENINSULA

    Directory of Open Access Journals (Sweden)

    A. A. Grits

    2012-01-01

    Full Text Available Analyses of the snow cover depth for several years in the southeast ofKamchatkaPeninsulashow some possibilities for development of skiing, tourism and mountaineering. We found four types of winters in 1935–2006: high-snowy, mid-snowy, little-snowy, and unstable snowy. The average depth of snow for 71 years is133 cmwith minimum of60 cmin 1939 and maximum of272 cmin 2005. The exceptional snowiness gives opportunity to use this territory even in summer months. In some years inKamchatka, the mountain-skiing season lasts a round year. The average date of forming the steady snow cover in the lowlands areas is November 12, and the middle date of the highest snow is May 22. The most comfortable time for recreation on the peninsula in wintertime are observed from the middle of March until the middle of April. During this time, we have the maximum snow, large duration of sunshine and air temperature closed to zero degrees.

  17. The dynamics in the upper atmospheres of Mars and Titan

    Science.gov (United States)

    Bell, Jared M.

    2008-06-01

    This thesis explores the dynamics of two terrestrial bodies: Mars and Titan. At Mars, the coupled Mars General Circulation Model - Mars Thermospheric General Circulation Model (MGCM-MTGCM) is employed to investigate the phenomenon known as Mars winter polar warming. At Titan, a new theoretical model, the Titan Global Ionosphere - Thermosphere Model (T-GITM), is developed, based upon previous work by Ridley et al. [2006]. Using this new model, three separate numerical studies quantify the impacts of solar cycle, seasons, and lower boundary zonal winds on the Titan thermosphere structure and dynamics. At Mars, this thesis investigates thermospheric winter polar warming through three major studies: (1) a systematic analysis of vertical dust mixing in the lower atmosphere and its impact upon the dynamics of the lower thermosphere (100-130 km), (2) an interannual investigation utilizing three years of lower atmosphere infrared (IR) dust optical depth data acquired by the Thermal Emission Spectrometer (TES) instrument on board Mars Global Surveyor (MGS), and finally (3) a brief study of the MTGCM's response to variations in upward propagating waves and tides from the lower atmosphere. Ultimately, this investigation suggests that an interhemispheric summer-to-winter Hadley circulation, originating in the lower atmosphere and extending into the upper atmosphere, is responsible for thermospheric winter polar warming [ Bell etal. , 2007]. A major branch of this thesis builds upon the previous work of Müller-Wodarg et al. [2000], Müller-Wodarg et al. [2003], M7uuml;ller-Wodarg et al. [2006], and Yelle et al. [2006] as it attempts to explain the structures in Titan's upper atmosphere, between 500-1500 km. Building also upon the recent development of GITM by Ridley et al. [2006], this thesis presents a new theoretical framework, T-GITM. This model is then employed to conduct a series of numerical experiments to quantify the impacts of the solar cycle, the season, and the

  18. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  19. The role of the tropical West Pacific in the extreme northern hemisphere winter of 2013/14

    Science.gov (United States)

    Watson, Peter; Weisheimer, Antje; Knight, Jeff; Palmer, Tim

    2016-04-01

    In the 2013/14 winter, the eastern USA was exceptionally cold, the Bering Strait region was exceptionally warm, California was in the midst of drought and the UK suffered severe flooding. It has been suggested that elevated SSTs in the tropical West Pacific (TWPAC) were partly to blame due to their producing a Rossby wavetrain that propagated into the extratropics. We find that seasonal forecasts with the tropical atmosphere relaxed towards a reanalysis give 2013/14 winter-mean anomalies with strong similarities to those observed in the Northern Hemisphere, indicating that low-latitude anomalies had a role in the development of the extremes. Relaxing just the TWPAC produces a strong wavetrain over the North Pacific and North America in January, but not in the winter-mean. This suggests that anomalies in this region alone had a large influence, but cannot explain the extremes through the whole winter. We also examine the response to applying the observed TWPAC SST anomalies in two atmospheric general circulation models. We find that this does produce winter-mean anomalies in the North Pacific and North America resembling those observed, but that the tropical forcing of Rossby waves due to the applied SST anomalies appears stronger than that in reanalysis, except in January. Therefore both experiments indicate that the TWPAC influence was important, but the true strength of the TWPAC influence is uncertain. None of the experiments indicate a strong systematic impact of the TWPAC anomalies on Europe.

  20. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  1. Loss of sea ice during winter north of Svalbard

    Directory of Open Access Journals (Sweden)

    Ingrid H. Onarheim

    2014-06-01

    Full Text Available Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind.

  2. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. MASERATI: a new rocket-borne diode laser absorption spectrometer for in-situ measurement of trace gases in the middle and upper atmosphere; MASERATI: Ein neues raketengetragenes Diodenlaser-Absorptionsspektrometer zur in situ-Messung von Spurengasen in der mittleren und oberen Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Lucke, H. von

    1999-09-01

    MASERATI (middle atmosphere spectrometric experiment on Rockets for the analysis of trace gas influences) is the first rocket-borne tunable diode laser absorption spectrometer (TDLAS). It was developed to measure water vapor and carbon dioxide in the altitude range from 50 to 90 km and 120 km, respectively. Infrared absorption spectroscopy using two laser diodes is applied to measure both trace gases simultaneously. The laser beams are sent into an open multiple-pass absorption setup mounted on top of the sounding rocket. High sensitivity is achieved by means of frequency modulation and lock-in techniques. The results of several tests performed in the laboratory demonstrate that the instrument is capable of detecting relative absorbances down to 10{sup -4} - 10{sup -5} when integrating spectra for 1 s. Two almost identical MASERATI instruments have been built and launched on sounding rockets from the Andoeya rocket range (69 N, 16 E) in northern Norway during winter 1997/98. The results of these flights demonstrate that MASERATI is a new suitable tool for in situ studies of the mesosphere and lower thermosphere. (orig.)

  4. Effects of dirty snow in nuclear winter simulations

    International Nuclear Information System (INIS)

    Vogelmann, A.M.; Robock, A.; Ellingson, R.G.

    1988-01-01

    A large-scale nuclear war would inject smoke into the atmosphere from burning forests, cities, and industries in targeted areas. This smoke could fall out onto snow and ice and would lower cryospheric albedos by as much as 50%. A global energy balance climate model is used to investigate the maximum effect these ''dirty snow'' albedos have on the surface temperature in nuclear winter simulations which span several years. These effects are investigated for different nuclear winter scenarios, snow precipitation rates, latitudinal distributions of smoke, and seasonal timings. We find that dirty snow, in general, would have a small temperature effect at mid- and low latitudes but could have a large temperature effect at polar latitudes, particularly if the soot is able to reappear significantly in later summers. Factors which limit the climatic importance of the dirty snow are (1) the dirty snow albedo is lowest when the atmosphere still contains a large amount of light-absorbing smoke; (2) even with dirty snow, sea ice areas can still increase, which helps maintain colder temperatures through the sea ice thermal inertial feedback; (3) the snow and ice areas affected by the dirty snow albedos are largest when there is little seasonal solar insolation; and (4) the area affected by the dirty snow is relatively small under all circumstances. copyright American Geophysical Union 1988

  5. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Science.gov (United States)

    Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F. G.; Wanner, H.; Luterbacher, J.

    2010-05-01

    We present an analysis of daily extreme precipitation events for the extended winter season (October-March) at 20 Mediterranean coastal sites covering the period 1950-2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions

  6. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    A. Toreti

    2010-05-01

    Full Text Available We present an analysis of daily extreme precipitation events for the extended winter season (October–March at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series. Three stations (one in the western Mediterranean and the others in the eastern basin have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous

  7. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  8. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  9. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  10. Fertilizers nitrogen balance under maizl and winter rye in lysimentric experiments

    International Nuclear Information System (INIS)

    Ionova, O.N.

    1979-01-01

    The balance of the labelled 15 N nitrogen fertilizers in lysimentric experiment carried oUt in the turf-podsolic medium loamy soil has been studied. The results of two year experiment (1976-1977) have shown that depending on the doses and time of introduction the use of fertilizer nitrogen by maize varied from 51 to 58 % and by winter rye from 52 to 59 %. Consolidation in the organic substance of soil constituted 18-26 and 17-33 %, respectively. The losses of fertilizer nitrogen varied (14-29 % under maize and 9-23 % under winter rye). Nitrogen losses as a result of atmospheric precipitation infiltration both under maize and winter rye occured mainly at the expense of nitrogen of soil and reached considerable dimensions (31 kg) only under conditions of exceeding moistening of 1976. The losses of fertilizer nitrogen caused by washing out do not exceed 1 % for two years. The main losses of fertilizer nitrogen occurred in the form of gaseous nitrogen compounds

  11. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    Science.gov (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  12. Mass photosynthesis and distribution of photo assimilates of winter wheat varieties with different maturity feature

    International Nuclear Information System (INIS)

    Wang Fahong; Zhao Junshi

    1996-01-01

    The mass photosynthesis rate and distribution of photoassimilates of winter wheat varieties with different maturity feature were studied using GXH-305 portable CO 2 infrared ray analyzer. The mass photosynthesis rate of winter wheat varieties with better maturity feature showed little difference from the varieties with general maturity feature during the early stage of grain filling phase. However, the mass photosynthesis rate of the former was significantly higher than that of the later during the middle and late stage of grain filling. The study with 14 CO 2 -tracing method showed that the relative activity in different organs of varieties with better maturity feature was significantly higher than that of varieties with worse maturity feature during the later growth stage of winter wheat. The rate of photoassimilates distribution in stalk and root system of winter wheat varieties with better maturity was higher than that in the others organs. The physiological mechanism of difference of grain yield and plant decay in varieties with different maturity feature were also discussed

  13. High time-resolved chemical compositions, sources and evolution for atmospheric submicron aerosols in the winter of Beijing

    Science.gov (United States)

    Min, H.; Hu, W.; Zheng, J.; Guo, S.; Wu, Y.; Zeng, L.; Lu, S.; Xie, S.; Zhang, Y.

    2017-12-01

    Severe regional haze problem in the megacity Beijing and surrounding areas has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, intensive campaigns were conducted in the winter of 2010 and 2013 at an urban site in Beijing. An Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure chemical components of PM1, coupled with multiple state of the art online instruments. In the winter of 2010, PM1 mass concentrations changed dramatically along with meteorological conditions. The high average fraction (58%) of primary species in PM1 indicated that primary emissions usually played a more important role. Based on the source apportionment results, 45% POA are from non-fossil sources, contributed by cooking OA and biomass burning OA (BBOA). Cooking OA, accounting for 13-24% of OA, is an important non-fossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions and coal combustion OA (CCOA). The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 μg m-3). In the winter of 2013, OOA (MO-OOA and LO-OOA), accounted for 50% of PM1, while (OOA+SNA) contributed 60-80%, suggesting that secondary formation played an important role in the PM pollution. In the winter of 2010 higher OOA/Ox (= NO2 + O3) ratio (0.49 μg m-3 ppb-1) than these ratios from western cities (0.03-0.16 μg m-3 ppb-1) was observed, which may be due to the aqueous reaction or extra SOA formation contributed by semi-VOCs from various primary sources (e.g., BBOA or CCOA). However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. CCOA was only identified in winter due to domestic heating. These results signified that the comprehensive

  14. A study of the middle atmospheric thermal structure over western India: Satellite data and comparisons with models

    Science.gov (United States)

    Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Beig, G.

    2017-12-01

    Long term variations of the middle atmospheric thermal structure in the upper stratosphere and lower mesosphere (20-90 km) have been studied over Ahmedabad (23.1°N, 72.3°E, 55 m amsl), India using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) observations during year 2002 to year 2014. For the same period, three different atmospheric models show over-estimation of temperature (∼10 K) near the stratopause and in the upper mesosphere, and a signature of under-estimation is seen above mesopause when compared against SABER measured temperature profiles. Estimation of monthly temperature anomalies reveals a semiannual and ter-annual oscillation moving downward from the mesosphere to the stratosphere during January to December. Moreover, Lomb Scargle periodogram (LSP) and Wavelet transform techniques are employed to characterize the semi-annual, annual and quasi-biennial oscillations to diagnose the wave dynamics in the stratosphere-mesosphere system. Results suggested that semi-annual, annual and quasi-biennial oscillations are exist in stratosphere, whereas, semi-annual and annual oscillations are observed in mesosphere. In lower mesosphere, LSP analyses revealed conspicuous absence of annual oscillations in altitude range of ∼55-65 km, and semi-annual oscillations are not existing in 35-45 km. Four monthly oscillations are also reported in the altitude range of about 45-65 km. The temporal localization of oscillations using wavelet analysis shows strong annual oscillation during year 2004-2006 and 2009-2011.

  15. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  16. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  17. Classroom Demonstrations Of Atmosphere-ocean Dynamics: Baroclinic Instability

    Science.gov (United States)

    Aurnou, Jonathan; Nadiga, B. T.

    2008-09-01

    Here we will present simple hands-on experimental demonstrations that show how baroclinic instabilities develop in rotating fluid dynamical systems. Such instabilities are found in the Earth's oceans and atmosphere as well as in the atmospheres and oceans of planetary bodies throughout the solar system and beyond. Our inexpensive experimental apparatus consists of a vinyl-record player, a wide shallow pan, and a weighted, dyed block of ice. Most directly, these demonstrations can be used to explain winter-time atmospheric weather patterns observed in Earth's mid-latitudes.

  18. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  19. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    Science.gov (United States)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  20. Atmospheric Dispersion of Various Types of Iodine in UAE in February and August

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungyeop; Beeley, Philip A. [Khalifa Univ. of Science, Abu Dhabi (United Arab Emirates); Kim, Sungyeop; Chang, Soonheung; Lee, Kunjai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The distribution ratio of these three types of iodine being released to the atmosphere under accident scenario is still not clearly reported because of its complex kinetics of chemical and physical process in the accidental condition. In this research, the dispersion behaviors of three kinds of iodine in the atmosphere have been considered in the UAE environment in winter and summer situations. Higher ground level concentration on the same downwind distance from the source appears in summer because of lower wind speed than that of winter. More lateral spreading of vertical downwind direction in summer has been confirmed because of less stable air than that of winter. Higher ground level concentrations have been appeared in order of particle type, organic gas type and elemental gas type of I-131 with given assumptions.

  1. Effect of atmospheric pollution on health

    International Nuclear Information System (INIS)

    Islam, M.S.

    1990-01-01

    In recent years the incidence of smog episodes and their intensity have gone down considerably and difference in atmospheric pollutant levels between urban and rural areas is very small. Even the sudden moderate elevation of atmospheric pollution during winter months affects the pulmonary function adversely and provokes increased respiratory symptomes. The prevalence of rhinitis and allergy is more frequent both in adults and in children in urban townships than in rural areas. It has also been observed that industrial city dwellers have inferior pulmonary function. Very recent results indicate possible interaction between atmospheric pollutant levels and regeneration process following airways infection in yound children. (orig.) [de

  2. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  3. Winter temperature, salinity, oxygen, nutrients and isotopes data sampled by aircraft, April 2003 (NODC Accession 0059129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Winter sampling was performed in the eastern area of the Shelf-Basin Interactions Project using aircraft. Flights began on 1 April 2003 and finished on 15 April....

  4. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  5. Data of long term atmospheric diffusion experiments (Winter, 1992)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takashi; Chino, Masamichi; Yamazawa, Hiromi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-10-01

    The data were obtained in the long-term atmospheric diffusion experiments in the Tokai area, autumn, 1991 which were a part of the Evaluation Safety Demonstration Experiments of Environmental Radiation entrusted with the Science and Technology Agency. The experiments were conducted by JAERI in cooperation with the Japan Weather Association. The report includes tracer concentration data of surface sampling points and meteorological data. (author)

  6. Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA

    Science.gov (United States)

    Hartogh, P.; Sonnemann, G. R.; Grygalashvyly, M.; Song, Li; Berger, U.; Lübken, F.-J.

    2010-01-01

    Microwave water vapor measurements between 40 and 80 km altitude over a solar cycle (1996-2006) were carried out in high latitudes at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69.29°N, 16.03°E), Norway. Some smaller gaps and three interruptions of monitoring in the winters 1996/1997 and 2005/2006 and from spring 2001 to spring 2002 occurred during this period. The observations show a distinct year-to-year variability not directly related to solar Lyman-α radiation. In winter the water vapor mixing ratios in the upper domain were anticorrelated to the solar activity, whereas in summer, minima occurred in the years after the solar maximum in 2000/2001. In winter, sudden stratospheric warmings (SSWs) modulated the water vapor mixing ratios. Within the stratopause region a middle atmospheric water vapor maximum was observed, which results from the methane oxidation and is a regular feature there. The altitude of the maximum increased by approximately 5 km as summer approached. The largest mixing ratios were monitored in autumn. During the summer season a secondary water vapor maximum also occurred above 65 km most pronounced in late summer. The solar Lyman-α radiation impacts the water vapor mixing ratio particularly in winter above 65 km. In summer the correlation is positive below 70 km. The correlation is also positive in the lower mesosphere/stratopause region in winter due to the action of sudden stratospheric warmings, which occur more frequently under the condition of high solar activity and the enhancing the humidity. A strong day-to-day variability connected with planetary wave activity was found throughout the entire year. Model calculations by means of Leibniz-Institute Middle Atmosphere model (LIMA) reflect the essential patterns of the water vapor variation, but the results also show differences from the observations, indicating that exchange processes between the troposphere and stratosphere not modeled by LIMA could have

  7. Simulation study for ground-based Ku-band microwave observations of ozone and hydroxyl in the polar middle atmosphere

    Science.gov (United States)

    Newnham, David; Clilverd, Mark; Kosch, Michael; Verronen, Pekka

    2017-04-01

    Commercial satellite TV broadcasting is possible due to remarkable advances in microwave electronics, enabling weak signals transmitted over 36,000 km from geostationary orbit to be received by inexpensive rooftop dishes. The Ku band satellite frequencies (10.70-14.25 GHz) overlap microwave emissions from ozone (O3) at 11.072 GHz and hydroxyl radical (OH) at 13.44 GHz. These important chemical species in the polar middle atmosphere respond strongly to solar variability and, at high latitudes, geomagnetic activity associated with space weather. Atmospheric model calculations predict that energetic electron precipitation (EEP) driven by magnetospheric substorms produces large changes in polar mesospheric O3 and OH. The EEP typically peaks at geomagnetic latitudes ˜65˚ (e.g. Kilpisjärvi, Finland and Syowa station, Antarctica) and evolves rapidly with time eastwards and over the geomagnetic latitude range 60˚ -80˚ (e.g. reaching Halley, Antarctica). During the substorms OH can increase by more than 1000% at 64-84 km. The substorms leave footprints of 5-55% O3 loss lasting many hours of local time, with strong altitude and seasonal dependences. An atmospheric simulation and retrieval study is performed to determine the specification and design requirements for microwave radiometers capable of measuring O3 and OH profiles from Arctic and Antarctic locations using accessible satellite TV receiver technology. The proposed observations are highly applicable to studies of EEP, atmospheric dynamics, planetaryscale circulation, chemical transport, and the representation of these processes in polar and global climate models. They would provide a lowcost, reliable alternative to increasingly sparse satellite measurements, extending long-term data records and also providing "ground truth" calibration data.

  8. Polybrominated diphenyl ethers in atmosphere and soil of a production area in China: levels and partitioning.

    Science.gov (United States)

    Jin, Jun; Wang, Ying; Liu, Weizhi; Yang, Congqiao; Hu, Jicheng; Cui, Jian

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) were measured in atmosphere and soil samples taken in winter and summer at a PBDE production area of Laizhou Bay in China. The concentrations of Sigma11PBDE were 0.017-1.17 ng/m3 in gaseous phase, 0.5-161.1 ng/m3 in particulate phase, and 73-2629 ng/g dry weight in soil samples. The PBDE congener pattern in the gaseous phase differed from that in the particulate phase, and the PBDE congener pattern in the particulate phase was similar with that in soil. This demonstrated that there was little difference with atmospheric particle-soil transfer efficiency among PBDE congeners. In addition, there were seasonal variations in percentages on particle for lower brominated congeners. The BDE-28 was mostly in the gaseous phase in summer (88.3%), whereas the average proportion of BDE-28 in gaseous phase in winter was 38.9%. Higher brominated congeners (i.e., BDE-206, BDE-207, BDE-208, and BDE-209) were bound to the atmospheric particulate phase, and their potentials for long-range migration were mainly affected by the environmental behavior of atmospheric particles. Results indicated that PBDE congeners in summer were closer to gas-particle partition equilibrium than in winter. Temperature should be considered the main factor causing nonequilibrium in winter.

  9. Polybrominated diphenyl ethers in atmosphere and soil of a production area in China: Levels and partitioning

    Institute of Scientific and Technical Information of China (English)

    Jun Jin; Ying Wang; Weizhi Liu; Congqiao Yang; Jicheng Hu; Jian Cui

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) were measured in atmosphere and soil samples taken in winter and summer at a PBDE production area of Laizhou Bay in China. The concentrations of ∑11 PBDE were 0.017-1.17 ng/m3 in gaseous phase, 0.5-161.1 ng/m3 in particulate phase, and 73-2629 ng/g dry weight in soil samples. The PBDE congener pattern in the gaseous phase differed from that in the particulate phase, and the PBDE congener pattern in the particulate phase was similar with that in soil. This demonstrated that there was little difference with atmospheric panicle-soil transfer efficiency among PBDE congeners. In addition, there were seasonal variations in percentages on particle for lower brominated congeners. The BDE-28 was mostly in the gaseous phase in summer (88.3%),whereas the average proportion of BDE-28 in gaseous phase in winter was 38.9%. Higher brominated congeners (i.e., BDE-206, BDE207, BDE-208, and BDE-209) were bound to the atmospheric particulate phase, and their potentials for long-range migration were mainly affected by the environmental behavior of atmospheric particles. Results indicated that PBDE congeners in summer were closer to gas-particle partition equilibrium than in winter. Temperature should be considered the main factor causing nonequilibrium in winter.

  10. What Caused the Winter Drought in Western Nepal during Recent Years?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S-Y (Simon); Yoon, Jin-Ho; Gillies, R.; Cho, Changrae

    2013-11-01

    Western Nepal has experienced consecutive and worsened winter drought conditions since 2000 culminating in a severe drought episode during 2008-2009. In this study, the meteorological conditons and a historical pespective of the winter droughts in western Nepal were analyzed using respectively instumental records and a paleoclimatic drought index. Althought decadal-scale drought conditions were found to be recurrent in the paleoclimate record, the severity of the recent decadal drought (since 2000) clearly stands out in the 700 years of record and, this is suggestive of potential anthropogenic influences in the recent decades. Meteorological diagnosis using atmospheric reanalysis in the recent decades revealed that (1) winter drought in western Nepal is linked to the Arctic Oscillation and its decadal variability, which initiates a tropospheric short-wave train across the Europe, Eurasia and South Asia, and that (2) the persistent warming of the Indian Ocean likely contributes to the suppression of rainfall through enhanced local Hadley circultion. It is therefore conceivable that the recent spells of decadal drought in Nepal drought are symptomatic of both natural variability and anthropogenic influences.

  11. A New Inter-Hemispheric Teleconnection Increases Predictability of Winter Precipitation in Southwestern US

    Science.gov (United States)

    Mamalakis, A.; Yu, J. Y.; Randerson, J. T.; AghaKouchak, A.; Foufoula-Georgiou, E.

    2017-12-01

    Early and reliable prediction of seasonal precipitation in the southwestern US (SWUS) remains a challenge with significant implications for the economy, water security and ecosystem management of the region. Traditional drivers of winter precipitation in the SWUS have been linked to the El Niño-Southern Oscillation (ENSO), decadal/multidecadal oscillations of the sea surface temperature in northern Pacific and Atlantic oceans, and persistent high-pressure ridges over the Gulf of Alaska. However, ENSO as well as other climate modes exhibit weak statistical relationships with precipitation and low predictability as lead time increases. Grounded on the hypothesis that still undiscovered relationships between large-scale atmosphere-ocean dynamics and SWUS precipitation might exist, here we followed a diagnostic approach by which instead of restricting ourselves to the established teleconnections, we analyzed systematically the correlation of global sea surface temperature (SST) and geopotential height (GPH) with winter precipitation amounts in all climatic divisions in the SWUS, for 1950-2015. Our results show that late-summer persistent SST and GPH anomalies in the subtropical southwestern Pacific are strongly connected with winter precipitation in most climatic divisions, exhibiting higher correlation values than ENSO, and thus increasing the potential for earlier and more accurate precipitation prediction. Cross validation and 30-year running average analysis starting in 1950 suggest an amplification of the detected teleconnections over the past three to four decades. The latter is most likely a result of the reported expansion of the tropics, which has started after the 1980s, and allows SST or GPH variability at lower latitudes to affect the meridional atmospheric circulation. Our work highlights the need to understand the dynamic nature of the coupled atmosphere-ocean system in a changing climate for improving future predictions of regional precipitation.

  12. Atmospheric Science Without Borders

    Science.gov (United States)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  13. Response of the Adriatic Sea to the atmospheric anomaly in 2003

    Directory of Open Access Journals (Sweden)

    B. Grbec

    2007-05-01

    Full Text Available Unusual weather conditions over the southern Europe and the Mediterranean area in 2003 significantly impacted the oceanographic properties of the Adriatic Sea. To document these changes, both in the atmosphere and the sea, anomalies from the normal climate were calculated. The winter 2003 was extremely cold, whereas the spring/summer period was extremely warm. The air temperature in June was more than 3 standard deviations above the average. On the other hand, precipitation and river runoff were extremely low between February and August. The response of the sea was remarkable, especially in surface salinity during spring and summer, with values at least one standard deviation above the average. Analysis of thermohaline properties in the middle Adriatic showed the importance of two phenomena responsible for the occurrence of exceptionally high salinity: (1 enhanced inflow of saline Levantine Intermediate Water (LIW in the Adriatic, and (2 extremely low precipitation and river runoff, accompanied with strong evaporation. Two large-scale atmospheric indices: NAOI (North Atlantic Oscillation Index and MOI (Mediterranean Oscillation Index, although generally correlated to the Adriatic climate, failed to describe anomalies in 2003. The air pressure gradients used for the definition of both indices significantly decreased in 2003 due to the presence of the high pressure areas over most of Europe and the northern Atlantic, and were actually responsible for the observed anomalies above and in the Adriatic.

  14. The Agia Marina Xyliatou Observatory: A remote supersite in Cyprus to monitor changes in the atmospheric composition of the Eastern Mediterranean and the Middle East

    Science.gov (United States)

    Sciare, Jean

    2016-04-01

    The Eastern Mediterranean and Middle East (EMME) region has been identified as one of the hot spot region in the world strongly influenced by climate changes impacts. This region is characterized by rapidly growing population with contrasting economic development, strong environmental gradients and climate extremes. However, long-term observations of the atmospheric constituents (gaseous and particulate) of the atmosphere at a remote site representative of EMME is still missing making difficult to assess current and future impacts on air quality, water resources and climate. In collaboration with the Department of Labour Inspection and in the frame of French research programs (ChArMEx and ENVI-Med "CyAr") and the EU H2020 "ACTRIS-2" (2015-2019) project, CyI and CNRS are putting unprecedented efforts to implement at a rural site of Cyprus (Agia Marina Xyliatou) a unique infrastructure to monitor key atmospheric species relevant to air quality and climate. A large set of real-time instrumentations is currently deployed to characterize reactive gases (incl. O3, CO, NOx, SO2, VOC), in-situ aerosol properties (mass, size distribution, light scatt./absorption/extinction coef. and chemistry) and as well as integrated optical properties (sunphotomer, solar flux). Through Transnational access (H2020 ACTRIS2), this station is offering to (non-)EU partners (Research, SMEs) a new atmospheric facility to monitor long range transported clean/polluted air masses from 3 different continents (Europe, Africa, Middle East) and investigate aerosol-cloud interactions through the use of UAV and a mountain site (Troodos, 1900m asl). We will present here an overview of this new research infrastructure and provide a first glance of key features observed from gas/aerosol measurements obtained in 2015

  15. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  16. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva (Geosigma AB (Sweden))

    2011-07-15

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  17. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva

    2011-07-01

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  18. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    Science.gov (United States)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  19. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.109 Winter Harbor...

  20. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  1. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    Science.gov (United States)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary

  2. Activities of the wintering party of the 36th Japanese Antarctic Research Expedition, 1995-1996

    Directory of Open Access Journals (Sweden)

    Shigemi Meshida

    1997-11-01

    Full Text Available The wintering party of the 36th Japanese Antarctic Research Expedition (JARE-36 executed its planned activities at Syowa and Dome Fuji Stations from 1995 to 1996. The wintering party at Syowa Station, consisting of 31 personnel, carried out its observations and logistic work from February 1,1995 to January 31,1996. Routine and some specific observations for studies of upper atmosphere physics, meteorology, solid earth geophysics, biology and medical science were performed without any serious problems for a full year. Continuous observation of the magnetosphere had started using an HF radar system constructed during the austral summer of 1994/95. A seed plant was discovered near Nurume Lake, Langhovde. It was the first report of a seed plant growing in continental Antarctica. An architect took part in the wintering party for the first time and maintained decrepit buildings. Support work for the wintering party at Dome Fuji Station was one of the principal tasks at Syowa Station. A trip to the Dome Fuji Station was carried out to transport supplies and fuel in the austral spring of 1995. The first wintering activities at Dome Fuji Station started from January 29,1995. The wintering party, consisting of 9 personnel, carried out meteorological and glaciological observations together with deep ice core drilling and some construction work. Consequently, ice cores of 600m depth were obtained successfully.

  3. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liao, Hong [School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing China; Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing China; Lou, Sijia [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 μg m-3 in 1985 to 38.4 μg m-3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m-3 decade-1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s-1 decade-1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

  4. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    Directory of Open Access Journals (Sweden)

    Martin P. King

    2016-02-01

    Full Text Available Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC over the Barents-Kara (BK seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead–lag processes involving the different components of the climate system from autumn to winter is therefore important. This note presents dynamical interpretation for the ice-ocean–atmosphere relationships that can affect the BK SIC anomaly in late autumn. It is found that cyclonic (anticyclonic wind anomaly over the Arctic in October, by Ekman drift, can be responsible for positive (negative SIC in the BK seas in November. The results also suggest that ocean heat transport via the Barents Sea Opening in September and October can contribute to BK SIC anomaly in November.

  5. Classifications of Winter Euro-Atlantic Circulation Patterns: An Intercomparison of Five Atmospheric Reanalyses

    Czech Academy of Sciences Publication Activity Database

    Stryhal, J.; Huth, Radan

    2017-01-01

    Roč. 30, č. 19 (2017), s. 7847-7861 ISSN 0894-8755 Institutional support: RVO:68378289 Keywords : atmospheric circulation * classification * climate models * Europe * model evaluation/performance * reanalysis data Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.161, year: 2016 http:// journals .ametsoc.org/doi/abs/10.1175/JCLI-D-17-0059.1

  6. Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic-European sector

    Directory of Open Access Journals (Sweden)

    E. Kestenare

    2003-06-01

    Full Text Available Recent studies of observational data suggest that Sea Surface Temperature (SST anomalies in the Atlantic Ocean have a significant influence on the atmospheric circulation in the Atlantic-European sector in early winter and in spring. After reviewing this work and showing that the spring signal is part of a global air-sea interaction, we analyze for comparison an ensemble of simulations with the ECHAM4 atmospheric general circulation model in T42 resolution forced by the observed distribution of SST and sea ice, and a simulation with the ECHAM4/OPA8 coupled model in T30 resolution. In the two cases, a significant influence of the Atlantic on the atmosphere is detected in the Atlantic-European sector. In the forced mode, ECHAM4 responds to SST anomalies from early spring to late summer, and also in early winter. The forcing involves SST anomalies not only in the tropical Atlantic, but also in the whole tropical band, suggesting a strong ENSO influence. The modeled signal resembles that seen in the observations in spring, but not in early winter. In the coupled mode, the Atlantic SST only has a significant influence on the atmosphere in summer. Although the SST anomaly is confined to the Atlantic, the summer signal shows some similarity with that seen in the forced simulations. However, there is no counterpart in the observations.

  7. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    Science.gov (United States)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  8. Analysis of the Warmest Arctic Winter, 2015-2016

    Science.gov (United States)

    Cullather, Richard I.; Lim, Young-Kwon; Boisvert, Linette N.; Brucker, Ludovic; Lee, Jae N.; Nowicki, Sophie M. J.

    2016-01-01

    December through February 2015-2016 defines the warmest winter season over the Arctic in the observational record. Positive 2m temperature anomalies were focused over regions of reduced sea ice cover in the Kara and Barents Seas and southwestern Alaska. A third region is found over the ice-covered central Arctic Ocean. The period is marked by a strong synoptic pattern which produced melting temperatures in close proximity to the North Pole in late December and anomalous high pressure near the Taymyr Peninsula. Atmospheric teleconnections from the Atlantic contributed to warming over Eurasian high-latitude land surfaces, and El Niño-related teleconnections explain warming over southwestern Alaska and British Columbia, while warm anomalies over the central Arctic are associated with physical processes including the presence of enhanced atmospheric water vapor and an increased downwelling longwave radiative flux. Preconditioning of sea ice conditions by warm temperatures affected the ensuing spring extent.

  9. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  10. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    Science.gov (United States)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  11. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status.

    Science.gov (United States)

    Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta

    2013-01-01

    The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors.

  12. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  13. MIPAS observations of ozone in the middle atmosphere

    Science.gov (United States)

    López-Puertas, Manuel; García-Comas, Maya; Funke, Bernd; Gardini, Angela; Stiller, Gabriele P.; von Clarmann, Thomas; Glatthor, Norbert; Laeng, Alexandra; Kaufmann, Martin; Sofieva, Viktoria F.; Froidevaux, Lucien; Walker, Kaley A.; Shiotani, Masato

    2018-04-01

    In this paper we describe the stratospheric and mesospheric ozone (version V5r_O3_m22) distributions retrieved from MIPAS observations in the three middle atmosphere modes (MA, NLC, and UA) taken with an unapodized spectral resolution of 0.0625 cm-1 from 2005 until April 2012. O3 is retrieved from microwindows in the 14.8 and 10 µm spectral regions and requires non-local thermodynamic equilibrium (non-LTE) modelling of the O3 v1 and v3 vibrational levels. Ozone is reliably retrieved from 20 km in the MA mode (40 km for UA and NLC) up to ˜ 105 km during dark conditions and up to ˜ 95 km during illuminated conditions. Daytime MIPAS O3 has an average vertical resolution of 3-4 km below 70 km, 6-8 km at 70-80 km, 8-10 km at 80-90, and 5-7 km at the secondary maximum (90-100 km). For nighttime conditions, the vertical resolution is similar below 70 km and better in the upper mesosphere and lower thermosphere: 4-6 km at 70-100 km, 4-5 km at the secondary maximum, and 6-8 km at 100-105 km. The noise error for daytime conditions is typically smaller than 2 % below 50 km, 2-10 % between 50 and 70 km, 10-20 % at 70-90 km, and ˜ 30 % above 95 km. For nighttime, the noise errors are very similar below around 70 km but significantly smaller above, being 10-20 % at 75-95 km, 20-30 % at 95-100 km, and larger than 30 % above 100 km. The additional major O3 errors are the spectroscopic data uncertainties below 50 km (10-12 %) and the non-LTE and temperature errors above 70 km. The validation performed suggests that the spectroscopic errors below 50 km, mainly caused by the O3 air-broadened half-widths of the v2 band, are overestimated. The non-LTE error (including the uncertainty of atomic oxygen in nighttime) is relevant only above ˜ 85 km with values of 15-20 %. The temperature error varies from ˜ 3 % up to 80 km to 15-20 % near 100 km. Between 50 and 70 km, the pointing and spectroscopic errors are the dominant uncertainties. The validation performed in comparisons with

  14. A case study in atmospheric lead pollution of Northern-German coastal regions

    Energy Technology Data Exchange (ETDEWEB)

    Kapitza, H.; Eppel, D.P. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1998-12-31

    Transport and deposition of atmospheric lead over the coastal zone of Northern Germany are investigated. It is shown that marked differences in the impact of the ecologically valuable wadden sea areas can occur between summer and winter time. Due to the formation of sea breeze systems in summer the coastal zone is likely to be less stressed than in winter when the pollutant is confined to a shallow layer above ground. (orig.) 10 refs.

  15. Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute

    Directory of Open Access Journals (Sweden)

    M. Deushi

    2008-05-01

    Full Text Available A middle-atmosphere simulation of the past 25 years (from 1980 to 2004 has been performed with a chemistry-climate model (CCM of the Meteorological Research Institute (MRI under observed forcings of sea-surface temperature, greenhouse gases, halogens, volcanic aerosols, and solar irradiance variations. The dynamics module of MRI-CCM is a spectral global model truncated triangularly at a maximum wavenumber of 42 with 68 layers extending from the surface to 0.01 hPa (about 80 km, wherein the vertical spacing is 500 m from 100 to 10 hPa. The chemistry-transport module treats 51 species with 124 reactions including heterogeneous reactions. Transport of chemical species is based on a hybrid semi-Lagrangian scheme, which is a flux form in the vertical direction and an ordinary semi-Lagrangian form in the horizontal direction. The MRI-CCM used in this study reproduced a quasi-biennial oscillation (QBO of about a 20-month period for wind and ozone in the equatorial stratosphere. Multiple linear regression analysis with time lags for volcanic aerosols was performed on the zonal-mean quantities of the simulated result to separate the trend, the QBO, the El Chichón and Mount Pinatubo, the 11-year solar cycle, and the El Niño/Southern Oscillation (ENSO signals. It is found that MRI-CCM can more or less realistically reproduce observed trends of annual mean temperature and ozone, and those of total ozone in each month. MRI-CCM also reproduced the vertical multi-cell structures of tropical temperature, zonal-wind, and ozone associated with the QBO, and the mid-latitude total ozone QBO in each winter hemisphere. Solar irradiance variations of the 11-year cycle were found to affect radiation alone (not photodissociation because of an error in making the photolysis lookup table. Nevertheless, though the heights of the maximum temperature (ozone in the tropics are much higher (lower than observations, MRI-CCM could reproduce the second maxima of temperature and

  16. Application and Study of Precipitation Schemes in Weather Simulation in Summer and Winter over China

    Institute of Scientific and Technical Information of China (English)

    XU Guoqiang; WAN Qilin; HUANG Liping; XUE Jishan; CHEN Dehui

    2006-01-01

    Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Kain-Fritsch (KF) scheme and Betts-Miller (BM) scheme in summer, the former scheme is better than the latter in this case. The ambient atmosphere may be varied by different convective schemes. The air is wetter and the updraft is stronger in the KF scheme than in the BM scheme, which can induce the more grid scale precipitation in the KF scheme, i.e., the different cumulus schemes may have the different and important effect on the grid scale precipitation. However, there is almost no convective rain in winter in northern China, so the effect of cumulus precipitation on the grid scale precipitation can be disregarded.Therefore, the gird scale precipitation is primary in the winter of northern China.

  17. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  18. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  19. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  20. Not all infantile respiratory distress in winter is bronchiolitis: congenital lobar emphysema.

    Science.gov (United States)

    Taqvi, Laura; Griksaitis, Michael; Eastham, Katherine

    2011-10-20

    The authors report the case of a 4-week-old male infant presented during the winter period with respiratory distress. He had a 3 day history of cough and coryza, and a 2 day history of breathlessness and reduced feeding. He had evidence of tachypnoea, subcostal recession and hypoxia on examination. An initial diagnosis of bronchiolitis was made. The authors explore how the correct diagnosis of congenital lobar emphysema (CLE) was reached, highlighting key clinical signs and investigations. He had evidence of a hyperinflated right middle lobe, with collapse of right upper and lower lobes and left upper lobe with associated mediastinal shift on chest x-ray (CXR) and CT scan. He was referred to the regional Paediatric Cardiothoracic Centre where right middle lobectomy was performed with complete resolution of his respiratory distress and re-expansion of the compressed lobes on CXR. Current literature concerning CLE is reviewed.

  1. Can GRACE detect winter snows in Japan?

    Science.gov (United States)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  2. Chemical effects in 11-year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM)

    OpenAIRE

    U. Langematz; J. Grenfell; K. Matthes; P. Mieth; M. Kunze; B. Steil; C. Brühl;  

    2005-01-01

    The impact of 11-year solar cycle variations on stratospheric ozone (O3) is studied with the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (FUB-CMAM-CHEM). To consider the effect of variations in charged particle precipitation we included an idealized NO x source in the upper mesosphere representing relativistic electron precipitation (REP). Our results suggest that the NO x source by particles and its transport from the mesosphere to the stratosphe...

  3. Representation of Northern Hemisphere winter storm tracks in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Greeves, C.Z.; Pope, V.D.; Stratton, R.A.; Martin, G.M. [Met Office Hadley Centre for Climate Prediction and Research, Exeter (United Kingdom)

    2007-06-15

    Northern Hemisphere winter storm tracks are a key element of the winter weather and climate at mid-latitudes. Before projections of climate change are made for these regions, it is necessary to be sure that climate models are able to reproduce the main features of observed storm tracks. The simulated storm tracks are assessed for a variety of Hadley Centre models and are shown to be well modelled on the whole. The atmosphere-only model with the semi-Lagrangian dynamical core produces generally more realistic storm tracks than the model with the Eulerian dynamical core, provided the horizontal resolution is high enough. The two models respond in different ways to changes in horizontal resolution: the model with the semi-Lagrangian dynamical core has much reduced frequency and strength of cyclonic features at lower resolution due to reduced transient eddy kinetic energy. The model with Eulerian dynamical core displays much smaller changes in frequency and strength of features with changes in horizontal resolution, but the location of the storm tracks as well as secondary development are sensitive to resolution. Coupling the atmosphere-only model (with semi-Lagrangian dynamical core) to an ocean model seems to affect the storm tracks largely via errors in the tropical representation. For instance a cold SST bias in the Pacific and a lack of ENSO variability lead to large changes in the Pacific storm track. Extratropical SST biases appear to have a more localised effect on the storm tracks. (orig.)

  4. Using species distribution model to estimate the wintering population size of the endangered scaly-sided merganser in China.

    Directory of Open Access Journals (Sweden)

    Qing Zeng

    Full Text Available Scaly-sided Merganser is a globally endangered species restricted to eastern Asia. Estimating its population is difficult and considerable gap exists between populations at its breeding grounds and wintering sites. In this study, we built a species distribution model (SDM using Maxent with presence-only data to predict the potential wintering habitat for Scaly-sided Merganser in China. Area under the receiver operating characteristic curve (AUC method suggests high predictive power of the model (training and testing AUC were 0.97 and 0.96 respectively. The most significant environmental variables included annual mean temperature, mean temperature of coldest quarter, minimum temperature of coldest month and precipitation of driest quarter. Suitable conditions for Scaly-sided Merganser are predicted in the middle and lower reaches of the Yangtze River, especially in Jiangxi, Hunan and Hubei Provinces. The predicted suitable habitat embraces 6,984 km of river. Based on survey results from three consecutive winters (2010-2012 and previous studies, we estimated that the entire wintering population of Scaly-sided Merganser in China to be 3,561 ± 478 individuals, which is consistent with estimate in its breeding ground.

  5. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies

    Science.gov (United States)

    Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei

    2018-03-01

    Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.

  6. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  7. Evidence of the Lower Thermospheric Winter-to-Summer Circulation From SABER CO2 Observations

    Science.gov (United States)

    Qian, Liying; Burns, Alan; Yue, Jia

    2017-10-01

    Numerical studies have shown that there is a lower thermospheric winter-to-summer circulation that is driven by wave dissipation and that it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere, and in the composition of the thermosphere. However, the characteristics of this circulation are poorly known. Direct observations of it are difficult, but it leaves clear signatures in tracer distributions. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has obtained CO2 concentration from 2002 to present. This data set, combined with simulations by the Whole Atmosphere Community Climate Model, provides an unprecedented opportunity to infer the morphology of this circulation in both the summer and winter hemispheres. Our study show that there exists a maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; in the winter hemisphere, the maximum vertical gradient of CO2 is located at a higher altitude, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation; the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km.

  8. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  9. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    KAUST Repository

    Osipov, Sergey

    2017-10-26

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East\\'s regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  10. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    Science.gov (United States)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-11-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  11. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  12. Communicating Certainty About Nuclear Winter

    Science.gov (United States)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  13. South-coast cyclone in Japan during El Niño-caused warm winters

    Science.gov (United States)

    Ueda, Hiroaki; Amagai, Yuusuke; Hayasaki, Masamitsu

    2017-05-01

    La Niña conditions during boreal winter sometimes brings excessive snowfall in Japan, especially on the East Sea/Sea of Japan coastal and mountain areas through intensified northwesterly cold winds caused by La-Niña related atmospheric teleconnection. Meanwhile, snowfall events also increase in the Pacific coast area of Japan during the El Niño state due to extratropical cyclones passing along the south coast of Japan (hereafter referred to as South-coast cyclone). In the present study, we investigated year-to-year snowfall/rainfall variations based on meteorological station data and cyclone tracks identified by using the Japanese 55-year Reanalysis. The result clearly indicates increase of the South-coast cyclone during El Niño-developing winters, which is consistent with excessive snow-fall in the northern part of the Pacific coast. Strong subtropical jet hampers cyclogenesis due to less vertical interaction through the trapping of upper-level eddies. During El Niño-developing winters, the subtropical jet is weakened over East Asia, indicating dynamic linkage to increased cyclone frequency. In addition to this, both the deepening of the upper-tropospheric trough over East Asia and anomalous low-tropospheric northwest anticyclones extending from the Philippines toward Japan are also consistent with the enhancement of cyclogenesis over the East China Sea as well as warm winter in Japan.

  14. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  15. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    Science.gov (United States)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  16. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  17. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2013-10-01

    Full Text Available Continuous measurements of atmospheric mercury concentration and speciation play a key role in identifying mercury sources and its behavior in the atmosphere. In this study, speciated atmospheric mercury including gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particle-bound mercury (PBM were continuously measured at Miyun, a rural site in Beijing, China, from December 2008 to November 2009. The average GEM, RGM and PBM concentrations were found to be 3.22 ± 1.74, 10.1 ± 18.8 and 98.2 ± 112.7 pg m−3, respectively, about 2–20 times higher than the background concentration of the Northern Hemisphere. The results indicated that atmospheric mercury concentrations in northern China were highly affected by anthropogenic emissions. The atmospheric mercury showed obvious seasonal variations, with the highest seasonal average GEM concentration in summer (3.48 ng m−3 and the lowest value in winter (2.66 ng m−3. In autumn and winter a diurnal variation of GEM was observed, with peak levels in the late afternoon till midnight. Most of the high RGM concentration values occurred in the afternoon of all seasons due to the higher oxidation. The PBM concentration was higher in early morning of all seasons because of the the temperature inversion that increases in depth as the night proceeds. The ratio of GEM to CO indicates that residential boilers play an important role in the elevation of GEM in winter. The ratio of RGM to O3 could be an indicator of the contribution of local primary sources. The ratio of PBM to PM2.5 reveals that the air mass from the east and southwest of the site in spring and summer carries more atmospheric mercury. The HYSPLIT back-trajectory analysis indicated that the monitoring site is affected by local, regional and interregional sources simultaneously during heavy pollution episodes. The results from the potential source contribution function (PSCF model indicate that the atmospheric transport

  18. Numerical simulation of a winter hailstorm event over Delhi, India on 17 January 2013

    Science.gov (United States)

    Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.

    2014-09-01

    This study analyzes the cause of rare occurrence of winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using Weather Research and Forecasting (WRF) model with Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options, hail or graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with comparative analysis of the two options of GCE microphysics. On evaluating the model simulations, it is observed that hail option shows similar precipitation intensity with TRMM observation than the graupel option and is able to simulate hail precipitation. Using the model simulated output with hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached upto the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of WD. Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.

  19. Longitudinal structure of stationary planetary waves in the middle atmosphere–extraordinary years

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter; Kozubek, Michal

    2018-01-01

    Roč. 36, č. 1 (2018), s. 181-192 ISSN 0992-7689 R&D Projects: GA ČR(CZ) GA15-03909S Institutional support: RVO:68378289 Keywords : meteorology and atmospheric dynamics * middle atmosphere dynamics Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.610, year: 2016 https://www.ann-geophys.net/36/181/2018/angeo-36-181-2018.pdf

  20. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  1. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  2. Terra Data Confirm Warm, Dry U.S. Winter

    Science.gov (United States)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  3. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  4. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  5. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  6. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter

    Directory of Open Access Journals (Sweden)

    Marius O. Jonassen

    2015-10-01

    Full Text Available The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO, a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO's high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice.

  7. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    Science.gov (United States)

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  8. DYANA campaign results on long-period atmospheric waves over Thumba and Balasore

    Science.gov (United States)

    Reddi, C. Raghava; Rajeev, K.; Nair, S. Muraleedharan; Subbaraya, B. H.; Rama, G. V.; Appu, K. S.; Narayanan, V.; Apparao, B. V.; Chakravarty, S. C.; Nagpal, O. P.; Perov, S. P.; Kokin, G. A.

    1994-12-01

    The variation with altitude of the spectral amplitudes of the long period waves in the middle atmospheric zonal and meridional wind over Thumba (8.5°N, 76.9°E) and Balasore (21.5°N, 86.9°E) have shown clearly the enhanced dissipation of the atmospheric waves in the lower stratosphere and near the stratopause. The amplitudes are, in general, large for the lower frequency ( <0.1 cycles/day) waves in the troposphere. While propagating through the tropopause into the stratosphere and above, waves with periods in the range of 5-10 days suffer less attenuation. The dissipation of the atmospheric waves is found to be relatively large for frequencies below 0.1 cycles/day. The results are compared with earlier observational studies and theoretical computations on the propagation of equatorial waves through the middle atmosphere.

  9. Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea

    Science.gov (United States)

    Stenchikov, G. L.; Osipov, S.

    2017-12-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  10. Atmospheric concentration of 210Pb in East Asia

    International Nuclear Information System (INIS)

    Doi, T.; Sato, S.; Sato, J.

    2003-01-01

    Concentrations of 210 Pb and 7 Be in the surface air were measured at Tsukuba, Japan. The air concentrations of 210 Pb and 7 Be ranged from 0.2 to 0.7 mBq/m 3 and from 1 to 6 mBq/m 3 , respectively. Seasonal variation of 210 Pb concentration was similar to that of 7 Be, showing a 'two-peak' variation pattern: high concentrations appeared in spring and fall. Atmospheric concentrations of 210 Pb and their variations over Urumqi, Lanzhou and Baotou, cities located inland area of the Eurasian Continent, were observed. The monthly average concentrations ranged from 0.27 to 4.57 mBq/m 3 . The concentrations over these cities in winter were several times higher than that observed at Tsukuba, and the range of variation was also larger. The variations in concentration over the 3 localities resembled well with each other, showing the similar seasonal variation pattern: low concentration appeared in summer and high in winter. This variation pattern was different from that observed at Tsukuba. The variations in concentration over the Eurasian Continent, where precipitation is extremely smaller than that of Japan, inversely correlated quite well with the variation in the precipitation. The atmospheric concentrations of 210 Pb ranged from 0.9 to 4.6 mBq/m 3 at Beijing and from 1.4 to 7.8 mBq/m 3 at Chengdu and from 0.5 to 4.9 mBq/m 3 at Seoul, respectively, which were in the similar level to those observed previously in the inland area of the Eurasian Continent. Seasonal variations of the 210 Pb concentration showed the 'one-peak' variation pattern: the maximum levels were recorded in winter season. Small additional rises in the atmospheric 210 Pb concentrations observed in the period from spring to fall seasons may be due to complicated meteorology with high pressure systems at Beijing and Seoul and due to the topographical situation at Chengdu. Long range transport from the Eurasian Continent to the Japanese Islands was also assessed. The air mass from continent reached the

  11. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.

    2017-01-01

    variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean

  12. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  13. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  14. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Science.gov (United States)

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  15. Upper atmosphere research at INPE

    International Nuclear Information System (INIS)

    Clemesha, B.R.

    1984-01-01

    Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermosphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photometric observations of O, O 2 , OH and Na emissions, including interferrometric measurements of the OI6300 emission for the purpose of determing thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of energetic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented. (Author) [pt

  16. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    Science.gov (United States)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  17. Wind and turbulence measurements by the Middle and Upper Atmosphere Radar (MUR: comparison of techniques

    Directory of Open Access Journals (Sweden)

    A. A. Praskovsky

    2004-11-01

    Full Text Available The structure-function-based method (referred to as UCAR-STARS, a technique for estimating mean horizontal winds, variances of three turbulent velocity components and horizontal momentum flux was applied to the Middle and Upper atmosphere Radar (MUR operating in spaced antenna (SA profiling mode. The method is discussed and compared with the Holloway and Doviak (HAD correlation-function-based technique. Mean horizontal winds are estimated with the STARS and HAD techniques; the Doppler Beam Swinging (DBS method is used as a reference for evaluating the SA techniques. Reasonable agreement between SA and DBS techniques is found at heights from 5km to approximately 11km, where signal-to-noise ratio was rather high. The STARS and HAD produced variances of vertical turbulent velocity are found to be in fair agreement. They are affected by beam-broadening in a different way than the DBS-produced spectral width, and to a much lesser degree. Variances of horizontal turbulent velocity components and horizontal momentum flux are estimated with the STARS method, and strong anisotropy of turbulence is found. These characteristics cannot be estimated with correlation-function-based SA methods, which could make UCAR-STARS a useful alternative to traditional SA techniques.

  18. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    Science.gov (United States)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  19. A fifty year record of winter glacier melt events in southern Chile, 38°–42°S

    International Nuclear Information System (INIS)

    Brock, Ben W; Burger, Flavia; Montecinos, Aldo; Rivera, Andrés

    2012-01-01

    Little is known about the frequency and potential mass balance impact of winter glacier melt events. In this study, daily atmospheric temperature soundings from the Puerto Montt radiosonde (41.43°S) are used to reconstruct winter melting events at the glacier equilibrium line altitude in the 38°–42°S region of southern Chile, between 1960 and 2010. The representativeness of the radiosonde temperatures to near-surface glacier temperatures is demonstrated using meteorological records from close to the equilibrium line on two glaciers in the region over five winters. Using a degree-day model we estimate an average of 0.28 m of melt and 21 melt days in the 15 June–15 September period each year, with high inter-annual variability. The majority of melt events are associated with midlatitude migratory high pressure systems crossing Chile and northwesterly flows, that force adiabatic compression and warm advection, respectively. There are no trends in the frequency or magnitude of melt events over the period of record, but the annual frequency of winter melt days shows a significant, although rather weak and probably non-linear, relationship to late winter and early spring values of a multivariate El Niño Southern Oscillation Index (MEI). (letter)

  20. Nuclear Winter Revisited: can it Make a Difference This Time?

    Science.gov (United States)

    Schneider, S.

    2006-12-01

    Some 23 years ago, in the middle of a Cold War and the threat of a strategic nuclear weapons exchange between NATO and the Warsaw Pact nations, atmospheric scientists pointed out that the well-anticipated side effects of a large-scale nuclear war ozone depletion, radioactive contamination and some climatic effects had massively underestimated the more likely implications: massive fires, severe dimming and cooling beneath circulating smoke clouds, disruption to agriculture in non-combatant nations, severe loss of imports of food to already-food-deficient regions and major alterations to atmospheric circulation. While the specific consequences were dependent on both scenarios of weapons use and injections and removals of smoke and dust and other chemicals into the atmosphere, it was clear that this would be despite passionately argued uncertainties a large major additional effect. As further investigations of smoke removal, patchy transport, etc., were pursued, the basic concerns remained, but the magnitude calculated with one-dimensional models diminished creating an unfortunate media debate over nuclear winter vs. nuclear autumn. Of course, one can't grow summer crops in any autumn natural or nuclear but that concern often got lost in the contentious political debate. Of course, it was pointed out that anyone who required knowing the additional environmental consequences of a major nuclear exchange to be finally deterred was already so far from the reality of the direct effects of the blasts that they might never see the concerns. But for non-combatants, it was a major awakening of their inability to escape severe consequences of the troubles of others, even if they were bystanders in the east-west conflicts. Two decades later, things have radically changed: the prospect of a massive strategic nuclear exchange is greatly diminished good news but the possibility of limited regional exchanges or terrorist incidents is widely believed to have greatly increased bad

  1. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Lu Chuhan; Guan Zhaoyong

    2012-01-01

    Extreme cold winter weather events over Eurasia have occurred more frequently in recent years in spite of a warming global climate. To gain further insight into this regional mismatch with the global mean warming trend, we analyzed winter cyclone and anticyclone activities, and their interplay with the regional atmospheric circulation pattern characterized by the semi-permanent Siberian high. We found a persistent weakening of both cyclones and anticyclones between the 1990s and early 2000s, and a pronounced intensification of anticyclone activity afterwards. It is suggested that this intensified anticyclone activity drives the substantially strengthening and northwestward shifting/expanding Siberian high, and explains the decreased midlatitude Eurasian surface air temperature and the increased frequency of cold weather events. The weakened tropospheric midlatitude westerlies in the context of the intensified anticyclones would reduce the eastward propagation speed of Rossby waves, favoring persistence and further intensification of surface anticyclone systems. (letter)

  2. Prevalence of operator fatigue in winter maintenance operations.

    Science.gov (United States)

    Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J

    2018-02-02

    Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    Science.gov (United States)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results

  4. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  5. Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Zanchettin, D.; Lorenz, S.; Lohmann, K.; Jungclaus, J.H. [Max Planck Institute for Meteorology, Ocean in the Earth System Department, Hamburg (Germany); Timmreck, C. [Max Planck Institute for Meteorology, Atmosphere in the Earth System Department, Hamburg (Germany); Graf, H.-F. [University of Cambridge, Centre for Atmospheric Science, Cambridge (United Kingdom); Rubino, A. [Ca' Foscari University, Department of Environmental Sciences, Venice (Italy); Krueger, K. [Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany)

    2012-07-15

    Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute - Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than -1.5 Wm{sup -2} is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean-atmosphere system with an average length of 20-25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10-12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates. (orig.)

  6. Deposition of atmospheric 210Pb and total beta activity in Finland

    International Nuclear Information System (INIS)

    Jussi Paatero; Murat Buyukay; Juha Hatakka; Kaisa Vaaramaa; Jukka Lehto

    2015-01-01

    The seasonal and regional variation of the atmospheric 210 Pb deposition in Finland was studied. The 210 Pb activity concentration in precipitation shows a decreasing trend from southeastern Finland north-westwards. An average deposition of 40 Bq/m 2 during a 12 months period was observed. The deposition of 210 Pb shows a seasonal variation with minimum in spring and maximum in autumn and winter. The specific activity of 210 Pb (activity of 210 Pb per unit mass of stable lead) in the atmosphere has returned to the level prior to World War II owing to the reduced lead emissions into the atmosphere. (author)

  7. A Possible Link Between Winter Arctic Sea Ice Decline and a Collapse of the Beaufort High?

    Science.gov (United States)

    Petty, Alek A.

    2018-03-01

    A new study by Moore et al. (2018, https://doi.org/10.1002/2017GL076446) highlights a collapse of the anticyclonic "Beaufort High" atmospheric circulation over the western Arctic Ocean in the winter of 2017 and an associated reversal of the sea ice drift through the southern Beaufort Sea (eastward instead of the predominantly westward circulation). The authors linked this to the loss of sea ice in the Barents Sea, anomalous warming over the region, and the intrusion of low-pressure cyclones along the eastern Arctic. In this commentary we discuss the significance of this observation, the challenges associated with understanding these possible linkages, and some of the alternative hypotheses surrounding the impacts of winter Arctic sea ice loss.

  8. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Extension of the MSIS thermosphere model into the middle and lower atmosphere

    International Nuclear Information System (INIS)

    Hedin, A.E.

    1991-01-01

    The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause

  10. An interim reference model for the middle atmosphere water vapor distribution

    Science.gov (United States)

    Russell, J. M., III

    1987-01-01

    Nimbus 7 LIMS data are used to determine monthly and seasonal zonal mean reference stratospheric profiles over selected latitude bands, and other ground and airborne microwave data are combined with the LIMS data to construct an interim reference profile from the tropopause to 80 km for the midlatitude region averaged over the winter and spring periods. The present profiles indicate the presence of a hygropause near 50 mb pressure in the tropics, a relatively constant mixing ratio distribution with a height of 4.7-5 ppmv in the midlatitude and high latitude stratosphere, and a decrease in the midlatitude mesosphere to 1 ppmv at about 80 km.

  11. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?

    Science.gov (United States)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.

    2018-03-01

    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  12. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  13. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  14. Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific

    Science.gov (United States)

    Gao, Tao; Yu, Jin-yi; Paek, Houk

    2017-08-01

    The impacts of four teleconnection patterns on atmospheric circulation components over Eurasia and the Pacific region, from low to high latitudes in the Northern Hemisphere (NH), were investigated comprehensively in this study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/Western Russia (EAWR), Polar/Eurasia (POLEUR), and Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the subtropical high over different sectors of the NH in all seasons, especially boreal winter. The wave train associated with this pattern serves as an atmospheric bridge that transfers Atlantic influence into the low-latitude region of the Pacific. In addition, the amplitudes of the EAWR, SCAND, and POLEUR patterns were found to have considerable control on the "Vangengeim-Girs" circulation that forms over the Atlantic-Eurasian region in winter or spring. The EA and EAWR mainly affect the westerlies in winter and spring and the POLEUR and SCAND, respectively, in summer and winter. Strong westerlies confine the extension of the North Polar vortex, which generally results in a small weak vortex and a shallow East Asian trough located in a position further east than normal. Furthermore, the North Polar vortex presents significant connections with the patterns during winter and summer. Analyses in this work suggest that the teleconnection patterns in summer could be driven, at least partly, by the Atlantic Multidecadal Oscillation, which to some degree might transmit the influence of the Atlantic Ocean to Eurasia and the Pacific region.

  15. Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013

    Science.gov (United States)

    Chevuturi, A.; Dimri, A. P.; Gunturu, U. B.

    2014-12-01

    This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00-18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.

  16. Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013

    KAUST Repository

    Chevuturi, A.

    2014-12-19

    This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00–18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation.

  17. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  18. Seasonal variation of radon daughters concentrations in the atmosphere and in precipitation at the Japanese coast of the Sea of Japan

    International Nuclear Information System (INIS)

    Nishikawa, T.; Okabe, S.; Aoki, M.

    1988-01-01

    The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan. (author)

  19. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  20. 46 CFR 45.73 - Winter freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Winter freeboard. 45.73 Section 45.73 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.73 Winter freeboard. The minimum winter freeboard (fw) in inches is obtained by the formula: fw=f(s)+T s...

  1. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    Science.gov (United States)

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  2. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    Science.gov (United States)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  3. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    Institute of Scientific and Technical Information of China (English)

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing

    2006-01-01

    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  4. After nuclear war - a nuclear winter

    International Nuclear Information System (INIS)

    Tangley, L.

    1984-01-01

    The environmental and biological consequences of nuclear war were discussed by more than 100 eminent biologists, physicists and atmospheric scientists at the recent World after Nuclear War conference. The long-term effects were determined to be worse than the well-known immediate effects. They predicted that 225 million tons of smoke would be generated within a few days in their baseline scenario. As a result, the amount of sunlight reaching the earth would be reduced to a few percent of normal and temperatures would fall to -23 0 C. About 30% of the northern middle latitudes would receive more than 250 rads radiation dose for several months and about 50% of the land area would receive more than 100 rads. Dangerous levels of solar ultraviolet light would burn through the atmosphere. It was also determined that these effects would be felt in the southern hemisphere. Those who survived the blast, fire and prompt radiation would face starvation from shutdown of plant photosynthesis and inhibition of phytoplankton photosynthesis. Huge wildfires and acid rains would stress any surviving plants and animals. Conference participants agreed that scientists had taken a new and significant step toward understanding the full consequences of nuclear war

  5. Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves

    Directory of Open Access Journals (Sweden)

    Q. T. Trinh

    2018-03-01

    Full Text Available Atmospheric gravity waves (GWs are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30–90 km and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE and CHAllenging Minisatellite Payload (CHAMP satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above. Two coupling mechanisms are likely responsible for these positive correlations: (1 fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2 primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude–longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also

  6. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  7. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    KAUST Repository

    Lelieveld, J.

    2015-08-21

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century.

  8. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  9. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    KAUST Repository

    Lelieveld, J.; Beirle, S.; Hormann, C.; Stenchikov, Georgiy L.; Wagner, T.

    2015-01-01

    economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds

  10. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)

    2012-10-15

    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  11. The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models

    Science.gov (United States)

    Guo, Zhun; Zhou, Tianjun; Wu, Bo

    2017-02-01

    El Niño-Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.

  12. Activity report of the 40th Japanese Antarctic Research Expedition wintering party in 1999-2000

    Directory of Open Access Journals (Sweden)

    Hiroshi Miyaoka

    2011-03-01

    Full Text Available The 40th Japanese Antarctic Research Expedition (JARE-40 wintering party, with 40 members, has successfully conducted the third-year project of the Vth five-year JARE program, over the period from 1st February 1999 to 31st January 2000, at Syowa Station, Antarctica.The framework of the JARE-40 wintering party program was the same as those of JARE-38 and JARE-39, comprising three routine observation programs and project/monitoring research observation programs in upper atmospheric physics, atmospheric sciences and glaciology, geophysics, and biology. In addition to many continuing projects, several new observations were started: 50MHz/112MHz aurora radars and a VLF wave receiver as part of the ionosphere program, aerosol sonde observations of Polar Stratospheric Clouds (PSCs as part of the meteorological program, HF/MF radars as part of the upper atmospheric physics program, frequent VLBI experiments as part of the geophysics program, and biological field surveys (including two dives, including monitoring of the undersea behavior of Weddell seals using bio-logging devices.In terms of inland field surveys, two parties were organized: fuel transportation and glaciological/meteorological observations along the route to Mizuho Station in August-September and to Dome Fuji/Yamato air-basecamp in November-January. These surveys involved snow sampling, precise GPS positioning, and sub-glacial surveys using three types of ice radar.Logistical activities, conducted in cooperation with the JARE-40 summer party, included the construction of a second summer lodge, the startup of a second 300 kVA generator and co-generator system, the development of a sewage plant, solar power panels, an access road to the A-heliport, and the cleanup of disused buildings. During the wintering period, efforts were directed towards the maintenance of all facilities at Syowa Station, safety management, and practical support for field operations.The Antarctic Environmental

  13. Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China

    Science.gov (United States)

    Ding, Feng; Li, Chun

    2017-07-01

    Using observed daily precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data, what induced winter large spatial persistent heavy rainfall (PHR) events in south China was examined, based on composite analyses of 30 large spatial PHR events during 1951-2015. The results showed that wave trains within North Africa-Asia (NAA) westerly jet existed in upper troposphere during these PHR processes. The wave trains shared the characteristic of a Rossby wave. The Rossby wave originated from northwest Europe, entered into the NAA jet through strong cold air advection to form convergence over the Mediterranean, and then propagated eastward along subtropical NAA jet. The Rossby wave propagated toward Southeast Asia and caused strong divergence in the upper troposphere. The strong divergence in the upper troposphere induced vertical convection and favored large spatial PHR events in south China. In addition, the enhanced India-Burma trough and subtropical high in the northwestern Pacific supplied enough water vapor transportation. This mechanism would be useful to the medium-range forecast of such winter rainfall processes over south China.

  14. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  15. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.

    Science.gov (United States)

    Duo, Bu; Cui, Lulu; Wang, Zhenzhen; Li, Rui; Zhang, Liwu; Fu, Hongbo; Chen, Jianmin; Zhang, Huifang; Qiong, A

    2018-01-01

    Atmospheric pollutants including SO 2 , NO 2 , CO, O 3 and inhalable particulate matter (PM 2.5 and PM 10 ) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O 3 , with the peaks in winter but low valleys in summer. The maximum O 3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O 3 and PM 10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O 3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O 3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O 3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future. Copyright © 2017. Published by Elsevier B.V.

  16. Air pollution episodes associated with East Asian winter monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D., E-mail: pdhien@gmail.com [Vietnam Atomic Energy Agency, 59 Ly Thuong Kiet str. Hanoi (Viet Nam); Loc, P.D.; Dao, N.V. [National Hydro-Meteorological Center, 62-A2 Nguyen Chi Thanh str. Hanoi (Viet Nam)

    2011-11-01

    A dozen multi-day pollution episodes occur from October to February in Hanoi, Vietnam due to prolonged anticyclonic conditions established after the northeast monsoon surges (cold surges). These winter pollution episodes (WPEs) account for most of the 24-h PM{sub 10} exceedances and the highest concentrations of gaseous pollutants in Hanoi. In this study, WPEs were investigated using continuous air quality monitoring data and information on upper-air soundings and air mass trajectories. The 24-h pollutant concentrations are lowest during cold surges; concurrently rise thereafter reaching the highest levels toward the middle of a monsoon cycle, then decline ahead of the next cold surge. Each monsoon cycle usually proceeds through a dry phase and a humid phase as Asiatic continental cold air arrives in Hanoi through inland China then via the East China Sea. WPEs are associated with nighttime radiation temperature inversions (NRTIs) in the dry phase and subsidence temperature inversions (STIs) in the humid phase. In NRTI periods, the rush hour pollution peak is more pronounced in the evening than in the morning and the pollution level is about two times higher at night than in daytime. In STI periods, broad morning and evening traffic peaks are observed and pollution is as high at night as in daytime. The close association between pollution and winter monsoon meteorology found in this study for the winter 2003-04 may serve as a basis for advance warning of WPEs and for forecasting the 24-h pollutant concentrations. - Highlights: {yields} Dozen pollution episodes from Oct. to Feb in Hanoi associated with anticyclones after monsoon surges. {yields} 24-h concentrations of PM{sub 10}, SO{sub 2}, NO{sub 2}, CO rise after surge and decline ahead of the next. {yields} Episodes caused by nighttime radiation and subsidence inversions in dry and humid monsoon phases. {yields} Distinct diurnal variations of pollutant concentrations observed in the two periods. {yields} Close

  17. How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study

    Science.gov (United States)

    Luo, Xiao; Wang, Bin

    2018-03-01

    Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be

  18. Mathematics Teacher's Job Satisfaction in Middle School in Jeddah, Saudi Arabia

    OpenAIRE

    ALZHRANI, KHALED MOHMMAD A.

    2017-01-01

    This research examines Mathematics teachers’ job satisfaction levels in the four dimensions of job satisfaction (administrative support, workplace atmosphere, teaching efficacy and students’ behavior) and its relation to students’ achievements in Middle schools in Jeddah, Saudi Arabia.

  19. The 13th Winter Conference on Medicinal and Bioorganic Chemistry.

    Science.gov (United States)

    Williams, Scott D

    2017-04-06

    The Medicinal and Bioorganic Chemistry Foundation (MBCF) hosted its 13 th biannual Winter Conference on Medicinal and Bioorganic Chemistry (WCMBC) this past January 22 nd -26 th in Steamboat Springs, Colorado (USA). The gathering this year kept true to the tradition of this conference series, with an impressive lineup of presenters from both academia and industry. With about 125 delegates, the conference took all the advantages of a mid-sized gathering: a sufficiently wide spectrum of scientists in attendance, yet an intimate atmosphere conducive to solid networking and frank, open discussions. This conference report summarizes the presentations that were given this year. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Practical Measure of Student Motivation: Establishing Validity Evidence for the Expectancy-Value-Cost Scale in Middle School

    Science.gov (United States)

    Kosovich, Jeff J.; Hulleman, Chris S.; Barron, Kenneth E.; Getty, Steve

    2015-01-01

    We present validity evidence for the Expectancy-Value-Cost (EVC) Scale of student motivation. Using a brief, 10-item scale, we measured middle school students' expectancy, value, and cost for their math and science classes in the Fall and Winter of the same academic year. Confirmatory factor analyses supported the three-factor structure of the EVC…

  1. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  2. Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, P.K.; DileepKumar, M.; Mahowald, N.; Sarma, V.V.S.S.

    Intense upwelling during summer and convection in winter are believed to drive higher biological productivity in the Arabian Sea than in the Bay of Bengal. Although the Arabian Sea receives substantial atmospheric deposition of dust aerosols, its...

  3. Sensitivity of the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM to different gravity-wave drag parameterisations

    Directory of Open Access Journals (Sweden)

    P. Mieth

    2004-09-01

    Full Text Available We report the sensitivity of the Berlin Climate Middle Atmosphere Model (CMAM to different gravity-wave (GW parameterisations. We perform five perpetual January experiments: 1 Rayleigh friction (RF (control, 2 non-orographic GWs, 3 orographic GWs, 4 orographic and non-orographic GWs with no background stress, and 5 as for 4 but with background stress. We also repeat experiment 4 but for July conditions. Our main aim is to improve the model climatology by introducing orographic and non-orographic parameterisations and to investigate the individual effect of these schemes in the Berlin CMAM. We compare with an RF control to determine the improvement upon a previously-published model version employing RF. Results are broadly similar to previously-published works. The runs having both orographic and non-orographic GWs produce a statistically-significant warming of 4-8K in the wintertime polar lower stratosphere. These runs also feature a cooling of the warm summer pole in the mesosphere by 10-15K, more in line with observations. This is associated with the non-orographic GW scheme. This scheme is also associated with a heating feature in the winter polar upper stratosphere directly below the peak GW-breaking region. The runs with both orographic and non-orographic GWs feature a statistically-significant deceleration in the polar night jet (PNJ of 10-20ms-1 in the lower stratosphere. Both orographic and non-orographic GWs individually produce some latitudinal tilting of the polar jet with height, although the main effect comes from the non-orographic waves. The resulting degree of tilt, although improved, is nevertheless still weaker than that observed. Accordingly, wintertime variability in the zonal mean wind, which peaks at the edge of the vortex, tends to maximise too far polewards in the model compared with observations. Gravity-planetary wave interaction leads to a decrease in the amplitudes of stationary planetary waves 1 and 2 by up to 50% in

  4. Sensitivity of the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM to different gravity-wave drag parameterisations

    Directory of Open Access Journals (Sweden)

    P. Mieth

    2004-09-01

    Full Text Available We report the sensitivity of the Berlin Climate Middle Atmosphere Model (CMAM to different gravity-wave (GW parameterisations. We perform five perpetual January experiments: 1 Rayleigh friction (RF (control, 2 non-orographic GWs, 3 orographic GWs, 4 orographic and non-orographic GWs with no background stress, and 5 as for 4 but with background stress. We also repeat experiment 4 but for July conditions. Our main aim is to improve the model climatology by introducing orographic and non-orographic parameterisations and to investigate the individual effect of these schemes in the Berlin CMAM. We compare with an RF control to determine the improvement upon a previously-published model version employing RF. Results are broadly similar to previously-published works. The runs having both orographic and non-orographic GWs produce a statistically-significant warming of 4-8K in the wintertime polar lower stratosphere. These runs also feature a cooling of the warm summer pole in the mesosphere by 10-15K, more in line with observations. This is associated with the non-orographic GW scheme. This scheme is also associated with a heating feature in the winter polar upper stratosphere directly below the peak GW-breaking region. The runs with both orographic and non-orographic GWs feature a statistically-significant deceleration in the polar night jet (PNJ of 10-20ms-1 in the lower stratosphere. Both orographic and non-orographic GWs individually produce some latitudinal tilting of the polar jet with height, although the main effect comes from the non-orographic waves. The resulting degree of tilt, although improved, is nevertheless still weaker than that observed. Accordingly, wintertime variability in the zonal mean wind, which peaks at the edge of the vortex, tends to maximise too far polewards in the model compared with observations. Gravity-planetary wave interaction leads to a decrease in the amplitudes of stationary planetary waves 1 and 2 by

  5. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  6. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state

    International Nuclear Information System (INIS)

    Chambers, Scott D.; Galeriu, Dan; Williams, Alastair G.; Melintescu, Anca; Griffiths, Alan D.; Crawford, Jagoda; Dyer, Leisa; Duma, Marin; Zorila, Bogdan

    2016-01-01

    A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill–Gifford “radiation” scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s"−"1 and nocturnal mixing depths vary from ∼25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500–900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m"−"2 s"−"1 in winter to 14 mBq m"−"2 s"−"1 in summer. - Highlights: • Site climatology accurately characterised by season and atmospheric stability class. • Comparison of "2"2"2Rn-based, Pasquill–Gifford and Richardson number stability indices. • Seasonal mixing depth estimates over the whole diurnal cycle by ceilometer and radon. • Seasonal variability in the regional radon source function well constrained.

  7. Soil-pit Method for Distribution and Leaching Loss of Nitrogen in Winter Wheat’s Soil, Weishan Irrigation District

    Science.gov (United States)

    Zhao, Erni; Xu, Lirong; Wang, Rongzhen

    2018-01-01

    Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.

  8. Downscaling atmospheric patterns to multi-site precipitation amounts in southern Scandinavia

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Christensen, O.B.; Rasmussen, P.F.

    2010-01-01

    A non-homogeneous hidden Markov model (NHMM) is applied for downscaling atmospheric synoptic patterns to winter multi-site daily precipitation amounts. The implemented NHMM assumes precipitation to be conditional on a hidden weather state that follows a Markov chain, whose transition probabilities...... depend on current atmospheric information. The gridded atmospheric fields are summarized through the singular value decomposition (SVD) technique. SVD is applied to geopotential height and relative humidity at several pressure levels, to identify their principal spatial patterns co...... products of bivariate distributions. Conditional on the weather state, precipitation amounts are modelled separately at each gauge as independent gamma-distributed random variables. This modelling approach is applied to 51 precipitation gauges in Denmark and southern Sweden for the period 1981...

  9. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to...

  10. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture

  11. Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2009-10-01

    Full Text Available One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February and boreal summer of 2006 (June–August. By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO backscatter measurements over the dust routes, we describe the differences in dust transport between the seasons. We show a bi-modal distribution of the average dust plumes height in both seasons (it is less clear in the winter. The higher plume top height is 5.1±0.4 km, near the African coast line in the summer and 3.7±0.4 km in the winter. The lower plume merges with the marine boundary layer, in both seasons. Our study suggests that a significant part of the dust is transported near and within the marine boundary layer and interacts with low stratiform clouds.

  12. Quantitative Estimation of the Impact of European Teleconnections on Interannual Variation of East Asian Winter Temperature and Monsoon

    Science.gov (United States)

    Lim, Young-Kwon; Kim, Hae-Dong

    2014-01-01

    The impact of European teleconnections including the East AtlanticWest Russia (EA-WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter temperature variability was quantified and compared with the combined effect of the Arctic Oscillation (AO), the Western Pacific (WP), and the El-Nino Southern Oscillation (ENSO), which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three European teleconnections explained 22-25 percent of the total monthly upper-tropospheric height variance over Eurasia. Regression analysis revealed warming by EA-WR and EA and cooling by SCA over mid-latitude East Asia during their positive phase and vice versa. Temperature anomalies were largely explained by the advective temperature change process at the lower troposphere. The average spatial correlation over East Asia (90-180E, 10-80N) for the last 34 winters between observed and reconstructed temperature comprised of AO, WP and ENSO effect (AWE) was approximately 0.55, and adding the European teleconnection components (ESE) to the reconstructed temperature improved the correlation up to approximately 0.64. Lower level atmospheric structure demonstrated that approximately five of the last 34 winters were significantly better explained by ESE than AWE to determine East Asian seasonal winter temperatures. We also compared the impact between EA-WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian high. These three were strongly coupled, and their spatial features and interannual variation were somewhat better explained by EA-WR than AO. Results suggest that the EA-WR impact must be treated more importantly than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  13. Examining winter visitor use in Yellowstone National Park

    Science.gov (United States)

    Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang

    2000-01-01

    This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the author’s hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...

  14. Winter Dew Harvest in Mexico City

    Directory of Open Access Journals (Sweden)

    Arias-Torres Jorge Ernesto

    2015-12-01

    Full Text Available This study presents experimental and theoretical results of winter dew harvest in México City in terms of condensation rate. A simplified theoretical model based on a steady-state energy balance on a radiator-condenser was fitted, as a function of the ambient temperature, the relative humidity and the wind velocity. A glass sheet and aluminum sheet white-painted were used as samples over the outdoor experiments. A good correlation was obtained between the theoretical and experimental data. The experimental results show that there was condensation in 68% of the winter nights on both condensers. The total winter condensed mass was 2977 g/m2 and 2888 g/m2 on the glass sheet and aluminum sheet white-painted, respectively. Thus, the condensed mass on the glass was only 3% higher than that on the painted surface. The maximum nightly dew harvests occurred during December, which linearly reduced from 50 g/m2 night to 22 g/m2 night as the winter months went by. The condensation occurred from 1:00 a.m. to 9:00 a.m., with maximum condensation rates between 6:00 a.m. and 7:00 a.m. The dew harvest can provide a partial alternative to the winter water shortage in certain locations with similar climates to the winter in Mexico City, as long as pollution is not significant.

  15. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian

    2014-06-02

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  16. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian; Wei, Jiangfeng; Yang, Zong-Liang

    2014-01-01

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  17. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air

  18. Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture.

    Science.gov (United States)

    Robert, Nicolas; Frank, Michael; Avenin, Laure; Hemery, Francois; Becquemin, Jean Pierre

    2014-04-01

    Meteorologic conditions have a significant impact on the occurrence of cardiovascular events. Previous studies have shown that abdominal aortic aneurysm rupture (AAAR) may be associated with atmospheric pressure, with conflicting results. Therefore, we aimed to further investigate the nature of the correlation between atmospheric pressure variations and AAAR. Hospital admissions related to AAAR between 2005-2009 were assessed in 19 districts of metropolitan France and correlated with geographically and date-matched mean atmospheric pressures. In parallel and from 2005-2009, all fatal AAARs as reported by death certificates were assessed nationwide and correlated to local atmospheric pressures at the time of aortic rupture. Four hundred ninety-four hospital admissions related to AAAR and 6,358 deaths nationwide by AAAR were identified between 2005-2009. Both in-hospital ruptures and aneurysm-related mortality had seasonal variations, with peak/trough incidences in January and June, respectively. Atmospheric pressure peaks occurred during winter. Univariate analysis revealed a significant association (P atmospheric pressure values and AAAR. After multivariate analysis, mean maximum 1-month prerupture atmospheric pressure had a persistent correlation with both in-hospital relative risk (1.05 [95% confidence interval: 1.03-1.06]; P atmospheric pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Leadership in American Indian Communities: Winter Lessons

    Science.gov (United States)

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  20. The effects of the diurnal atmospheric variability on entry, descent and landing on Mars

    Directory of Open Access Journals (Sweden)

    Marčeta D.

    2014-01-01

    Full Text Available Landing on Mars is extremely challenging task due to the fact that the Martian atmosphere is the most hostile environment in the Solar system to perform the entry, descent and landing (EDL process, because it is thick enough to create substantial heating of the entry vehicle but not thick enough to reduce its velocity to the one necessary for safe landing. Beside this, the atmosphere is very dynamic mainly due to high eccentricity of the Martian orbit, obliquity of the orbital to the equatorial plane and close alignment of the winter solstice and the orbital perihelion. Although seasonal variations of atmospheric parameters are significantly larger than the diurnal, it is very important to analyze diurnal cycles as they can significantly change vertical and horizontal atmospheric profiles in very short time intervals. This can present a serious threat to missions which have very precise timings and specific requirements such as the requirement for the daytime landing to enable ground images acquisition during the descent and landing phase. A 3-degrees-of-freedom trajectory integration routine was combined with the Mars Global Reference Atmospheric Model (Mars-GRAM to identify the dependence of the EDL profiles on the diurnal cycles of atmospheric parameters throughout the Martian year. The obtained results show that the influence of the diurnal cycles is the largest at the equator and decreases relatively symmetrically towards the poles with a slightly stronger influence in the northern hemisphere. Also, there is a significant influence of the orbital position of Mars on the effect of diurnal atmospheric variations which causes that, around the orbital perihelion and winter solstice, there is some kind of inversion of the dependance of optimal entry timing on latitude of the landing site comparing to the rest of the Martian year. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  1. Trend of use and development of nuclear power in USA. Movement of recovery from 'winter age' of nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    2005-01-01

    The winter age of nuclear power industry in USA has begun since the accident of Three Mile Island Nuclear Power Plant, 1979. However, the rate of operation of nuclear power plants has get better since in the middle of 1990s by these factors such as extension of operation cycle, shortening period of the periodic inspection, increase of rated output, extension of approval operating period and change of nuclear power industries. The Department of Energy (DOE) makes budget about 1.9 hundreds million dollars for 2006. The subjects, cooperation between DOE and industry and movement of private enterprise in USA are stated. 434 reactors are operating in the world in 2004. French and Finland decided to build EPR in 2004. China and Korea in The East Asia become the growth market, but Japan enters the winter age. Reorganization of nuclear power industry in the world is explained. (S.Y.)

  2. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    Science.gov (United States)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  3. The Dome C site testing from an atmospheric physicist view

    Science.gov (United States)

    Argentini, S.; Pietroni, I.

    Atmospheric field experiments were made at the French-Italian station of Concordia at Dome C during several years. These experiments were limited to the summer season. In 2005 Concordia has become a permanent base, this allowed to carry out STABLEDC (STudy of the Atmospheric Boundary Layer Environmental at Dome C plateau station) that is an atmospheric field experiment of the duration of one year. The aim of STABLEDC was to study the processes occurring in the long-lived stable and the weak convective atmospheric boundary layers, observed during winter and summer, respectively, and to collect the relevant parameters for the atmospheric models. Both in situ and ground based remote sensing instruments have been used to monitor the meteorological parameters. The first part of the paper gives a brief illustration of the objectives of the field experiment, and a description of site and instrumentation. The second part shows the behaviour of some micrometeorological parameters: temperature, wind speed, sensible heat flux. The surface radiation balance components are also shown. Finally some experimental activities are proposed.

  4. A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2

    International Nuclear Information System (INIS)

    Kim, Jinwon

    2001-01-01

    Dynamically downscaled climate change signals due to increased atmospheric CO2 are investigated for three California basins. The downscaled signals show strong elevation dependence, mainly due to elevated freezing levels in the increased CO2 climate. Below 2.5 km, rainfall increases by over 150% while snowfall decreases by 20-40% in the winter. Above 2.5 km, rainfall and snowfall both increase in the winter, as the freezing levels appear mostly below this level. Winter snowmelt increases in all elevations due to warmer temperatures in the increased CO2 climate. Reduced snowfall and enhanced snowmelt during the winter decreases snowmelt-driven spring runoff below the 2.5 km level, where the peak snowmelt occurs one month earlier in the increased CO2 climate. Above 2.5km, increased winter snowfall maintains snowmelt-driven runoff through most of the warm season. The altered hydrologic characteristics in the increased CO2 climate affect the diurnal temperature variation mainly via snow-albedo-soil moisture feedback

  5. Validation of a limited area model over Dome C, Antarctic Plateau, during winter

    Energy Technology Data Exchange (ETDEWEB)

    Gallee, Hubert; Gorodetskaya, Irina V. [Laboratoire de Glaciologie et de Geophysique de l' Environnement, CNRS, 54, rue Moliere, BP. 96, St Martin d' Heres Cedex (France)

    2010-01-15

    The limited area model MAR (Modele Atmospherique Regional) is validated over the Antarctic Plateau for the period 2004-2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux. (orig.)

  6. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    Science.gov (United States)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  7. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  8. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  9. Microphysical/mesoscale aspects of nuclear winter and new directions in assessments

    International Nuclear Information System (INIS)

    Knox, J.B.

    1985-06-01

    Recent results of model studies and sensitivity tests have shown the degree to which the intensity and duration of ''nuclear winter'' depends on the mass of soot and dust suspended, its optical properties, its vertical distribution in the atmosphere, and the residence time. The soot from urban fires is viewed as evolving during its dispersion from the early fire induced plumes, to cloud scale systems, to the mesoscale and larger systems. Micro-physical processes are perceived as operating within these systems in a manner to enhance removal from the troposphere, and to alter the verical distribution of the soot or its subsequent, aging or evolving aerosol. Relevant observations and studies of these processes are presented and discussed. Critical inputs to the climate simulation models may well be altered significantly by these process effects, many of which are in need of better definition. Appropriate research needs to be initiated to address and better define these microphysical/mesoscale processes of potential importance in the altered atmospheric system after a major nuclear exchange. 11 refs., 2 figs

  10. 222Rn concentration in the outdoor atmosphere and its relation to the atmospheric stability

    International Nuclear Information System (INIS)

    Holy, K.; Boehm, R.; Bosa, I.; Polaskova, A.; Hola, O.

    1998-01-01

    The radon in the outdoor atmosphere has been monitored continuously since 1991. On the basis of the measured data mainly the average daily and the average annual courses of the 222 Rn concentrations have been studied. The annual courses of 222 Rn concentration are similar for all years. They present the annual variations. The average course of the 222 Rn concentration calculated on the basis of all continual measurements in the years 1991-1997 reaches the maximum value in October and the minimum value in April. The average daily courses of the 222 Rn concentration for the individual months of the year. The average daily courses have a form of waves with a maximum in the morning hours and with a minimum in the afternoon. The maximal amplitudes of daily waves have been reached in the summer months, from June till August. The amplitudes of daily waves are very small at the end of an autumn and during the winter months. The analysis of the daily waves and annual courses of 222 Rn showed that the amplitudes of the daily waves are in proportion to the global solar radiation irradiating the Earth's surface. The day duration influence on the phase of the daily wave and the wind velocity influence mainly on the level of the radon concentration. For the study of the relation of the radon concentration in the outdoor atmosphere to the stability the data of the atmosphere were obtained and they were correlated with the radon concentration. The results indicate that the 222 Rn concentrations int he outdoor atmosphere could be used for determination of the vertical atmospheric stability and these ones could reflect the atmospheric stability more completely than the different classifications based on the knowledge pertinent to the meteorological parameters. (authors)

  11. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    Science.gov (United States)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust

  12. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    International Nuclear Information System (INIS)

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-01-01

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 μm in winter to 9.7 μm during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union

  13. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack

    Science.gov (United States)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.

    2017-12-01

    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  14. Mortality, fog and atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A E; Bradley, W H

    1960-01-01

    A study was made associating climate and atmospheric pollution with excess mortality in greater London during the winter of 1958 and 1959. It was a particularly foggy winter with 6 major episodes, 4 of which resembled previous dangerous smogs. There were two additional periods of high pollution without fog. Excess mortality during these 8 periods ranged from 70 to 230. During one period, a flu epidemic accompanied the fog. In 4 to 6 foggy periods, morbidity (hospital bed demand) also increased. This small number of observations indicates mortality association: on 2/3 of days with high SO/sub 2/ (2.5 pphM) or high particulate soot (10 mg/m/sup 3/), and on all days with thick fog, there was an increase in mortality (20 deaths more than previous day) on that or the following day. Fifteen-day moving mortality index and bronchitis mortality index were significantly correlated with black suspended matter and SO/sub 2/; association with pneumonia was not significant. Also little or no relation between mortality and humidity, mean temperature, or barometric pressure was found. Rapid response of mortality to air pollution may indicate that pollution affects mostly those already ill.

  15. Primary organic pollutants in New Zealand urban aerosol in winter during high PM1 episodes

    International Nuclear Information System (INIS)

    Krivacsy, Zoltan; Blazso, Marianne; Shooter, David

    2006-01-01

    In the two biggest New Zealand cities, Auckland and Christchurch, the mass concentration of the PM 1 atmospheric aerosol can exceed the 50 μg m -3 24 h health guideline in winter. This high pollution level is thought to be caused mainly by old-fashioned domestic heating systems based on wood combustion. Therefore the chemistry of the carbonaceous aerosol has been investigated in several high-pollution level urban situations in order to assess the origin of the pollution. All the high concentration organic tracers, including levoglucosan and dehydroabietic acid, were characteristic for biomass burning. The findings have confirmed via advanced chemical analytical methods that domestic heating can be the main contributor to the high level of wintertime pollution, especially in Christchurch. The results are of great importance in supporting the ambition of authorities and environmental associations to change the domestic heating regimes. - PM 1 aerosol concentrations can exceed air quality guidelines during winter in Christchurch, New Zealand

  16. Atmospheric circulation characteristics associated with the onset of Asian summer monsoon

    Science.gov (United States)

    Li, Chongyin; Pan, Jing

    2006-12-01

    The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer monsoon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25° 28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500 200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.

  17. Atmospheric Circulation Response to Episodic Arctic Warming in an Idealized Model

    Science.gov (United States)

    Hell, M. C.; Schneider, T.; Li, C.

    2017-12-01

    Recent Arctic sea ice loss has drawn attention as a potential driver of fall/winter circulation changes. Past work has shown that sea ice loss can be related to a stratospheric polar vortex breakdown, with the result of long-delayed surface weather phenomena in late winter/early spring. In this study, we separate the atmospheric dynamic components and mean timescales to episodic polar surface heat fluxes using large ensembles of an idealized GCM in absence of continents and seasons. The atmospheric ensemble-mean response is linear related to the surface forcing strength and insensitive to the forcing symmetry. Analyses in the Transformed Eulerian Mean show that the responses can be separated into 1) an in-phase thermal adjustment, and 2) a lagged, eddy-driven component invoking long-standing anomalies in the lower stratosphere. The mid-latitude adjustment to the episodically reduced baroclinity leads to stratosphere-directed eddy-heat fluxes, establishing a stratospheric temperature anomaly responsible for vortex break down. In addition, we discuss the dependence on the background state via correlation in ensemble member space. Thus, we range the role of arctic perturbations in the transient large-scale circulation.

  18. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    Directory of Open Access Journals (Sweden)

    L. Pei

    2018-03-01

    Full Text Available Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE. While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM system, which is then found to be associated with an anomalous warm, high-pressure system in the middle–lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900–2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  19. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  20. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    Science.gov (United States)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  1. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  2. Activity report of the 50th Japanese Antarctic Research Expedition (JARE-50 wintering party in 2009-2010

    Directory of Open Access Journals (Sweden)

    Akira Kadokura

    2013-03-01

    Full Text Available The 50th Japanese Antarctic Research Expedition (JARE-50 wintering party, consisting of 28 members, has conducted the third year program of the 7th four-year plan of JARE. JARE-50 took over the management of Syowa Station from JARE-49 on January 29, 2009 and handed over it to JARE-51 on February 1, 2010. Scientific observations carried out by JARE-50 were divided into the following five categories: 1. Steady Continuous Observations; 2. Long-term Monitoring; 3. Interdisciplinary Focused Projects; 4. Specific-Purpose Project on medical research; and 5. Preparatory Research for the future planned large atmospheric radar. There were many blizzards during the wintering, which required great efforts to clear snow. Sea ice conditions were stable, and almost all the planned outdoor operations were successfully performed. Various trainings and activities for safety management were carried out throughout the wintering, along with public outreach activities using the satellite communication network. Other items of note include photographing the Polar Mesospheric Cloud, voting in the Lower House election, the early arrival of five members of JARE-51 in November, and a visit by the Australian inspection team in January.

  3. Barriers to wheelchair use in the winter.

    Science.gov (United States)

    Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D

    2015-06-01

    To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  5. Atmosphere and ocean dynamics: contributors to the European Little Ice Age?

    Energy Technology Data Exchange (ETDEWEB)

    Palastanga, V.; Schrier, G. van der; Weber, S.L. [Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, De Bilt (Netherlands); Kleinen, T. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Max Planck Institute for Meteorology, Hamburg (Germany); Briffa, K.R.; Osborn, T.J. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom)

    2011-03-15

    The role of a reduction in the Atlantic meridional overturning and that of a persistently negative North Atlantic Oscillation in explaining the coldness of the European Little Ice Age (LIA) has been assessed in two sets of numerical experiments. These experiments are performed using an intermediate complexity climate model and a full complexity GCM. The reduction in the Meridional Overturning Circulation (MOC) of ca. 25% is triggered by a conventional fresh-water hosing set-up. A persistently negative NAO winter circulation, at NAO-index value -0.5, is imposed using recently developed data-assimilation techniques applicable on paleoclimatic timescales. The hosing experiments lead to a reduction in oceanic meridional heat transport and cooler sea-surface temperatures. Next to a direct cooling effect on European climate, the change in ocean surface temperatures feedback on the atmospheric circulation modifying European climate significantly. The data-assimilation experiments showed a reduction of winter temperatures over parts of Europe, but there is little persistence into the summer season. The output of all model experiments are compared to reconstructions of winter and summer temperature based on the available temperature data for the LIA period. This demonstrates that the hypothesis of a persistently negative NAO as an explanation for the European LIA does not hold. The hosing experiments do not clearly support the hypothesis that a reduction in the MOC is the primary driver of LIA climate change. However, a reduction in the Atlantic overturning might have been a cause of the European LIA climate, depending on whether there is a strong enough feedback on the atmospheric circulation. (orig.)

  6. New Role of Thermal Mapping in Winter Maintenance with Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    Mario Marchetti

    2014-01-01

    Full Text Available Thermal mapping uses IR thermometry to measure road pavement temperature at a high resolution to identify and to map sections of the road network prone to ice occurrence. However, measurements are time-consuming and ultimately only provide a snapshot of road conditions at the time of the survey. As such, there is a need for surveys to be restricted to a series of specific climatic conditions during winter. Typically, five to six surveys are used, but it is questionable whether the full range of atmospheric conditions is adequately covered. This work investigates the role of statistics in adding value to thermal mapping data. Principal components analysis is used to interpolate between individual thermal mapping surveys to build a thermal map (or even a road surface temperature forecast, for a wider range of climatic conditions than that permitted by traditional surveys. The results indicate that when this approach is used, fewer thermal mapping surveys are actually required. Furthermore, comparisons with numerical models indicate that this approach could yield a suitable verification method for the spatial component of road weather forecasts—a key issue currently in winter road maintenance.

  7. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    Science.gov (United States)

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, Masayuki; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  8. Welfare of Pigs Being Transported over Long Distances Using a Pot-Belly Trailer during Winter and Summer

    Directory of Open Access Journals (Sweden)

    Jorge A. Correa

    2014-04-01

    Full Text Available A total of 2,145 pigs were transported for 8 h in summer (six trips and winter (five trips using a pot-belly trailer accommodating pigs in four locations (upper deck or UD, bottom-nose or BN, middle deck or MD and bottom deck or BD. Heart rate of pigs during loading and transportation and lactate and creatine kinase (CK concentrations in exsanguination blood were measured. Meat quality was evaluated in the Longissimus thoracis (LT, Semimembranosus (SM and Adductor (AD muscles. During summer, pigs loaded in the UD and MD had higher (P < 0.05 heart rate at loading compared to those located in the BD and BN. Blood lactate and CK concentrations were higher (P < 0.001 in winter than in summer. Lactate concentration was higher (P = 0.01 in the blood of pigs transported in the BN. Pigs transported in the BN had higher pHu values in the LT, SM and AD muscles (P = 0.02, P < 0.001 and P = 0.002, respectively and lower (P = 0.002 drip loss values in the SM muscle. This study confirms that some locations within the PB trailer have a negative impact on the welfare of pigs at loading and during transport with more pronounced effects in the winter due to the additive effect of cold stress.

  9. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    Science.gov (United States)

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: Evidence from four-year observations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ping; Wang, Xiaoping; Sheng, Jiujiang; Wang, Hailong; Yuan, Xiaohua; He, Yuanqing; Qian, Yun; Yao, Tandong

    2018-02-01

    Lijiang is a high-altitude city located on the eastern fringe of the Tibetan Plateau, with complex seasonal atmospheric circulations (i.e. westerly wind, Indian Monsoon, and East Asia Monsoon). Very few previous studies have focused on seasonal variations and sources of organic pollutants in Lijiang. In this study, a four-year air campaign from June 2009 to July 2013 was conducted to investigate the temporal trends and the sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds [including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)]. The atmospheric PAH concentrations in winter are 2-3 times of those in summer, probably because of the combined result of enhanced local emission and long-range atmospheric transport (LRAT) during winter. Traffic pollution was the primary local source of PAHs, while biomass burning is the dominant LRAT source. Different from PAHs, OCPs and PCBs mainly underwent LRAT to reach Lijiang. The peak concentrations of most of OCPs occurred in pre-monsoon season and winter, which are carried by air masses from Myanmar and India through westerly winds. As compared with other sites of the Tibetan Plateau, without the direct barrier of the Himalaya, Lijiang is easily contaminated by the incursion of polluted air masses.

  11. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen

    DEFF Research Database (Denmark)

    Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.

    2015-01-01

    occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...

  12. Cadmium contamination of atmospheric air in the Silesian cities

    OpenAIRE

    Aleksandra Moździerz; Małgorzata Juszko-Piekut; Jerzy Stojko

    2014-01-01

    Background. For many years, researchers have evaluated environmental damage caused by heavy metals, including cadmium, as well as health risks in the population exposed to them. Thus the aim of our study was to evaluate cadmium levels in the atmospheric air in 2009, including summer and winter heating season. A comparative analysis was performed using the corresponding data from 2005–2008. Material and Methods. In the study, we used the statistical output data of air p...

  13. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  14. Winter climate limits subantarctic low forest growth and establishment.

    Science.gov (United States)

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  15. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  16. The Unusual Southern Hemisphere Stratosphere Winter of 2002

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.

    2003-01-01

    The southern hemisphere stratospheric winter of 2002 was the most unusual winter yet observed in the southern hemisphere climate record. Temperatures near the edge of the Antarctic polar vortex were considerably warmer than normal over the entire course of the winter. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters. These record high temperatures and weak jet resulted from a series of wave events that took place over the course of the winter. The first large event occurred on 15 May, and the final warming occurred on 25 October. The propagation of these wave events from the troposphere is diagnosed from time series of Eliassen-Palm flux vectors. The wave events tended to occur irregularly over the course of the winter, and pre-conditioned the polar night jet for the extremely large wave event of 22 September. This large wave event resulted in the first ever observed major stratospheric warming in the southern hemisphere. This wave event split the Antarctic ozone hole. The combined effect of the wave events of the 2002 winter resulted in the smallest ozone hole observed since 1988.

  17. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  18. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  19. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  20. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  1. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  2. Ecological Controls on Land-Atmosphere Exchange

    Science.gov (United States)

    Goulden, M. L.; Litvak, M. E.; Winston, G.; Miller, S. D.; Read, E.; Elliot, R.

    2002-12-01

    We have been using long-term eddy covariance to investigate the patterns of energy and CO2 exchange between the atmosphere and a freshwater marsh in California, and also between the atmosphere and a series of boreal forest stands in Manitoba, Canada. Most researchers believe that ecological phenomenon, such as plant herbivore interactions and interspecific differences in plant life-history strategy, are relatively unimportant in determining the interannual and landscape patterns of Land-Atmosphere exchange. However, we have found that interactions between plants and herbivores exert a large control on the interannual patterns of energy and CO2 exchange in the freshwater marsh, and that interspecific differences in plant strategy are critical for understanding the landscape scale patterns of energy and CO2 exchange in the boreal forest. Despite a relatively constant climate and flooding regime at the California marsh, annual Carbon balance varied by 6 tC ha-1 or more from year to year. These deviations were caused in part by variation in herbivory by rodents and insects. Likewise, peak CO2 uptake by boreal forest stands recovering from fire differed less than expected, with a 4-year-old stand assimilating CO2 at rates comparable to that by middle aged stands, and faster than that by old stands. These patterns reflect differences in the life history strategies of the dominant plants, with the youngest stands dominated by fast growing ruderals, the middle aged stands dominated by fast growing competitive species, and the old stands dominated by slow growing stress tolerant species.

  3. Winter climate limits subantarctic low forest growth and establishment.

    Directory of Open Access Journals (Sweden)

    Melanie A Harsch

    Full Text Available Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E is oceanic (Conrad Index of Continentality  =  -5 with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C, dry winters (total winter precipitation <400 mm. Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  4. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    Science.gov (United States)

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  5. Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah.

    Science.gov (United States)

    Helmig, D; Thompson, C R; Evans, J; Boylan, P; Hueber, J; Park, J-H

    2014-05-06

    Oil and natural gas production in the Western United States has grown rapidly in recent years, and with this industrial expansion, growing environmental concerns have arisen regarding impacts on water supplies and air quality. Recent studies have revealed highly enhanced atmospheric levels of volatile organic compounds (VOCs) from primary emissions in regions of heavy oil and gas development and associated rapid photochemical production of ozone during winter. Here, we present surface and vertical profile observations of VOC from the Uintah Basin Winter Ozone Studies conducted in January-February of 2012 and 2013. These measurements identify highly elevated levels of atmospheric alkane hydrocarbons with enhanced rates of C2-C5 nonmethane hydrocarbon (NMHC) mean mole fractions during temperature inversion events in 2013 at 200-300 times above the regional and seasonal background. Elevated atmospheric NMHC mole fractions coincided with build-up of ambient 1-h ozone to levels exceeding 150 ppbv (parts per billion by volume). The total annual mass flux of C2-C7 VOC was estimated at 194 ± 56 × 10(6) kg yr(-1), equivalent to the annual VOC emissions of a fleet of ∼100 million automobiles. Total annual fugitive emission of the aromatic compounds benzene and toluene, considered air toxics, were estimated at 1.6 ± 0.4 × 10(6) and 2.0 ± 0.5 × 10(6) kg yr(-1), respectively. These observations reveal a strong causal link between oil and gas emissions, accumulation of air toxics, and significant production of ozone in the atmospheric surface layer.

  6. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  7. Chapter 7: Migration and winter ecology

    Science.gov (United States)

    Deborah M. Finch; Jeffrey F. Kelly; Jean-Luc E. Cartron

    2000-01-01

    The willow flycatcher (Empidonax traillii) is a Neotropical migrant that breeds in North America, but winters in Central and northern South America. Little specific information is known about migration and wintering ecology of the southwestern willow flycatcher (E. t. extimus) (Yong and Finch 1997). Our report applies principally...

  8. Ionospheric measurements during the CRISTA/MAHRSI campaign: their implications and comparison with previous campaigns

    Directory of Open Access Journals (Sweden)

    J. Laštovicka

    1999-08-01

    Full Text Available The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October-30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere  (h = 80-100 km at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4-12 November, 1994 was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and "meteorological" control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well "meteorologically" controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak "meteorological" influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.Key words. Ionosphere (ionosphere · atmosphere interactions; mid-latitude ionosphere

  9. Ionospheric measurements during the CRISTA/MAHRSI campaign: their implications and comparison with previous campaigns

    Directory of Open Access Journals (Sweden)

    J. Laštovicka

    Full Text Available The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October-30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere 
    (h = 80-100 km at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4-12 November, 1994 was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and "meteorological" control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well "meteorologically" controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak "meteorological" influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.

    Key words. Ionosphere (ionosphere · atmosphere interactions; mid-latitude ionosphere

  10. Growing Atmospheric Pollution and Its Relation with Occurrences of Natural Hazards in India

    Science.gov (United States)

    Singh, Ramesh

    In the last three decades, multi satellite remote sensing data have revealed increasing atmospheric pollution. The satellite data have shown spatial distribution of fine and coarse atmospheric particles which impact human health, cloud albedo and atmospheric and meteorological parameters. The long range dusts coming over India travel through Arabian Sea and reach to the Bay of Bengal, such long range transport of dust influences atmospheric and ocean parameters, as a result strong coupling exists between land-ocean-atmosphere. Various kind of natural hazards, such as cyclone, algal bloom, cloud burst, excessive rainfall have been observed apart from the intense fog, haze and smog during winter and post monsoon seasons that have serious impacts on human health of people living in the Indo-Gangetic basin. The long range transport of dust and local anthropogenic emissions also reach to the Himalayan region affecting snow and glaciers of Himalaya and accelerating melting of snow and glaciers which is a threat of flooding of rivers originate from Himalayan region.

  11. Major role of microbes in carbon fluxes during Austral winter in the Southern Drake Passage.

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    Full Text Available Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO(2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO(2.

  12. Autumn Weather and Winter Increase in Cerebrovascular Disease Mortality

    LENUS (Irish Health Repository)

    McDonagh, R

    2016-11-01

    Mortality from cerebrovascular disease increases in winter but the cause is unclear. Ireland’s oceanic climate means that it infrequently experiences extremes of weather. We examined how weather patterns relate to stroke mortality in Ireland. Seasonal data for Sunshine (% of average), Rainfall (% of average) and Temperature (degrees Celsius above average) were collected for autumn (September-November) and winter (December-February) using official Irish Meteorological Office data. National cerebrovascular mortality data was obtained from Quarterly Vital Statistics. Excess winter deaths were calculated by subtracting (nadir) 3rd quarter mortality data from subsequent 1st quarter data. Data for 12 years were analysed, 2002-2014. Mean winter mortality excess was 24.7%. Winter mortality correlated with temperature (r=.60, p=0.04). Rise in winter mortality correlated strongly with the weather in the preceding autumn (Rainfall: r=-0.19 p=0.53, Temperature: r=-0.60, p=0.03, Sunshine, r=0.58, p=0.04). Winter cerebrovascular disease mortality appears higher following cool, sunny autum

  13. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  14. Interim Report 'Winter smog and traffic'.

    NARCIS (Netherlands)

    Bloemen, H.; Blom, T.; Bogaard, van den C.; Boluyt, N.; Bree, van L.; Brunekreef, B.; Hoek, G.; Zee, van der S.

    1994-01-01

    This report presents a halfway score of the research project "Winter smog and Traffic", one of the themes of the research programme "Air Pollution and Health". A state of the art is presented of the health effects associated with exposure to winter smog and of the toxicological effects caused by the

  15. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  16. Home advantage in the Winter Paralympic Games 1976-2014.

    Science.gov (United States)

    Wilson, Darryl; Ramchandani, Girish

    2017-01-01

    There is a limited amount of home advantage research concerned with winter sports. There is also a distinct lack of studies that investigate home advantage in the context of para sport events. This paper addresses this gap in the knowledge by examining home advantage in the Winter Paralympic Games. Using a standardised measure of success, we compared the performances of host nations at home with their own performances away from home between 1976 and 2014. Both country level and individual sport level analysis is conducted for this time period. Comparisons are also drawn with the Winter Olympic Games since 1992, the point from which both the Winter Olympic Games and the Winter Paralympic Games have been hosted by the same nations and in the same years. Clear evidence of a home advantage effect in the Winter Paralympic Games was found at country level. When examining individual sports, only alpine skiing and cross country skiing returned a significant home advantage effect. When comparing home advantage in the Winter Paralympic Games with the Winter Olympic Games for the last seven host nations (1992-2014), we found that home advantage was generally more pronounced (although not a statistically significant difference) in the case of the former. The causes of home advantage in the Winter Paralympic Games are unclear and should be investigated further.

  17. Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley

    DEFF Research Database (Denmark)

    Gerhards, R; Christensen, Svend

    2003-01-01

    with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site-specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including...

  18. Impacts of a Destructive and Well-Observed Cross-Country Winter Storm.

    Science.gov (United States)

    Martner, Brooks E.; Rauber, Robert M.; Ramamurthy, Mohan K.; Rasmussen, Roy M.; Prater, Erwin T.

    1992-02-01

    A winter storm that crossed the continental United States in mid-February 1990 produced hazardous weather across a vast area of the nation. A wide range of severe weather was reported, including heavy snowfall; freezing rain and drizzle; thunderstorms with destructive winds, lightning, large hail, and tornadoes; prolonged heavy rain with subsequent flooding; frost damage to citrus orchards; and sustained destructive winds not associated with thunderstorms. Low-end preliminary estimates of impacts included 9 deaths, 27 injuries, and $120 million of property damage. At least 35 states and southeastern Canada were adversely affected. The storm occurred during the field operations of four independent atmospheric research projects that obtained special, detailed observations of it from the Rocky Mountains to the eastern great Lakes.

  19. Optimization of a middle atmosphere diagnostic scheme

    Science.gov (United States)

    Akmaev, Rashid A.

    1997-06-01

    A new assimilative diagnostic scheme based on the use of a spectral model was recently tested on the CIRA-86 empirical model. It reproduced the observed climatology with an annual global rms temperature deviation of 3.2 K in the 15-110 km layer. The most important new component of the scheme is that the zonal forcing necessary to maintain the observed climatology is diagnosed from empirical data and subsequently substituted into the simulation model at the prognostic stage of the calculation in an annual cycle mode. The simulation results are then quantitatively compared with the empirical model, and the above mentioned rms temperature deviation provides an objective measure of the `distance' between the two climatologies. This quantitative criterion makes it possible to apply standard optimization procedures to the whole diagnostic scheme and/or the model itself. The estimates of the zonal drag have been improved in this study by introducing a nudging (Newtonian-cooling) term into the thermodynamic equation at the diagnostic stage. A proper optimal adjustment of the strength of this term makes it possible to further reduce the rms temperature deviation of simulations down to approximately 2.7 K. These results suggest that direct optimization can successfully be applied to atmospheric model parameter identification problems of moderate dimensionality.

  20. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.

    2018-02-01

    We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  1. Atmospheric fluoride levels in some Ontario peach orchards

    Energy Technology Data Exchange (ETDEWEB)

    Drowley, W B; Rayner, A C; Jephcott, C M

    1963-10-01

    As a result of suture injury to peaches, a survey was taken to determine monthly atmospheric fluoride levels in the soft fruit-growing area of the Niagara Peninsula of Ontario. Although the injury was confined to a few orchards, it was found necessary to locate stations for fluoride sampling over a wide area. The limed-paper candle method was used for fluoride collection. Unwashed and washed peach leaves were analyzed for fluoride content. Fluoride was separated from all samples by the Willard-Winter distillation procedure and estimated colorimetrically. It was found that a general background level of atmospheric fluoride existed in the whole surveyed area and that the levels were highest in and near the area of peach injury. The fluoride content of peach leaves was also highest in this area. The coincidence of high fluoride levels and suture injury to peaches suggests that atmospheric fluoride was the causal agent. When lime sprays were applied to peach trees in the damaged area, a reduction in the incidence of suture injury was observed.

  2. Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index

    Science.gov (United States)

    Chen, Shangfeng; Wu, Renguang

    2018-01-01

    This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.

  3. Excess mortality in winter in Finnish intensive care.

    Science.gov (United States)

    Reinikainen, M; Uusaro, A; Ruokonen, E; Niskanen, M

    2006-07-01

    In the general population, mortality from acute myocardial infarctions, strokes and respiratory causes is increased in winter. The winter climate in Finland is harsh. The aim of this study was to find out whether there are seasonal variations in mortality rates in Finnish intensive care units (ICUs). We analysed data on 31,040 patients treated in 18 Finnish ICUs. We measured severity of illness with acute physiology and chronic health evaluation II (APACHE II) scores and intensity of care with therapeutic intervention scoring system (TISS) scores. We assessed mortality rates in different months and seasons and used logistic regression analysis to test the independent effect of various seasons on hospital mortality. We defined 'winter' as the period from December to February, inclusive. The crude hospital mortality rate was 17.9% in winter and 16.4% in non-winter, P = 0.003. Even after adjustment for case mix, winter season was an independent risk factor for increased hospital mortality (adjusted odds ratio 1.13, 95% confidence interval 1.04-1.22, P = 0.005). In particular, the risk of respiratory failure was increased in winter. Crude hospital mortality was increased during the main holiday season in July. However, the severity of illness-adjusted risk of death was not higher in July than in other months. An increase in the mean daily TISS score was an independent predictor of increased hospital mortality. Severity of illness-adjusted hospital mortality for Finnish ICU patients is higher in winter than in other seasons.

  4. Strategic positioning of the ERATOSTHENES Research Centre for atmospheric remote sensing research in the Eastern Mediterranean and Middle East region

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Hadjimitsis, Diofantos G.; Nisantzi, Argyro; Bühl, Johannes; Michaelides, Silas; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla; Kontoes, Charalampos; Schreier, Gunter; Komodromos, Georgios; Themistocleous, Kyriacos

    2017-10-01

    The aim of this article is to present the importance of a permanent state-of-the-art atmospheric remote sensing ground based station in the region of the Eastern Mediterranean and Middle East (EMME). The ERATOSTHENES Research Centre (ERC) with the vision to become a Centre of Excellence for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR H2020: Teaming project) already operates (within Phase 1) a fully established EARLINETt-Cloudnet supersite at Limassol, Cyprus, for a period of 2 years, in close collaboration with the German Leibniz Institute for Tropospheric Research (TROPOS), The scientific aspects of this prototype-like field campaign CyCARE (Cyprus Cloud Aerosol and Rain Experiment) - a common initiative between the Cyprus University of Technology (CUT), Limassol and TROPOS- are presented in this paper. Cy-CARE has been designed by TROPOS and CUT to fill a gap in the understanding of aerosol-cloud interaction in one of the key regions of climate change and how precipitation formation is influenced by varying aerosol/pollution and meteorological conditions The guiding questions are: How may rain patterns change in future and what may be the consequences of climate change in arid regions such as EMME. EXCELSIOR is a team effort between CUT (acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), TROPOS and the Cyprus Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW) who will work together to improve the network structures significantly, resulting in Cyprus being regarded as a cornerstone of a European Network of active remote sensing of the atmosphere.

  5. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  6. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    cold Arctic winter of 2004/2005 inside the polar vortex between the 450 K and 600 K isentropic levels from mid-January until the middle of March.

    The Antarctic vortex averaged ozone loss as well as the size of the polar vortex do not vary much from year to year. The total ozone mass loss inside the Antarctic polar vortex between the 450 K and 600 K isentropic levels is about 50–60 million tons and the vortex volume for this altitude range varies between about 150 and 300 km3 for the period between mid-August and mid-November of every year studied, except for 2002. In 2002 a mid-winter major stratospheric warming occurred in the second half of September and the ozone mass loss was only about half of the value in the other years. However, inside the polar vortex we find chemical ozone losses at the 475 K isentropic level that are similar to those in all other years studied. At this isentropic level ozone losses of 70–90% between mid-August and mid-November or about 2.5 ppmv are observed every year. At isentropic levels above 500 K the chemical ozone losses were found to be larger in 2002 than in all other years studied.

    Comparisons of the vertical variation of ozone losses derived from SCIAMACHY observations with several independent techniques for the Arctic winter 2004/2005 show that the SCIAMACHY results fall in the middle of the range of previously published results for this winter. For other winters in both hemispheres – for which comparisons with other studies were possible – the SCIAMACHY results are consistent with the range of previously published results.

  7. Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    OpenAIRE

    Y. Ben-Ami; I. Koren; O. Altaratz

    2009-01-01

    One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February) and boreal summer of 2006 (June–August). By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) backscatter measurements over the dust routes, we describe the differ...

  8. Snowpack Variation and Hydrologic Impacts across the Middle East and North Africa

    Science.gov (United States)

    Robinson, D. A.; Ward, M. N.

    2017-12-01

    The Middle East is a region historically sensitive to climate variability and change, and contains snowpacks that have been shown to be important inputs to key regional water resources, including the Tigris-Euphrates river system. Focusing on the Middle East (and the smaller snowpacks of northwestern Africa), this presentation aims to (i) quantify each year's snowpack development and recession over recent decades, highlighting interannual to decadal variability, and (ii) advance understanding on the connection between the snowpack variations and aspects of regional hydrology. The presentation draws on satellite-based products, station data, and model reanalyses. Variation is summarized using space-time statistical techniques, as well as simpler regional indices: Northwestern Iran / Southern Caucasus (NWIC, includes Zagros Mountains); Eastern Turkey (ETKY, includes Taurus Mountains); and smaller scale indices for Lebanon and the Atlas Mountains. The Interactive Multisensor Snow and Ice Mapping System archives daily snow cover extent at 24 km resolution for 1999-present (primarily from visible satellite imagery). These data show that for both NWIC and ETKY, the mean snow extent peaks in late January with substantial coverage ( 300,000 km2 in each region), contracting to near zero by late June. A very large mid-winter interannual variance is also shown, implying substantial variation in hydrologic impacts during spring melt. Variability and decadal trends are compared with station snow depth reports (Global Historical Climatology Network - Daily). Strong agreement gives confidence in data quality, as well as, indicating high covariation of depth and extent. The connection with hydrologic impacts is investigated using reanalysis products, including the Global Land Data Assimilation System V2, which for the Middle East, shows broad agreement with observed maximum snow extent and spring retreat. The connections internal to the reanalysis between snow cover, melt and

  9. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    Science.gov (United States)

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  10. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  11. Reconstructing Middle Eocene Climate and Atmospheric Carbon Dioxide Concentration: Application of a mechanistic theoretical approach to fossil plants from the Messel Pit (Germany)

    Science.gov (United States)

    Grein, M.; Roth-Nebelsick, A.; Wilde, V.; Konrad, W.; Utescher, T.

    2009-12-01

    It is assumed that changes in atmospheric CO2 concentrations (from now on expressed as Ca) strongly influenced the development of global temperatures during parts of the Cenozoic. Thus, detailed knowledge of ancient Ca and its variations is of utmost importance for exploring the coupling of atmospheric CO2 and global climate change. Numerous techniques (such as carbon and boron isotopes) were applied in order to obtain Ca, with varying and sometimes even conflicting results. Stomatal density (number of stomata per leaf area) represents another promising proxy for the calculation of ancient Ca since many plants reduce the number of stomata (pores on the leaf surface used for gas exchange) under increasing Ca. As a reason it is assumed that plants try to adjust stomatal conductance in order to optimize their gas exchange (which means maximal assimilation at minimal transpiration). The common technique for calculating Ca from fossil stomatal frequency is to create empirical transfer functions of living plants derived from herbar material or greenhouse experiments. In the presented project, Ca of the Middle Eocene is calculated by applying a different approach which utilizes a mechanistic-theoretical calibration. It couples the processes of a) C3-photosynthesis, b) diffusion and c) transpiration with palaeoclimatic and leaf-anatomical data. The model also includes an optimisation principle supported by ecophysiological data. According to this optimisation principle, plants adjust their stomatal conductance in such a way that photosynthesis rates are constrained by optimal water use (transpiration). This model was applied in the present study to fossil plants from the Messel Pit near Darmstadt (Germany). In order to reconstruct Ca by using fossil plant taxa from Messel, numerous parameters which represent model input have to be estimated from measurements of living representatives. Furthermore, since climate parameters are also required by the model, quantitative

  12. Atmospheric gravity waves in the Red Sea: a new hotspot

    KAUST Repository

    Magalhaes, J. M.; Araú jo, I. B.; da Silva, J. C. B.; Grimshaw, R. H. J.; Davis, K.; Pineda, J.

    2011-01-01

    The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone

  13. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D

    2018-02-01

    We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  14. The influence of solar activity on action centres of atmospheric circulation in North Atlantic

    Czech Academy of Sciences Publication Activity Database

    Sfîcă, L.; Voiculescu, M.; Huth, Radan

    2015-01-01

    Roč. 33, č. 2 (2015), s. 207-215 ISSN 0992-7689 R&D Projects: GA MŠk LD12053 Institutional support: RVO:68378289 Keywords : meteorology and atmospheric dynamics * sea-level pressure * Maunder minimum * climate-change * decadal scale * variability * hemisphere * winter * cycle * stratosphere * troposphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.731, year: 2015

  15. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  16. Soil-atmosphere interaction in unsaturated cut slopes

    Directory of Open Access Journals (Sweden)

    Tsiampousi Aikaterini

    2016-01-01

    Full Text Available Interaction between atmosphere and soil has only recently attracted significant interest. Soil-atmosphere interaction takes place under dynamic climatic conditions, which vary throughout the year and are expected to suffer considerable alterations due to climate change. However, Geotechnical Analysis has traditionally been limited to simplistic approaches, where winter and summer pore water pressure profiles are prescribed. Geotechnical Structures, such as cut slopes, are known to be prone to large irreversible displacements under the combined effect of water uptake by a complex vegetation root system and precipitation. If such processes take place in an unsaturated material the complexity of the problem renders the use of numerical analysis essential. In this paper soil-atmosphere interaction in cut slopes is studied using advanced, fully coupled partially saturated finite element analyses. The effect of rainfall and evapotranspiration is modelled through sophisticated boundary conditions, applying actual meteorological data on a monthly basis. Stages of low and high water demand vegetation are considered for a period of several years, before simulating the effect of vegetation removal. The analysis results are presented with regard to the serviceability and stability of the cut slope.

  17. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    Directory of Open Access Journals (Sweden)

    Z. M. Loh

    2015-01-01

    Full Text Available This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E. The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS and the CSIRO Conformal-Cubic Atmospheric Model (CCAM. Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November, rather than winter, maximum for wetland emissions.

  18. Classification guide: Sochi 2014 Paralympic Winter Games

    OpenAIRE

    2014-01-01

    The Sochi 2014 Paralympic Winter Games classification guide is designed to provide National Paralympic Committees (NPCs) and International Federations (IFs) with information about the classification policies and procedures that will apply to the Sochi 2014 Paralympic Winter Games.

  19. Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    C. Dumousseaud

    2010-05-01

    Full Text Available Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1 and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006, led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1 showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.

  20. Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming

    Directory of Open Access Journals (Sweden)

    R. J. de Wit

    2015-03-01

    Full Text Available The previously reported observation of anomalous eastward gravity wave forcing at mesopause heights around the onset of the January 2013 major sudden stratospheric warming (SSW over Trondheim, Norway (63° N, 10° E, is placed in a global perspective using Microwave Limb Sounder (MLS temperature observations from the Aura satellite. It is shown that this anomalous forcing results in a clear cooling over Trondheim about 10 km below mesopause heights. Conversely, near the mesopause itself, where the gravity wave forcing was measured, observations with meteor radar, OH airglow and MLS show no distinct cooling. Polar cap zonal mean temperatures show a similar vertical profile. Longitudinal variability in the high northern-latitude mesosphere and lower thermosphere (MLT is characterized by a quasi-stationary wave-1 structure, which reverses phase at altitudes below ~ 0.1 hPa. This wave-1 develops prior to the SSW onset, and starts to propagate westward at the SSW onset. The latitudinal pole-to-pole temperature structure associated with the major SSW shows a warming (cooling in the winter stratosphere (mesosphere which extends to about 40° N. In the stratosphere, a cooling extending over the equator and far into the summer hemisphere is observed, whereas in the mesosphere an equatorial warming is noted. In the Southern Hemisphere mesosphere, a warm anomaly overlaying a cold anomaly is present, which is shown to propagate downward in time. This observed structure is in accordance with the temperature perturbations predicted by the proposed interhemispheric coupling mechanism for cases of increased winter stratospheric planetary wave activity, of which major SSWs are an extreme case. These results provide observational evidence for the interhemispheric coupling mechanism, and for the wave-mean flow interaction believed to be responsible for the establishment of the anomalies in the summer hemisphere.

  1. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  2. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. Evidence of the Lower Thermospheric Winter-to-Summer Circulation

    Science.gov (United States)

    Qian, L.; Burns, A. G.; Yue, J.

    2017-12-01

    Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.

  4. Sources and contributions of wood smoke during winter in London

    Science.gov (United States)

    Crilley, Leigh; Bloss, William; Yin, Jianxin; Beddows, David; Harrison, Roy; Zotter, Peter; Prevot, Andre; Green, David

    2014-05-01

    a contributing source in London. Overall, the source of biomass burning in London was likely a background regional source from mainland Europe overlaid by high contributions from local domestic burning emissions. This could have implications when considering future control strategies during winter. References Fuller, G.W., Sciare, J., Lutz, M., Moukhtar, S., Wagener, S., 2013. New Directions: Time to tackle urban wood burning? Atmospheric Environment 68, 295-296.

  5. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East.

    Science.gov (United States)

    Niazi, Sadegh; Hassanvand, Mohammad Sadegh; Mahvi, Amir Hossein; Nabizadeh, Ramin; Alimohammadi, Mahmood; Nabavi, Samira; Faridi, Sasan; Dehghani, Asghar; Hoseini, Mohammad; Moradi-Joo, Mohammad; Mokamel, Adel; Kashani, Homa; Yarali, Navid; Yunesian, Masud

    2015-10-01

    Bioaerosol concentration was measured in wastewater treatment units in south of Tehran, the largest wastewater treatment plant in the Middle East. Active sampling was carried out around four operational units and a point as background. The results showed that the aeration tank with an average of 1016 CFU/m(3) in winter and 1973 CFU/m(3) in summer had the greatest effect on emission of bacterial bioaerosols. In addition, primary treatment had the highest impact on fungal emission. Among the bacteria, Micrococcus spp. showed the widest emission in the winter, and Bacillus spp. was dominant in summer. Furthermore, fungi such as Penicillium spp. and Cladosporium spp. were the dominant types in the seasons. Overall, significant relationship was observed between meteorological parameters and the concentration of bacterial and fungal aerosols.

  6. Gas/particle partitioning behaviour of azaarenes in an urban atmosphere.

    Science.gov (United States)

    Chen, H Y; Preston, M R

    1997-01-01

    The gas/particle partitioning of azaarenes in the Liverpool urban atmosphere was measured from May 1995 to April 1996. This period included one of the hottest summers and coldest winters recorded in the UK. The changes of the relative proportions of particulate and vapour phases showed a strong seasonal variation in which over 80% of azaarene compounds are associated with the particles in the winter and over 60% of azaarene compounds exist as vapour phase during the summer. The results are fitted into a gas/particle partitioning equation. Calculated vapour pressures, vaporization and desorption enthalpies are also given. Azaarene partitioning behaviour is modelled at a variety of aerosol concentrations and over a temperature range which includes normal ambient temperatures. It is hypothesised that three ring azaarene species are more likely to undergo changes in the relative proportions of particle and vapour phase material than either two or four ring compounds.

  7. Winter-spring precipitation reconstructions from tree rings for northeast Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva-Diaz, J.; Cerano-Paredes, J. [Instituto Nacional de Investigaciones Forestales y Agropecuarias, Centro Nacional de Investigacion Disciplinarioa en Relacion Agua, Suelo, Planta. Km 6.5 Margen Derecha del Canal Sacramento Gomez Palacio, Durango, 35140 (Mexico); Stahle, D.W.; Cleaveland, M.K. [Tree-Ring Laboratory, Department of Geosciences, University of Arkansas, fayetteville, Arkansas 72701 (United States); Luckman, B.H. [Department of Geography, University of Western Ontario, London, Ontario, N6A5C3 (Canada); Therrell, M.D. [Department of Environmental Sciences, University of Virginia, Charlottesville, VA 29904 (United States); Cornejo-Oviedo, E. [Departamento Forestal, Universidad Autonoma Agraria Antonio Narro, Saltillo, Coahuila (Mexico)

    2007-07-15

    The understanding of historic hydroclimatic variability is basic for planning proper management of limited water resources in northeastern Mexico. The objective of this study was to develop a network of tree-ring chronologies to reconstruct hydroclimate variability in northeastern Mexico and to analyze the influence of large-scale circulation patterns, such as ENSO. Precipitation sensitive tree-ring chronologies of Douglas-fir were developed in mountain ranges of the Sierra Madre Oriental and used to produce winter-spring precipitation reconstructions for central and southern Nuevo Leon, and southeastern Coahuila. The seasonal winter-spring precipitation reconstructions are 342 years long (1659-2001) for Saltillo, Coahuila and 602 years long (1400-2002) for central and southern Nuevo Leon. Both reconstructions show droughts in the 1810s, 1870s, 1890s, 1910s, and 1970s, and wet periods in the 1770s, 1930s, 1960s, and 1980s. Prior to 1800s the reconstructions are less similar. The impact of ENSO in northeastern Mexico (as measured by the Tropical Rainfall Index) indicated long-term instability of the Pacific equatorial teleconnection. Atmospheric circulation systems coming from higher latitudes (cold fronts or 'nortes') and others developed in the Gulf of Mexico (tropical storms, hurricanes) also influence the climatic conditions characterizing this region. The recent development of new and longer tree-ring chronologies for the region will contribute to a better understanding of the interannual and multidecadal climatic variability of northeastern Mexico.

  8. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  9. The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau

    Science.gov (United States)

    Chen, Xuelong; Añel, Juan A.; Su, Zhongbo; de la Torre, Laura; Kelder, Hennie; van Peet, Jacob; Ma, Yaoming

    2013-01-01

    In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau. PMID:23451108

  10. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    Science.gov (United States)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).

  11. Composition of Estonian atmosphere

    International Nuclear Information System (INIS)

    Punning, J. M.; Karindi, A.

    1996-01-01

    Atmospheric study, particularly that of its chemical composition, has a long tradition in Estonia. Since middle of this century, in addition to meteorological observations, some chemical compounds in precipitations have been regularly measured in many meteorological stations. The main aim was to acquire information about the state and dynamics of the atmosphere. Therefore, main attention was paid to monitoring chemical compounds which have a direct impact on the human environment. As energy production developed intensively and SO 2 and NO x increased drastically in the atmosphere in acidic rock areas, like Scandinavia, the problem of acid rain became the most important environmental problem in Europe and North-America. As a consequence, monitoring the compounds of sulphur in precipitation was organized in Estonia. In the 1970 s, as related to large operating oil shale-based power plants, Estonia became a country , where emissions of sulphur compounds per capita were extremely high. In 1979, Estonia became a participant in the European Monitoring and Evaluation Programme - the network created to study transboundary air pollution. The aims of the precipitation chemistry study and the related problems of the formation and transformation of the atmospheric composition have varied over the years. But monitoring of pollutant (in particular, sulphur compound) loads has been a central issue. Over recent years, an attempt was made to estimate the spatial regularities of atmospheric impurities and their impact on the pH of mean monthly precipitations. Furthermore, calculations were provided to find out the origin of atmospheric impurities washed out in Estonia. Until the 1990 s, CO 2 , and some other greenhouse gas (GHG) emissions were not studied in Estonia. The first inventory of GHG for Estonia was provided in 1995 using the Intergovernmental Panel on Climate Change (IPCC) methodology

  12. AUTOMATIC CONTROL SYSTEM OF WINTER AUTOMOBILE-ROAD MAINTENANCE

    Directory of Open Access Journals (Sweden)

    I. I. Leonovich

    2008-01-01

    Full Text Available In order to ensure a rational usage of financial and material resources directed on winter automobile-road maintenance in theRepublicofBelarusan automatic control system of winter maintenance is under its development and introduction.  The main purpose of the system is to obtain and use meteorological information on the state of a road network that allows to take necessary organizational and technological solutions ensuring safety and continuity of traffic during winter. This system also presupposes to ensure constant control over the state of roadway covering, expenditure of anti-glazed frost materials at all levels of management.The paper considers main aspects pertaining to introduction of the automatic control system of winter maintenance

  13. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  14. Strong signatures of high-latitude blocks and subtropical ridges in winter PM10 over Europe

    Science.gov (United States)

    Ordonez, C.; Garrido-Perez, J. M.; Garcia-Herrera, R.

    2017-12-01

    Atmospheric blocking is associated with persistent, slow-moving high pressure systems that interrupt the eastward progress of extratropical storm systems at middle and high latitudes. Subtropical ridges are low latitude structures manifested as bands of positive geopotential height anomalies extending from sub-tropical latitudes towards extra-tropical regions. We have quantified the impact of blocks and ridges on daily PM10 (particulate matter ≤ 10 µm) observations obtained from the European Environment Agency's air quality database (AirBase) for the winter period of 2000-2010. For this purpose, the response of the PM10 concentrations to the location of blocks and ridges with centres in two main longitudinal sectors (Atlantic, ATL, 30˚-0˚ W; European, EUR, 0˚-30˚ E) is examined. EUR blocking is associated with a collapse of the boundary layer as well as reduced wind speeds and precipitation occurrence, yielding large positive anomalies which average 12 µg m-3 over the whole continent. Conversely, the enhanced zonal flow around 50˚-60˚ N and the increased occurrence of precipitation over northern-central Europe on days with ATL ridges favour the ventilation of the boundary layer and the impact of washout processes, reducing PM10 concentrations on average by around 8 µg m-3. The presence of EUR blocks is also concurrent with an increased probability of exceeding the European air quality target (50 µg m-3 for 24-h averaged PM10) and the local 90th percentiles for this pollutant at many sites, while the opposite effect is found for ridges. In addition, the effect of synoptic persistence on the PM10 concentrations is particularly strong for EUR blocks. Finally, we have found that the effect of both synoptic patterns can partly control the interannual variability of winter mean PM10 at many sites of north-western and central Europe, with coefficients of determination (R2) exceeding 0.80 for southern Germany. These results indicate that the response of the

  15. Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain.

    Science.gov (United States)

    Royé, D; Taboada, J J; Martí, A; Lorenzo, M N

    2016-04-01

    The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.

  16. Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain

    Science.gov (United States)

    Royé, D.; Taboada, J. J.; Martí, A.; Lorenzo, M. N.

    2016-04-01

    The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.

  17. How to Have a Healthy Winter | Poster

    Science.gov (United States)

    Without a doubt, winter is here. Between the icy weather and the recent hustle and bustle of the holidays, everyone is at an increased risk of getting sick. With that in mind, Occupational Health Services has a few simple tips for staying healthy this winter.

  18. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  19. The influence of the North Atlantic Ocean variability on the atmosphere in the cold season at seasonal to multidecadal time scales

    Science.gov (United States)

    Frankignoul, C.

    2017-12-01

    Observational evidence of an atmospheric response to the North Atlantic horseshoe SST anomalies has been accumulating since the late 90's, suggesting that it drives a negative NAO response during late fall/early winter. The North Atlantic horseshoe SST anomaly is in part stochastically driven by the atmosphere, but at low frequency it is correlated with the Atlantic Multidecadal Oscillation (AMO). Correspondingly, an atmospheric response to the AMO has been detected at low frequency in winter, with a positive AMO phase leading a negative NAO-like pattern, consistent with sensitivity studies with atmospheric general circulation models. Both the subpolar and tropical components of the AMO seem to contribute to its influence on the atmosphere. As North Atlantic SST changes reflects internally-generated SST fluctuations as well the response to anthropogenic and other external forcing, the AMO is sensitive to the way the forced SST signal is removed; estimates of the natural variability of the AMO vary by as much as a factor of two between estimation methods, leading to possible biases in its alleged impacts. Since an intensification of the Atlantic meridional overturning circulation (AMOC) leads the AMO and drives a negative NAO in many climate models, albeit with different lead times, the relation between AMO and AMOC will be discussed, as well as possible links with the North Pacific and sea ice variability.

  20. Drought and Winter Drying (Pest Alert)

    Science.gov (United States)

    USDA Forest Service

    Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...

  1. Global Warming, New Climate, New Atmospheric Circulation and New Water Cycle in North Africa

    Science.gov (United States)

    Karrouk, M. S.

    2017-12-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa.This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys: Polar Vortex).This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other.The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture and Water worldwide: the excess water vapor is easily converted by cold advection (Polar Vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America.The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the

  2. Water Vapor in the Middle Atmosphere of Venus from the Data of the Venera-15 IR Fourier Spectrometer

    Science.gov (United States)

    Ignat'ev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    In 1983, the Fourier spectrometer experiment onboard Venera-15 returned spectra of IR radiation (6-50 micron) of the Venusian atmosphere which contained information about temperature, aerosols, and minor constituents, including water vapor. The currently available techniques of radiation-transfer modeling and the H2O-abundance reconstruction allowed us to reanalyze these data, and the most recent results of this analysis are presented here. Most of the measurements are in the range 5-15 ppm. Temporal and spatial variations of the water-vapor abundance were measured. The estimates of H2O abundance calculated from the spectra refer to a certain altitude approximately determined by the level where the optical depth tau in the aerosol continuum near the H2O bands region is close to unity. This altitude varies from 62.5 +/- 2 km at low latitudes to 56 +/- 2 km at high altitudes, but the mean measured water-vapor abundance is found to be roughly the same for both areas, about 10 ppm. At low and middle latitudes, the H2O mixing ratio is maximum on the dayside of the planet and minimum on the nightside. Although the direct reconstruction of the H2O vertical profile from the spectra failed, its indirect estimates confirming the decrease of the mixing ratio with altitude were obtained.

  3. Global characteristics of extreme winters from a multi-millennial simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, PO Box 1, Aspendale (Australia)

    2011-10-15

    Output from a multi-millennial simulation with the CSIRO Mark 2 coupled global climatic model has been analysed to determine the principal characteristics of extreme winters over the globe for ''present conditions''. Thus, this study is not concerned with possible changes in winter conditions associated with anthropogenically induced climatic change. Defining an extreme winter as having a surface temperature anomaly of below -2 standard deviations (sd) revealed a general occurrence rate over the globe of between 100 and 200 over a 6,000-year period of the simulation, with somewhat higher values over northwest North America. For temperature anomalies below -3 sd the corresponding occurrence rate drops to about 10. Spatial correlation studies revealed that extreme winters over regions in Europe, North America or Asia were very limited geographically, with time series of the surface temperature anomalies for these regions having mutual correlation coefficients of about 0.2. The temporal occurrence rates of winters (summers) having sd below -3 (above +3) were very asymmetric and sporadic, suggesting that such events arise from stochastic influences. Multi-year sequences of extreme winters were comparatively rare events. Detailed analysis revealed that the temporal and spatial evolution of the monthly surface temperature anomalies associated with an individual extreme winter were well replicated in the simulation, as were daily time series of such anomalies. Apart from an influence of the North Atlantic Oscillation on extreme winters in Europe, other prominent climatic oscillations were very poorly correlated with such winters. Rather modest winter temperature anomalies were found in the southern hemisphere. (orig.)

  4. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  5. An observational study of the evolution of the atmospheric boundary-layer over Cabo Frio, Brazil

    Directory of Open Access Journals (Sweden)

    S. H. Franchito

    2007-08-01

    Full Text Available The effect of coastal upwelling on the evolution of the atmospheric boundary layer (ABL in Cabo Frio (Brazil is investigated. For this purpose, radiosounding data collected in two experiments made during the austral summer (upwelling case and austral winter (no upwelling case are analysed. The results show that during the austral summer, cold waters that crop up near the Cabo Frio coast favour the formation of an atmospheric stable layer, which persists during the upwelling episode. Due to the low SSTs, the descending branch of the sea-breeze circulation is located close to the coast, inhibiting the development of a mixed layer mainly during the day. At night, with the reduction of the land-sea thermal contrast the descending motion is weaker, allowing a vertical mixing. The stable ABL favours the formation of a low level jet, which may also contribute to the development of a nocturnal atmospheric mixed layer. During the austral winter, due to the higher SSTs observed near the coast, the ABL is less stable compared with that in the austral summer. Due to warming, a mixed layer is observed during the day. The observed vertical profiles of the zonal winds show that the easterlies at low levels are stronger in the austral summer, indicating that the upwelling modulates the sea-breeze signal, thus confirming model simulations.

  6. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean

    International Nuclear Information System (INIS)

    Peings, Yannick; Magnusdottir, Gudrun

    2014-01-01

    The North Atlantic sea surface temperature exhibits fluctuations on the multidecadal time scale, a phenomenon known as the Atlantic Multidecadal Oscillation (AMO). This letter demonstrates that the multidecadal fluctuations of the wintertime North Atlantic Oscillation (NAO) are tied to the AMO, with an opposite-signed relationship between the polarities of the AMO and the NAO. Our statistical analyses suggest that the AMO signal precedes the NAO by 10–15 years with an interesting predictability window for decadal forecasting. The AMO footprint is also detected in the multidecadal variability of the intraseasonal weather regimes of the North Atlantic sector. This observational evidence is robust over the entire 20th century and it is supported by numerical experiments with an atmospheric global climate model. The simulations suggest that the AMO-related SST anomalies induce the atmospheric anomalies by shifting the atmospheric baroclinic zone over the North Atlantic basin. As in observations, the positive phase of the AMO results in more frequent negative NAO—and blocking episodes in winter that promote the occurrence of cold extreme temperatures over the eastern United States and Europe. Thus, it is plausible that the AMO plays a role in the recent resurgence of severe winter weather in these regions and that wintertime cold extremes will be promoted as long as the AMO remains positive. (paper)

  7. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin

    2011-01-01

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. - Graphical abstract: Display Omitted Highlights: → The fluxes of organic pollutants in a pristine boreal catchment were measured. → Most of the input and export occurred during winter and spring flood. → 96.0-99.9% of received bulk deposition was retained by the landscape. → Organic pollutants will impact boreal stream waters for an extended period of time. - The boreal landscape is effective in retaining diffuse atmospheric deposition of dioxins and PCBs, slowly releasing these pollutants into nearby streams.

  8. Activities of the 44th Japanese Antarctic Research Expedition (JARE-44 wintering party, 2003-2004

    Directory of Open Access Journals (Sweden)

    Hideyasu Kojima

    2005-03-01

    Full Text Available The 44th Japanese Antarctic Research Expedition (JARE-44 wintering party conducted the VIth five-year JARE program from February 1st 2003 to January 31st 2004 at both Syowa and Dome Fuji Stations. Thirty-six members at Syowa Station and 8 members at Dome Fuji Station were engaged in the various scientific and logistic activities. Many observation programs in meteorology, upper atmospheric physics, atmospheric sciences and glaciology, geophysics and biology and medical science were carried out in addition to logistic activities such at Syowa Station. As sea ice in Ongul Strait was unstable until early August, the start of the field activities in the southern coastal area was delayed until early October. However, many field teams engaged in seismic, Global Positioning System (GPS observations and a penguin census study made observations around the coastal area of east Lutzow-Holm Bay in October and November when sea ice was stable.

  9. Arctic-Mid-Latitude Linkages in a Nonlinear Quasi-Geostrophic Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Dörthe Handorf

    2017-01-01

    Full Text Available A quasi-geostrophic three-level T63 model of the wintertime atmospheric circulation of the Northern Hemisphere has been applied to investigate the impact of Arctic amplification (increase in surface air temperatures and loss of Arctic sea ice during the last 15 years on the mid-latitude large-scale atmospheric circulation. The model demonstrates a mid-latitude response to an Arctic diabatic heating anomaly. A clear shift towards a negative phase of the Arctic Oscillation (AO− during low sea-ice-cover conditions occurs, connected with weakening of mid-latitude westerlies over the Atlantic and colder winters over Northern Eurasia. Compared to reanalysis data, there is no clear model response with respect to the Pacific Ocean and North America.

  10. Seasonal variations of aerosol residence time in the lower atmospheric boundary layer

    International Nuclear Information System (INIS)

    Ahmed, A.A.; Mohamed, A.; Ali, A.E.; Barakat, A.; Abd El-Hady, M.; El-Hussein, A.

    2004-01-01

    During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived ( 222 Rn) decay products 214 Pb and 210 Pb. The samples were taken by using a single-filter technique and γ-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214 Pb and 210 Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214 Pb and 210 Pb within the whole year was found to be 1.4±0.27 Bq m -3 and 1.2±0.15 mBq m -3 , respectively. Different 210 Pb: 214 Pb activity ratios during the year varied between 1.78x10 -4 and 1.6x10 -3 with a mean value of 8.9x10 -4 ±7.6x10 -5 . From the ratio between the activity concentrations of the radon decay products 214 Pb and 210 Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5±0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air

  11. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2002-06-01

    decline as shown by the satellite during the investigated period, with a tendency, however, to underestimate the total column values inside the polar vortex during late winter. As possible causes of this model/observation difference we suggest an incorrect estimation of the vertical transport and of the tropospheric contribution.Key words. Atmospheric composition and structure (Middle atmosphere-composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics

  12. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    satisfactorily reproduces the morphology of the continuous O3 decline as shown by the satellite during the investigated period, with a tendency, however, to underestimate the total column values inside the polar vortex during late winter. As possible causes of this model/observation difference we suggest an incorrect estimation of the vertical transport and of the tropospheric contribution.

    Key words. Atmospheric composition and structure (Middle atmosphere-composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics

  13. What controls the atmospheric methane seasonal variability over India?

    KAUST Repository

    Guha, Tania; Tiwari, Yogesh K.; Valsala, Vinu; Lin, Xin; Ramonet, Michel; Mahajan, Anoop; Datye, Amey; Kumar, K. Ravi

    2017-01-01

    Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.

  14. What controls the atmospheric methane seasonal variability over India?

    KAUST Repository

    Guha, Tania

    2017-11-28

    Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.

  15. Radon and its daughters in the maritime atmosphere near Japan islands

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu

    1982-01-01

    In the maritime atmosphere near the land, natural radon and its daughters dispersed from land to over ocean are found gradually to attain their radioactive equilibrium with time lapse after they left land sources. Radioactive equilibrium is found to be established at the distance 100 - 150 km from the land, at least in winter season. Farther off from the distance about 150 km from the land, radioactive equilibrium will get deviation mode from their equilibrium state. (author)

  16. Modes of winter precipitation variability in the North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Saenz, J.; Fernandez, J.; Zubillaga, J. [Bilbao Univ. (Spain)

    2001-07-01

    The modes of variability of winter precipitation in the North Atlantic sector are identified by Empirical Orthogonal Functions Analysis in the NCEP/NCAR global reanalysis data sets. These modes are also present in a gridded precipitation data set over the Western Europe. The large-scale fields of atmospheric seasonal mean circulation, baroclinic activity, evaporation and humidity transport that are connected to the rainfall modes have been also analyzed in order to investigate the physical mechanisms that are causally linked to the rainfall modes. The results indicate that the leading rainfall mode is associated to the North Atlantic oscillation and represents a meridional redistribution of precipitation in the North Atlantic through displacements of the storm tracks. The second mode is related to evaporation anomalies in the Eastern Atlantic that precipitate almost entirely in the Western Atlantic. The third mode seems to be associated to meridional transport of water vapor from the Tropical Atlantic. (orig.)

  17. Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X

    Science.gov (United States)

    Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.

    2018-04-01

    We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.

  18. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  19. Theoretical and experimental studies of atmospheric structure and dynamics, using high altitude chemical release, Radio meteor, and meteorological rocket network and other data

    Science.gov (United States)

    Edwards, H. D.

    1976-01-01

    Data collected by the Georgia Tech Radio Meteor Wind Facility during the fall and winter of 1975 are analyzed indicating a relationship between lower thermospheric circulation at mid latitudes and polar stratospheric dynamics. Techniques of measurement of mixing processes in the upper atmosphere and the interpretation of those measurements are described along with a diffusion simulation program based on the Global Reference Atmosphere program.

  20. MIPAS: an instrument for atmospheric and climate research

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2008-04-01

    Full Text Available MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere.

    The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality.

    MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September~2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of

  1. 我的寒假%My Winter Holidays

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Winter holidays have about twenty days.During winter holidays, I do all kinds of interesting thing.I like climbing the hill,because it can make me heMthy.I like fishing,it can give me a lot of fun.I like visiting some places of interest, it can enlarge my knowledge.

  2. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    Science.gov (United States)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  3. Seasonal variation in radon concentration in the atmosphere simultaneously measured in Donghae on Korean peninsula, Matsue on Shimane peninsula, and Oki island in the sea of Japan

    International Nuclear Information System (INIS)

    Yoshioka, Katsuhiro; Iida, Takao; Kim, Yoon Shin

    2008-01-01

    We measured simultaneously radon concentration in the atmosphere at Donghae, Oki Island and Matsue. In Donghae, radon concentration had peaks in the winter and summer and lower values in the spring. It was the highest in the winter and lowest in the summer in Oki Island, in Matsue, the highest in the fall and lowest in the summer. The timing and frequency of arrival air mass from the ocean and the land were different among the three measuring points. The highest values in Donghae and Oki Island were because of effects of radon flow from Eurasian continent in the winter. The inversion layer often formed in the atmospheric boundary layer over the land area around the Sea of Japan caused the peak values in the summer in Donghae. The atmosphere over Oki Island is always mixed with that over the ocean because the island is small. Radon escaping from the ground of the island does not stay with the surface layer even at night, therefore, diurnal variation was almost none throughout the year. Air mass with low radon concentration coming from the Pacific Ocean caused the lowest values in the summer. In Matsue, the peak was found in the fall in which occurrences of surface inversion layer is most common in the year. (author)

  4. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  5. Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Rodriguez-Fonseca, B.; Zurita-Gotor, P.; Camara, A. de la [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Blade, I. [UB, Departament d' Astronomia i Meteorologia, Barcelona (Spain)

    2011-11-15

    The dominant variability modes of the North Atlantic-European rotational flow are examined by applying a principal component analysis (PCA/EOF) to the 200 hPa streamfunction mid-winter anomalies (Jan-Feb monthly means). The results reveal that, when this norm is used, the leading mode (EOF1) does not correspond to the traditional North Atlantic Oscillation (NAO, which appears in our analysis as the second leading mode, EOF2) but is the local manifestation of the leading hemispheric streamfunction EOF. The regression of this regional mode onto the global SST field exhibits a clear El Nino signature, with no signal over the Atlantic, while the associated upper height anomalies resemble the Tropical/Northern Hemisphere (TNH) pattern. East of North America, this TNH-like wavetrain produces a meridional dipole-like pattern at lower levels. Although in some ways this pattern resembles the NAO (EOF2), the dynamics of these two modes are very different in that only EOF2 is associated with a latitudinal shift of the North Atlantic stormtrack. Thus, the choice of the streamfunction norm in the EOF analysis allows the separation of two different phenomena that can produce similar dipolar surface pressure anomalies over the North Atlantic but that have different impact on European climate. These two modes also differ on their contribution to variability at lower levels: while NAO-EOF2 is mostly confined to the North Atlantic, TNH-EOF1 has a more annular, global character. At upper levels NAO-EOF2 also produces a global pattern but with no annular structure, reminiscent of the ''circumglobal'' teleconnection. (orig.)

  6. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  7. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  8. Payment mechanisms for winter road maintenance services

    Directory of Open Access Journals (Sweden)

    Adel Abdi

    2013-12-01

    Full Text Available In countries with severe winters a major part of the annual budget for road maintenance is allocated on performance of winter road maintenance tasks. Finding appropriate remuneration forms to compensate entrepreneurs for performed road measures during winter is not an easy task in order to minimise or eliminate disputes and satisfy both client organisations and contractors. On the other hand improper reimbursement models lead either to the client’s annual budget imbalance due to unnecessary cost overruns or affect contractor’s cash-flow. Such cases in turn affect just-in-time winter road maintenance and then traffic safety. To solve such problems, a number of countries in cold regions like Sweden have developed different remuneration models based more on weather data called Weather Index. Therefore the objective of this paper is to investigate and evaluate the payment models applied in Sweden. The study uses a number of approaches namely; domestic questionnaire survey, analysis of a number of contract documents, a series of meetings with the project managers and an international benchmarking. The study recognised four remuneration models for winter maintenance service of which one based on weather data statistics. The study reveals the payment model based on weather data statistics is only applied for the roads with higher traffic flow and the model generates most uncertainty.

  9. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  10. Wintering bald eagle trends in northern Arizona, 1975-2000

    Science.gov (United States)

    Teryl G. Grubb

    2003-01-01

    Between 1975 and 2000, 4,525 sightings of wintering bald eagles (Haliaeetus leucocephalus) were recorded at Mormon Lake in northern Arizona. Numbers of wintering eagles fluctuated little in the 20 years from 1975 through 1994 (5.5 ± 3.0 mean sightings per day). However, during the winters of 1995 through 1997 local record highs of 59 to 118 eagles...

  11. Mobile measurements of particle composition in the Rhine Valley and Zurich. Winter 2007/2008; Mobile Messungen der Partikelzusammensetzung im Rheintal und in der Stadt Zuerich. Winter 2007/2008

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C.; Weimer, S.; Good, C.; Richter, R.; Prevot, A.; Baltensperger, U.

    2009-07-15

    This report issued by the General Energy Research Department and its Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute (PSI) reports on the results obtained from the measurement of fine-dust quantities and composition in the cantons of eastern Switzerland and the upper Rhine valley during the winter. The PSI analysed the samples on behalf of the Swiss cantons, Vorarlberg (Austria) and the Principality of Liechtenstein. The mobile equipment used and the measurements made in the Rhine Valley between Lake Constance and Chur as well as in the City of Zurich are presented and discussed. The results of the measurements are presented in graphical form and the chemical composition of the pollutants at the different locations are discussed. Details of the instruments used and the routes taken are noted in an appendix.

  12. Model representation of the ambient electron density distribution in the middle atmosphere

    Science.gov (United States)

    Ramanamurty, Y. V.

    1989-01-01

    While the Langmuir probe controlled by rocket propagation experiments by the University of Illinois at midlatitude revealed the existence of a permanent D region turning point (DTP), similar measurements over the Thumba equatorial station did not clearly bring out the above daytime feature. Moreover, the calibration constant (ratio of electron density to the current drawn by the Langmuir probe) increased with height (in the 70 to 100 km region) in the case of the midlatitude observations whereas the recent measurements over Thumba showed a decrease up to about 90 km followed by an increase above 90 km. Secondly, there is the problem of reconciling the station oriented observations from the COSPAR family with the ground based radio propagation measurements from the URSI family. Thirdly, new information on Winter in Northern Europe (WINE) and in USSR is available by asking for its incorporation into any global model such as the IRI. The results of investigation of the above aspects are presented.

  13. Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November

    Science.gov (United States)

    King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel

    2018-03-01

    We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.

  14. Effects of sowing time on pink snow mould, leaf rust and winter damage in winter rye varieties in Finland

    Directory of Open Access Journals (Sweden)

    M. SERENIUS

    2008-12-01

    Full Text Available Disease infection in relation to sowing time of winter rye (Secale cereale was studied in southern Finland in order to compare overwintering capacity of modern rye varieties and to give recommendations for rye cultivation. This was done by using three sowing times and four rye varieties in field trials conducted at three locations in 1999–2001. The early sown rye (beginning of August was severely affected by diseases caused by Puccinia recondita and Microdochium nivale, whereas postponing sowing for two weeks after the recommended sowing time resulted in considerably less infection. The infection levels of diseases differed among rye varieties. Finnish rye varieties Anna and Bor 7068 were more resistant to snow mould and more winter hardy than the Polish variety Amilo, or the German hybrid varieties Picasso and Esprit. However, Amilo was the most resistant to leaf rust. In the first year snow mould appeared to be the primary cause of winter damage, but in the second year the winter damage was positively correlated with leaf rust. No significant correlation between frit fly infestation and winter damage or disease incidence of snow mould or leaf rust was established. The late sowing of rye (in the beginning of September is recommended in Finland, particularly with hybrid varieties, to minimize the need for chemical plant protection in autumn.;

  15. Polynya dynamics and associated atmospheric forcing at the Ronne Ice Shelf

    Science.gov (United States)

    Ebner, Lars; Heinemann, Günther

    2014-05-01

    The Ronne Ice Shelf is known as one of the most active regions of polynya developments around the Antarctic continent. Low temperatures are prevailing throughout the whole year, particularly in winter. It is generally recognized that polynya formations are primarily forced by offshore winds and secondarily by ocean currents. Many authors have addressed this issue previously at the Ross Ice Shelf and Adélie Coast and connected polynya dynamics to strong katabatic surge events. Such investigations of atmospheric dynamics and simultaneous polynya occurrence are still severely underrepresented for the southwestern part of the Weddell Sea and especially for the Ronne Ice Shelf. Due to the very flat terrain gradients of the ice shelf katabatic winds are of minor importance in that area. Other atmospheric processes must therefore play a crucial role for polynya developments at the Ronne Ice Shelf. High-resolution simulations have been carried out for the Weddell Sea region using the non-hydrostatic NWP model COSMO from the German Meteorological Service (DWD). For the austral autumn and winter (March to August) 2008 daily forecast simulations were conducted with the consideration of daily sea-ice coverage deduced from the passive microwave system AMSR-E. These simulations are used to analyze the synoptic and mesoscale atmospheric dynamics of the Weddell Sea region and find linkages to polynya occurrence at the Ronne Ice Shelf. For that reason, the relation between the surface wind speed, the synoptic pressure gradient in the free atmosphere and polynya area is investigated. Seven significant polynya events are identified for the simulation period, three in the autumn and four in the winter season. It can be shown that in almost all cases synoptic cyclones are the primary polynya forcing systems. In most cases the timely interaction of several passing cyclones in the northern and central Weddell Sea leads to maintenance of a strong synoptic pressure gradient above the

  16. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    Science.gov (United States)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud

  17. Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study

    Energy Technology Data Exchange (ETDEWEB)

    Msadek, Rym [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Princeton University, GFDL/NOAA, AOS Program, Princeton, NJ (United States); Frankignoul, Claude [Universite Pierre et Marie Curie-Paris 6, LOCEAN/IPSL, Paris Cedex 05 (France); Li, Laurent Z.X. [Universite Pierre et Marie Curie-Paris 6, LMD/IPSL, Paris Cedex 05 (France)

    2011-04-15

    The atmospheric circulation response to decadal fluctuations of the Atlantic meridional overturning circulation (MOC) in the IPSL climate model is investigated using the associated sea surface temperature signature. A SST anomaly is prescribed in sensitivity experiments with the atmospheric component of the IPSL model coupled to a slab ocean. The prescribed SST anomaly in the North Atlantic is the surface signature of the MOC influence on the atmosphere detected in the coupled simulation. It follows a maximum of the MOC by a few years and resembles the model Atlantic multidecadal oscillation. It is mainly characterized by a warming of the North Atlantic south of Iceland, and a cooling of the Nordic Seas. There are substantial seasonal variations in the geopotential height response to the prescribed SST anomaly, with an East Atlantic Pattern-like response in summer and a North Atlantic oscillation-like signal in winter. In summer, the response of the atmosphere is global in scale, resembling the climatic impact detected in the coupled simulation, albeit with a weaker amplitude. The zonally asymmetric or eddy part of the response is characterized by a trough over warm SST associated with changes in the stationary waves. A diagnostic analysis with daily data emphasizes the role of transient-eddy forcing in shaping and maintaining the equilibrium response. We show that in response to an intensified MOC, the North Atlantic storm tracks are enhanced and shifted northward during summer, consistent with a strengthening of the westerlies. However the anomalous response is weak, which suggests a statistically significant but rather modest influence of the extratropical SST on the atmosphere. The winter response to the MOC-induced North Atlantic warming is an intensification of the subtropical jet and a southward shift of the Atlantic storm track activity, resulting in an equatorward shift of the polar jet. Although the SST anomaly is only prescribed in the Atlantic ocean

  18. Mapping of QTLs for leaf area and the association with winter ...

    African Journals Online (AJOL)

    Variations in plant architecture are often associated with the ability of plants to survive cold stress during winter. In studies of winter hardiness in lentil, it appeared that small leaf area was associated with improved winter survival. Based on this observation, the inheritance of leaf area and the relationship with winter ...

  19. Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation

    Science.gov (United States)

    Johnson, Sean C.; Large, Ross R.; Coveney, Raymond M.; Kelley, Karen D.; Slack, John F.; Steadman, Jeffrey A.; Gregory, Daniel D.; Sack, Patrick J.; Meffre, Sebastien

    2017-08-01

    Highly metalliferous black shales (HMBS) are enriched in organic carbon and a suite of metals, including Ni, Se, Mo, Ag, Au, Zn, Cu, Pb, V, As, Sb, Se, P, Cr, and U ± PGE, compared to common black shales, and are distributed at particular times through Earth history. They constitute an important future source of metals. HMBS are relatively thin units within thicker packages of regionally extensive, continental margin or intra-continental marine shales that are rich in organic matter and bio-essential trace elements. Accumulation and preservation of black shales, and the metals contained within them, usually require low-oxygen or euxinic bottom waters. However, whole-rock redox proxies, particularly Mo, suggest that HMBS may have formed during periods of elevated atmosphere pO2. This interpretation is supported by high levels of nutrient trace elements within these rocks and secular patterns of Se and Se/Co ratios in sedimentary pyrite through Earth history, with peaks occurring in the middle Paleoproterozoic, Early Cambrian to Early Ordovician, Middle Devonian, Middle to late Carboniferous, Middle Permian, and Middle to Late Cretaceous, all corresponding with time periods of HMBS deposition. This counter-intuitive relationship of strongly anoxic to euxinic, localized seafloor conditions forming under an atmosphere of peak oxygen concentrations is proposed as key to the genesis of HMBS. The secular peaks and shoulders of enriched Se in sedimentary pyrite through time correlate with periods of tectonic plate collision, which resulted in high nutrient supply to the oceans and consequently maximum productivity accompanying severe drawdown into seafloor muds of C, S, P, and nutrient trace metals. The focused burial of C and S over extensive areas of the seafloor, during these anoxic to euxinic periods, likely resulted in an O2 increase in the atmosphere, causing short-lived peaks in pO2 that coincide with the deposition of HMBS. As metals become scarce, particularly Mo

  20. Experimental High-Resolution Land Surface Prediction System for the Vancouver 2010 Winter Olympic Games

    Science.gov (United States)

    Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.

    2008-05-01

    The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.