Sample records for winter ice cover

  1. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura


    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  2. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover (United States)

    Krumpen, T.; Haas, C.; Itkin, P.


    Interannual variability and trends in sea ice export out of the Laptev Sea were investigated using a combination of observations and satellite data. The Laptev Sea shows a statistically positive trend in ice area export that is likely associated to an increase in ice drift velocity being the consequence of a thinning ice cover further north. Moreover, we could show that there is a high statistical connection of the late winter (Jan-May) sea ice export and ice formation in Laptev Sea polynyas to the summer sea ice concentration. By means of a sensitivity study using a coupled sea ice-ocean model (MITgcm), we could highlight the importance of winter sea ice processes for summer sea ice conditions in the Laptev Sea and likewise in the adjacent Siberian Seas. Years of high ice export have a thinning effect on the ice cover, which in turn preconditions early fast ice break up, pack ice melt and the occurrence of negative sea ice extent anomalies in summer. Our model simulation also indicate that observed increase in the sea ice export from the Laptev Sea is accompanied by an increase in the volume export, which is important for the Arctic sea ice budget.

  3. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. (United States)

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita


    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  4. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva


    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  5. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack (United States)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.


    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  6. Increasing winter conductive heat transfer in the Arctic sea-ice-covered areas: 1979–2014 (United States)

    Fan, Xieyu; Bi, Haibo; Wang, Yunhe; Fu, Min; Zhou, Xuan; Xu, Xiuli; Huang, Haijun


    Sea ice is a quite sensitive indicator in response to regional and global climate changes. Based on monthly mean Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) sea ice thickness fields, we computed the conductive heat flux (CHF) in the Arctic Ocean in the four winter months (November-February) for a long period of 36 years (1979-2014). The calculated results for each month manifest the increasing extension of the domain with high CHF values since 1979 till 2014. In 2014, regions of roughly 90% of the central Arctic Ocean have been dominated by the CHF values larger than 18 W m-2 (November-December) and 12 W m-2 (January-February), especially significant in the shelf seas around the Arctic Ocean. Moreover, the population distribution frequency (PDF) patterns of the CHF with time show gradually peak shifting toward increased CHF values. The spatiotemporal patterns in terms of the trends in sea ice thickness and other three geophysical parameters, surface air temperature (SAT), sea ice thickness (SIT), and CHF, are well coupled. This suggests that the thinner sea ice cover preconditions for the more oceanic heat loss into atmosphere (as suggested by increased CHF values), which probably contributes to warmer atmosphere which in turn in the long run will cause thinner ice cover. This represents a positive feedback mechanism of which the overall effects would amplify the Arctic climate changes.

  7. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation

    Directory of Open Access Journals (Sweden)

    D. Handorf


    Full Text Available The response of the Arctic atmosphere to low and high sea ice concentration phases based on European Center for Medium-Range Weather Forecast (ECMWF Re-Analysis Interim (ERA-Interim atmospheric data and Hadley Centre's sea ice dataset (HadISST1 from 1989 until 2010 has been studied. Time slices of winter atmospheric circulation with high (1990–2000 and low (2001–2010 sea ice concentration in the preceding August/September have been analysed with respect to tropospheric interactions between planetary and baroclinic waves. It is shown that a changed sea ice concentration over the Arctic Ocean impacts differently the development of synoptic and planetary atmospheric circulation systems. During the low ice phase, stronger heat release to the atmosphere over the Arctic Ocean reduces the atmospheric vertical static stability. This leads to an earlier onset of baroclinic instability that further modulates the non-linear interactions between baroclinic wave energy fluxes on time scales of 2.5–6 d and planetary scales of 10–90 d. Our analysis suggests that Arctic sea ice concentration changes exert a remote impact on the large-scale atmospheric circulation during winter, exhibiting a barotropic structure with similar patterns of pressure anomalies at the surface and in the mid-troposphere. These are connected to pronounced planetary wave train changes notably over the North Pacific.

  8. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009

    Directory of Open Access Journals (Sweden)

    Ruibo Lei


    Full Text Available A field programme on light conditions in ice-covered lakes and optical properties of lake ice was performed in seven lakes of Finland and Estonia in February–April 2009. On the basis of irradiance measurements above and below ice, spectral reflectance and transmittance were determined for the ice sheet; time evolution of photosynthetically active radiation (PAR transmittance was examined from irradiance recordings at several levels inside the ice sheet. Snow cover was the dominant factor for transmission of PAR into the lake water body. Reflectance was 0.74–0.92 in winter, going down to 0.18–0.22 in the melting season. The bulk attenuation coefficient of dry snow was 14–25 m–1; the level decreased as the spring was coming. The reflectance and bulk attenuation coefficient of snow-free ice were 0.1–0.4 and 1–5 m–1. Both were considerably smaller than those of snow cover. Seasonal evolution of light transmission was mainly due to snow melting. Snow and ice cover not only depress the PAR level in a lake but also influence the spectral and directional distribution of light.

  9. Transport of marine fish larvae to Saroma-ko Lagoon (Hokkaido, Japan) in relation to the availability of zooplankton prey under the winter ice cover (United States)

    Fortier, Martin; Fortier, Louis


    To assess the importance of ice-covered Saroma-ko Lagoon as a winter nursery area for young fish spawned offshore, we monitored the recruitment of marine fish larvae from the Sea of Okhotsk to the lagoon as well as the availability of larval fish prey under the ice cover from 24 February to 23 March 1992. Sand lance ( Ammodytes sp.) and walleye pollock ( Theragra chalcogramma) larvae recruited to the lagoon on flood tide whereas snake prickleback ( Lumpenus sagitta) larvae were exported to the Sea of Okhotsk on ebb. Before the ice breakup, ice microalgae made up the bulk of the microalgal biomass in the lagoon. The production and release of ice algae did not trigger the maturation of the late copepodite stages of copepods, and the proportion of adult females in the copepod assemblage remained low. The production of copepod nauplii (the main prey of fish larvae) under the ice was probably insufficient to insure suitable feeding and growth of fish larvae entering the lagoon in winter. Sand lance larvae, the most abundant species to colonize the lagoon in February-March, had to survive for nearly two months at low food abundance. Based on our results, the importance of Saroma-ko Lagoon as a winter nursery area for fish larvae appears negligible.

  10. The Rapidly Shrinking Arctic Multiyear Ice Cover (United States)

    Comiso, Josefino C.


    Among the most dramatic changes in the Arctic in recent years was the precipitous decline in the perennial ice cover. In 2007, the perennial ice area was 37% lower than climatological average and 28% lower than the previous low established in 2005. In 2008, the perennial ice recovered somewhat because of colder global temperatures but by only about 6% of average value. The trend in the ice area covered by perennial ice is now -12.5% per decade using data from 1979 to 2009 which compared to a previous report of -9% per decade derived from 1979 to 2000 data indicates an accelerated decline. To gain insight into the phenomenon, we studied the mUltiyear ice cover as detected by satellite sensor in winter. The multiyear ice as detected in winter represents ice that has generally survived two summers and therefore the thicker component of the perennial ice cover. Analysis of the thicker multiyear ice types indicates an even more rapid decline of 17% per decade. Such decline in the thick component of the Arctic ice cover that normally survives the summer means an even more vulnerable perennial ice cover. Much of the decline occurred in the western region of the Arctic Basin (Le., Chukchi and Beaufort Seas) where the open water area has been increasing by about 35% per decade. Such increase in low albedo ice free region causes the absorption of considerably more solar heat in the Arctic basin. This causes further decline in the ice cover in a process called ice-albedo feedback. A manifestation of such process is the observed trend in SST in the basin of about 0.5 + 0.2 degrees Celsius per decade as derived from satellite data

  11. Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters

    NARCIS (Netherlands)

    Schaafsma, F.L.; Kohlbach, D.; David, C.; Lange, B.A.; Graeve, M.; Flores, H.; Franeker, van J.A.


    Antarctic krill Euphausia superba is an ecological key species in the Southern Ocean and a major fisheries resource. The winter survival of age class 0 (AC0) krill is susceptible to changes in the sea-ice environment due to their association with sea ice and their need to feed during their first

  12. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification

    NARCIS (Netherlands)

    Rozema, P.D.; Venables, H.J.; van de Poll, W.H.; Clarke, A.; Meredith, M.P.; Buma, A.G.J.


    The rapid warming of the West Antarctic Peninsula region has led to reduced sea ice cover and enhanced glacial melt water input. This has potential implications for marine ecosystems, notably phytoplankton growth, biomass, and composition. Fifteen years (1997–2012) of year-round size fractionated

  13. Winter Community Structure Changes in Frazil Ice and Open Water in Riverine Systems

    National Research Council Canada - National Science Library

    White, K


    ...) that examined dissolved oxygen (DO) levels and changes in river microbiology during winter, periods of low water temperature, and periods of ice-cover, with the objective of providing guidance for winter water-quality modeling...

  14. Flow structure at an ice-covered river confluence (United States)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas


    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio

  15. Early Winter Sea Ice Dynamics in the Ross Sea from In Situ and Satellite Observations (United States)

    Maksym, T.; Ackley, S. F.; Stammerjohn, S. E.; Tison, J. L.; Hoeppner, K.


    The Ross Sea sea ice cover is one of the few regions of the cryosphere that have been expanding in recent decades. However, 2017 saw a significantly delayed autumn ice advance and record low early winter sea ice extent. Understanding the causes and impacts of this variability has been hampered by a lack of in situ observations. A winter cruise into the Ross Sea in April-June 2017 provided some of the only in situ winter observations of sea ice processes in this region in almost 20 years. We present a first look at data from arrays of drifting buoys deployed in the ice pack and outflow from these polynyas, supplemented by a suite of high-resolution synthetic aperture radar (SAR) data. Additional observations included high-resolution sonar imagery of ice deformation features from an autonomous underwater vehicle, shipboard visual observations of sea ice properties, and in situ measurements of snow and thickness and structural properties. These data show that the delay in ice advance led to a thin, highly dynamic sea ice pack, with substantial ice production and export from the Ross Ice Shelf and Terra Nova Bay polynyas. Despite these high rates of ice production, the pack ice remained thin due to rapid export and northward drift. Compared to the only prior winter observations made in 1995 and 1998, the ice was thinner, with less ridging and snow cover, reflecting a younger ice cover. Granular ice was less prevalent than in these prior cruises, particularly in the outer pack, likely due to less snow ice formation and less pancake ice formation at the advancing ice edge. Despite rapid basal ice growth, the buoy data suggest that deformation may be the dominant mechanism for sea ice thickening in the pack once an initial ice cover forms.

  16. A new prediction model for grain yield in Northeast China based on spring North Atlantic Oscillation and late-winter Bering Sea ice cover (United States)

    Zhou, Mengzi; Wang, Huijun; Huo, Zhiguo


    Accurate estimations of grain output in the agriculturally important region of Northeast China are of great strategic significance for guaranteeing food security. New prediction models for maize and rice yields are built in this paper based on the spring North Atlantic Oscillation index and the Bering Sea ice cover index. The year-to-year increment is first forecasted and then the original yield value is obtained by adding the historical yield of the previous year. The multivariate linear prediction model of maize shows good predictive ability, with a low normalized root-mean-square error (NRMSE) of 13.9%, and the simulated yield accounts for 81% of the total variance of the observation. To improve the performance of the multivariate linear model, a combined forecasting model of rice is built by considering the weight of the predictors. The NRMSE of the model is 12.9% and the predicted rice yield explains 71% of the total variance. The corresponding cross-validation test and independent samples test further demonstrate the efficiency of the models. It is inferred that the statistical models established here by applying year-to-year increment approach could make rational prediction for the maize and rice yield in Northeast China before harvest. The present study may shed new light on yield prediction in advance by use of antecedent large-scale climate signals adequately.

  17. On the potential for abrupt Arctic winter sea-ice loss

    NARCIS (Netherlands)

    Bathiany, S.; Notz, Dirk; Mauritsen, T.; Raedel, G.; Brovkin, V.


    The authors examine the transition from a seasonally ice-covered Arctic to an Arctic Ocean that is sea ice free all year round under increasing atmospheric CO2 levels. It is shown that in comprehensive climate models, such loss of Arctic winter sea ice area is faster than the preceding loss of

  18. One-dimensional simulation of lake and ice dynamics during winter

    Directory of Open Access Journals (Sweden)

    Ali Oveisy


    Full Text Available An ice formation model, based on the solution of the heat conduction equation across blue ice, white ice and snow cover, is integrated into the Dynamic Reservoir Simulation Model (DYRESM to allow for one-dimensional (vertical winter simulation of lake dynamics during periods of ice cover. This is an extension of a previous three-layer snow and ice model to include two-way coupling between the ice and the water column. The process-based ice formation is suitable for application to mid-latitude regions and includes: snowmelt due to rain; formation of white ice; and variability in snow density, snow conductivity, and ice and snow albedo. The model was validated against published observations from Harmon lake, British Columbia, and new observations from Eagle lake, Ontario. The ice thickness and water column temperature profile beneath the ice were predicted with Root Mean Square Deviations (RMSD of 1 cm and 0.38°C, respectively, during the winter of 1990-91in Harmon lake. In Eagle lake the 2011-12 year-round water column temperature profile was predicted with an RMSD of 1.8°C. Improved prediction of under-ice lake temperature, relative to published results from simpler models, demonstrates the need for models that accurately capture ice-formation processes, including ice to water column coupling, formation of both blue and white ice layers, and process-based ice and snow parameters (density, conductivity and albedo.

  19. Under-ice availability of phytoplankton lipids is key to zooplankton winter survival

    NARCIS (Netherlands)

    Grosbois, Guillaume; Mariash, H.L.; Schneider, Tobias; Rautio, M.

    Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for

  20. Ice Ages-Periodic Ice Coverings on the Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Ice Ages - Periodic Ice Coverings on the Earth. J Srinivasan. General Article Volume 4 Issue 8 August 1999 pp 25-35. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  1. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. (United States)

    Regand, A; Goff, H D


    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  2. Circulation and Respiration in Ice-covered Alaskan Arctic Lakes (United States)

    MacIntyre, S.; Cortés, A.


    Arctic lakes are ice-covered 9 months of the year. For some of this time, the sediments heat the overlying water, and respiration in the sediments increases specific conductivity, depletes oxygen, and produces greenhouse gases (GHG). Whether anoxia forms and whether the greenhouse gases are sequestered at depth depends on processes inducing circulation and upward fluxes. Similarly, whether the GHG are released at ice off depends on the extent of vertical mixing at that time. Using time series meteorological data and biogeochemical arrays with temperature, specific conductivity, and optical oxygen sensors in 5 lakes ranging from 1 to 150 ha, we illustrate the connections between meteorological forcing and within lake processes including gravity currents resulting from increased density just above the sediment water interface and internal waves including those induced by winds acting on the surface of the ice and at ice off. CO2 production was well predicted by the initial rate of oxygen drawdown near the bottom at ice on and that the upward density flux depended on lake size, with values initially high in all lakes but near molecular in lakes of a few hectares in size by mid-winter. Both CO2 production and within lake vertical fluxes were independent of the rate of cooling in fall and subsequent within lake temperatures under the ice. Anoxia formed near the sediments in all 5 lakes with the concentration of CH4 dependent, in part, on lake size and depth. Twenty to fifty percent of the greenhouse gases produced under the ice remained in the lakes by the time thermal stratification was established in summer despite considerable internal wave induced mixing at the time of ice off. These observations and analysis lay a framework for understanding the links between within lake hydrodynamics, within year variability, and the fraction of greenhouse gases produced over the winter which evade at ice off.

  3. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover (United States)


    Figure 1). When the ice is snow covered there is little difference in albedo and partitioning between first year and multiyear ice. Once the snow melts...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sunlight, Sea Ice, and the Ice Albedo Feedback in a...and iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice- albedo feedback to the observed decrease of sea ice

  4. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014–2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar (United States)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.


    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  5. Ice and mineral licks used by caribou in winter

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard


    Full Text Available In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.

  6. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.


    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  7. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent (United States)

    Francis, Jennifer A.; Chan, Weihan; Leathers, Daniel J.; Miller, James R.; Veron, Dana E.


    The dramatic decline in Arctic summer sea-ice cover is a compelling indicator of change in the global climate system and has been attributed to a combination of natural and anthropogenic effects. Through its role in regulating the exchange of energy between the ocean and atmosphere, ice loss is anticipated to influence atmospheric circulation and weather patterns. By combining satellite measurements of sea-ice extent and conventional atmospheric observations, we find that varying summer ice conditions are associated with large-scale atmospheric features during the following autumn and winter well beyond the Arctic's boundary. Mechanisms by which the atmosphere “remembers” a reduction in summer ice cover include warming and destabilization of the lower troposphere, increased cloudiness, and slackening of the poleward thickness gradient that weakens the polar jet stream. This ice-atmosphere relationship suggests a potential long-range outlook for weather patterns in the northern hemisphere.

  8. Recrystallization and damage of ice in winter sports. (United States)

    Seymour-Pierce, Alexandra; Lishman, Ben; Sammonds, Peter


    Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40-50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  9. Variability and Anomalous Trends in the Global Sea Ice Cover (United States)

    Comiso, Josefino C.


    MODIS, AMSR-E and SSM/I data reveal that the sea ice production rate at the coastal polynyas along the Ross Ice Shelf has been increasing since 1992. This also means that the salinization rate and the formation of bottom water in the region are going up as well. Simulation studies indicate that the stronger production rate is likely associated with the ozone hole that has caused a deepening of the lows in the West Antarctic region and therefore stronger winds off the Ross Ice Shelf. Stronger winds causes larger coastal polynyas near the shelf and hence an enhanced ice production in the region during the autumn and winter period. Results of analysis of temperature data from MODIS and AMSR-E shows that the area and concentration of the sea ice cover are highly correlated with surface temperature for both the Arctic and Antarctic, especially in the seasonal regions where the correlation coefficients are about 0.9. Abnormally high sea surface temperatures (SSTs) and surface ice temperatures (SITs) were also observed in 2007 and 2011when drastic reductions in the summer ice cover occurred, This phenomenon is consistent with the expected warming of the upper layer of the Arctic Ocean on account of ice-albedo feedback. Changes in atmospheric circulation are also expected to have a strong influence on the sea ice cover but the results of direct correlation analyses of the sea ice cover with the Northern and the Southern Annular Mode indices show relatively weak correlations, This might be due in part to the complexity of the dynamics of the system that can be further altered by some phenomena like the Antarctic Circumpolar Wave and extra polar processes like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (POD),

  10. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover (United States)

    Ivanov, V. V.; Repina, I. A.


    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  11. Dynamics of sea-ice biogeochemistry in the coastal Antarctica during transition from summer to winter

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.; Jena, B.; Mohan, R.

    of nutrients and dissolved inorganic carbon (DIC) and increase in pH. The major highlight of this study is the shift in the dominant biogeochemical factors from summer to early winter. Nutrient limitation (low Si/N), sea-ice cover, low photosynthetically active...

  12. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.


    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  13. Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability (United States)

    Close, S.; Herbaut, C.; Houssais, M.-N.; Blaizot, A.-C.


    The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean-sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.

  14. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid


    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  15. Integrating Observations and Models to Better Understand a Changing Arctic Sea Ice Cover (United States)

    Stroeve, J. C.


    TThe loss of the Arctic sea ice cover has captured the world's attention. While much attention has been paid to the summer ice loss, changes are not limited to summer. The last few winters have seen record low sea ice extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with ice extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become ice-free in summer, regional seas gradually transition from a perennial to a seasonal ice cover. The Barents Sea is already only seasonally ice covered, whereas the Kara Sea has recently lost most of its summer ice and is thereby starting to become a seasonally ice covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea ice loss, the implications of this ice loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea ice system yet generally fail to simulate key features of the sea ice system and the pace of sea ice loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea ice change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea ice simulations so that we can improve our understanding of the likely future evolution of the sea ice cover and its impacts on global climate. To

  16. Modeling ocean wave propagation under sea ice covers (United States)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun


    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  17. Short Communication A vetch winter cover crop can improve ...

    African Journals Online (AJOL)

    A high nitrogen (N) fertiliser requirement can be a deterrent to the adoption of conservation agriculture (CA). A field trial was carried out to test whether a high biomass-yielding vetch (Vicia dasycarpa L.) winter cover crop can be used to improve N response and profitability of a subsequent maize (Zea mays L.) crop under ...

  18. Feasibility of winter cover crop production under rainfed conditions ...

    African Journals Online (AJOL)

    Low winter rainfall poses a challenge to production of high biomass from cover crops, which is necessary for the success of conservation agriculture systems in the Eastern Cape Province of South Africa. An experiment was conducted to evaluate the adaptability of white oats (Avena sativa), grazing vetch (Vicia dasycarpa), ...

  19. Proceedings of the 15. CRIPE workshop on the hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Hicks, F.


    This workshop focused on the hydraulic aspects of river ice phenomena and the effects of ice cover on flow characteristics. Ice processes play a large role in the hydrologic regime of Canadian rivers and are related to the life cycle of aquatic, terrestrial, and avian species. The most serious impacts of river ice occur during ice-jam flooding, affecting the winter operation of hydroelectric power plants and sometimes resulting in the loss of property and human life. The conference addressed these concerns as well as environmental aspects of river ice, and climatic change. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. In addition to a poster session, the workshop included sessions on ice measurement; freeze-up and frazil; ice processes and the environment; ice hydraulics; ice and river regulation; ice jams and breakup forecasting; ice and infrastructure; and remote sensing. The workshop featured 35 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  20. Ice-cover effects on competitive interactions between two fish species. (United States)

    Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola


    1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations

  1. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes


    Fransson, Agneta Ingrid; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot Kristoffer; Spreen, Gunnar; Ward, Brian


    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged be...

  2. Dynamics of sea-ice biogeochemistry in the coastal Antarctica during transition from summer to winter

    Directory of Open Access Journals (Sweden)

    Suhas Shetye


    Full Text Available The seasonality of carbon dioxide partial pressure (pCO2, air-sea CO2 fluxes and associated environmental parameters were investigated in the Antarctic coastal waters. The in-situ survey was carried out from the austral summer till the onset of winter (January 2012, February 2010 and March 2009 in the Enderby Basin. Rapid decrease in pCO2 was evident under the sea-ice cover in January, when both water column and sea-ice algal activity resulted in the removal of nutrients and dissolved inorganic carbon (DIC and increase in pH. The major highlight of this study is the shift in the dominant biogeochemical factors from summer to early winter. Nutrient limitation (low Si/N, sea-ice cover, low photosynthetically active radiation (PAR, deep mixed layer and high upwelling velocity contributed towards higher pCO2 during March (early winter. CO2 fluxes suggest that the Enderby Basin acts as a strong CO2 sink during January (−81 mmol m−2 d−1, however it acts as a weak sink of CO2 with −2.4 and −1.7 mmol m−2 d−1 during February and March, respectively. The present work, concludes that sea ice plays a dual role towards climate change, by decreasing sea surface pCO2 in summer and enhancing in early winter. Our observations emphasize the need to address seasonal sea-ice driven CO2 flux dynamics in assessing Antarctic contributions to the global oceanic CO2 budget.

  3. SERSO: Summer sun against winter ice; SERSO: Mit Sommer-Sonne gegen Winter-Glatteis

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, W.J. [Polydynamics Engineering, Zuerich (Switzerland); Hess, K. [Polydynamics Engineering, Bremgarten-Bern (Switzerland); Hopkirk, R.J. [Polydynamics Engineering, Maennedorf (Switzerland)


    Road surfaces absorb energy from the incoming solar radiation in the summer months. The SERSO project was conceived to collect this energy, store it and reuse it during the following winter period to eliminate ice formation on those same road surfaces. The acronym SERSO (Sonnenenergierueckgewinnung aus Strassenoberflaechen) means `solar energy recuperation from road surfaces`. This pilot unit having been conceived, researched an applied to a bridge on the Swiss national expressway A8 near Daerligen on the south side of the lake of Thun was officially opened on 22nd August 1994. Heat exchanger tubes carrying a water/glycol heat transfer fluid were built into the roadbed on the bridge, covering a total area of some 1`300 m{sup 2}. In summer these collect heat from the exposed carriageways, which is then transported in a closed hydraulic circuit to the neighbouring cylindrical underground rock heat storage volume. Within a diameter of 31.5 m and a depth of 65 m heat is exchanged between the heat transfer fluid and the rock via an array of 91 borehole heat exchangers. The operation of the pilot plant has been accompanied by detailed measurement campaign, whereby a total of 132 sensors are interrogated by remote datalogger. The data consist of temperature measurements at several depths and positions both in the roadbed and in the rock storage volume, of energy fluxes in the hydraulic system and of relevant meteorological data. The experiences gianed during the first two years of operation have shown that sufficient heat can indeed be collected in summer to maintain the bridge free of ice during the following winter. Moreover the energy balances derived from the measurements in the low temperature rock heat store have confirmed the predicted storage efficiency. (orig./AKF) [Deutsch] cVerkehrsflaechen heizen sich im Sommer durch Sonneneinstrahlung stark auf. Diese Sommerwaerme zu sammeln, zwischenzuspeichern und im Winter zur Verhinderung von Glatteisbildung wieder zu

  4. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature

    Directory of Open Access Journals (Sweden)

    Bogomolov Gennady N.


    Full Text Available In the research, the behavior of ice under shock and explosive loads is analyzed. Full-scale experiments were carried out. It is established that the results of 2013 practically coincide with the results of 2017, which is explained by the temperature of the formation of river ice. Two research objects are considered, including freshwater ice and river ice cover. The Taylor test was simulated numerically. The results of the Taylor test are presented. Ice is described by an elastoplastic model of continuum mechanics. The process of explosive loading of ice by emulsion explosives is numerically simulated. The destruction of the ice cover under detonation products is analyzed in detail.

  5. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. (United States)

    Grosbois, Guillaume; Mariash, Heather; Schneider, Tobias; Rautio, Milla


    Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L -1 ) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight -1 ), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (dry weight -1 ). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption.

  6. Analysis of Sea Ice Cover Sensitivity in Global Climate Model

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko


    Full Text Available The paper presents joint calculations using a 3D atmospheric general circulation model, an ocean model, and a sea ice evolution model. The purpose of the work is to analyze a seasonal and annual evolution of sea ice, long-term variability of a model ice cover, and its sensitivity to some parameters of model as well to define atmosphere-ice-ocean interaction.Results of 100 years simulations of Arctic basin sea ice evolution are analyzed. There are significant (about 0.5 m inter-annual fluctuations of an ice cover.The ice - atmosphere sensible heat flux reduced by 10% leads to the growth of average sea ice thickness within the limits of 0.05 m – 0.1 m. However in separate spatial points the thickness decreases up to 0.5 m. An analysis of the seasonably changing average ice thickness with decreasing, as compared to the basic variant by 0.05 of clear sea ice albedo and that of snow shows the ice thickness reduction in a range from 0.2 m up to 0.6 m, and the change maximum falls for the summer season of intensive melting. The spatial distribution of ice thickness changes shows, that on the large part of the Arctic Ocean there was a reduction of ice thickness down to 1 m. However, there is also an area of some increase of the ice layer basically in a range up to 0.2 m (Beaufort Sea. The 0.05 decrease of sea ice snow albedo leads to reduction of average ice thickness approximately by 0.2 m, and this value slightly depends on a season. In the following experiment the ocean – ice thermal interaction influence on the ice cover is estimated. It is carried out by increase of a heat flux from ocean to the bottom surface of sea ice by 2 W/sq. m in comparison with base variant. The analysis demonstrates, that the average ice thickness reduces in a range from 0.2 m to 0.35 m. There are small seasonal changes of this value.The numerical experiments results have shown, that an ice cover and its seasonal evolution rather strongly depend on varied parameters

  7. Wave motion in a fluid under an inhomogeneous ice cover (United States)

    Sturova, I. V.; Tkacheva, L. A.


    This paper studies steady waves in fluid and in semi-infinite ice cover generated by a constant pressure distribution with a rectangular planform moving uniformly along the edge of ice cover at fixed distance. This load simulates the air-cushion vehicle (ACV). We consider two cases: (i) the surface of fluid is free outside of ice sheet, (ii) fluid is bounded by a solid vertical wall and the edge of ice cover can be either clamped or free. The fluid is assumed to be ideal incompressible and of finite depth. The ice sheet is modelled by elastic thin plate. The solution of linear hydroelastic problem is obtained by two methods: the Wiener-Hopf technique and matched eigenfunction expansions. The deflection of ice sheet and free surface elevation, as well as wave forces acting on ACV are investigated for different speeds of motion.

  8. Variability and trends in the Arctic Sea ice cover: Results from different techniques (United States)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert


    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea ice cover, especially in the summer, has been the center of attention in recent years. Reports on the sea ice cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as ice concentration, ice extent, and ice area. In

  9. Albedo of the ice covered Weddell and Bellingshausen Seas


    Weiss, A. I.; King, J. C.; Lachlan-Cope, T. A.; Ladkin, R. S.


    This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo o...

  10. Biomass and nutrient cycling by winter cover crops

    Directory of Open Access Journals (Sweden)

    Jana Koefender

    Full Text Available ABSTRACT Cover crops are of fundamental importance for the sustainability of the no-tillage system, to ensure soil coverage and to provide benefits for the subsequent crop. The objective of this study was to evaluate the production of biomass and the content and accumulation of nutrients by winter cover crops. The experimental design used in the experiment was a randomized complete block with four replications and six treatments: oilseed radish, vetch, black oats, vetch + black oats, vetch + oilseed radish and fallow. Black oat, oilseed radish in single cultivation and black oat + vetch and vetch + oilseed radish intercroppings showed higher dry matter production. Vetch + oilseed radish intercropping demonstrates higher performance regarding cycling of nutrients, with higher accumulations of N, P, K, Ca, Mg, S, Cu, Zn, Fe, Na and B.

  11. Hibernation in an antarctic fish: on ice for winter.

    Directory of Open Access Journals (Sweden)

    Hamish A Campbell

    Full Text Available Active metabolic suppression in anticipation of winter conditions has been demonstrated in species of mammals, birds, reptiles and amphibians, but not fish. This is because the reduction in metabolic rate in fish is directly proportional to the decrease in water temperature and they appear to be incapable of further suppressing their metabolic rate independently of temperature. However, the Antarctic fish (Notothenia coriiceps is unusual because it undergoes winter metabolic suppression irrespective of water temperature. We assessed the seasonal ecological strategy by monitoring swimming activity, growth, feeding and heart rate (f(H in N. coriiceps as they free-ranged within sub-zero waters. The metabolic rate of wild fish was extrapolated from f(H recordings, from oxygen consumption calibrations established in the laboratory prior to fish release. Throughout the summer months N. coriiceps spent a considerable proportion of its time foraging, resulting in a growth rate (G(w of 0.18 +/- 0.2% day(-1. In contrast, during winter much of the time was spent sedentary within a refuge and fish showed a net loss in G(w (-0.05 +/- 0.05% day(-1. Whilst inactive during winter, N. coriiceps displayed a very low f(H, reduced sensory and motor capabilities, and standard metabolic rate was one third lower than in summer. In a similar manner to other hibernating species, dormancy was interrupted with periodic arousals. These arousals, which lasted a few hours, occurred every 4-12 days. During arousal activity, f(H and metabolism increased to summer levels. This endogenous suppression and activation of metabolic processes, independent of body temperature, demonstrates that N. coriiceps were effectively 'putting themselves on ice' during winter months until food resources improved. This study demonstrates that at least some fish species can enter a dormant state similar to hibernation that is not temperature driven and presumably provides seasonal energetic

  12. Monitoring the Variation in Ice-Cover Characteristics of the Slave River, Canada Using RADARSAT-2 Data—A Case Study

    Directory of Open Access Journals (Sweden)

    Thuan Chu


    Full Text Available The winter regime of river-ice covers in high northern latitude regions is often a determining factor in the management of water resources, conservation of aquatic ecosystems and preservation of traditional and cultural lifestyles of local peoples. As ground-based monitoring of river-ice regimes in high northern latitudes is expensive and restricted to a few locations due to limited accessibility to most places along rivers from shorelines, remote sensing techniques are a suitable approach for monitoring. This study developed a RADARSAT-2 based method to monitor the spatio-temporal variation of ice covers, as well as ice types during the freeze-up period, along the main channel of the Slave River Delta in the Northwest Territories of Canada. The spatio-temporal variation of ice covers along the river was analyzed using the backscatter-based coefficient of variation (CV in the 2013–2014 and 2014–2015 winters. As a consequence of weather and flow conditions, the ice cover in the 2013–2014 winter had the higher variation than the 2014–2015 winter, particularly in the potential areas of flooded/cracked ice covers. The river sections near active channels (e.g., Middle Channel and Nagle Channel, Big Eddy, and Great Slave Lake also yielded higher intra-annual variation of ice cover characteristics during the winters. With the inclusion of backscatter and texture analysis from RADARSAT-2 data, four water and ice cover classes consisting of open water, thermal ice, juxtaposed ice, and consolidated ice, were discriminated in the images acquired between November and March in both the studied winters. In addition to river geomorphology and climatic conditions such as river width, sinuosity or air temperature, the fluctuation of water flows during the winter has a significant impact on the variation of ice cover as well as the formation of different ice types in the Slave River. The RADARSAT-2 based monitoring algorithm can also be applied to other

  13. Winter Arctic sea ice growth: current variability and projections for the coming decades (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.


    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  14. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover


    A. A. Marks; M. D. King


    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  15. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent. (United States)

    Park, H. S.; Stewart, A.


    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  16. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover (United States)


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SUNLIGHT, SEA ICE , AND THE ICE ALBEDO FEEDBACK IN A...iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice - albedo feedback to the observed decrease of sea ice in... sea ice prediction and modeling community to improve the treatment of solar radiation and the ice - albedo feedback. This transfer will take the form of

  17. Observational evidence of changes in global snow and ice cover

    International Nuclear Information System (INIS)

    Barry, R.G.


    Sources of observational data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in areas of permafrost are briefly reviewed. Recent evidence of changes in these variables is then examined. The extent of seasonal snow cover in the Northern hemisphere and of sea ice in both hemispheres has fluctuated irregularly over the last 15-20 years with a range of about 10-15% in each case. There is no clear evidence of any recent trends, despite general global warming. In contrast, most glaciers retreated and thinned from before the turn of the century until the 1960s and alaskan permafrost temperatures have risen 2-4 C per century. Recently, glacier advances have been noted, perhaps in response to increased accumulation. Problems of linking climate forcing and snow/ice responses are discussed

  18. Massive Regime Shifts and High Activity of Heterotrophic Bacteria in an Ice-Covered Lake (United States)

    Bižić-Ionescu, Mina; Amann, Rudolf; Grossart, Hans-Peter


    In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems. PMID:25419654

  19. An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation (United States)

    Caian, Mihaela; Koenigk, Torben; Döscher, Ralf; Devasthale, Abhay


    This work investigates links between Arctic surface variability and the phases of the winter (DJF) North Atlantic Oscillation (NAO) on interannual time-scales. The analysis is based on ERA-reanalysis and model data from the EC-Earth global climate model. Our study emphasizes a mode of sea-ice cover variability that leads the NAO index by 1 year. The mechanism of this leading is based on persistent surface forcing by quasi-stationary meridional thermal gradients. Associated thermal winds lead a slow adjustment of the pressure in the following winter, which in turn feeds-back on the propagation of sea-ice anomalies. The pattern of the sea-ice mode leading NAO has positive anomalies over key areas of South-Davis Strait-Labrador Sea, the Barents Sea and the Laptev-Ohkostsk seas, associated to a high pressure anomaly over the Canadian Archipelago-Baffin Bay and the Laptev-East-Siberian seas. These anomalies create a quasi-annular, quasi-steady, positive gradient of sea-ice anomalies about coastal line (when leading the positive NAO phase) and force a cyclonic vorticity anomaly over the Arctic in the following winter. During recent decades in spite of slight shifts in the modes' spectral properties, the same leading mechanism remains valid. Encouraging, actual models appear to reproduce the same mechanism leading model's NAO, relative to model areas of persistent surface forcing. This indicates that the link between sea-ice and NAO could be exploited as a potential skill-source for multi-year prediction by addressing the key problem of initializing the phase of the NAO/AO (Arctic Oscillation).

  20. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline. (United States)

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff


    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  1. Correlated declines in Pacific arctic snow and sea ice cover (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon


    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  2. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.


    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  3. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015 (United States)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.


    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  4. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic (United States)

    Comiso, Josefino C.


    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  5. Antarctic Circumpolar Current Fronts, Winter Sea Ice and Variability: Topographic Influences (United States)

    Talley, L. D.


    The Antarctic winter sea ice edge is closely associated with the southernmost Antarctic Circumpolar Current (ACC) fronts, which are guided northeastward, with their cold waters, by mid-ocean ridges in the Pacific and Atlantic, and Kerguelen Plateau in the Indian. In the Amundsen/Bellingshausen Seas and along Adelie Land, the southern ACC fronts are free from topographic control, and swing southwards towards Antarctica, carrying warmer waters. This suggests poleward Sverdrup transport due to wind-driven upwelling, distorted by the major topographic ridges. Hydrographic observations show stronger penetration of full-depth ACC water into the Amundsen/ Bellingshausen Seas in 2011 compared with 1992, consistent with decreasing sea ice and increasing ice-shelf melt. Winter sea ice increased where the southern ACC is topographically locked into northeastward pathways. The standing eddy pattern of ACC poleward heat flux, strengthening winds, and decadal winter sea ice changes are consistent with strengthening circulation along the southern side of the ACC.

  6. Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds (United States)

    Vance, Steven D.; Panning, Mark P.; Stähler, Simon; Cammarano, Fabio; Bills, Bruce G.; Tobie, Gabriel; Kamata, Shunichi; Kedar, Sharon; Sotin, Christophe; Pike, William T.; Lorenz, Ralph; Huang, Hsin-Hua; Jackson, Jennifer M.; Banerdt, Bruce


    Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k2>0.6), which requires a dense internal ocean (ρocean>1,200 kg m-3) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high-pressure ice, or a surprisingly deep water-rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water-rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water-rock interface 250 km below the surface covered by ice V but not ice VI.

  7. Feasibility of winter cover crop production under rainfed conditions

    African Journals Online (AJOL)


    Interaction effects of planting date and cover crop species on cover crop dry weight at termination in Eastern Cape. Province, South Africa. Cover crop dry weight (kg ha. -1. ) 0. 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. Barley. Oats. Radish. Rye. Triticale. Vetch. February planted. March planted. April planted. LSD.

  8. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina


    carrying precipitation were formed, namely, the North Atlantic (the winter season of 2014/15 and the inland areas with open ice-free water bodies (the season of 2015/16. Thus, with the correct interpretation of the results, the data on the snow cover isotope composition on the Altai foothills can be used as an alternative data sources instead of the GNIP data.

  9. Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent (United States)

    National Aeronautics and Space Administration — The Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent Version 4 product combine snow cover and sea ice extent at weekly intervals from 23...

  10. Relationships between Indian summer monsoon rainfall and ice cover over selected oceanic regions

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The variations in oceanic ice cover at selected polar regions during 1973 to 1987 have been analysed in relation to the seasonal Indian summer monsoon rainfall. The ice cover over the Arctic regions in June has negative relationship (correlation...

  11. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica - Implications for local climatic change (United States)

    Wharton, Robert A., Jr.; Mckay, Christopher P.; Clow, Gary D.; Andersen, Dale T.; Simmons, George M., Jr.; Love, F. G.


    Results are reported from 10 years of ice-thickness measurements at perennially ice-covered Lake Hoare in southern Victoria Land, Antarctica. The ice cover of this lake had been thinning steadily at a rate exceeding 20 cm/yr during the last decade but seems to have recently stabilized at a thickness of 3.3 m. Data concerning lake level and degree-days above freezing are presented to show the relationship between peak summer temperatures and the volume of glacier-derived meltwater entering Lake Hoare each summer. From these latter data it is inferred that peak summer temperatures have been above 0 C for a progressively longer period of time each year since 1972. Possible explanations for the thinning of the lake ice are considered. The thickness of the ice cover is determined by the balance between freezing during the winter and ablation that occurs all year but maximizes in summer. It is suggested that the term most likely responsible for the change in the ice cover thickness at Lake Hoare is the extent of summer melting, consistent with the rising lake levels.

  12. Frost flower chemical signature in winter snow on Vestfonna ice cap, Nordaustlandet, Svalbard

    Directory of Open Access Journals (Sweden)

    E. Beaudon


    Full Text Available The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard, exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO42-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

  13. Late Spring Nitrate Distributions Beneath the Ice-Covered Northeastern Chukchi Shelf (United States)

    Arrigo, Kevin R.; Mills, Matthew M.; van Dijken, Gert L.; Lowry, Kate E.; Pickart, Robert S.; Schlitzer, Reiner


    Measurements of late springtime nutrient concentrations in Arctic waters are relatively rare due to the extensive sea ice cover that makes sampling difficult. During the SUBICE (Study of Under-ice Blooms In the Chukchi Ecosystem) cruise in May-June 2014, an extensive survey of hydrography and prebloom concentrations of inorganic macronutrients, oxygen, particulate organic carbon and nitrogen, and chlorophyll a was conducted in the northeastern Chukchi Sea. Cold (C) winter water was prevalent throughout the study area, and the water column was weakly stratified. Nitrate (NO3-) concentration averaged 12.6 ± 1.92 μM in surface waters and 14.0 ± 1.91 μM near the bottom and was significantly correlated with salinity. The highest NO3- concentrations were associated with winter water within the Central Channel flow path. NO3- concentrations were much reduced near the northern shelf break within the upper halocline waters of the Canada Basin and along the eastern side of the shelf near the Alaskan coast. Net community production (NCP), estimated as the difference in depth-integrated NO3- content between spring (this study) and summer (historical), varied from 28 to 38 g C m-2 a-1. This is much lower than previous NCP estimates that used NO3- concentrations from the southeastern Bering Sea as a baseline. These results demonstrate the importance of using profiles of NO3- measured as close to the beginning of the spring bloom as possible when estimating local NCP. They also show that once the snow melts in spring, increased light transmission through the sea ice to the waters below the ice could fuel large phytoplankton blooms over a much wider area than previously known.

  14. Short-Range Acoustic Propagation Using Mobile Transmitters Under Arctic Ice Cover (United States)


    8 Figure 4. Ambient noise variability due to ice cover in the Arctic. Source: Hutt ( cover changes so dramatically with the seasons. Ice cover strongly affects the ambient noise level (NL in Equation 1) both positively and...limits shipping, resulting in much lower ambient noise from shipping sources. Due to 9 these factors, the under ice ambient noise in the Arctic can

  15. Modelling circulation in an ice-covered lake

    Directory of Open Access Journals (Sweden)

    Boris Arkhipov


    Full Text Available In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1. We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake.

  16. Light transmission and reflection in perennially ice-covered Lake Hoare, Antarctica (United States)

    Mckay, C. P.; Clow, G. D.; Andersen, D. T.; Wharton, R. A., Jr.


    We have investigated the transmission and albedo of the perennial ice cover on Lake Hoare, Antarctica. Our database consists of year-round measurements of the photosynthetically active radiation (400-700 nm) under the ice, measurements of the spatial variation of the under-ice light in midsummer, and spectrally resolved measurements from 400 to 700 nm of the albedo and transmission of the ice cover in early (November) and in midsummer (January). Our results show that the transmission decreases in the first part of summer, dropping by a factor of approximately 4 from November to January. We suggest that this is due to heating in the upper layers of the ice cover and the formation of Tyndall figures. Later in the summer when a significant liquid water fraction occurs within the ice cover, the transmission increases. In the fall when the ice cover freezes solid the transmission drops markedly. The spectrally resolved measurements from 400 to 700 nm show that approximately 2-5% of the incident light in this spectral region penetrates the 3.5-m thick ice cover. We have analyzed the spectral data using a two-stream scattering solution to the radiative transfer equation with three vertical layers in the ice cover. A surficial glaze of scattering ice 1 cm thick overlies a layer of sandy, bubbly ice about a meter thick, and below this is a thick layer of sand-free ice with bubbles. We find that the ice cover is virtually opaque at wavelengths longer than 800 nm. The net transmission of solar energy is approximately 2%. Significant changes in the thickness of the ice cover have been reported at Lake Hoare. These are due primarily to changes in the thickness of the bottom layer only. Because this layer is relatively clear, the effect on the transmission through the ice cover from these changes is less than would be predicted assuming a homogeneous ice cover.

  17. Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects

    DEFF Research Database (Denmark)

    Lund-Hansen, L.C.; Hawes, Ian; Sorrell, Brian Keith


    The snow cover of Arctic sea ice has recently decreased, and climate models forecast that this will continue and even increase in future. We therefore tested the effect of snow cover on the optical properties of sea ice and the biomass, photobiology, and species composition of sea ice algae at Ka...

  18. Methane isotopic signature of gas bubbles in permafrost winter lake ice: a tool for quantifying variable oxidation levels (United States)

    Sapart, C. J.; Boereboom, T.; Roeckmann, T.; Tison, J.-L.


    Methane (CH4) is a strong greenhouse gas and its atmospheric mixing ratio has strongly increased since pre-industrial times. This increase was primarily due to emissions from anthropogenic sources, but there is growing concern about possible feedbacks of natural sources in a changing climate. Thawing of permafrost areas in the Arctic is considered as an important feedback, since the Arctic region undergoes the fastest climate change and hosts large carbon stocks. Subarctic lakes are considered as "hotspots" for CH4 emissions, but the role of the ice cover during the winter period is not well understood to date. Here, we present measurements of CH4 mixing ratio and δ13C-CH4 in 4 types of bubbles identified in subarctic lake ice covers located in a sporadic or discontinuous permafrost area. Our analysis reveals that different bubble types contain CH4 with different, specific isotopic signatures. The evolution of mixing ratio and δ13C-CH4 suggest that oxidation of dissolved CH4 is the most important process determining the isotopic composition of CH4 in bubbles. This results from gas exsolution occurring during the ice growth process. A first estimate of the CH4 oxidation budget (mean = 0.12 mg CH4 m-2 d-1) enables to quantify the impact of the ice cover on CH4 emissions from subartic lakes. The increased exchange time between gases coming from the sediments and the water column, due to the capping effect of the lake ice cover, reduces the amount of CH4 released "as is" and favours its oxidation into carbon dioxide; the latter being further added to the HCO3- pool through the carbonate equilibration reactions.

  19. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors (United States)

    Lee, Seongsuk; Yi, Yu


    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  20. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee


    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  1. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D. H.; Cooper, M.


    concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt......The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging...

  2. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian


    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  3. Simulated climate change effects on dissolved oxygen characteristics in ice-covered lakes

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xing [Lamar University, Department of Civil Engineering, Beaumont, TX (United States); Stefan, Heinz G. [University of Minnesota, Department of Civil Engineering, Minneapolis, MN (United States)


    A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface area (A{sub S}), maximum depth (H{sub MAX}), and Secchi depth as a measure of light attenuation and trophic state. The model is driven by daily weather data and operates year-round over multiple years. The model has been validated with extensive data (5976 points). Standard error between simulated and measured dissolved oxygen is 1.9 mg/l. The model is applied to simulate effects of climate change on dissolved oxygen characteristics of 27 lake classes in Minnesota. The projected climate changes due to a doubling of atmospheric CO{sub 2} are obtained from the output of the Canadian Climate Center Global Circulation Model (CCC GCM). Climate change delays the ice formation and shortens the ice cover period. Winter anoxia, even in shallow lakes, therefore disappears under a projected 2xCO{sub 2} climate condition. This eliminates winterkill in these lakes. Herein, the simulated DO characteristics have been plotted and interpolated graphically in a coordinate system with a lake geometry ratio (A{sub S}{sup 0.25}/H{sub MAX}) on one axis and Secchi depth on the other. The lake geometry ratio expresses a lake`s susceptibility to stratification. To illustrate the effect of projected climate change on DO characteristics, separate graphs are presented for values simulated with inputs of past climate conditions (1961-79) and with a projected 2xCO{sub 2} climate scenario

  4. The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica (United States)

    Gloersen, Per; White, Warren B.


    Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.

  5. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties (United States)

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  6. Geometric effects of an inhomogeneous sea ice cover on the under ice light field

    Directory of Open Access Journals (Sweden)

    Christian eKatlein


    Full Text Available Light measurements in the ocean provide crucial information about the energy fluxes in the climate and ecosystem. Currently radiative transfer problems are usually considered in horizontally homogeneous layers although it is known to be a crude assumption in many cases. In this paper, we examine the effects of a horizontally inhomogeneous sea ice layer on the light field in the water underneath. We implemented a three dimensional model, capable to simulate the light field underneath arbitrary surface geometries using ray optics. The results show clear effects of the measurement geometry on measured fluxes obtained with different sensor types, which need to be taken into account for the correct interpretation of the data. Radiance sensors are able to better sense the spatial variability of ice optical properties as compared to irradiance sensors. Furthermore we show that the determination of the light extinction coefficient of water from vertical profiles is complicated under a horizontally inhomogeneous ice cover. This uncertainty in optical properties of the water, as well as the measurement geometry also limits the possibility to correct light measurements taken at depth for the influence of water in between the sea ice and the sensor.

  7. Ice-Core Study of the Link between Sea-Salt Aerosol, Sea-Ice Cover and Climate in the Antarctic Peninsula Area

    Energy Technology Data Exchange (ETDEWEB)

    Aristarain, A.J. [Laboratorio de Estratigrafia Glaciar y Geoquimica del Agua y de la Nieve LEGAN, Instituto Antartico Argentino, Mendoza (Argentina); Delmas, R.J. [Laboratoire de Glaciologie et Geophysique de l' Environnement LGGE, Centre National de la Recherche Scientifique, BP 96, 38402 St. Martin d' Heres Cedex (France); Stievenard, M. [Laboratoire des Sciences du Climat et de l' Environnement LSCE, Centre d' Etudes de Saclay, 91191 Gif-sur-Yvette, Cedex (France)


    Three ice cores and a set of snow pit samples collected on James Ross Island, Antarctic Peninsula, in 1979, 1981 and 1991 have been analyzed for water stable isotope content D or 18O (isotopic temperature) and major chemical species. A reliable and detailed chronological scale has been established first for the upper 24.5 m of water equivalent (1990-1943) where various data sets can be compared, then extended down to 59.5 m of water equivalent (1847) with the aid of seasonal variations and the sulphate peak reflecting the 1883 Krakatoa volcanic eruption. At James Ross Island, sea-salt aerosol is generally produced by ice-free marine surfaces during the summer months, although some winter sea-salt events have been observed. For the upper part of the core (1990-1943), correlations (positive or negative) were calculated between isotopic temperature, chloride content (a sea-salt indicator), sea-ice extent, regional atmospheric temperature changes and atmospheric circulation. The D and chloride content correlation was then extended back to 1847, making it possible to estimate decadal sea-ice cover fluctuations over the study period. Our findings suggest that ice-core records from James Ross Island reflect the recent warming and sea-ice decrease trends observed in the Antarctic Peninsula area from the mid-1940s.

  8. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D.H.; Cooper, M.


    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging......–900 μmol kg−1 ice (~25 × 106 crystals kg−1) to values of 100–200 μmol kg−1 ice (1–7 × 106 crystals kg−1) near the sea ice–water interface, all of which are much higher (4–10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within...

  9. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, Dorthe H.; Cooper, M.


    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1m thick land-fast ice site and a 0.3m thick polynya site, both in the Young Sound area (74 N, 20 W) of NE Greenland. Ikaite crystals, ranging in size......−1 ice (25×106 crystals kg−1) to values of 100–200 μmol kg−1 ice (1–7×106 crystals kg−1) near the sea ice–water interface, all of which are much higher (4–10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same...

  10. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice? (United States)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.


    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  11. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land. (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G


    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  12. A Possible Link Between Winter Arctic Sea Ice Decline and a Collapse of the Beaufort High? (United States)

    Petty, Alek A.


    A new study by Moore et al. (2018, highlights a collapse of the anticyclonic "Beaufort High" atmospheric circulation over the western Arctic Ocean in the winter of 2017 and an associated reversal of the sea ice drift through the southern Beaufort Sea (eastward instead of the predominantly westward circulation). The authors linked this to the loss of sea ice in the Barents Sea, anomalous warming over the region, and the intrusion of low-pressure cyclones along the eastern Arctic. In this commentary we discuss the significance of this observation, the challenges associated with understanding these possible linkages, and some of the alternative hypotheses surrounding the impacts of winter Arctic sea ice loss.

  13. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography (United States)

    Demenocal, Peter B.; Rind, David


    A general circulation model was used to investigate the sensitivity of Asian and African climate to prescribed changes in boundary conditions with the objective of identifying the relative importance of individual high-latitude glacial boundary conditions on seasonal climate and providing a physical basis for interpreting the paleoclimate record. The circulation model is described and results are presented. Insolation forcing increased summer Asian monsoon winds, while increased high-latitude ice cover strengthened winter Asian trade winds causing decreased precipitation. These factors had little effect on African climate. Cooler North Atlantic sea surface temperatures enhanced winter trade winds over North Africa, southern Asian climate was relatively unaffected. Reducing Asian orography enhanced Asian winter circulation while decreasing the summer monsoon. These model results suggest that African and southern Asian climate respond differently to separate elements of high-latitude climate variability.

  14. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters. (United States)

    Meisinger, John J; Ricigliano, Kristin A


    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( < 0.001) effect of lower NO-N leaching with cover crops compared with no cover but showed only small and periodically significant ( < 0.05) effects among the cultivars of barley, rye, and wheat covers. Nitrate-N leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT (United States)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.


    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  16. Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project (United States)

    Chevallier, Matthieu; Smith, Gregory C.; Dupont, Frédéric; Lemieux, Jean-François; Forget, Gael; Fujii, Yosuke; Hernandez, Fabrice; Msadek, Rym; Peterson, K. Andrew; Storto, Andrea; Toyoda, Takahiro; Valdivieso, Maria; Vernieres, Guillaume; Zuo, Hao; Balmaseda, Magdalena; Chang, You-Soon; Ferry, Nicolas; Garric, Gilles; Haines, Keith; Keeley, Sarah; Kovach, Robin M.; Kuragano, Tsurane; Masina, Simona; Tang, Yongming; Tsujino, Hiroyuki; Wang, Xiaochun


    Ocean-sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent

  17. Comparison of Mechanical and Chemical Winter Cereal Cover Crop Termination Systems and Cotton Yield in Conservation Agriculture (United States)

    An integral component of conservation agriculture systems in cotton is the use of a high-residue winter cover crop; however, terminating such cover crops is a cost and planting into high-residue is a challenge. Black oat, rye, and wheat winter cover crops were flattened with a straight-blade mechan...

  18. Flowering cover crops in winter increase pest control but not trophic link diversity


    Damien , Maxime; Le Lann , Cécile; Desneux , Nicolas; Alford , Lucy; Al Hassan , Diab; Georges , Romain; Van Baaren , Joan


    International audience; In agrosystems, the increase in non-crop plant diversity by habitat management in or around arable fields contributes to improved Conservation Biological Control. During winter, plant flower are often used as monospecific ground cover and are expected to die before flowering as a result of recurrent frost events. Decreases in minimal temperature due to climate change offers new possibilities for plants used in such sown cover crops to mature and flowers. Changes in pla...

  19. A technigue exploitation about anti-slide tire polyploid on ice-snow road in winter (United States)

    Xiaojie, Qi; Qiang, Wang; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv


    Present studies focus on improving anti-slide property of tyes on ice-snow road by changing material modification of tyre tread and designing groove. However, the basic reason causing starting slide, long braking distance, turning slide slip and so on of tyres used in winter is that tyre tread materials are unitary and homogenous rubber composite which can’t coordinate driving demands of tyres in winter under muti-work condition, and can’t exert their best property when starting, braking and sliding slip. In order to improve comprehensive anti-slide property of tyres, this paper discusses about changing structure, shape and distribution proportion among haploid materials of tyre tread rubber. Polyploid bubber tyre tread technique based on artificial neural network which is in favor of starting, braking and anti-slide slip is optimized and combined. Friction feature and anti-slide mechanism on ice-snow road of polyploid rubber tyre tread are studied using testing technique of low-temperature cabin and computer simulation. A set high anti-slide theories and realizing method systems of polyploid rubber composite formed from basic theory, models and technique method are developped which will be applied into solving anti-slide problem of winter tyres, provide theory instruction for studies on high anti-slide winter tyres, and promote development of application and usage safety of winter tyres.

  20. The emergence of modern sea ice cover in the Arctic Ocean. (United States)

    Knies, Jochen; Cabedo-Sanz, Patricia; Belt, Simon T; Baranwal, Soma; Fietz, Susanne; Rosell-Melé, Antoni


    Arctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33-2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.

  1. The seasonal cycle of snow cover, sea ice and surface albedo (United States)

    Robock, A.


    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  2. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.


    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  3. Coexistence of microalgal sedimentation and water column recycling in a seasonally ice-covered ecosystem (Saroma-ko Lagoon, Sea of Okhotsk, Japan) (United States)

    Michel, C.; Legendre, L.; Taguchi, S.


    Seasonal variations in under-ice microalgal sedimentation and plankton dynamics in Saroma-ko, a shallow seasonally ice-covered lagoon (Sea of Okhotsk, Hokkaido, Japan), were followed during a 4-week period at the end of winter. At 3-4 day intervals, sediment traps were deployed at three depths from the undersurface of the ice and water column samples were collected. Sampled variables included chlorophyll a (chl a) and pheopigments, particulate organic carbon and nitrogen (POC, PON), cell identification and enumeration, biogenic silica and dissolved inorganic nutrients. POC/PON, POC/chl a and Si/chl a ratios for suspended biomass as well as cell counts showed the presence of a diversified phytoplankton assemblage with a high microheterotrophic biomass. A major peak in algal sedimentation occurred at the end of the sampling season (chl a flux ca. 5 mg m -2 d -1); the sedimented algae included both ice algae and phytoplankton species. Ice algae did not remain suspended in the plankton biomass, but sedimented rapidly upon release from the ice matrix. Results show that Saroma-ko had a rather special food web structure at the end of winter, when both high microalgal export and water column recycling simultaneously occurred under the ice cover.

  4. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay


    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  5. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller


    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  6. Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming

    Directory of Open Access Journals (Sweden)

    M. Abe


    Full Text Available This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity, despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.

  7. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? (United States)

    Tremblay, L B; Schmidt, G A; Pfirman, S; Newton, R; DeRepentigny, P


    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (≈88° N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards (Krylov et al. 2008 Paleoceanography 23, PA1S06. (doi:10.1029/2007PA001497); Darby 2008 Paleoceanography 23, PA1S07. (doi:10.1029/2007PA001479)). However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present (Polyak et al. 2010 Quaternary Science Reviews 29, 1757-1778. (doi:10.1016/j.quascirev.2010.02.010)). We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with

  8. Organic iodine in Antarctic sea ice: A comparison between winter in the Weddell Sea and summer in the Amundsen Sea (United States)

    Granfors, Anna; Ahnoff, Martin; Mills, Matthew M.; Abrahamsson, Katarina


    Recent studies have recognized sea ice as a source of reactive iodine to the Antarctic boundary layer. Volatile iodinated compounds (iodocarbons) are released from sea ice, and they have been suggested to contribute to the formation of iodine oxide (IO), which takes part in tropospheric ozone destruction in the polar spring. We measured iodocarbons (CH3I, CH2ClI, CH2BrI, and CH2I2) in sea ice, snow, brine, and air during two expeditions to Antarctica, OSO 10/11 to the Amundsen Sea during austral summer and ANT XXIX/6 to the Weddell Sea in austral winter. These are the first reported measurements of iodocarbons from the Antarctic winter. Iodocarbons were enriched in sea ice in relation to seawater in both summer and winter. During summer, the positive relationship to chlorophyll a biomass indicated a biological origin. We suggest that CH3I is formed biotically in sea ice during both summer and winter. For CH2ClI, CH2BrI, and CH2I2, an additional abiotic source at the snow/ice interface in winter is suggested. Elevated air concentrations of CH3I and CH2ClI during winter indicate that they are enriched in lower troposphere and may take part in the formation of IO at polar sunrise.

  9. Winter annual cover crop has only minor effects on major corn arthropod pests. (United States)

    Davis, Holly N; Currie, Randall S; Klocke, Norman L; Buschman, Lawrent L


    We studied the effects of downy brome, Bromus tectorum L., winter cover crop on several corn, Zea mays L., pests in the summer crop after the cover crop. An experiment was conducted that consisted of two trials with two levels of irrigation, two levels of weed control, and two levels of downy brome. Corn was grown three consecutive years after the downy brome grown during the winter. Banks grass mites, Oligonychus pratensis (Banks), twospotted spider mites, Tetranychus urticae Koch, and predatory mites from the genus Neoseiulus were present in downy brome at the beginning of the growing season. They moved into corn, but their numbers did not differ significantly across the treatments. Larval western corn rootworm, Diabrotica virgifera virgifera LeConte, feeding on corn roots was evaluated the second and third years of corn, production. Irrigation and herbicide treatments had no significant effects on rootworm injury levels. In one trial, rootworm injury ratings were significantly greater in treatments with a history of high versus low brome, but this effect was not significant in the other trial. Rootworm injury seemed to be similar across plots with different surface soil moistures. This suggests that the use of a winter cover crop such as downy brome will not have a major negative impact the arthropods studied.

  10. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)


    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  11. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters. (United States)


    between duced. the above-water and underwater portions of an ice pressure ridge. Seasonal and spatial data from two Parmenter, Frances C., Spring ice...Glaciology and ice conditions in the Alaska, is mainly a series of braided channels that Weddell Sea, Servicio de Hydrografia Naval, Boetin freeze

  12. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz


    Full Text Available We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N. Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI, and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI, with a mean accuracy (agreement with the RGI of 0.96, a mean precision (user’s accuracy of the snow/ice cover class of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class of 0.86, and a mean F-score (a measure that considers both precision and recall of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to

  13. An automated approach for mapping persistent ice and snow cover over high latitude regions (United States)

    Selkowitz, David J.; Forster, Richard R.


    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  14. Great Lakes Ice Cover Classification and Mapping Using Satellite Synthetic Aperture Radar (SAR) Data (United States)

    Nghiem, S.; Leshkevich, G.; Kwok, R.


    Owing to the size and extent of the Great Lakes and the variety of ice types features found there, the timely and objective qualities inherent in computer processing of satellite data make it well suited for monitoring and mapping ice cover.


    Directory of Open Access Journals (Sweden)

    J. C. Comiso


    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  16. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters (United States)

    McCabe, Gregory J.; Wolock, David M.


    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  17. Radiative characteristics of ice-covered fresh- and brackish-water bodies

    Directory of Open Access Journals (Sweden)

    Leppäranta, Matti


    Full Text Available The structure and optics of ice and snow overlying bodies of water were studied in the years 2000–2003. The data were collected in the northern temperate region (nine Estonian and Finnish lakes and one brackish water site, Santala Bay, in the Gulf of Finland. In the present paper we describe the results concerning the radiative characteristics of the system “snow + ice cover on the water”: albedo, attenuation of light, and planar and scalar irradiances through the ice. The basic data consist of irradiance measurements above and below ice cover for the PAR band of the solar spectrum (400–700 nm. Albedo varied across wide limits (0.20–0.70 for ice, 0.63–0.94 for snow, depending on the optical and physical properties of ice/snow and weather conditions. The vertically averaged light attenuation coefficient of the ice layer in the brackish waters of Santala Bay was higher than that in the lakes. The ratio of irradiance beneath the ice to incident irradiance increased 2.5–20 times after removing the snow, depending on the albedo and the thickness of ice and snow as well as on their optical properties. In the upper layer of water beneath the ice the ratio of planar to scalar quantum irradiances increased with depth (according to our earlier results obtained in summer this ratio decreased with increasing depth.

  18. Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover (United States)

    Caissie, Daniel; Kurylyk, Barret L.; St-Hilaire, André; El-Jabi, Nassir; MacQuarrie, Kerry T. B.


    Streambed temperature and heat fluxes are important for aquatic habitats as well as in the development and improvement of water temperature models. In the present study, measured streambed temperatures at different depths were used as a tracer to predict the magnitude and direction of groundwater flow using an advection-conduction heat transport model. This analysis was carried out under different conditions, namely under natural surface water temperature conditions (i.e., as measured in the field), under steady-state conditions (e.g. under stream ice cover) and for conditions where the surface water temperatures followed a sinusoidal function. In Catamaran Brook, results from the advection-conduction numerical model showed good agreement between predicted and observed streambed temperatures with root-mean-square errors (RMSEs) ranging between 0.07 °C to 0.6 °C. A comparison of streambed fluxes showed that the heat flux by conduction was more important during the summer period for upwelling conditions (mean value 96 W m-2 at 25 °C), but was also present in winter (-20 W m-2). Variability in heat flux by conduction was also greater when the diel surface water temperature variability was high (e.g. range of 6 °C). The heat flux by advection varied between -120 and 145 W m-2 (for typical water temperatures and vertical flow conditions within Catamaran Brook, 0-25 °C and ±0.005 m h-1). Short-term heat exchange (diel) occurred within the thermally active depth, typically <0.7 m. The long-term annual streambed heat flux by conduction was also calculated and daily mean was generally less than ±11 W m-2. Winter conditions provided a unique opportunity to analyse streambed heat fluxes under steady-state conditions when both conduction and advection fluxes were present.

  19. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition (United States)

    Zheng, J.; Yackel, J.


    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  20. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.


    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  1. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. (United States)

    Belfry, Kimberly D; Trueman, Cheryl; Vyn, Richard J; Loewen, Steven A; Van Eerd, Laura L


    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins.

  2. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    Directory of Open Access Journals (Sweden)

    Kimberly D Belfry

    Full Text Available Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L. production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated and tomato cultivar (early vs. late was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L., winter cereal rye (hereafter referred to as rye (Secale cereale L., oilseed radish (OSR (Raphanus sativus L. var. oleiferus Metzg Stokes, and mix of OSR and rye (OSR + rye treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit

  3. Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907) (United States)

    Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn


    Sea ice is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) sea ice reconstructions for the Late Pliocene Iceland Sea (ODP Site 907). Our interpretation of a seasonal sea ice cover with occasional ice-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer sea surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported sea ice into the Iceland Sea and/or brought cooler and fresher waters favoring local sea ice formation. Between 3.00 and 2.40 Ma, the Iceland Sea is mainly sea ice-free, but seasonal sea ice occurred between 2.81 and 2.74 Ma. Sea ice extending into the Iceland Sea at this time may have acted as a positive feedback for the build-up of the Greenland Ice Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable sea ice edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland Sea.

  4. Performance of Flooded Rice Grown in Succession to Winter Cover Crops

    Directory of Open Access Journals (Sweden)

    Silmara da Correia Luz


    Full Text Available ABSTRACT: Mean grain yield of flooded rice in southern Brazil has increased in recent years due to the use of high-yield cultivars and improvement of crop management practices. Nevertheless, stagnation in grain yields has been observed in some rice-producing regions. Adoption of conservation tillage systems based on cover crops may be a strategy to increase rice grain yield potential. The objective of the present study was to evaluate the effect of winter cover crops on initial establishment, development, and grain yield of flooded rice (Oryza sativa L. grown under different fertilization levels and no-tillage. A field experiment was carried out for three consecutive years (2010/11, 2011/12, and 2012/13 in Cachoeirinha, Rio Grande do Sul, South Brazil. Treatments included three winter cover crops [ryegrass (Lolium multiflorum Lam., native serradella (Ornithopus micranthus Benth., and a ryegrass-serradella mixture] and fallow, and three fertilization levels for rice grown in succession. More than 3 Mg ha−1 of serradella aboveground residue or 4 Mg ha−1 of ryegrass residue limited rice emergence in the first year when rainfall in the sowing-emergence period was higher than in the second and third years. In contrast, a large amount of residue (serradella >2 Mg ha−1; ryegrass >3 Mg ha−1 was beneficial to rice emergence when rainfall was low in the sowing-emergence period of the second and third years. The serradella cover crop increased rice aboveground biomass at anthesis by 22 % compared to the ryegrass cover crop. Furthermore, rice grain yield was 15 % higher in succession to serradella than to ryegrass in the third year. Continuous cultivation of flooded rice in succession to ryegrass over three years reduced grain yield by around 1.4 Mg ha−1, regardless of fertilization level. Fertilization for very high production expectations increased rice grain yield in all years, especially in the second year, when solar radiation was higher than

  5. Possibility of oil film detection on the ice cover of the sea surface

    International Nuclear Information System (INIS)

    Levin, I.M.; Radomyslskaya, T.M.; Osadchy, V.J.; Rybalka, N.N.; Klementieva, N.Y.; Zhou, J.; Li, Z.


    Ice cover in the Arctic regions makes the application of traditional remote methods of environmental monitoring difficult, and can also prevent the use of probes or other measurement tools. This paper presented a method of detecting oil pollution on ice-covered sea surfaces. The method was able to detect oil films on the lower ice-water boundary from above and below under both natural and artificial illumination. Pollution was detected when the sensor signal, the apparent contrast of oil-ice, and signal-noise ratio exceeded corresponding threshold values. A standard TV system at a low altitude was used to detect oil pollution on pure crystalline ice with a snow cover from 0.6 to 0.8 meters to several meters thick. At higher altitudes, the contrast in oil and water decreased due to the presence of atmospheric haze. Underwater pulsed-laser imaging systems were used to detect oil pollution when ice was covered by with soot, dust, aquatic plants, and phytoplankton pigments. It was concluded that both methods can be used to detect oil on the water-ice boundary. 10 refs., 1 tab., 5 figs

  6. Extreme ecological response of a seabird community to unprecedented sea ice cover. (United States)

    Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri


    Climate change has been predicted to reduce Antarctic sea ice but, instead, sea ice surrounding Antarctica has expanded over the past 30 years, albeit with contrasted regional changes. Here we report a recent extreme event in sea ice conditions in East Antarctica and investigate its consequences on a seabird community. In early 2014, the Dumont d'Urville Sea experienced the highest magnitude sea ice cover (76.8%) event on record (1982-2013: range 11.3-65.3%; mean±95% confidence interval: 27.7% (23.1-32.2%)). Catastrophic effects were detected in the breeding output of all sympatric seabird species, with a total failure for two species. These results provide a new view crucial to predictive models of species abundance and distribution as to how extreme sea ice events might impact an entire community of top predators in polar marine ecosystems in a context of expanding sea ice in eastern Antarctica.

  7. Multi-decadal evolution of ice/snow covers in the Mont-Blanc massif (France) (United States)

    Guillet, Grégoire; Ravanel, Ludovic


    Dynamics and evolution of the major glaciers of the Mont-Blanc massif have been vastly studied since the XXth century. Ice/snow covers on steep rock faces as part of the cryosphere however remain poorly studied with only qualitative descriptions existing. The study of ice/snow covers is primordial to further understand permafrost degradation throughout the Mont-Blanc massif and to improve safety and prevention for mountain sports practitioners. This study focuses on quantifying the evolution of ice/snow covers surface during the past century using a specially developed monoplotting tool using Bayesian statistics and Markov Chain Monte Carlo algorithms. Combining digital elevation models and photographs covering a time-span of 110 years, we calculated the ice/snow cover surface for 3 study sites — North faces of the Tour Ronde (3792 m a.s.l.) and the Grandes Jorasses (4208 m a.s.l.) and Triangle du Tacul (3970 m a.s.l.) — and deduced the evolution of their area throughout the XXth century. First results are showing several increase/decrease periods. The first decrease in ice/snow cover surface occurs between the 1940's and the 1950's. It is followed by an increase up to the 1980's. Since then, ice/snow covers show a general decrease in surface which is faster since the 2010's. Furthermore, the gain/loss during the increase/decrease periods varies with the considered ice/snow cover, making it an interesting cryospheric entity of its own.

  8. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    Directory of Open Access Journals (Sweden)

    J. A. Leach


    Full Text Available Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1 winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2 stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that

  9. Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery

    Directory of Open Access Journals (Sweden)

    A. Preußer


    Full Text Available Spatial and temporal characteristics of the Storfjorden polynya, which forms regularly in the proximity of the islands Spitsbergen, Barentsøya and Edgeøya in the Svalbard archipelago under the influence of strong northeasterly winds, have been investigated for the period of 2002/2003 to 2013/2014 using thermal infrared satellite imagery. Thin-ice thicknesses were calculated from MODIS ice-surface temperatures combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy-balance model. Associated quantities like polynya area and total ice production were derived and compared to previous remote sensing and modeling studies. A basic coverage-correction scheme was applied to account for cloud gaps in the daily composites. On average, both polynya area and ice production are thereby increased by about 30%. The sea ice in the Storfjorden area experiences a late fall freeze-up in several years over the 12-winter period, which becomes most apparent through an increasing frequency of large thin-ice areas until the end of December. In the course of an average winter season, ice thicknesses below 10 cm are dominating within the Storfjorden basin. During the regarded period, the mean polynya area is 4555.7 ± 1542.9 km2. Maximum daily ice production rates can reach as high as 26 cm d−1, while the average ice production is estimated at 28.3 ± 8.5 km3 per winter and therefore lower than in previous studies. Despite this comparatively short record of 12 winter seasons, a significant positive trend of 20.2 km3 per decade could be detected, which originates primarily from a delayed freeze-up in November and December in recent winter seasons. This contrasts earlier reports of a slightly negative trend in accumulated ice production prior to 2002. Although featuring more pronounced interannual variations between 2004/2005 and 2011/2012, our estimates underline the importance of this relatively small coastal polynya system considering its

  10. Future loss of Arctic sea-ice cover could drive a substantial decrease in California's rainfall. (United States)

    Cvijanovic, Ivana; Santer, Benjamin D; Bonfils, Céline; Lucas, Donald D; Chiang, John C H; Zimmerman, Susan


    From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.

  11. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji


    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  12. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate (United States)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen


    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  13. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops


    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado


    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  14. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling (United States)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.


    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and

  15. Life under ice: Investigating microbial-related biogeochemical cycles in the seasonally-covered Great Lake Onego, Russia (United States)

    Thomas, Camille; Ariztegui, Daniel; Victor, Frossard; Emilie, Lyautey; Marie-Elodie, Perga; Life Under Ice Scientific Team


    The Great European lakes Ladoga and Onego are important resources for Russia in terms of drinking water, energy, fishing and leisure. Because their northern location (North of Saint Petersburgh), these lakes are usually ice-covered during winter. Due to logistical reasons, their study has thus been limited to the ice-free periods, and very few data are available for the winter season. As a matter of fact, comprehension of large lakes behaviour in winter is very limited as compared to the knowledge available from small subpolar lakes or perennially ice-covered polar lakes. To tackle this issue, an international consortium of scientists has gathered around the « life under ice » project to investigate physical, chemical and biogeochemical changes during winter in Lake Onego. Our team has mainly focused on the characterization and quantification of biological processes, from the water column to the sediment, with a special focus on methane cycling and trophic interactions. A first « on-ice » campaign in March 2015 allowed the sampling of a 120 cm sedimentary core and the collection of water samples at multiple depths. The data resulting from this expedition will be correlated to physical and chemical parameters collected simultaneously. A rapid biological activity test was applied immediately after coring in order to test for microbial activity in the sediments. In situ adenosine-5'-triphosphate (ATP) measurements were carried out in the core and taken as an indication of living organisms within the sediments. The presence of ATP is a marker molecule for metabolically active cells, since it is not known to form abiotically. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) were extracted from these samples, and quantified. Quantitative polymerase chain reactions (PCR) were performed on archaeal and bacterial 16S rRNA genes used to reconstruct phylogenies, as well as on their transcripts. Moreover, functional genes involved in the methane and nitrogen cycles

  16. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels. (United States)

    Monier, Adam; Findlay, Helen S; Charvet, Sophie; Lovejoy, Connie


    Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

  17. An Interdecadal Increase in the Spring Bering Sea Ice Cover in 2007

    Directory of Open Access Journals (Sweden)

    Renguang eWu


    Full Text Available The sea ice coverage of the Northern Hemisphere as a whole has been declining since 1979. On contrary, the March-April sea ice concentration in the Bering Sea experienced a prominent increase in year 2007. The present study documents the changes in surface air temperature, surface heat fluxes, sea surface temperature, and atmospheric circulation accompanying the above interdecadal change in the Bering Sea ice concentration. It is shown that an obvious decrease in surface air temperature, sea surface temperature, and surface net shortwave radiation occurred in concurrent with the sea ice increase. The surface air temperature decrease is associated with a large-scale circulation change, featuring a decrease in sea level pressure extending from the Pacific coast of Alaska to northwestern Europe and an increase in sea level pressure over the high-latitude Asia and the high-latitude North Atlantic Ocean. The enhancement of northwesterly winds over the Bering Sea led to a large decrease in surface air temperature there. The associated increase in upward turbulent heat flux cooled the sea surface temperature in the waters south of the ice covered region, favoring the southward expansion of ice extent. This, together with a positive ice-albedo feedback, amplified the sea ice anomalies after they were initiated, leading to the interdecadal increase in sea ice in the Bering Sea.

  18. Peculiarities of hydrocarbon distribution in the snow-ice cover of different regions of the white sea (United States)

    Nemirovskaya, I. A.


    This paper presents data on the content of hydrocarbons (HCs) in the snow-ice cover of the coastal regions of the Dvina and Kandalaksha gulfs, White Sea, in 2008-2012 in comparison with the content of organic carbon, lipids, and the suspension. The accumulation of HCs in the snow-ice cover depends on the degree of pollution of the atmosphere, formation conditions of ice, and intensity of biogeochemical processes at the ice-water boundary. Thus, the highest concentrations in the water basin of Arkhangelsk are identified in snow and in the upper part of the ice. The peculiarities of formation of the snow-ice cover in Rugozero Bay of the Kandalaksha Gulf leads to the concentration of HCs in different snow and ice layers. The decreased HC content in the snow-ice cover of the White Sea, in comparison with previous studies, is caused by recession of industrial production in recent years.

  19. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel


    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  20. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir. (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain


    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover (United States)

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A.; Zhou, Mingyu; Lenschow, Donald H.; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua


    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  2. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. (United States)

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua


    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  3. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.


    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  4. [Effects of ground cover and water-retaining agent on winter wheat growth and precipitation utilization]. (United States)

    Wu, Ji-Cheng; Guan, Xiu-Juan; Yang, Yong-Hui


    An investigation was made at a hilly upland in western Henan Province to understand the effects of water-retaining agent (0, 45, and 60 kg x hm(-2)), straw mulching (3000 and 6000 kg x hm(-2)), and plastic mulching (thickness straw- or plastic mulching was combined with the use of water-retaining agent. Comparing with the control, all the measures increased the soil moisture content at different growth stages by 0.1%-6.5%. Plastic film mulching had the best water-retention effect before jointing stage, whereas water-retaining agent showed its best effect after jointing stage. Soil moisture content was the lowest at flowering and grain-filling stages. Land cover increased the grain yield by 2.6%-20.1%. The yield increment was the greatest (14.2%-20.1%) by the combined use of straw mulching and water-retaining agent, followed by plastic mulching combined with water-retaining agent (11.9% on average). Land cover also improved the precipitation use efficiency (0.4-3.2 kg x mm(-1) x hm(-2)) in a similar trend as the grain yield. This study showed that land cover and water-retaining agent improved soil moisture and nutrition conditions and precipitation utilization, which in turn, promoted the tillering of winter wheat, and increased the grain number per ear and the 1000-grain mass.

  5. Concussion in the international ice hockey World Championships and Olympic Winter Games between 2006 and 2015. (United States)

    Tuominen, Markku; Hänninen, Timo; Parkkari, Jari; Stuart, Michael J; Luoto, Teemu; Kannus, Pekka; Aubry, Mark


    Concussions in sports are a growing concern. This study describes the incidence, injury characteristics and time trends of concussions in international ice hockey. All concussions in the International Ice Hockey Federation (IIHF) World Championships (WC) and Olympic Winter Games were analysed over 9 ice hockey seasons between 2006 and 2015 using a standardised injury reporting system and diagnoses made by the team physicians. A total of 3293 games were played (169 tournaments, 1212 teams, 26 130 players) comprising 142 244 athletic game exposures. The average injury rate (IR) for concussion was 1.1 per 1000 ice hockey player-games for all IIHF WC tournaments. The IR was the highest in the men's WC A-pool tournaments and Olympic Games (IR 1.6). However, the annual IR for concussion in the men's tournaments has been lower than that in the World Junior tournaments since 2012. When a concussion occurred with contact to a flexible board, the IR was 0.2 per 1000 player games. In contrast, the IR was 1.1, if the board and glass were traditional (for the latter, RR 6.44 (95% CI 1.50 to 27.61)). In the men's tournaments, the trend of concussions caused by illegal hits decreased over the study period. After the 4th Consensus Statement on Concussion in Sport was published (2013), none of the concussed players in the men's WC returned to play on the day of injury. The annual risk of concussion in the men's WC has decreased during the study period. This was most likely due to a reduction in illegal hits. The risk of concussion was significantly lower if games were played on rinks with flexible boards and glass. Rink modifications, improved education and strict rule enforcement should be considered by policymakers in international ice hockey. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  6. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring (United States)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.


    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  7. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro


    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  8. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic (United States)

    Rjazin, Jevgeni; Pärn, Ove


    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  9. Winter cover crop seeding rate and variety effects during eight years of organic vegetables: III. Cover crop residue quality and nitrogen mineralization (United States)

    Winter cover crops (CC) can improve nutrient-use efficiency in tillage-intensive systems. Shoot residue quality and soil mineral N following incorporation of rye (Secale cereale L.), legume-rye, and mustard CC was determined in December to February or March during the first 8 yr of the Salinas Orga...

  10. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, Jakob F.; Pellicciotti, Francesca; Buri, Pascal; Miles, Evan S.; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113; Reid, Tim D.


    Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is

  11. A physically based 3-D model of ice cliff evolution over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Miles, Evan S.; Steiner, J.F.; Immerzeel, W.W.; Wagnon, Patrick; Pellicciotti, Francesca


    We use high-resolution digital elevation models (DEMs) from unmanned aerial vehicle (UAV) surveys to document the evolution of four ice cliffs on the debris-covered tongue of Lirung Glacier, Nepal, over one ablation season. Observations show that out of four cliffs, three different patterns of

  12. A grid-based model of backwasting of supraglacial ice cliffs over debris-covered glaciers

    NARCIS (Netherlands)

    Buri, Pascal; Pellicciotti, Francesca; Steiner, Jakob F|info:eu-repo/dai/nl/119338653; Miles, Evan S.; Immerzeel, Wouter W|info:eu-repo/dai/nl/290472113


    Ice cliffs might be partly responsible for the high mass losses of debris-covered glaciers in the Hindu Kush-Karakoram-Himalaya region. The few existing models of cliff backwasting are point-scale models applied at few locations or assume cliffs to be planes with constant slope and aspect, a major

  13. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong


    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  14. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo


    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  15. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching. (United States)

    Kuo, S; Huang, B; Bembenek, R


    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  16. Temporal variatiions of Sea ice cover in the Baltic Sea derived from operational sea ice products used in NWP. (United States)

    Lange, Martin; Paul, Gerhard; Potthast, Roland


    Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.

  17. Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders (United States)

    Bump, Joseph K.; Lovvorn, James R.


    In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an icebreaker and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence

  18. Stratified distribution of nutrients and extremophile biota within freshwater ice covering the surface of Lake Baikal. (United States)

    Bondarenko, Nina A; Belykh, Olga I; Golobokova, Ludmila P; Artemyeva, Olga V; Logacheva, Natalia F; Tikhonova, Irina V; Lipko, Irina A; Kostornova, Tatyana Ya; Parfenova, Valentina V; Khodzher, Tamara V; Ahn, Tae-Seok; Zo, Young-Gun


    Biological entities and gradients of selected chemicals within the seemingly barren ice layers covering Lake Baikal were investigated. Ice cores 40-68 cm long were obtained from in shore and offshore sites of Southern Lake Baikal during the cold period of a year (March-April) in 2007 and 2008. In microscopic observations of the melted ice, both algae and bacteria were found in considerable numbers (>10(3) cells/L and >10(4) cells/ml, respectively). Among all organisms found, diatom was generally the most predominant taxon in the ice. Interestingly, both planktonic and benthic algae were present in considerable numbers (2-4×10(4) cells/L). Dominant phototrophic picoplankton were comprised of small green algae of various taxa and cyanobacteria of Synechococcus and Cyanobium. The bacterial community consisted mostly of short rod and cocci cells, either free-living or aggregated. Large numbers of yeast-like cells and actinomycete mycelium were also observed. Concentrations of silica, phosphorus, and nitrate were low by an order of magnitude where biota was abundant. The profile of the ice could be interpreted as vertical stratification of nutrients and biomass due to biological activities. Therefore, the organisms in the ice were regarded to maintain high activity while thriving under freezing conditions. Based on the results, it was concluded that the freshwater ice covering the surface of Lake Baikal is considerably populated by extremophilic microorganisms that actively metabolize and form a detritus food chain in the unique large freshwater ecosystem of Lake Baikal.

  19. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys (United States)


    ice cover in 2014. The consequent reduced melting early in the summer delays the onset of sea - ice - albedo feed back in accelerating melt throughout the...Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. This report covers our grant...region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice

  20. Constraining Quaternary ice covers and erosion rates using cosmogenic 26Al/10Be nuclide concentrations (United States)

    Knudsen, Mads Faurschou; Egholm, David Lundbek


    Paired cosmogenic nuclides are often used to constrain the exposure/burial history of landforms repeatedly covered by ice during the Quaternary, including tors, high-elevation surfaces, and steep alpine summits in the circum-Arctic regions. The approach generally exploits the different production rates and half-lives of 10Be and 26Al to infer past exposure/burial histories. However, the two-stage minimum-limiting exposure and burial model regularly used to interpret the nuclides ignores the effect of variable erosion rates, which potentially may bias the interpretation. In this study, we use a Monte Carlo model approach to investigate systematically how the exposure/burial and erosion history, including variable erosion and the timing of erosion events, influence concentrations of 10Be and 26Al. The results show that low 26Al/10Be ratios are not uniquely associated with prolonged burial under ice, but may as well reflect ice covers that were limited to the coldest part of the late Pleistocene combined with recent exhumation of the sample, e.g. due to glacial plucking during the last glacial period. As an example, we simulate published 26Al/10Be data from Svalbard and show that it is possible that the steep alpine summits experienced ice-free conditions during large parts of the late Pleistocene and varying amounts of glacial erosion. This scenario, which contrasts with the original interpretation of more-or-less continuous burial under non-erosive ice over the last ∼1 Myr, thus challenge the conventional interpretation of such data. On the other hand, high 26Al/10Be ratios do not necessarily reflect limited burial under ice, which is the common interpretation of high ratios. In fact, high 26Al/10Be ratios may also reflect extensive burial under ice, combined with a change from burial under erosive ice, which brought the sample close to the surface, to burial under non-erosive ice at some point during the mid-Pleistocene. Importantly, by allowing for variable

  1. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  2. Rolled-crimped winter rye cover effects on hand-weeding times and fruit yield and quality of cucurbits (United States)

    Fruit and vegetables produced without pesticides are in demand by some segments of society. However, weeds often are deleterious in such crops, and managing them without herbicides is difficult. Stale seedbeds and rolled-crimped winter rye cover crops are non-chemical methods that may help manage we...

  3. Comparison of northern and central Greenland ice cores records of methanesulfonate covering the last glacial period

    DEFF Research Database (Denmark)

    Jonsell, U.; Hansson, M. E.; Siggaard-Andersen, M-L-


    Methanesulfonate (MS-) is measured in ice cores with the objective to obtain a proxy record of marine phytoplankton production of dimethylsulfide (DMS). We present a continuous MS- record covering the last glacial period from the North Greenland Ice Core Project (NGRIP) ice core and compare...... MS- concentrations were higher during the cold marine isotopic stages (MIS) 2 and 4 and lower during the warm MIS 5. This long-term trend in MS-, which is similar to the inverse of the corresponding trend in d 18O, is not detected in the GISP2 MS- record. A systematic response in MS- concentrations...... to changes between Greenland stadials and interstadials is only detected in the GISP2 record. The different responses of the MS- signals to climate change during the last glacial period are possibly related to the partitioning of air masses reaching the two sites. In contrast to observations from Antarctic...

  4. Modeling the Long-Term Evolution of Supraglacial Ice Cliffs on Himalayan Debris-Covered Glaciers (United States)

    Buri, P.; Miles, E. S.; Steiner, J. F.; Ragettli, S.; Pellicciotti, F.


    Supraglacial ice cliffs are present on debris-covered glaciers worldwide and provide the only direct atmosphere-ice interface over the lower sections of these glaciers. Low albedo and high longwave emissions from surrounding debris cause very high melt rates, accounting for a significant portion of total glacier mass loss. As a result, ice cliffs affect glacier downwasting and mass balance. Additionally, and in contrast to the debris-covered ice, high melt at cliffs turns them into dynamic features, directly affecting glacier surface evolution. While conceptual ideas about the formation, evolution and collapse of ice cliffs exist, their life cycles have never been thoroughly documented. Based on observations obtained from high-resolution aerial and terrestrial images analyzed with Structure-from-Motion and with data from automatic weather stations on two glaciers in the Nepalese Himalaya, we simulate the evolution of selected ice cliffs over several seasons using a new physically-based model of cliff backwasting. The 3D model calculates the energy-balance at the cliff scale and includes the cliff interaction with supraglacial ponds and reburial by debris. We consider cliffs of different shape, orientation and slope, and we show that backwasting leads to a variety of evolution typologies, with cliffs that maintain a constant, self-similar geometry, cliffs that grow laterally and cliffs that disappear through slope shallowing and debris melt-out. Most cliffs persist over several seasons. The presence of a pond appears to be the key control for cliffs to survive, while east and west facing cliffs grow because of higher radiation receipts. We use the model to test the hypothesis that south-facing cliffs do not survive. We show that most south-facing cliffs demise after one melt season on both glaciers, because of high input of solar radiation exceeding the longwave radiation receipt. For north facing features, the longwave radiation receipts at lower cliff sections

  5. Improved identification of clouds and ice/snow covered surfaces in SCIAMACHY observations

    Directory of Open Access Journals (Sweden)

    J. M. Krijger


    Full Text Available In the ultra-violet, visible and near infra-red wavelength range the presence of clouds can strongly affect the satellite-based passive remote sensing observation of constituents in the troposphere, because clouds effectively shield the lower part of the atmosphere. Therefore, cloud detection algorithms are of crucial importance in satellite remote sensing. However, the detection of clouds over snow/ice surfaces is particularly difficult in the visible wavelengths as both clouds an snow/ice are both white and highly reflective. The SCIAMACHY Polarisation Measurement Devices (PMD Identification of Clouds and Ice/snow method (SPICI uses the SCIAMACHY measurements in the wavelength range between 450 nm and 1.6 μm to make a distinction between clouds and ice/snow covered surfaces, specifically developed to identify cloud-free SCIAMACHY observations. For this purpose the on-board SCIAMACHY PMDs are used because they provide higher spatial resolution compared to the main spectrometer measurements. In this paper we expand on the original SPICI algorithm (Krijger et al., 2005a to also adequately detect clouds over snow-covered forests which is inherently difficult because of the similar spectral characteristics. Furthermore the SCIAMACHY measurements suffer from degradation with time. This must be corrected for adequate performance of SPICI over the full SCIAMACHY time range. Such a correction is described here. Finally the performance of the new SPICI algorithm is compared with various other datasets, such as from FRESCO, MICROS and AATSR, focusing on the algorithm improvements.

  6. DC Flashover Performance of Ice-Covered Composite Insulators with Parallel Air Gaps

    Directory of Open Access Journals (Sweden)

    Jianlin Hu


    Full Text Available DC flashover performance of ice-covered composite insulators with a parallel air gap (CI/PAG is an important technical consideration when such insulators are used to isolate ground wires for the purpose of DC ice-melting. Tests on tension and suspension types of CI/PAG were thus carried out in the artificial climate chamber to investigate their DC icing flashover performance. The influences of parallel air gap, ice thickness, pollution severity and air pressure on DC negative 50% flashover voltage (U50% of CI/PAG were investigated. Test results show that the parallel air gap affected both the discharge path and U50%. With increasing ice thickness, U50% declined by up to 52%; this effect was more evident when the breakdown occurred in the air gap. The pollution severity affected U50% only when the flashover happened along insulator surface. With a decrease of atmospheric pressure, U50% decreased. U50% and the ratio of air pressure were in a power function relationship with a positive characteristic exponent which was relevant to the discharge path.


    Directory of Open Access Journals (Sweden)

    Solomin E.E


    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  8. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat (United States)

    Selkowitz, David J.; Forster, Richard R.


    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.

  9. Vertical distribution and diel vertical migration of krill beneath snow-covered ice and in ice-free waters

    KAUST Repository

    Vestheim, Hege


    A bottom mounted upward looking Simrad EK60 120-kHz echo sounder was used to study scattering layers (SLs) and individuals of the krill Meganyctiphanes norvegica. The mooring was situated at 150-m depth in the Oslofjord, connected with an onshore cable for power and transmission of digitized data. Records spanned 5 months from late autumn to spring. A current meter and CTD was associated with the acoustic mooring and a shore-based webcam monitored ice conditions in the fjord. The continuous measurements were supplemented with intermittent krill sampling campaigns and their physical and biological environment.The krill carried out diel vertical migration (DVM) throughout the winter, regardless of the distribution of potential prey. The fjord froze over in mid-winter and the daytime distribution of a mid-water SL of krill immediately became shallower associated with snow fall after freezing, likely related to reduction of light intensities. Still, a fraction of the population always descended all the way to the bottom, so that the krill population by day seemed to inhabit waters with light levels spanning up to six orders of magnitude. Deep-living krill ascended in synchrony with the rest of the population in the afternoon, but individuals consistently reappeared in near-bottom waters already? 1 h after the ascent. Thereafter, the krill appeared to undertake asynchronous migrations, with some krill always being present in near-bottom waters even though the entire population appeared to undertake DVM. The Author 2013. Published by Oxford University Press. All rights reserved.

  10. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  11. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.


    frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5......years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme...... events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas...

  12. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records (United States)

    Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.


    The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.

  13. Sensitivity of the sea ice concentration over the Kara-Barents Sea in autumn to the winter temperature variability over East Asia (United States)

    Cho, K. H.; Chang, E. C.


    In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.

  14. Causes and effects of long periods of ice cover on a remote high Alpine lake

    Directory of Open Access Journals (Sweden)

    Michael STURM


    Full Text Available The response of the physical and chemical limnology of Hagelseewli (2339 m a.s.l. to local meteorological forcing was investigated from 1996 to 1998 using an automatic weather station, thermistor chains, water samples and sediment traps. On-site meteorological measurements revealed the paramount importance of local topographic shading for the limnology of the lake. A high cliff to the south diminishes incident radiation by 15% to 90%, resulting in a long period of ice cover. Hence, the spring and summer seasons are extremely condensed, allowing only about 2 months per year for mixing, oxygen uptake, nutrient inflow, water exchange and phytoplankton growth. Regular measurements of water temperature, chemistry and diatom composition show that Hagelseewli responds very rapidly to changes in nutrient concentrations and light conditions. This response is restricted mainly to an extremely short productivity pulse, which takes place as soon as the lake is completely free of ice. Ice-free conditions are indicated by the occurrence of planktonic diatoms. In contrast to most low-altitude lakes, maximum productivity occurs in the middle of the water column (6-9 m, where first light, and then soluble reactive phosphorus (SRP, are the limiting factors. During the period of thawing, large amounts of ammonium enter the lake. Nevertheless, allochthonous nutrient input is not important because SRP, the limiting nutrient for algal growth, originates from the sediments. Water chemistry data and data from sediment traps show that, although autochthonous calcite precipitation does occur, the calcite crystals are redissolved completely in the bottom waters during the extended period of ice cover. Thus, the most important factor for changes in the nutrient budget, primary production and preservation of calcite is the bottom water oxygen status, which is governed by the occurrence of an ice-free period. We hypothesise that the duration of the ice-free period is of

  15. Ice-cover is the principal driver of ecological change in High Arctic lakes and ponds.

    Directory of Open Access Journals (Sweden)

    Katherine Griffiths

    Full Text Available Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated ice cover changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada. The sites were divided a priori into four groups ("warm", "cool", "cold", and "oasis" based on local elevation and microclimatic differences that result in differing lengths of the ice-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species. This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in ice cover with warming. The "warm" sites are amongst the first to lose their ice covers in summer and recorded the earliest and highest magnitude changes. The "cool" sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the "warm" sites. Meanwhile some of the "cold" sites, which until recently still retained an ice raft in summer, only exhibited this shift in the upper-most sediments. The warmer "oasis" ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the "oasis" sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the ice-free season is the principal driver of diatom assemblage responses to climate in the High Arctic, largely driven by the

  16. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. (United States)

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L


    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  17. The effect of severe storms on the ice cover of the northern Tatarskiy Strait (United States)

    Martin, Seelye; Munoz, Esther; Drucker, Robert


    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  18. Winter mass balance of Drangajökull ice cap (NW Iceland derived from satellite sub-meter stereo images

    Directory of Open Access Journals (Sweden)

    J. M. C. Belart


    Full Text Available Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland from Pléiades and WorldView2 (WV2 are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy ( <  0.5 m with and without ground control points (GCPs, demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015 mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent, with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1 the time difference between in situ and satellite observations, (2 firn densification and (3 elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.

  19. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops. (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D


    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  20. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry

    NARCIS (Netherlands)

    Brun, Fanny; Buri, Pascal; Miles, Evan S.; Wagnon, Patrick; Steiner, J.F.; Berthier, Etienne; Ragettli, S.; Kraaijenbrink, P.D.A.; Immerzeel, W.W.; Pellicciotti, Francesca

    Mass losses originating from supraglacial ice cliffs at the lower tongues of debris-covered glaciers are a potentially large component of the mass balance, but have rarely been quantified. In this study, we develop a method to estimate ice cliff volume losses based on high-resolution topographic

  1. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks


    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  2. Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake (United States)

    Palmisano, A. C.; Wharton, R. A. Jr; Cronin, S. E.; Des Marais, D. J.; Wharton RA, J. r. (Principal Investigator)


    The benthos of a perennially ice-covered Antarctic lake, Lake Hoare, contained three distinct 'signatures' of lipophilic pigments. Cyanobacterial mats found in the moat at the periphery of the lake were dominated by the carotenoid myxoxanthophyll; carotenoids: chlorophyll a ratios in this high light environment ranged from 3 to 6.8. Chlorophyll c and fucoxanthin, pigments typical of golden-brown algae, were found at 10 to 20 m depths where the benthos is aerobic. Anaerobic benthic sediments at 20 to 30 m depths were characterized by a third pigment signature dominated by a carotenoid, tentatively identified as alloxanthin from planktonic cryptomonads, and by phaeophytin b from senescent green algae. Pigments were not found associated with alternating organic and sediment layers. As microzooplankton grazers are absent from this closed system and transformation rates are reduced at low temperatures, the benthos beneath the lake ice appears to contain a record of past phytoplankton blooms undergoing decay.

  3. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows (United States)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.


    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable

  4. A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre

    Directory of Open Access Journals (Sweden)

    W. Geibert


    Full Text Available Circumpolar Deep Water (CDW, locally called Warm Deep Water (WDW, enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2 and dissolved inorganic carbon (DIC in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 μatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3 in melting sea ice may play a minor role in this rapid reduction of surface water fCO2.

  5. The use of nuclear powered submarines for oceanographic research in ICE covered regions

    International Nuclear Information System (INIS)

    Sambrotto, Raymond; Chayes, Dale


    Nuclear powered submarines offer a variety of advantages as platforms for oceanographic research. Their speed and ability to remain submerged for extended periods greatly extends their spatial coverage and isolates them from surface ocean conditions as compared to conventional ships. These advantages are particularly obvious in ice covered oceans that remain among the least explored regions on the globe. Scientific research in these regions has been limited to selected seasons and places where ice conditions are favorable for available observational platforms. However, much broader scientific observations are needed to assess such impacts as pollutants and possible climate variations on polar regions. To overcome some of the observational limitations of surface ships in the Arctic, the U.S. Navy made available nuclear powered submarines for civilian oceanographic research during the Scientific Ice Expedition (Scicex) program from 1993 to 1999. Together, these cruises sampled along more than 85,000 km of track throughout the international waters of the Arctic Ocean during selected periods from March to October. This sampling forms the basis of the present analysis of the limitations and capabilities of nuclear submarines as observational platforms for scientific research. Scientific observations were made in four general disciplines: ocean physics; biology and chemistry; sea ice; and marine geology and geophysics. Sampling of ocean biology and chemistry was most constrained because the water samples typically required in such studies were limited to the operating depths of the submarine. However, the surface 250 m contains all of the biological production, as well as informative chemical tracers for the flow of Atlantic and Pacific water masses. Measurements of ocean physics were less constrained because in addition to the on-board measurements, expendable probes are available to sample water depths inaccessible to the submarine. The submarine proved to be an

  6. Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasi-biennial oscillations

    Directory of Open Access Journals (Sweden)

    Motoyoshi Ikeda


    Full Text Available Arctic Ocean sea ice has been diminishing since 1970, as shown by National Snow and Ice Data Center data. In addition to decadal variability, low ice anomalies in the Pacific–Siberian region have been occurring at shorter timescales. The influence of the widely-known Northern Annular Mode (NAM occurs across all seasons. In this study, empirical orthogonal function (EOF analysis was applied to sea-level pressure in National Centers for Environmental Prediction Reanalysis data for 1960–2007, showing the NAM to be the leading mode of variability and the Arctic Dipole Mode (ADM to be the second leading mode. The ADM changes markedly across seasons. In autumn–winter, it has a pole over Siberia and a pole over Greenland, at opposite signs at a several-year scale, whereas the spring–summer ADM (ADMSS has a pole over Europe and a pole over Canada. In the 1980s, the most influential mode shifted from the NAM to the ADM, when the Pacific sector had low ice cover at a 1-year lag from the positive ADM, which was marked by low pressure over Siberia. In years when the ADMSS was pronounced, it was responsible for distinct ice variability over the East Siberian–Laptev seas. The frequency separation in this study identified the contributions of the ADM and ADMSS. Effects of the latter are difficult to predict since it is intermittent and changes its sign biennially. The ADM and ADMSS should be closely watched in relation to the ongoing ice reduction in the Pacific–Siberian region.

  7. Returning Winter Cover Crop Residue Influences Soil Aggregation and Humic Substances under Double-cropped Rice Fields

    Directory of Open Access Journals (Sweden)

    Haiming Tang


    Full Text Available ABSTRACT Residue management in cropping systems may improve soil quality. However, there are few studies on the effects of residue management on soil aggregation and carbon content in the humin (C-HUM, humic acid (C-HAF and fulvic acid (C-FAF fractions in South China. Therefore, the effects on soil aggregation and on the C-HUM, C-HAF, C-FAF from incorporating winter cover crop residues in a double-cropped rice (Oryza sativa L. system in South China fields were studied. The experiment has been conducted since winter 2004. Five winter cropping systems were used: rice-rice-ryegrass (Ry-R-R, rice-rice-Chinese milk vetch (Mv-R-R, rice-rice-potato (Po-R-R, rice-rice-rape (Ra-R-R and rice-rice with winter fallow (Fa-R-R. The results indicated that the organic C content in the paddy soil under the Ry-R-R, Mv-R-R, Po-R-R, and Ra-R-R systems was significantly higher than the content in the Fa-R-R system at the early rice and late rice maturity stages. The different sizes of aggregates under the five treatments showed similar trends. The Po-R-R systems had the highest percentage of soil aggregates in each size class and the Fa-R-R systems had the lowest percentage of soil aggregates in each size class in the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m soil depth at the early rice and late rice maturity stages. The C-HUM, C-HAF, and C-FAF increased through long-term application of winter cover crop residues. Statistical analysis showed that the C-HAF under the Ra-R-R systems was significantly higher than that in the Fa-R-R systems at the early rice and late rice maturity stages. The C-FAF and C-HUM under the Mv-R-R systems was significantly higher than the C-FAF and C-HUM in the Fa-R-R systems at the early rice and late rice maturity stages. As a result, the soil organic C content, the soil aggregates in each size class, and the C-HUM, C-HAF, and C-FAF increased from application of winter cover crop residues in double-cropped rice systems.

  8. An Evaluation of the PIPS 2.0 Ice Cover Versus SSMI Ice Concentration from 1992-2000

    National Research Council Canada - National Science Library

    Preller, Ruth


    ...). In an operational mode, PIPS 2.0 assimilates SSMI derived ice concentration each day. In a research mode, the SSMI ice concentration data is not assimilated, rather it is used for model metrics (validation). PIPS...

  9. Gas records from the West Greenland ice margin covering the Last Glacial termination: a horizontal ice core

    DEFF Research Database (Denmark)

    Petrenko, V.; Severinghaus, J.P.; Brook, E.J.


    and Preboreal intervals. Extensive sections of ice from the Holocene and most ages within the last glacial period are probably also present. Very accurate dating has been possible in the ice section containing the Younger Dryas-Preboreal abrupt climate transition signal. The ice at Pakitsoq is folded and non......Certain sites along ice sheet margins provide an easily accessible and almost unlimited supply of ancient ice at the surface. Measurements of gases in trapped air from ice outcropping at Pakitsoq, West Greenland, demonstrate that ancient air is mostly well preserved. No alterations in delta O-18......(atm) and delta N-15 of N-2 are apparent, and alterations in methane are found in only a few ice sections. Using measurements of these gases, we have unambiguously identified a stratigraphic section containing ice from the end of last glacial period as well as Bolling-Allerod, Younger Dryas...

  10. Mapping Changes in Urban Canopy Cover Following an Ice Storm Event: A Case Study of the December 2013 Ice Storm in Toronto and Mississauga (United States)

    Robb, Angela

    Urban forests provide ecosystem services and functions, but are vulnerable to stressful environments and disruptive weather. One type of extreme weather, ice storms, can result in damage to trees. In December 2013, an ice storm hit southern Ontario with significant social and ecological impacts experienced in the Greater Toronto Area; where many cities are initiating management plans to increase canopy coverage. The objective of this project is to explore the changes in urban canopy cover before and after the ice storm through object-based image analysis. The results of this analysis successfully show broad level canopy distributions, patterns of canopy growth and loss, and 3-5% of canopy loss can be attributed to the ice storm on residential land uses. A better understanding of the impacts of the 2013 ice storm addresses a gap in our knowledge of how urban forests respond to extreme weather.

  11. An Electronic Atlas of Great Lakes Ice Cover, Winters 1973-2002 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is distributed by the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL). The atlas contains...

  12. Injuries in men's international ice hockey: a 7-year study of the International Ice Hockey Federation Adult World Championship Tournaments and Olympic Winter Games. (United States)

    Tuominen, Markku; Stuart, Michael J; Aubry, Mark; Kannus, Pekka; Parkkari, Jari


    Information on ice hockey injuries at the international level is very limited. The aim of the study was to analyse the incidence, type, mechanism and severity of ice hockey injuries in men's international ice hockey tournaments. All the injuries in men's International Ice Hockey Federation World Championship tournaments over a 7-year period were analysed using a strict definition of injury, standardised reporting strategies and an injury diagnosis made by a team physician. 528 injuries were recorded in games resulting in an injury rate of 14.2 per 1000 player-games (52.1/1000 player-game hours). Additionally, 27 injuries occurred during practice. For WC A-pool Tournaments and Olympic Winter Games (OWG) the injury rate was 16.3/1000 player-games (59.6/1000 player-game hours). Body checking, and stick and puck contact caused 60.7% of the injuries. The most common types of injuries were lacerations, sprains, contusions and fractures. A laceration was the most common facial injury and was typically caused by a stick. The knee was the most frequently injured part of the lower body and the shoulder was the most common site of an upper body injury. Arenas with flexible boards and glass reduced the risk of injury by 29% (IRR 0.71, (95% CI 0.56 to 0.91)). The incidence of injury during international ice hockey competition is relatively high. Arena characteristics, such as flexible boards and glass, appeared to reduce the risk of injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  13. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter


    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  14. The Impact of Moisture Intrusions from Lower Latitudes on Arctic Net Surface Radiative Fluxes and Sea Ice Growth in Fall and Winter (United States)

    Hegyi, B. M.; Taylor, P. C.


    The fall and winter seasons mark an important period in the evolution of Arctic sea ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic sea ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and sea ice growth. Periods of reduced sea ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist air from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative fluxes and sea ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS sea ice thickness data, and daily CERES radiative flux data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface flux are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW flux anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward flux of warm, moist air from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic sea ice, and may in part explain the interannual variability of fall and winter Arctic sea ice growth.

  15. Copepods in ice-covered seas—Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas (United States)

    Conover, R. J.; Huntley, M.


    While a seasonal ice cover limits light penetration into both polar seas for up to ten months a year, its presence is not entirely negative. The mixed layer under sea ice will generally be shallower than in open water at the same latitude and season. Ice forms a substrate on which primary production can be concentrated, a condition which contrasts with the generally dilute nutritional conditions which prevail in the remaining ocean. The combination of a shallow, generally stable mixed layer with a close proximity to abundant food make the under-ice zone a suitable nursery for both pelagic and benthic species, an upside-down benthos for opportunistic substrate browsers, and a rich feeding environment for species often considered to be neritic in temperate environments. Where the ice cover is not continuous there may be a retreating ice edge that facilitates the seasonal production of phytoplankton primarily through increased stability from the melt water. Ice edge blooms similarly encourage secondary production by pelagic animals. Pseudocalanus acuspes, which may be the most abundant and productive copepod in north polar latitudes, initiates growth at the start of the "spring bloom" of epontic algae, reaching sexual maturity at breakup or slightly before. In the Southern Hemisphere, the small neritic copepod Paralabidocera antarctica and adult krill have been observed to utilize ice algae. Calanus hyperboreus breeds in the dark season at depth and its buoyant eggs, slowly developing on the ascent, reach the under-ice layer in April as nauplii ready to benefit from the primary production there. On the other hand, C. glacialis may initiate ontogenetic migrations and reproduction in response to increased erosion of ice algae due to solar warming and melting at the ice-water interface. While the same species in a phytoplankton bloom near the ice edge reproduces actively, those under still-consolidated ice nearby can have immature gonads. Diel migration and diel feeding

  16. Green manuring effect of pure and mixed barley - hairy vetch winter cover crops on maize and processing tomato N nutrition

    DEFF Research Database (Denmark)

    Tosti, Giacomo; Benincasa, Paolo; Farneselli, Michela


    with the appropriate critical N dilution curves. The results highlight the effectiveness of mixtures for the management of the winter cover crop practice. In the two considered years, the species proportion influences the aboveground biomass (ranging from 2.90 to 5.94 Mg ha-1) and N accumulation (ranging from 73......Adopting mixtures between legumes and non legumes can be an efficient tool to merge the advantages of the single species in the fall-sown cover crop practice. Nevertheless there is a lack of information on how the species proportion may affect N accumulation and C/N of the cover crops and how...... this can influence the N uptake and N status of different subsequent summer cash crops. In this study the N effect of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa Roth.) grown in pure stands or in mixtures with different sowing proportion was tested on maize (Zea Mays L.) and processing...

  17. Aspect controls the survival of ice cliffs on debris-covered glaciers. (United States)

    Buri, Pascal; Pellicciotti, Francesca


    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses. Their role as windows of energy transfer suggests they may explain the anomalously high mass losses of debris-covered glaciers in High Mountain Asia (HMA) despite the insulating debris, currently at the center of a debated controversy. We use a 3D model of cliff evolution coupled to very high-resolution topographic data to demonstrate that ice cliffs facing south (in the Northern Hemisphere) disappear within a few months due to enhanced solar radiation receipts and that aspect is the key control on cliffs evolution. We reproduce continuous flattening of south-facing cliffs, a result of their vertical gradient of incoming solar radiation and sky view factor. Our results establish that only north-facing cliffs are recurrent features and thus stable contributors to the melting of debris-covered glaciers. Satellite observations and mass balance modeling confirms that few south-facing cliffs of small size exist on the glaciers of Langtang, and their contribution to the glacier volume losses is very small ([Formula: see text]1%). This has major implications for the mass balance of HMA debris-covered glaciers as it provides the basis for new parameterizations of cliff evolution and distribution to constrain volume losses in a region where glaciers are highly relevant as water sources for millions of people.

  18. Dissolved gases in perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica (United States)

    Andersen, D. T.; McKay, C. P.; Wharton, R. A. Jr; Wharton RA, J. r. (Principal Investigator)


    Measurements of dissolved N2, O2, Ar, CO2, and CH4 were made in perennially ice-covered Lake Hoare. Results confirm previous reports that O2 concentrations in the upper water column exceed atmospheric equilibrium and that N2 and Ar are supersaturated throughout the water column. The mean supersaturation of N2 was found to be 2.0 (+/- 0.37) and Ar was 3.8 (+/- 1.1). The ratios of N2/Ar (20.3 +/- 13.8), and O2/Ar (22.5 +/- 4.0) at the ice-water interface are consistent with those previously measured, suggesting that bubble formation is the main process for removing gas from the lake. However, the saturations of N2 and Ar greatly exceed those previously predicted for degassing by bubble formation only at the ice-water interface. The data support the hypothesis that removal of gas by bubbles occurs in the water column to a depth of 11 m in Lake Hoare. CO2 concentration increases from near zero at the ice-water interface to 80-100 times saturation at and below the chemocline at c. 28 m. There is considerable variability in the gas concentrations throughout the water column; samples separated in depth by one metre may vary by more than 50% in gas content. It is likely that this phenomenon results from the lack of turbulent mixing in the water column. Methane (c. 2 micrograms l-1) was detected below the chemocline and immediately above the sediment/water interface at a depth of 30 m. Samples from lakes Vanda, Joyce, and Miers, also show supersaturations of O2, N2, and Ar at levels similar to levels found in Lake Hoare.

  19. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015


    Itkin, Polona; Spreen, Gunnar; Cheng, Bin; Doble, Martin; Girard-Ardhuin, Fanny; Haapala, Jari; Hughes, Nick; Kaleschke, Lars; Nicolaus, Marcel; Wilkinson, Jeremy


    Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard – the Norwegian young sea ICE 2015 expedition (N-ICE2015) - gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first- and second-year ice now common in the majority of the Arctic Basin. During the ...

  20. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia (United States)

    Fohlmeister, Jens; Plessen, Birgit; Dudashvili, Alexey Sergeevich; Tjallingii, Rik; Wolff, Christian; Gafurov, Abror; Cheng, Hai


    The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of climate changes over the European and western Asian continents throughout the last millennium. For example, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) over Europe have been associated with long-lasting phases with a positive and negative NAO index. Its climatic imprint is especially pronounced in European winter seasons. However, little is known about the influence of NAO with respect to its eastern extent over the Eurasian continent. Here we present speleothem records (δ13C, δ18O and Sr/Ca) from the southern rim of Fergana Basin (Central Asia) revealing annually resolved past climate variations during the last millennium. The age control of the stalagmite relies on radiocarbon dating as large amounts of detrital material inhibit accurate 230Th dating. Present-day calcification of the stalagmite is most effective during spring when the cave atmosphere and elevated water supply by snow melting and high amount of spring precipitation provide optimal conditions. Seasonal precipitation variations cause changes of the stable isotope and Sr/Ca compositions. The simultaneous changes in these geochemical proxies, however, give also evidence for fractionation processes in the cave. By disentangling both processes, we demonstrate that the amount of winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the NAO index but opposite to the higher mountain records of Central Asia. Several events of strongly reduced winter precipitation are observed during the LIA in Central Asia. These dry winter events can be related to phases of a strong negative NAO index and all results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems.

  1. Injuries in women's international ice hockey: an 8-year study of the World Championship tournaments and Olympic Winter Games. (United States)

    Tuominen, Markku; Stuart, Michael J; Aubry, Mark; Kannus, Pekka; Tokola, Kari; Parkkari, Jari


    We report the incidence, type, mechanism and severity of ice hockey injuries in women's international ice hockey championships. All injuries in the International Ice Hockey Federation World Women's Championship, World Women's under-18 Championship and Olympic Winter Games tournaments were analysed over an 8-year period using a strict injury definition, standardised reporting and team physician diagnosis. 168 injuries were recorded in 637 games over an 8-year period resulting in an injury rate (IR) of 6.4 per 1000 player-games and 22.0/1000 player-game hours. The IRs were 2.7/1000 player-games for the lower body, 1.4 for the upper body, 1.3 for the head and face and 0.9 for the spine and trunk. Contusion was the most common injury followed by a sprain. The most commonly injured site was the knee (48.6% of lower body injuries; IR 1.3/1000 player-games). The Medial collateral ligament sprain occurred in 37.1% and ACL rupture in 11.4% of knee injuries. A concussion (74.3%; IR 1.0/1000 player-games) was the most common head injury. The risk of injury to female ice hockey players at World Championship and Olympic tournaments was about half of that observed in the men's Championships. Full facial protection decreases the risk of lacerations and should be continued in all future female tournaments. More effective prevention strategies for knee, ankle and shoulder injuries are needed in women's ice hockey. Improved concussion education is necessary to promote more consistent diagnosis and return to play protocols. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  2. Road salt application planning tool for winter de-icing operations (United States)

    Trenouth, William R.; Gharabaghi, Bahram; Perera, Nandana


    Road authorities, who are charged with the task of maintaining safe, driveable road conditions during severe winter storm events are coming under increasing pressure to protect salt vulnerable areas (SVAs). For the purpose of modelling urban winter hydrology, the temperature index method was modified to incorporate ploughing and salting considerations and was calibrated using winter field data from two sites in Southern Ontario and validated using data collected from a section of Highway 401 - Canada's busiest highway. The modified temperature index model (MTIM) accurately predicted salt-induced melt (R2 = 0.98 and 0.99, RMSE = 19.9 and 282.4 m3, CRM = -0.003 and 0.006 for calibration and validation sites respectively), and showed a demonstrable ability to calculate the Bare Pavement Regain Time (BPRT). The BPRT is a key factor on road safety and the basis for many winter maintenance performance standards for different classes of highways. Optimizing salt application rate scenarios can be achieved using the MTIM with only two meteorological forecast inputs for the storm event - readily available on-line through the Road Weather Information System (RWIS) - and can serve as a simple yet effective tool for winter road maintenance practitioners seeking to optimize salt application rates for a given storm event in salt vulnerable areas.

  3. Accuracy of Sea Ice Data from Remote Sensing Methods, its Impact on Safe Speed Determination and Planning of Voyage in Ice-Covered Areas

    Directory of Open Access Journals (Sweden)

    Tadeusz Pastusiak


    Full Text Available The data related to ice floe concentration and ice thickness were analysed. Sources of data have been verified by visual observation and by comparison in between information from different remote sensing sources. The results of this work exceeded initial expectations. The discrepancies of the information provided by various data sources result from the error of the measurement method, which can be as high as 15% of the concentration of ice floes. It should also be borne in mind that the more generalized information about the state of the ice cover, the lower probability of detection of ice floe patches of a high concentration and spatial extent. Each vessel that is planning voyage in ice should take into consideration inaccurate estimation of concentration and thickness of ice floes received by means of satellite remote sensing methods. The method of determining permissible speed of various ice class vessel in ice on basis of safe speed graph for the icebreaker was developed. A well-defined equation approximates relationship between speed of the icebreaker and the vessels of specified ice classes. Average distance of 24.1 Nm from sea ice extent line was related to all analysed lines representing 30-40% ice floe concentration (IUP product excluded and 30.6 Nm for analysed lines representing 70-81-91% ice floe concentration. The maximal average distance of the furthest analysed line (IUP product excluded was equal 37.2 Nm. The average standard deviation of that results was equal 8.3 Nm only. Average distances of analysed lines from sea ice extent line to maximal ice data values were found as follow: 8.4 Nm (23% for NSIDC-CCAR ice age, 12.3 Nm (33% for minimal distance of 30-40% ice concentration, 15.4 Nm (41% for OSISAF ice type “ambiguous” zone from Open Water side, 25 Nm (67% for minimal distance of 70-81-91% ice concentration, 26.6 Nm (72% for OSISAF ice type “ambiguous” zone from 1st year ice age side, 35.9 Nm (97% for maximal distance

  4. Standard Practice for Determining Resistance of Solar Collector Covers to Hail by Impact With Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice covers a procedure for determining the ability of cover plates for flat-plate solar collectors to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. This practice is not intended to apply to photovoltaic cells or arrays. 1.2 This practice defines two types of test specimens, describes methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, and specifies parameters that must be recorded and reported. 1.3 This practice does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice-ball impact resistance is beyond the scope of this practice. 1.4 The size of ice ball to be used in conducting this test is not specified in this practice. This practice can be used with various sizes of ice balls. 1.5 The categories of solar collector cover plat...

  5. Accounting rigid support at the border in a mixed model the finite element method in problems of ice cover destruction

    Directory of Open Access Journals (Sweden)

    V. V. Knyazkov


    Full Text Available To evaluate the force to damage the ice covers is necessary for estimation of icebreaking capability of vessels, as well as of hull strength of icebreakers, and navigation of ships in ice conditions. On the other hand, the use of ice cover support to arrange construction works from the ice is also of practical interest.By the present moment a great deal of investigations of ice cover deformation have been carried out to result, usually, in approximate calculations formula which was obtained after making a variety of assumptions. Nevertheless, we believe that it is possible to make further improvement in calculations. Application numerical methods, and, for example, FEM, makes possible to avoid numerous drawbacks of analytical methods dealing with both complex boundaries and load application areas and other problem peculiarities.The article considers an application of mixed models of FEM for investigating ice cover deformation. A simple flexible triangle element of mixed type was taken to solve this problem. Vector of generalized coordinates of the element contains apices flexures and normal bending moments in the middle of its sides. Compared to other elements mixed models easily satisfy compatibility requirements on the boundary of adjacent elements and do not require numerical displacement differentiation to define bending moments, because bending moments are included in vector of element generalized coordinates.The method of account of rigid support plate is proposed. The resulting ratio, taking into account the "stiffening", reduces the number of resolving systems of equations by the number of elements on the plate contour.To evaluate further the results the numerical realization of ice cover stress-strained problem it becomes necessary and correct to check whether calculation results correspond to accurate solution. Using an example of circular plate the convergence of numerical solutions to analytical solutions is showed.The article

  6. The Winter 2010 and 2011 FRONT/NIRSS In-Flight Icing Hazard Detection Project (United States)

    Serke, David; Hubbert, John; Reehorst, Andrew; Kennedy, Patrick; Politovich, Marcia


    The NASA Icing Remote Sensing System (NIRSS) deploys a vertically-pointing K-band radar, a lidar ceiliometer, and a profiling microwave radiometer to obtain measurements for diagnosing local inflight icing conditions. RAL is working with NASA GRC to develop algorithms and data ingest and display software for the system. NASA has an ongoing activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. As part of that effort NASA teamed with NCAR to develop software that fuses data from multiple instruments into a single detected icing condition product. The multiple instrument approach, which is the current emphasis of this activity, utilizes a K-band vertical staring radar, a microwave radiometer that detects twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed in C++ program with a Java-based web display of resultant supercooled LWC profile and aircraft hazard identification. In 2010, a multi-channel scanning radiometer, designed and built by Radiometrics, Inc. under a SBIR grant,,was added to the system to assess its utility in improving icing diagnoses.

  7. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger


    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  8. Sunn hemp as a cover crop to reduce nitrogen inputs for winter wheat (United States)

    The tropical legume sunn hemp (Crotalaria juncea L.) has the potential to perform as a beneficial cover crop in the southeastern United States due to its ability to accumulate large amounts of biomass and symbiotic nitrogen (N) in a short period of time during the summer months. Planting sunn hemp,...

  9. DC Flashover Performance of Various Types of Ice-Covered Insulator Strings under Low Air Pressure

    Directory of Open Access Journals (Sweden)

    Lichun Shu


    Full Text Available In this study, icing flashover performance tests of typical DC porcelain, glass, and composite insulators are systematically carried out in a multifunction artificial climate chamber. The DC icing flashover voltages of seven typical insulators under various conditions of icing thickness, pollution severity before icing, string length, and atmospheric pressure are obtained. The relationships between icing thickness, salt deposit density as well as atmospheric pressure and the 50% icing flashover voltage are analyzed, and the formulas are obtained by regression method. In addition, the DC icing flashover voltage correction method of typical porcelain, glass, and composite insulator in the coexisting condition of high altitude, contamination, and icing is proposed.

  10. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact approximate to 12,800 Years Ago. 1. Ice Cores and Glaciers

    Czech Academy of Sciences Publication Activity Database

    Wolbach, W. S.; Ballard, J. P.; Mayewski, P. A.; Adedeji, V.; Bunch, T. E.; Firestone, R. B.; French, T. A.; Howard, G. A.; Israde-Alcántara, I.; Johnson, J. R.; Kimbel, D. R.; Kinzie, Ch. R.; Kurbatov, A.; Kletetschka, Günther; LeCompte, M. A.; Mahaney, W. C.; Mellot, A. L.; Maiorana-Boutilier, A.; Mitra, S.; Moore, Ch. R.; Napier, W. M.; Parlier, J.; Tankersley, K. B.; Thomas, B. C.; Wittke, J. H.; West, A.; Kennett, J. P.


    Roč. 126, č. 2 (2018), s. 165-184 ISSN 0022-1376 Institutional support: RVO:67985831 Keywords : biomass burning * comet * deposition * ice core * impact * mass extinction * paleoclimate * paleoenvironment * platinum * trigger mechanism * wildfire * winter * Younger Dryas Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.952, year: 2016

  11. Ice making system for bobsleigh and luge track of the Nagano winter Olympic games; Bobsleigh luge track no seihyo system

    Energy Technology Data Exchange (ETDEWEB)

    Abiru, K.; Yahashi, H.; Omoto, S.; Watabe, M.; Matsuo, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)


    Bobsleigh and Luge Track of the Nagano Winter Olympic Games which will be held in February 1998 is the 14th one in the world as a system of chilling and icing the entire track with refrigerators. The Nagano`s system is the first one in the world as a system of indirectly chilling the track by using brine which is ethylene glycol. The system of the other tracks is a system of directly chilling by expanding ammonia. Mitsubishi Heavy Industries, LTD (MHI) has designed and constructed an ideal ice making system which had refrigerators, pumps, a cooling piping, an automatic control system, and MHI original Distributed Control System (DCS) by thermal dynamic simulation of the track. Optical communication was applied to the DCS in order to connect to thirteen control stations, which were located along the track 1.7km in length. Applying optical communication to the DCS, MHI realized the reliable DCS with anti-electromagnetic interference against, for example Lightning. 2 refs., 11 figs.

  12. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter

    Directory of Open Access Journals (Sweden)

    Marius O. Jonassen


    Full Text Available The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO, a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO's high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice.

  13. Prediction of Tonal Underwater Noise Pattern from Cavitating Propellers with Special Attention to Ice Cover Effects

    Directory of Open Access Journals (Sweden)

    Streckwall Heinrich


    Full Text Available To predict underwater noise spectra associated to regular occurrence of propeller cavitation we have extended an existing method [1] (used for the prediction of fluctuating hull pressures to become applicable for effects that are linked to a finite speed of sound. In [2] an intermediate approach was realized where (besides the hull far field boundaries were introduced but the incompressible flow assumption was kept. However compressibility effects become noticeable in the far field, which may be judged to start at some 2-3 propeller-diameters distance from the centre of the cavitation events, if we confine to emissions at 1st-4th blade frequency. It was a logical continuation of our former efforts to realize a compressible flow model and integrate the propeller as a noise source. Having increased the functionality of our approach by referencing the speed of sound, the precision of the method was also somehow reduced. In our former approach, like in comparable approaches (see for instance [3] and [4], the singularity system generating the near field propeller induced pressures involved various sources and vortices distributed on the propeller blades. With our current compressible approach this complexity was dropped, as a single point source substitutes the cavitating propeller. Such a simplification correlates with the assumption, that the monopole character of a noise source is decisive for the far field noise levels. In this contribution we outline the steps characterizing the procedure for predicting tonal underwater noise from cavitating propellers. In the first step a Vortex Lattice Method (VLM is used to access the cavitation pattern on the propeller with special focus on the cavity volume attached to one blade. The second step accumulates the distributed cavities to establish a fluctuating point source of equivalent far field noise characteristic. As relevant limits the hull, the free surface, the sea bottom and an ice cover are

  14. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach (United States)

    Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio


    Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's ice cap thaws. This study was conducted in such seasonally ice-covered lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) covering the lake bottom. Plankton dynamics were investigated during the ice-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-ice cover, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the ice melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.

  15. Sediment entrainment into sea ice and transport in the Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012 (United States)

    Wegner, C.; Wittbrodt, K.; Hölemann, J. A.; Janout, M. A.; Krumpen, T.; Selyuzhenok, V.; Novikhin, A.; Polyakova, Ye.; Krykova, I.; Kassens, H.; Timokhov, L.


    Sea ice is an important vehicle for sediment transport in the Arctic Ocean. On the Laptev Sea shelf (Siberian Arctic) large volumes of sediment-laden sea ice are formed during freeze-up in autumn, then exported and transported across the Arctic Ocean into Fram Strait where it partly melts. The incorporated sediments are released, settle on the sea floor, and serve as a proxy for ice-transport in the Arctic Ocean on geological time scales. However, the formation process of sediment-laden ice in the source area has been scarcely observed. Sediment-laden ice was sampled during a helicopter-based expedition to the Laptev Sea in March/April 2012. Sedimentological, biogeochemical and biological studies on the ice core as well as in the water column give insights into the formation process and, in combination with oceanographic process studies, on matter fluxes beneath the sea ice. Based on satellite images and ice drift back-trajectories the sediments were likely incorporated into the sea ice during a mid-winter coastal polynya near one of the main outlets of the Lena River, which is supported by the presence of abundant freshwater diatoms typical for the Lena River phytoplankton, and subsequently transported about 80 km northwards onto the shelf. Assuming ice growth of 12-19 cm during this period and mean suspended matter content in the newly formed ice of 91.9 mg l-1 suggests that a minimum sediment load of 8.4×104 t might have been incorporated into sea ice. Extrapolating these sediment loads for the entire Lena Delta region suggests that at least 65% of the estimated sediment loads which are incorporated during freeze-up, and up to 10% of the annually exported sediment load may be incorporated during an event such as described in this paper.

  16. Sea-ice information co-management: Planning for sustainable multiple uses of ice-covered seas in a rapidly changing Arctic (United States)

    Eicken, H.; Lovecraft, A. L.


    A thinner, less extensive and more mobile summer sea-ice cover is a major element and driver of Arctic Ocean change. Declining summer sea ice presents Arctic stakeholders with substantial challenges and opportunities from the perspective of sustainable ocean use and derivation of sea-ice or ecosystem services. Sea-ice use by people and wildlife as well as its role as a major environmental hazard focuses the interests and concerns of indigenous hunters and Arctic coastal communities, resource managers and the maritime industry. In particular, rapid sea-ice change and intensifying offshore industrial activities have raised fundamental questions as to how best to plan for and manage multiple and increasingly overlapping ocean and sea ice uses. The western North American Arctic - a region that has seen some of the greatest changes in ice and ocean conditions in the past three decades anywhere in the North - is the focus of our study. Specifically, we examine the important role that relevant and actionable sea-ice information can play in allowing stakeholders to evaluate risks and reconcile overlapping and potentially competing interests. Our work in coastal Alaska suggests that important prerequisites to address such challenges are common values, complementary bodies of expertise (e.g., local or indigenous knowledge, engineering expertise, environmental science) and a forum for the implementation and evaluation of a sea-ice data and information framework. Alongside the International Polar Year 2007-08 and an associated boost in Arctic Ocean observation programs and platforms, there has been a movement towards new governance bodies that have these qualities and can play a central role in guiding the design and optimization of Arctic observing systems. To help further the development of such forums an evaluation of the density and spatial distribution of institutions, i.e., rule sets that govern ocean use, as well as the use of scenario planning and analysis can serve as

  17. Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months. (United States)

    Bullock, Nicola; Gulbin, Jason P; Martin, David T; Ross, Angus; Holland, Terry; Marino, Frank


    The aims of this study were to talent transfer, rapidly develop, and qualify an Australian female athlete in the skeleton event at the 2006 Torino Winter Olympic Games and quantify the volume of skeleton-specific training and competition that would enable this to be achieved. Initially, 26 athletes were recruited through a talent identification programme based on their 30-m sprint time. After attending a selection camp, 10 athletes were invited to undertake an intensified skeleton training programme. Four of these athletes were then selected to compete for Australia on the World Cup circuit. All completed runs and simulated push starts were documented over a 14-month period. The athlete who eventually represented Australia at the Torino Winter Olympic Games did so following approximately 300 start simulations and about 220 training/competition runs over a period of 14 months. Using a deliberate programming model, these findings provide a guide to the minimum exposure required for a novice skeleton athlete to reach Olympic representative standard following intensified sport-specific training. The findings of this study are discussed in the context of the deliberate practice theory and offer the term "deliberate programming" as an alternative way of incorporating all aspects of expert development.

  18. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys (United States)


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice...Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...TERM GOALS The goal of this project is to examine the role of sea-ice and atmospheric interactions in the retreat of the SIZ. As sea ice retreats

  19. The impact of organochlorines cycling in the cryosphere on global distributions and fate--2. Land ice and temporary snow cover. (United States)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard


    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ(ov), of γ-HCH and overestimate τ(ov) for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover (United States)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide


    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  1. Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature (United States)

    Yu, Lulu; Wu, Zhiwei; Zhang, Renhe; Yang, Xin


    Seasonal prediction of the East Asian (EA) winter monsoon (EAWM) is of great significance yet a challenging issue. In this study, three statistical seasonal prediction models for the EAWM are established using three leading modes of the Eurasian snow cover (ESC), the first leading mode of sea surface temperature (SST) and the four leading modes of the combination of the ESC and SST in preceding autumn, respectively. These leading modes are identified by the partial-least square (PLS) regression. The first PLS (PLS1) mode for the ESC features significantly anomalous snow cover in Siberia and Tibetan Plateau regions. The ESC second PLS (PLS2) mode corresponds to large areas of snow cover anomalies in the central Siberia, whereas the third PLS (PLS3) mode a meridional seesaw pattern of ESC. The SST PLS1 mode basically exhibits an El Niño-Southern Oscillation developing phase in equatorial eastern Pacific and significant SST anomalies in North Atlantic. A strong EAWM tends to emerge in a La Niña year concurrent with cold SST anomalies in the North Atlantic, and vice versa. After a 35-year training period (1967-2001), three PLS seasonal prediction models are constructed and the 11-year hindcast is performed for the period of 2002-2012, respectively. The PLS model based on combination of the autumn ESC and SST exhibits the best hindcast skill among the three models, its correlation coefficient between the observation and the hindcast reaching 0.86. This indicates that this physical-based PLS model may provide another practical tool for the EAWM. In addition, the relative contribution of the ESC and SST is also examined by assessing the hindcast skills of the other two PLS models constructed solely by the ESC or SST. Possible physical mechanisms are also discussed.

  2. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.


    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...... sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote...

  3. Eddy Covariance flux measurements over an ice/snow covered lake in Finland (United States)

    Potes, Miguel; Salgado, Rui; Provenzale, Maria; Mammarella, Ivan


    The inland water bodies play an important role in the regional heat and mass transfer with the atmosphere. As lakes cover an area of 4.2 million km2, representing an area of more than 3% of Earth continental surface, an increasing concern in estimation of heat and greenhouse gases exchanges between inland water bodies and the atmosphere has been developed in the last years. The eddy covariance (EC) method is the worldwide most common technique used to assess turbulent fluxes over all types of surface. In the framework of two Short Term Scientific Mission of the COST action "A European network for a harmonized monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction" (ES1404), it was feasible to have parallel EC measurements with two identical equipment over a boreal lake. In this communication the results are related to the period comprised between November 2015 and May 2016, including freezing and ice-free periods. Observed near surface fluxes of momentum, heat and mass (H2O and CO2) were obtained with a new eddy covariance system (EC), Campbell Scientific's IRGASON Integrated Open-Path CO2/H2O Gas Analyzer and 3D Sonic Anemometer, over lake Vanajavesi in Finland. The measurement site is located in a tip of narrow peninsula on the lake (61.133935°N; 24.259119°E), offering very good conditions for eddy covariance flux measurements. The EC system was installed at 2.5m height above the lake surface and was oriented against the prevailing wind direction in the site.

  4. A physically based 3-D model of ice cliff evolution over debris-covered glaciers (United States)

    Buri, Pascal; Miles, Evan S.; Steiner, Jakob F.; Immerzeel, Walter W.; Wagnon, Patrick; Pellicciotti, Francesca


    We use high-resolution digital elevation models (DEMs) from unmanned aerial vehicle (UAV) surveys to document the evolution of four ice cliffs on the debris-covered tongue of Lirung Glacier, Nepal, over one ablation season. Observations show that out of four cliffs, three different patterns of evolution emerge: (i) reclining cliffs that flatten during the ablation season; (ii) stable cliffs that maintain a self-similar geometry; and (iii) growing cliffs, expanding laterally. We use the insights from this unique data set to develop a 3-D model of cliff backwasting and evolution that is validated against observations and an independent data set of volume losses. The model includes ablation at the cliff surface driven by energy exchange with the atmosphere, reburial of cliff cells by surrounding debris, and the effect of adjacent ponds. The cliff geometry is updated monthly to account for the modifications induced by each of those processes. Model results indicate that a major factor affecting the survival of steep cliffs is the coupling with ponded water at its base, which prevents progressive flattening and possible disappearance of a cliff. The radial growth observed at one cliff is explained by higher receipts of longwave and shortwave radiation, calculated taking into account atmospheric fluxes, shading, and the emission of longwave radiation from debris surfaces. The model is a clear step forward compared to existing static approaches that calculate atmospheric melt over an invariant cliff geometry and can be used for long-term simulations of cliff evolution and to test existing hypotheses about cliffs' survival.

  5. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut


    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  6. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States (United States)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.


    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  7. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    International Nuclear Information System (INIS)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard


    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  8. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  9. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  10. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity (United States)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.


    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  11. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. (United States)

    Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun


    Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Impacts of debris cover on glaciers: research priorities and relation to glacier-climate interactions on clean-ice glaciers. (United States)

    Nicholson, L. I.


    Debris covered glaciers are a common feature in many high mountain environments. The presence of surficial debris fundamentally alters a number of glacier processes, and consequently the manner in which glaciers respond to climate. Incomplete understanding of these altered processes hampers (a) the use of records of glacier change as a means of unraveling former climate conditions, (b) the production of glacier runoff projections and (c) development of high quality hazard assessments of the future development of debris covered glaciers and associated ice dammed lakes. This presentation summarizes four key ways in which debris cover alters the behaviour of glaciers in ways that are relevant to solving both scientific and more practical problems: (1) surface energy balance and sensitivity to climate (2) ablation gradient of debris covered glaciers and their long profile evolution under changing climate conditions (3) differential ablation and the development of supraglacial ponds (4) sedimentary record of moraine deposition and impacts of this on climatic reconstruction and long term moraine stability The presentation concludes by outlining priority list of research required specifically on debris covered glaciers and how this could be integrated within research programs assessing the response of clean ice glaciers to ongoing climate change.

  13. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys (United States)


    Evolution of Sea Ice Sb. GRANT NUMBER N000 1 4-1 2- 1-0232 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Axel Schweiger Se. TASK NUMBER...Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone...concentrations and ocean temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation ofthis feedback loop in

  14. Hydrocarbons (aliphatic and aromatic) in the snow-ice cover in the Arctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.; Kluvitkin, A.A.


    This paper presented the concentration and composition of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in snow and ice-infested waters in the France-Victoria trough in the northern Barents Sea and in the Mendeleev ridge in the Amerasian basin of the Arctic Ocean. Extreme conditions such as low temperatures, ice sheets and the polar nights render the arctic environment susceptible to oil spills. Hydrocarbons found in these northern seas experience significant transformations. In order to determine the sources, pathways and transformations of the pollutants, it is necessary to know their origin. Hydrocarbon distributions is determined mostly by natural hydrobiological and geochemical conditions. The regularity of migration is determined by natural factors such as formation and circulation of air and ice drift. There is evidence suggesting that the hydrocarbons come from pyrogenic sources. It was noted that hydrocarbons could be degraded even at low temperatures. 17 refs., 1 tab

  15. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.


    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  16. EASE-Grid 2.0 Land-Ocean-Coastline-Ice Masks Derived from Boston University MODIS/Terra Land Cover Data, Version 1 (United States)

    National Aeronautics and Space Administration — These Land-Ocean-Coastline-Ice (LOCI) files provide land classification masks derived from the Boston University MOD12Q1 V004 MODIS/Terra 1 km Land Cover Product...

  17. EASE-Grid Land-Ocean-Coastline-Ice Masks Derived from Boston University MODIS/Terra Land Cover Data, Version 1 (United States)

    National Aeronautics and Space Administration — These Land-Ocean-Coastline-Ice (LOCI) files provide land classification masks derived from the Boston University MOD12Q1 V004 MODIS/Terra 1 km Land Cover Product...

  18. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.


    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  19. Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover

    Directory of Open Access Journals (Sweden)

    Homa Kheyrollah Pour


    Full Text Available This paper presents results from a study on the impact of remote-sensing Lake Surface Water Temperature (LSWT observations in the analysis of lake surface state of a numerical weather prediction (NWP model. Data assimilation experiments were performed with the High Resolution Limited Area Model (HIRLAM, a three-dimensional operational NWP model. Selected thermal remote-sensing LSWT observations provided by the Moderate Resolution Imaging Spectroradiometer (MODIS and Advanced Along-Track Scanning Radiometer (AATSR sensors onboard the Terra/Aqua and ENVISAT satellites, respectively, were included into the assimilation. The domain of our experiments, which focussed on two winters (2010–2011 and 2011–2012, covered northern Europe. Validation of the resulting objective analyses against independent observations demonstrated that the description of the lake surface state can be improved by the introduction of space-borne LSWT observations, compared to the result of pure prognostic parameterisations or assimilation of the available limited number of in-situ lake temperature observations. Further development of the data assimilation methods and solving of several practical issues are necessary in order to fully benefit from the space-borne observations of lake surface state for the improvement of the operational weather forecast. This paper is the second part of a series of two papers aimed at improving the objective analysis of lake temperature and ice conditions in HIRLAM.

  20. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.


    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  1. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiu-liang Jin

    Full Text Available Improving winter wheat water use efficiency in the North China Plain (NCP, China is essential in light of current irrigation water shortages. In this study, the AquaCrop model was used to calibrate, and validate winter wheat crop performance under various planting dates and irrigation application rates. All experiments were conducted at the Xiaotangshan experimental site in Beijing, China, during seasons of 2008/2009, 2009/2010, 2010/2011 and 2011/2012. This model was first calibrated using data from 2008/2009 and 2009/2010, and subsequently validated using data from 2010/2011 and 2011/2012. The results showed that the simulated canopy cover (CC, biomass yield (BY and grain yield (GY were consistent with the measured CC, BY and GY, with corresponding coefficients of determination (R(2 of 0.93, 0.91 and 0.93, respectively. In addition, relationships between BY, GY and transpiration (T, (R(2 = 0.57 and 0.71, respectively was observed. These results suggest that frequent irrigation with a small amount of water significantly improved BY and GY. Collectively, these results indicate that the AquaCrop model can be used in the evaluation of various winter wheat irrigation strategies. The AquaCrop model predicted winter wheat CC, BY and GY with acceptable accuracy. Therefore, we concluded that AquaCrop is a useful decision-making tool for use in efforts to optimize wheat winter planting dates, and irrigation strategies.

  2. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. (United States)

    Jin, Xiu-liang; Feng, Hai-kuan; Zhu, Xin-kai; Li, Zhen-hai; Song, Sen-nan; Song, Xiao-yu; Yang, Gui-Jun; Xu, Xin-gang; Guo, Wen-shan


    Improving winter wheat water use efficiency in the North China Plain (NCP), China is essential in light of current irrigation water shortages. In this study, the AquaCrop model was used to calibrate, and validate winter wheat crop performance under various planting dates and irrigation application rates. All experiments were conducted at the Xiaotangshan experimental site in Beijing, China, during seasons of 2008/2009, 2009/2010, 2010/2011 and 2011/2012. This model was first calibrated using data from 2008/2009 and 2009/2010, and subsequently validated using data from 2010/2011 and 2011/2012. The results showed that the simulated canopy cover (CC), biomass yield (BY) and grain yield (GY) were consistent with the measured CC, BY and GY, with corresponding coefficients of determination (R(2)) of 0.93, 0.91 and 0.93, respectively. In addition, relationships between BY, GY and transpiration (T), (R(2) = 0.57 and 0.71, respectively) was observed. These results suggest that frequent irrigation with a small amount of water significantly improved BY and GY. Collectively, these results indicate that the AquaCrop model can be used in the evaluation of various winter wheat irrigation strategies. The AquaCrop model predicted winter wheat CC, BY and GY with acceptable accuracy. Therefore, we concluded that AquaCrop is a useful decision-making tool for use in efforts to optimize wheat winter planting dates, and irrigation strategies.

  3. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2? (United States)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun


    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  4. Process of establishing a plane-wave system on ice cover over a dipole moving uniformly in an ideal fluid column (United States)

    Il'ichev, A. T.; Savin, A. S.


    We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.

  5. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.


    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  6. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.

    Directory of Open Access Journals (Sweden)

    Glenn D Delgiudice

    Full Text Available Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature.We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267 and Global Positioning System (GPS, n = 24 collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date

  7. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.


    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  8. Effect of winter cover crop grazing on animal performance and antibiotic resistance during pre-weaning period in beef cattle (United States)

    We investigated the effect of winter wheat grazing on body weight gain and the level of antibiotic resistant bacteria in beef cattle. Calves and cows (16 each) were equally randomized into tall fescue or wheat pastures. Body weights and fecal samples were taken on d 0, d 7, d 14 and d 21. Samples we...

  9. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut


    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  10. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.


    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  11. Impact of ice cover and freshwater discharge on the pelagic food web

    DEFF Research Database (Denmark)

    Nielsen, Torkel Gissel

    -scale ocean and the ice sheet - for two reasons. First, it is plausible that a sizable portion of the observed glacier acceleration and retreat was triggered by increased submarine melting of the glaciers’ margins. Second, the melt water from Greenland must transit through the fjord before reaching Greenland......’s continental shelves - where it can impact the ocean circulation and the downstream marine ecosystems. Using data collected from several Greenland fjord/glacier systems we show that the freshwater discharge in these coastal waters is mediated by a complex interplay of atmospheric forcing, subglacial processes...... waters ultimately govern the freshwater export both at the surface and at depth. Ocean circulation within the fjords, which results from the interplay between buoyancy-driven (i.e. driven by glacial inputs) and shelf-driven flows (a consequence of gradients between fjord and continental shelf waters...

  12. Winter survival of Scots pine seedlings under different snow conditions. (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi


    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  13. Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate (United States)

    Elders, Akiko; Pegion, Kathy


    Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.

  14. A grid-based Model for Backwasting at supraglacial Ice Cliffs on a debris-covered Glacier (United States)

    Buri, P.; Steiner, J. F.; Pellicciotti, F.; Miles, E. S.; Immerzeel, W.


    In the Himalaya, debris-covered glaciers cover significant portions of the glacierised area. Their behaviour is not entirely understood, but they seem to experience strong mass losses in direct contradiction with the insulating effect of debris. A characteristic most debris-covered glaciers share is the appearance of cliffs and lakes on their surface. These supraglacial features play a role in surface evolution, dynamics and downwasting of debris-covered glaciers but their actual effects have not been quantified at the glacier scale. Numerous measurements of radiative fluxes at the cliff surface, detailed survey of cliffs geometry and ablation have been conducted on the debris-covered Lirung Glacier, Nepalese Himalayas. We used four 20cm-resolution DEMs obtained from UAV flights to represent the glacier surface to a very detailed degree. As the debris remains stable on slopes up to 30°, ice cliffs show inclinations above this threshold and were clearly represented in the DEMs. Direct measurements and a point-scale cliff-backwasting model have showed that melt patterns over a single cliff are highly variable across and along the ice surface due to non-uniform geometry, varying inclination, aspect and terrain view factors. Variability in observed ablation was large also among cliffs. We therefore developed an energy balance model with a gridded representation of the cliff to understand the melt behaviour at the cliff scale. Previous models assumed the cliff to be a plane with a constant slope and aspect, and extrapolation of melt rates to the glacier scale based on this assumption might be erroneous. Using a grid-based approach allows representation of real inclined areas of the cliff. The detailed surface from the UAV-DEM was taken as initial condition for the model. The model was in close agreement with ablation measurements at numerous stakes located on 3 cliffs. Results show very high variability both along the cliffs' elevation and extension. These cannot be

  15. A one-dimensional model of vertical stratification of Lake Shira focussed on winter conditions and ice cover

    NARCIS (Netherlands)

    Genova, S.N.; Belolipetsky, V.M.; Rogozin, D.Y.; Degermendzhy, A.G.; Mooij, W.M.


    In meromictic lakes such as Lake Shira, horizontal inhomogeneity is small in comparison with vertical gradients. To determine the vertical distribution of temperature, salinity, and density of water in a deep zone of a Lake Shira, or other saline lakes, a one-dimensional (in vertical direction)

  16. The engineering approach to winter sports

    CERN Document Server

    Cheli, Federico; Maldifassi, Stefano; Melzi, Stefano; Sabbioni, Edoardo


    The Engineering Approach to Winter Sports presents the state-of-the-art research in the field of winter sports in a harmonized and comprehensive way for a diverse audience of engineers, equipment and facilities designers, and materials scientists. The book examines the physics and chemistry of snow and ice with particular focus on the interaction (friction) between sports equipment and snow/ice, how it is influenced by environmental factors, such as temperature and pressure, as well as by contaminants and how it can be modified through the use of ski waxes or the microtextures of blades or ski soles. The authors also cover, in turn, the different disciplines in winter sports:  skiing (both alpine and cross country), skating and jumping, bob sledding and skeleton, hockey and curling, with attention given to both equipment design and on the simulation of gesture and  track optimization.

  17. Characterising the sea ice environment using a newly developed sensor array mounted on an under-ice trawl


    Lange, Benjamin; David, Car; Katlein, Christian; Meiners, Klaus M.; Nicolaus, Marcel; Peeken, Ilka; Flores, Hauke


    One of the most pronounced impacts of climate change is the changing sea ice cover, which has implications for sea ice-associated ecosystems that depend on carbon produced by ice-associated algae. In order to fully understand these ecosystems there is a need to understand both the physical and biological components. We present preliminary results from Polarstern cruises to the Eastern Central Arctic Ocean (summer 2012) and Weddell Sea (fall-winter 2013). Biological samples were acquired from ...

  18. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic (United States)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.


    Global warming may disproportionately affect Arctic marine mammals and disrupt traditional subsistence hunting activities. Based upon analyses of a 24-year time series (1979-2002) of satellite-derived sea ice cover, we identified significant positive trends in the amount of open-water in three large and five small-scale regions in the western Arctic, including habitats where bowhead whales (Balaena mysticetus) feed or are suspected to feed. Bowheads are the only mysticete whale endemic to the Arctic and a cultural keystone species for Native peoples from northwestern Alaska and Chukotka, Russia. While copepods (Calanus spp.) are a mainstay of the bowhead diet, prey sampling conducted in the offshore region of northern Chukotka and stomach contents from whales harvested offshore of the northern Alaskan coast indicate that euphausiids (Thysanoessa spp.) advected from the Bering Sea are also common prey in autumn. Early departure of sea ice has been posited to control availability of zooplankton in the southeastern Bering Sea and in the Cape Bathurst polynya in the southeastern Canadian Beaufort Sea, with maximum secondary production associated with a late phytoplankton bloom in insolatoin-stratified open water. While it is unclear if declining sea-ice has directly affected production or advection of bowhead prey, an extension of the open-water season increases opportunities for Native subsistence whaling in autumn. Therefore, bowhead whales may provide a nexus for simultaneous exploration of the effects sea ice reduction on pagophillic marine mammals and on the social systems of the subsistence hunting community in the western Arctic. The NOAA/Alaska Fisheries Science Center and NSB/Department of Wildlife Management will investigate bowhead whale stock identity, seasonal distribution and subsistence use patterns during the International Polar Year, as an extension of research planned for 2005-06. This research is in response to recommendations from the Scientific

  19. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries

    Energy Technology Data Exchange (ETDEWEB)

    Neukom, R.; Grosjean, M.; Wanner, H. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), Bern (Switzerland); University of Bern, Institute of Geography, Climatology and Meteorology, Bern (Switzerland); Luterbacher, J. [Justus Liebig University of Giessen, Department of Geography, Climatology, Climate Dynamics and Climate Change, Giessen (Germany); Villalba, R.; Morales, M.; Srur, A. [CONICET, Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales (IANIGLA), Mendoza (Argentina); Kuettel, M. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), Bern (Switzerland); University of Bern, Institute of Geography, Climatology and Meteorology, Bern (Switzerland); University of Washington, Department of Earth and Space Sciences, Seattle (United States); Frank, D. [Swiss Federal Research Institute WSL, Birmensdorf (Switzerland); Jones, P.D. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Aravena, J.-C. [Centro de Estudios Cuaternarios de Fuego Patagonia y Antartica (CEQUA), Punta Arenas (Chile); Black, D.E. [Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook (United States); Christie, D.A.; Urrutia, R. [Universidad Austral de Chile Valdivia, Laboratorio de Dendrocronologia, Facultad de Ciencias Forestales y Recursos Naturales, Valdivia (Chile); D' Arrigo, R. [Earth Institute at Columbia University, Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Lara, A. [Universidad Austral de Chile Valdivia, Laboratorio de Dendrocronologia, Facultad de Ciencias Forestales y Recursos Naturales, Valdivia (Chile); Nucleo Cientifico Milenio FORECOS, Fundacion FORECOS, Valdivia (Chile); Soliz-Gamboa, C. [Utrecht Univ., Inst. of Environmental Biology, Utrecht (Netherlands); Gunten, L. von [Univ. of Bern (Switzerland); Univ. of Massachusetts, Climate System Research Center, Amherst (United States)


    We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901-1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales. (orig.)

  20. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance. (United States)

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor


    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.

  1. Enhanced tropospheric BrO over Antarctic sea ice in mid winter observed by MAX-DOAS on board the research vessel Polarstern

    Directory of Open Access Journals (Sweden)

    T. Wagner


    Full Text Available We present Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS observations of tropospheric BrO carried out on board the German research vessel Polarstern during the Antarctic winter 2006. Polarstern entered the area of first year sea ice around Antarctica on 24 June 2006 and stayed within this area until 15 August 2006. For the period when the ship cruised inside the first year sea ice belt, enhanced BrO concentrations were almost continuously observed. Outside the first year sea ice belt, typically low BrO concentrations were found. Based on back trajectory calculations we find a positive correlation between the observed BrO differential slant column densities (ΔSCDs and the duration for which the air masses had been in contact with the sea ice surface prior to the measurement. While we can not completely rule out that in several cases the highest BrO concentrations might be located close to the ground, our observations indicate that the maximum BrO concentrations might typically exist in a (possibly extended layer around the upper edge of the boundary layer. Besides the effect of a decreasing pH of sea salt aerosol with altitude and therefore an increase of BrO with height, this finding might be also related to vertical mixing of air from the free troposphere with the boundary layer, probably caused by convection over the warm ocean surface at polynyas and cracks in the ice. Strong vertical gradients of BrO and O3 could also explain why we found enhanced BrO levels almost continuously for the observations within the sea ice. Based on our estimated BrO profiles we derive BrO mixing ratios of several ten ppt, which is slightly higher than many existing observations. Our observations indicate that enhanced BrO concentrations around Antarctica exist about one month earlier than observed by satellite instruments. From detailed radiative transfer simulations we find that MAX-DOAS observations are up to about one order of

  2. Study of ice-related flow features around Tanaica Montes, Mars: Implications for late amazonian debris-covered glaciation (United States)

    Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.


    Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface

  3. Ancient ice (United States)


    Simon Belt, Guillaume Massé and colleagues rammed their way through sheets of ice, spotting some polar bears on the way, in their attempt to reconstruct Arctic sea-ice records covering thousands of years.

  4. Understanding first-year ice thickness variability using IceBridge measurements and drift track analysis (United States)

    Bradley, A. C.; Palo, S. E.


    In a first-year ice dominated environment, positive climate feedbacks in the Arctic persist from year to year when increased summertime melt results in decreased ice growth the following winter. In this presentation, we describe a novel approach to evaluating the impacts of delayed freeze-up, oceanic heat flux, and variable atmospheric forcing on end-of-season first year ice thickness. Parcels of first-year sea ice selected from IceBridge sea ice thickness retrievals are tracked backwards through their winter drift paths using the Pathfinder Ice Motion product. The freeze-up date for each parcel is determined by tracing the drift path through the SSMI Ice Concentration product, and summertime mixed layer heat is estimated from the NOAA Optimal Interpolation SST product at the locations of freeze-up and the end-of-season measurement. Over-winter atmospheric forcing is estimated from integrating the drift path through the MERRA2 reanalysis product using a simple 1-D ice growth model. The end of season ice thickness distributions can then be analyzed in the context of the processes that drive ice growth. The summer mixed layer temperature at the end-of-season measurement location, the integrated atmospheric forcing, and the length of the growth season are the three parameters, after end-of-season snow depth, most correlated with the ice thickness. Controlling for these other factors, delaying freeze-up by one week leads to 5.3 cm thinner ice cover at the end of the season. Warming summer ocean temperatures contribute to delayed freeze-up, but even after controlling for changing freeze-up dates and atmospheric forcing, each degree (C) of warmer summertime temperatures results in 1.9 centimeters of thinner ice cover at the end of the winter season. This indicates that oceanic heat flux due to trapped seasonal heat compounds the loss of ice growth due to delayed freeze-up resulting in thinner first-year ice cover in the Arctic seasonal ice zones.

  5. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover (United States)


    describe contemporary ice pack thickness, MODIS , AVHRR, RadarSat-2 (satellite imagery) that describe ice pack deformation features on large scales, as well...enhance the seasonal marginal ice zone formation and albedo feedback in summer. WORK COMPLETED We have conducted an assessment of the declassified...observations collected by the NASA Operation IceBridge (OIB) project, including high-resolution visible-band imagery (Onana et al., 2013), snow depth (Newman et

  6. Small Moves, NUI. Small Moves: Beginning to Investigate Biogeochemical Exchange From the Seafloor to the Exterior of an Ice-Covered Ocean (United States)

    German, C. R.; Boetius, A.


    We present results from two recent cruises, using the new Nereid Under Ice (NUI) vehicle aboard the FS Polarstern, in which we investigated biogeochemical fluxes from the deep seafloor of the Gakkel Ridge, an ultraslow spreading ridge that spans the ice-covered Arctic Ocean, and the mechanisms by which biogeochemical signals might be transferred from within the underlying ocean to the overlying Arctic ice. The scientific advances for this work progress hand in hand with technological capability. During a first cruise in 2014, our NUI-based investigations focused on photosynthetically-driven biogeochemical cycling in the uppermost water column and how to study such processes using in situ sensing immediately at and beneath the rough topography of the overlying ice-cover. For that work we relied entirely upon human-in-the-loop control of the vehicle via a single optical fiber light tether than provided real-time monitoring and control of the vehicle as it ranged laterally out under the ice up to 1km distant from the ship, conducting physical, geochemical and biological surveys. Instrumentation used for that work included multibeam mapping and imaging (digital still photographs and HD video), in situ spectroscopy to study light transmission through the ice and biogeochemical mapping of the ocean water column using a combination of CTD sensing, fluorometry and an in situ nitrate analyzer. Returning to the Arctic in 2016 we extended our exploration modes with NUI further, investigating for seafloor fluid flow at a shallow setting on the flanks of the Gakkel Ridge where the seabed rises from >4000m to movement of the ship (horizontal displacements of 1km or more) at the ice-covered ocean surface. While the existing NUI vehicle does not map directly to model payloads for future SLS missions to Europa or Enceladus it does provide for important small moves in the right direction.

  7. High Speed Ice Friction (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben


    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  8. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...

  9. Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset

    DEFF Research Database (Denmark)

    Else, B.G.T.; Papakyriakou, T.N.; Raddatz, R.


    Relatively few sea ice energy balance studies have successfully captured the transition season of warming, snowmelt, and melt pond formation. In this paper, we report a surface energy budget for landfast sea ice that captures this important period. The study was conducted in the Canadian Arctic......) combined with the seasonal increase in incoming shortwave radiation then triggered snowmelt onset. Melt progressed with a rapid reduction in albedo and attendant increases in shortwave energy absorption, resulting in melt pond formation 8 days later. The key role of longwave radiation in initiating melt...... onset supports past findings, and confirms the importance of clouds and water vapor associated with synoptic weather systems. However, we also observed a period of strong turbulent energy exchange associated with the passage of a cyclone. The cyclone event occurred shortly after melt pond formation...

  10. Recent changes in the dynamic properties of declining Arctic sea ice: A model study (United States)

    Zhang, Jinlun; Lindsay, Ron; Schweiger, Axel; Rigor, Ignatius


    Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007-2011 compared to the 1979-2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter-term forecasts of sea ice edge locations more challenging.

  11. Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters (United States)

    Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong


    The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).

  12. Sea ice roughness: the key for predicting Arctic summer ice albedo (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.


    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  13. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour


    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  14. Direct and indirect climatic drivers of biotic interactions: ice-cover and carbon runoff shaping Arctic char Salvelinus alpinus and brown trout Salmo trutta competitive asymmetries. (United States)

    Ulvan, Eva M; Finstad, Anders G; Ugedal, Ola; Berg, Ole Kristian


    One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using (137)Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.

  15. Effect of Grafting Method, Graft Cover and Foliar Spray of some Mineral Elements on Persian Walnut Graft-take and Winter Survival Rate

    Directory of Open Access Journals (Sweden)

    Reza Rezaee


    Full Text Available Introduction: Persian walnut (Juglans regia L. is an important nut crop in Iran and many parts of the world. One of the major challenges of growing walnut is planting of non-grafted walnut trees in orchards, which leads to the reduction of yield, quality and productivity of walnut orchards. Compared to the other fruit trees, walnut grafting is difficult and even newly grafted walnut seedlings are vulnerable to fall or winter frost chilling, so that most of the seedlings are lost after subjecting to the cold winter. There are a few studies reporting successful grafting in outdoor conditions, however, final grafting take after winter has been usually ignored. Hence, increased walnut grafting success and improved tree growth after grafting through foliar nutrient application may lead to increased tolerance of chilling. Therefore, main goals of this research were to investigate the effect of some graft covers and role of foliar spray of calcium, boron and zinc on the reduction of frost damage in newly grafted seedlings under outdoor conditions. Materials and methods: This research was conducted at agricultural research station, Khoy city, west Azerbaijan province, during 2012-2014. In the first experiment, three methods of grafting including cleft, bark and V-shaped, and two kinds of graft covers including moist sawdust and superabsorbent plus cotton wool were investigated in terms of grafting success and quality of seedlings. In the second experiment, effect of the three above-mentioned grafting methods and two levels of foliar spray including sequential spray of Ca (4 ppm, B and Zn (2% (3 times during growth season and control (no spray were studied in terms of frost damage. The experiments conducted in factorial based on randomized complete block design with 10 trees in each plot. Data were collected 45 days after grafting take, final grafting take after one winter, subsequent scion growth length and diameter and concentration of Ca, B and Zn in

  16. Modern seasonal variability of central Arctic Ocean sea-ice cover: Reconstruction based on biomarker ("IP25" and "PIP25") data from sediment trap samples (United States)

    Fahl, K.; Stein, R.


    During the Polarstern 1995 Expedition, a long-term mooring system with two cone-shaped multi-sampling traps was deployed at the dominantly ice-covered western slope of the southern Lomonosov Ridge (81°04.5'N, 138°54.0'E, 1712 m water depth). One trap was installed at 150 m below the sea surface, the other at 150 m above the bottom at 1550 m depth; material was collected in 20 time intervals between September 1995 and August 1996. For background data see Fahl and Nöthig (2007). Here, we present new biomarker data recording the seasonal variability of sea-ice cover. This type of data representing modern seasonal variability of the sea-ice biomarker proxies, was not available so far from the central Arctic Ocean but may help significantly the interpretation of these proxies to be used in sedimentary records for reconstruction of paleo-sea-ice distributions. In this study, we have focused on the novel sea ice proxy "IP25", a direct proxy for sea ice coverage (Belt et al., 2007). Furthermore, we used the phytoplankton-IP25 index ("PIP25" Index), a further development of the IP25 index, based on the coupling of the environmental information carried by IP25 (sea ice) and brassicasterol (open-water phytoplankton productivity) (Müller et al., 2011). The interval November 1995 to June 1996 is characterized by the absence of the sea-ice proxy IP25 (except very minor values for January and April), suggesting a predominantly permanent sea-ice cover at the trap location. During July/August 1996, maximum fluxes of the diatom-specific fatty acids and brassicasterol as well as maximum contents of biogenic opal (Fahl and Nöthig, 2007) indicate increased primary productivity. The marine organic matter (here POC, brassicasterol, and fatty acids) and the IP25 values decrease systematically from 150 to 1550m depth, indicating the typical biogeochemical degradation with increasing water depth. Due to the coincidence of maximum abundances of sea-ice proxies and open-ocean primary

  17. Image-based change estimation (ICE): monitoring land use, land cover and agent of change information for all lands (United States)

    Kevin Megown; Andy Lister; Paul Patterson; Tracey Frescino; Dennis Jacobs; Jeremy Webb; Nicholas Daniels; Mark. Finco


    The Image-based Change Estimation (ICE) protocols have been designed to respond to several Agency and Department information requirements. These include provisions set forth by the 2014 Farm Bill, the Forest Service Action Plan and Strategic Plan, the 2012 Planning Rule, and the 2015 Planning Directives. ICE outputs support the information needs by providing estimates...

  18. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil (United States)

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.


    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  19. Methane excess in Arctic surface water-triggered by sea ice formation and melting. (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G


    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  20. Ice Cover Prediction of a Power Grid Transmission Line Based on Two-Stage Data Processing and Adaptive Support Vector Machine Optimized by Genetic Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu


    Full Text Available With the increase in energy demand, extreme climates have gained increasing attention. Ice disasters on transmission lines can cause gap discharge and icing flashover electrical failures, which can lead to mechanical failure of the tower, conductor, and insulators, causing significant harm to people’s daily life and work. To address this challenge, an intelligent combinational model is proposed based on improved empirical mode decomposition and support vector machine for short-term forecasting of ice cover thickness. Firstly, in light of the characteristics of ice cover thickness data, fast independent component analysis (FICA is implemented to smooth the abnormal situation on the curve trend of the original data for prediction. Secondly, ensemble empirical mode decomposition (EEMD decomposes data after denoising it into different components from high frequency to low frequency, and support vector machine (SVM is introduced to predict the sequence of different components. Then, some modifications are performed on the standard SVM algorithm to accelerate the convergence speed. Combined with the advantages of genetic algorithm and tabu search, the combination algorithm is introduced to optimize the parameters of support vector machine. To improve the prediction accuracy, the kernel function of the support vector machine is adaptively adopted according to the complexity of different sequences. Finally, prediction results for each component series are added to obtain the overall ice cover thickness. A 220 kV DC transmission line in the Hunan Region is taken as the case study to verify the practicability and effectiveness of the proposed method. Meanwhile, we select SVM optimized by genetic algorithm (GA-SVM and traditional SVM algorithm for comparison, and use the error function of mean absolute percentage error (MAPE, root mean square error (RMSE and mean absolute error (MAE to compare prediction accuracy. Finally, we find that these improvements

  1. Winter Bottom Trawl Survey (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  2. Monitoring of sea ice drift and area flux in the Fram Strait (United States)

    Sandven, S.; Kloster, K.; Wåhlin, J.


    The western part of the Fram strait is normally covered with sea ice throughout the year. The ice is stationary as fast ice out to 70 -140km from the Greenland coast. Outside is a zone with drifting ice with a gradual increase in drift speed further eastwards to the centre of the strait. Since 2004 NERSC has used ENVISAT ASAR Wideswath images with 150 m resolution to estimate ice drift with three days interval. To resolve the zonal variability in the ice drift field, strait is divided into four different zones. Zone I has usually fastice, zone II is the transition zone with a zonal ice drift gradient, Zone III is only drifting ice and zone IV includes the shelf break and the marginal ice zone where the ice drift is normally at a maximum. This is zone is also more difficult for ice drift for ice drift retrieval from satellites because of quite homogeneous ice cover. The ice area flux is calculated from the detailed ice drift- and concentration-profiles at 79N, as the integral in longitude of the product of ice concentration and ice displacement. The data shows an increased ice flux over the last four seasons since 2004-05. The SAR derived ice drift data are compared with similar ice drift data from AMSRE and merged QuikScat and SSMI data for the winter season October to April when passive microwave and scatterometer data can be used for ice drift retrieval. The comparison shows that the SAR data resolves the zonal structure and gives a general higher ice drift compared the other data sets. SAR also provides year-round data on ice drift, which allows a more precise estimation of monthly and annual ice area fluxes. The study is supported by the DAMOCLES project.

  3. Environmental predictors of ice seal presence in the Bering Sea.

    Directory of Open Access Journals (Sweden)

    Jennifer L Miksis-Olds

    Full Text Available Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20-30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.

  4. Environmental predictors of ice seal presence in the Bering Sea. (United States)

    Miksis-Olds, Jennifer L; Madden, Laura E


    Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20-30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.

  5. Petroleum activity in ice covered waters - development and operation phase. Focus of eventual consequential explanation; Petroleumsvirksomhet i isfylte farvann - utbyggings- og driftsfase. Maalfokusering for eventuell konsekvensutredning. Arbeidsdokument fra AKU/AEAM-seminar, Stavanger 4. - 6. desember 1995

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, J.; Andresen, K.H.; Moe, K.A.


    This report from a seminar relates to the petroleum activities in the Barentshavet north. The focal point was to put on petroleum activities in ice covered waters covering the drilling and operation phase, to identify discharges from various technical solutions, and to classify possible research requirements when mapping the impacts of such components. In addition to this approach, the seminar also focused on other factors regarding drilling and production activities in ice covered waters. 3 refs., 13 figs., 25 tabs.

  6. Indicative properties on snow cover based on the results of experimental studies in the winter 2011/12 in the central part of the East European Plain

    Directory of Open Access Journals (Sweden)

    L. M. Kitaev


    Full Text Available Local and regional differences in the snow formation were studied in different landscapes of the central part of the East European Plain – within reserves in the Moscow and Tver’ regions (south-north direction; the study period is the winter 2011/12. The observed increase of snow storage in 1.3–1.5 times in the direction south-north is connected, apparently. The difference in the five-day appearance of snow cover maximum is related to differences in regional winter air temperature. Throughout the snow depth and snow storage in spruce are smaller than in deciduous forest – in the ratio of 0.81 in south area and 0.93 in north area; in spruce the large part of solid precipitation is intercepted by the crowns pine trees. Snow stratigraphy at south areas has four layers, six layers at the north area are more variable in snow density and snow storage. Perhaps, gravitational conversion is more noticeable due to larger snow depth. Snow density and snow storage at the open areas are more heterogeneous than in the forest. This is due to sharp fluctuations in air temperature, wind transport and compaction of snow, evaporation from the snow surface. The stratigraphy of snow also reflects the history of winter changes of air temperature and snow accumulation. Common feature for reserves at south and north is the availability of layers with maximum snow storage in the middle of the snow thickness, which were formed during the air temperature drops to the lowest seasonal values in period with increase of snow depth to maximum. Formation of depth hoar in snow thickness are touched everywhere the bottom and middle layers, respectively, it was formed both before and during the period with minimal air temperature. Thus, the results of experimental studies confirm the significance of the differences of individual components of the landscape setting. Analytical conclusions are largely qualitative in nature due to the lack to date of initial information, and

  7. Recent State of Arctic Sea Ice (United States)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colón, P.; Perovich, D. K.; Richter-Menge, J. A.; Chao, Y.; Neumann, G.; Ortmeyer, M.


    We present the recent state of Arctic sea ice including observations from 2008 in a context of a multi-decadal perspective. A new record has been set in the reduction of Arctic perennial sea ice extent this winter. As of 1 March 2008, the extent of perennial sea ice was reduced by one million km2 compared to that at the same time last year as observed by the NASA SeaWinds scatterometer on the QuikSCAT satellite (QSCAT). This decrease of perennial ice continues the precipitous declining trend observed in this decade. Furthermore, the perennial sea ice pattern change was deduced by buoy-based estimates with 50 years of data from drifting buoys and measurement camps to track sea ice movement around the Arctic Ocean. The combination of the satellite and surface data records confirms that the reduction of winter perennial ice extent broke the record in 2008 compared to data over the last half century. In the winter, the loss of perennial ice extent was driven by winds that compressed the ice and transported it out of the Fram Strait and Nares Strait to warmer ocean waters at lower latitudes, where the ice melted very effectively. Another historical fact is that the boundary of perennial sea ice already crossed the North Pole (NP) in February 2008, leaving the area around the NP occupied by seasonal sea ice. This is the first time, not only from the satellite data record but also in the history of sea ice charting at the National Ice Center since the 1970's, that observations indicate the seasonal ice migration into the NP area so early in winter. In the Bering Sea by 12 March 2008, the sea ice edge reached to an extent that coincided with the continental shelf break, indicating bathymetric effects on the distribution of water masses along the Aleutian North Slope, Bering Slope, Anadyr, and Kamchatka Currents that governed the pattern of sea ice formation in this region. Moreover, QSCAT observations showed that, in the 2008 winter, seasonal ice occupied the Northern Sea

  8. Decadal changes in carbon fluxes at the East Siberian continental margin: interactions of ice cover, ocean productivity, particle sedimentation and benthic life (United States)

    Boetius, A.; Bienhold, C.; Felden, J.; Fernandez Mendez, M.; Gusky, M.; Rossel, P. E.; Vedenin, A.; Wenzhoefer, F.


    The observed and predicted Climate-Carbon-Cryosphere interactions in the Arctic Ocean are likely to alter productivity and carbon fluxes of the Siberian continental margin and adjacent basins. Here, we compare field observations and samples obtained in the nineties, and recently in 2012 during the sea ice minimum, to assess decadal changes in the productivity, export and recycling of organic matter at the outer East Siberian margin. In the 90s, the Laptev Sea margin was still largely ice-covered throughout the year, and the samples and measurements obtained represent an ecological baseline against which current and future ecosystem shifts can be assessed. The POLARSTERN expedition IceArc (ARK-XXVII/3) returned in September 2012 to resample the same transects between 60 and 3400 m water depth as well as stations in the adjacent deep basins. Our results suggest that environmental changes in the past two decades, foremost sea ice thinning and retreat, have led to a substantial increase in phytodetritus sedimentation to the seafloor, especially at the lower margin and adjacent basins. This is reflected in increased benthic microbial activities, leading to higher carbon remineralization rates, especially deeper than 3000 m. Besides a relative increase in typical particle degrading bacterial types in surface sediments, bacterial community composition showed little variation between the two years, suggesting that local microbial communities can cope with changing food input. First assessments of faunal abundances suggest an increase in polychaetes,holothurians and bivalves at depth, which fits the prediction of higher productivity and particle deposition rates upon sea ice retreat. The presentation also discusses the controversial issue whether there is evidence for an Arctic-wide increase in carbon flux, or whether we are looking at a spatial shift of the productive marginal ice zone as the main factor to enhance carbon flux to the deep Siberian margin.

  9. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model (United States)

    Birch, L.; Cronin, T.; Tziperman, E.


    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  10. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.


    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  11. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean


    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  12. Sea-ice thickness from field measurements in the northwestern Barents Sea (United States)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin


    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  13. Nautical electronic maps of S-411 standard and their suitability in navigation for assessment of ice cover condition of the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Pastusiak Tadeusz


    Full Text Available The research on the ice cover of waterways, rivers, lakes, seas and oceans by satellite remote sensing methods began at the end of the twentieth century. There was a lot of data sources in diverse file formats. It has not yet carried out a comparative assessment of their usefulness. A synthetic indicator of the quality of data sources binding maps resolution, file publication, time delay and the functionality for the user was developed in the research process. It reflects well a usefulness of maps and allows to compare them. Qualitative differences of map content have relatively little impact on the overall assessment of the data sources. Resolution of map is generally acceptable. Actuality has the greatest impact on the map content quality for the current vessel’s voyage planning in ice.

  14. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change. (United States)

    Lind, Lovisa; Nilsson, Christer; Weber, Christine


    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.

  15. Effects of future Arctic sea ice decline on Greenland ice sheet melt (United States)

    Vizcaino, Miren; Michailidou, Egli


    CMIP5 models project substantial reduction of the Arctic sea ice cover during the current century, including the onset of a seasonally ice free Arctic. In this study we explore the effects of future Arctic sea-ice change on the mass balance of the Greenland ice sheet (GrIS). For this, we use 1850-2100 simulations from the Community Earth System Model version 1.0 corresponding to historical and RCP8.5 scenarios. We examine the impact of Arctic change on the surface energy and mass budgets of the Greenland ice sheet. We distinguish between winter Arctic change and Greenland-melt-season (Spring and Summer) future climate change. We find a substantial reduction in summer incoming shortwave radiation over the GrIS both for clear-sky and all-sky conditions, that reduces the energy available for melt. Because of the large amount of energy that is used during summer to melt sea-ice, we find no amplified summer warming in the ocean around Greenland, except where summer-long ice-free conditions develop. The different nature of the processes controlling sea-ice change along the western and eastern Greenland coast is examined. We find no links in the timing of major sea-ice change and Greenland snow and ice melt, and justify why such a linkage is absent.

  16. Cell viability, pigments and photosynthetic performance of Arctic phytoplankton in contrasting ice-covered and open-water conditions during the spring-summer transition

    KAUST Repository

    Alou-Font, E


    © Inter-Research 2016. We examined phytoplankton biomass and community composition (mostly based on pigments) as well as cell viability with the cell digestion assay in surface waters of the Canadian Beaufort Sea during the spring-summer transition. Our aim was to understand phytoplankton responses to the large environmental changes (irradiance, temperature and nutrients) occurring during this period. Two categories of stations were visited in May and June 2008: ice-covered (IC), exposed to low irradiances, and open-water (OW), exposed to higher irradiances. We observed a large variation in the percentage of living cells (%LC) relative to the total community. No relationship was found between %LC and nitrate concentration (the nutrient potentially limiting in this environment). The in situ irradiance influenced the status of the cells at OW stations. Mean surface mixed layer irradiances >600 μmol photons m-2 s-1 were associated with low cell viability and a decline in photosynthetic performance (Fv/Fm). For IC stations, %LC declined at temperatures above 0°C, whereas for OW stations, it increased, suggesting that ice melting resulted in the release into surface waters of unhealthy cells from the bottom ice in one case, and that seasonal warming favored the communities present in open waters. A chlorophyll degradation pigment tentatively identified as pyropheophorbide a-\\'like\\' showed a significant negative relationship between its concentration (relative to chlorophyll a) and the %LC and Fv/Fm. Our results suggest that the melting conditions influence the distribution of this pigment and that it may be useful as a marker for low cell viability of ice algae being released into surface waters.

  17. Analysis of the Warmest Arctic Winter, 2015-2016 (United States)

    Cullather, Richard I.; Lim, Young-Kwon; Boisvert, Linette N.; Brucker, Ludovic; Lee, Jae N.; Nowicki, Sophie M. J.


    December through February 2015-2016 defines the warmest winter season over the Arctic in the observational record. Positive 2m temperature anomalies were focused over regions of reduced sea ice cover in the Kara and Barents Seas and southwestern Alaska. A third region is found over the ice-covered central Arctic Ocean. The period is marked by a strong synoptic pattern which produced melting temperatures in close proximity to the North Pole in late December and anomalous high pressure near the Taymyr Peninsula. Atmospheric teleconnections from the Atlantic contributed to warming over Eurasian high-latitude land surfaces, and El Niño-related teleconnections explain warming over southwestern Alaska and British Columbia, while warm anomalies over the central Arctic are associated with physical processes including the presence of enhanced atmospheric water vapor and an increased downwelling longwave radiative flux. Preconditioning of sea ice conditions by warm temperatures affected the ensuing spring extent.

  18. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  19. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region. (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W


    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  20. Sea ice production and transport of pollutants in Laptev Sea, 1979 to 1992

    International Nuclear Information System (INIS)

    Rigor, I.; Colony, R.


    About 900,000 km 2 of the polar pack ice is transferred annually from the Arctic Basin to the North Atlantic. The largest portion of this exported ice cover is created by the large scale divergence within the ice pack, but a significant portion of the ice cover originates in the marginal seas, either by fall freezing of the seasonally ice free waters or by wintertime advection away from the coast. The main objective of this study was to estimate the annual production of ice in the Laptev Sea and to determine its ultimate fate. The study was motivated by the possibility that ice formed in the Laptev Sea may be an agent for the long range transport of pollutants such as radionuclides. The authors have attempted to characterize the mean and interannual variability of ice production by investigating the winter production and subsequent melt of ice in the Laptev Sea from 1979 through 1992. The general approach was to associate pollution transport with the net exchange of ice area from the Laptev Sea to the perennial ice pack. The primary data sets supporting the study were ice charts, ice motion and geostrophic wind. 3 refs., 4 figs., 1 tab

  1. Measurements for winter road maintenance


    Riehm, Mats


    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  2. Numerical modelling of thermodynamics and dynamics of sea ice in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    A. Herman


    Full Text Available In this paper, a numerical dynamic-thermo-dynamic sea-ice model for the Baltic Sea is used to analyze the variability of ice conditions in three winter seasons. The modelling results are validated with station (water temperature and satellite data (ice concentration as well as by qualitative comparisons with the Swedish Meteorological and Hydrological Institute ice charts. Analysis of the results addresses two major questions. One concerns effects of meteorological forcing on the spatio-temporal distribution of ice concentration in the Baltic. Patterns of correlations between air temperature, wind speed, and ice-covered area are demonstrated to be different in larger, more open sub-basins (e.g., the Bothnian Sea than in the smaller ones (e.g., the Bothnian Bay. Whereas the correlations with the air temperature are positive in both cases, the influence of wind is pronounced only in large basins, leading to increase/decrease of areas with small/large ice concentrations, respectively. The other question concerns the role of ice dynamics in the evolution of the ice cover. By means of simulations with the dynamic model turned on and off, the ice dynamics is shown to play a crucial role in interactions between the ice and the upper layers of the water column, especially during periods with highly varying wind speeds and directions. In particular, due to the fragmentation of the ice cover and the modified surface fluxes, the ice dynamics influences the rate of change of the total ice volume, in some cases by as much as 1 km3 per day. As opposed to most other numerical studies on the sea-ice in the Baltic Sea, this work concentrates on the short-term variability of the ice cover and its response to the synoptic-scale forcing.

  3. Acoustic detections of summer and winter whales at Arctic gateways in the Atlantic and Pacific Oceans (United States)

    Stafford, K.; Laidre, K. L.; Moore, S. E.


    Changes in sea ice phenology have been profound in regions north of arctic gateways, where the seasonal open-water period has increased by 1.5-3 months over the past 30 years. This has resulted in changes to the Arctic ecosystem, including increased primary productivity, changing food web structure, and opening of new habitat. In the "new normal" Arctic, ice obligate species such as ice seals and polar bears may fare poorly under reduced sea ice while sub-arctic "summer" whales (fin and humpback) are poised to inhabit new seasonal ice-free habitats in the Arctic. We examined the spatial and seasonal occurrence of summer and "winter" (bowhead) whales from September through December by deploying hydrophones in three Arctic gateways: Bering, Davis and Fram Straits. Acoustic occurrence of the three species was compared with decadal-scale changes in seasonal sea ice. In all three Straits, fin whale acoustic detections extended from summer to late autumn. Humpback whales showed the same pattern in Bering and Davis Straits, singing into November and December, respectively. Bowhead whale detections generally began after the departure of the summer whales and continued through the winter. In all three straits, summer whales occurred in seasons and regions that used to be ice-covered. This is likely due to both increased available habitat from sea ice reductions and post-whaling population recoveries. At present, in the straits examined here, there is spatial, but not temporal, overlap between summer and winter whales. In a future with further seasonal sea ice reductions, however, increased competition for resources between sub-Arctic and Arctic species may arise to the detriment of winter whales.

  4. Analysis of 2015 Winter In-Flight Icing Case Studies with Ground-Based Remote Sensing Systems Compared to In-Situ SLW Sondes (United States)

    Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.


    National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of

  5. Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. (United States)

    Stingl, U; Cho, J-C; Foo, W; Vergin, K L; Lanoil, B; Giovannoni, S J


    Lakes in the McMurdo Dry Valleys of Antarctica are characterized by a permanent ice cover and little or no anthropogenic influence. Although bacterial cultures have been obtained from these habitats, recent culture-independent studies indicate that the most abundant microbes in these systems are not yet cultivated. By using dilution-to-extinction cultivation methods with sterilized and nutrient-amended lake water as media, we isolated 148 chemotrophic psychrotolerant bacterial cultures from fresh surface water of Lake Fryxell and the east lobe of Lake Bonney and the hypersaline, suboxic bottom water from the west lobes of Lake Bonney. Screening of the 16S ribosomal ribonucleic acid (rRNA) genes of the cultures by restriction fragment length polymorphism (RFLP) yielded 57 putatively pure psychrotolerant, slow growing cultures grouped into 18 clusters. The sequencing of 16S rRNA genes of randomly selected representatives of each RFLP cluster revealed that the corresponding isolates belong to the Alphaproteobacteria (six RFLP patterns), Betaproteobacteria (six RFLP patterns), Bacteroidetes (four RFLP patterns), and Actinobacteria (two RFLP patterns). Phylogenetic analysis of the sequences showed that the vast majority of the isolates were not closely related to previously described species. Thirteen of 18 RFLP patterns shared a 16S ribosomal deoxyribonucleic acid sequence similarity of 97% or less with the closest described species, and four isolates had a sequence similarity of 93% or less with the nearest described species. Phylogenetic analysis showed that these sequences were representatives of deeply branching organisms in the respective phylum. A comparison of the isolates with 16S rRNA clone libraries prepared from the same environments showed substantial overlap, indicating that dilution-to-extinction culturing in natural lake water media can help isolate some of the most abundant organisms in these perennially ice-covered lakes.

  6. Weather Support for the 2002 Winter Olympic and Paralympic Games. (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.


    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  7. What controls the survival of ice cliffs on debris-covered glaciers? An investigation into the aspect-dependent evolution of supraglacial cliffs in the Nepalese Himalaya (United States)

    Pellicciotti, F.; Buri, P.


    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite increasing evidence of their important role in the surface melt of debris-covered glaciers, their role and importance at the glacier scale is still little understood. Acting as windows of energy transfer through the debris, they can contribute to very large glacier mass losses. Their abundance and life cycle might thus explain the anomalous behavior of much higher than expected mass losses of the debris-covered glaciers of High Mountain Asia, a controversial finding of recent research in a region where glaciers are highly relevant as water sources for millions of people downstream. Cliffs' evolution in time and distribution in space will determine their total contribution to the mass balance of glaciers, but while spatial distribution has been recently inferred from remote sensing studies, their temporal evolution is largely unknown. Here, we make use of recent advancements in our ability to model these complex features and use a novel 3D numerical model of cliff backwasting and very high resolution topographic data to show that supraglacial ice cliffs existence is controlled by aspect. Because of lack of observed south-facing cliffs, we rotate north-facing cliff systems observed in high detail over the debris-covered Lirung glacier, in the Nepalese Himalaya, towards southerly aspects and use the model coupled to the very high resolution topography to simulate the continuous evolution of selected cliffs over one melt season. Cliffs facing south (in the Northern Hemisphere) do not survive the duration of an ablation season and disappear within few weeks to few months due to very strong solar radiation receipts. Our model shows a progressive, continuous flattening of southerly facing cliffs, which is a result of their vertical gradient of incoming solar radiation. We also show that there is a clear range of aspects (northwest to northeast) that allows cliff survival because of energy and

  8. Identification and evaluation of slip and fall risk on ice and snow


    Gao, Chuansi


    Roads and pavements covered with ice and snow during winter in the Nordic and other cold regions are slippery, which result in the prevalence of slip and fall accidents among not only the public, but also outdoor workers. Literature and injury statistics revealed that the most frequently specified contributory factor for occupational slip, trip and fall accidents in Sweden is snow and ice. Road accident research showed that the largest numbers of traffic casualties occurred during walking, fo...

  9. Ice cream structure modification by ice-binding proteins. (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin


    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Exploring the Habitability of Ice-covered Waterworlds: The Deep-Sea Hydrothermal System of the Aurora Mount at Gakkel Ridge, Arctic Ocean (82°54' N, 6°15W, 3900 m) (United States)

    Boetius, A.; Bach, W.; Borowski, C.; Diehl, A.; German, C. R.; Kaul, N. E.; Koehler, J.; Marcon, Y.; Mertens, C.; Molari, M.; Schlindwein, V. S. N.; Tuerke, A.; Wegener, G.


    The geographic remoteness of the ultraslow Gakkel Ridge in the ice-covered Arctic Ocean raises many questions about the nature and biogeography of its habitats. In 2001, the two-ice-breaker mission AMORE (RV POLARSTERN and USCGC HEALY) detected hydrothermal plumes and evidence for seafloor venting associated with volcanic ridges rising from the rift valley floor of 4.2 km depth (Edmonds et al., 2003; Michael et al., 2003). The AURORA expedition in July 2014 (RV POLARSTERN Cruise PS86) targeted this "Aurora" field at the SW limit of Gakkel Ridge, to investigate its habitats, communities and their energy sources. No robots can yet be deployed through ice-cover to explore such deep habitats and ice-breaking research vessels cannot hold position in the thick multiyear ice. Instead, we estimated ice-drift to predict suitable start positions, then attached POLARSTERN to a matching ice floe, to achieve the bottom trajectories that we required for targeted exploration. The Aurora mount is volcanic in origin formed from mounded pillow basalts overlain by about a meter of sediment and cut through by steep cliffs revealing basalt pillows in outcrop and in talus piles. We identified persistent plume activity in the water column above the mount at 3100-3600 m (800-300 m off-bottom of its top) characterized by anomalies in turbidity, Eh, methane, temperature, density, and elevated microbial chemoautotrophic activity. Using a towed camera-, and multisensor- platform (OFOS) we located active venting as the source of this plume together with inactive chimneys and associated craters on the SW flank of Mt.Aurora. Its dominantly filter-feeding fauna is apparently sustained by venting of energy-rich fluids and microbial transfer of this geofuel into nutrition. This communication presents first results of our recent fieldwork and experimental investigations in Summer 2014 to explore deep-sea ecosystems in ice-covered oceans.

  11. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov


    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  12. Arctic ice management (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.


    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  13. Canadian snow and sea ice: historical trends and projections (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross


    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  14. Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. (United States)

    Rojas-Jimenez, Keilor; Wurzbacher, Christian; Bourne, Elizabeth Charlotte; Chiuchiolo, Amy; Priscu, John C; Grossart, Hans-Peter


    Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota.

  15. Life and death of ice cliffs and lakes on debris covered glaciers - insights from a new dataset from the Nepalese Himalaya (United States)

    Steiner, Jakob; Buri, Pascal; Miles, Evan; Ragettli, Silvan; Pellicciotti, Francesca


    Numerous studies suggest that supraglacial ice cliffs and lakes could be one contributing factor to relatively high overall ablation rates on debris covered glaciers. While some studies have quantified backwasting rates, developments over the larger scale have not yet been assessed. Field work and earlier studies during three seasons in the Langtang catchment in the Nepalese Himalaya has given some insights into how these landforms develop, from initial emergence to persistence and disappearance. From 6 sets of concurrent high-resolution satellite imagery and DEMs between 2006 and 2015 and an additional image from 1974, we assembled an extensive dataset of these landforms on all glaciers in the catchment, including nearly 4000 individual lakes and cliffs. We show that ice cliffs appear in combination with lakes or without and there are lakes that are not bordered by a cliff. Numbers vary strongly between seasons, especially as lakes show strong seasonal variability. There are furthermore different types of cliff forms - circular, lateral and longitudinal - that give an indication of their formation process. Circular cliffs form with either collapsing subglacial channels or overdeepenings caused by water accumulating on the surface, while lateral cliffs are likely associated with underlying crevasses. Some of the cliff and lake systems remain at the same location on-glacier over a number of years, while most move with the whole glacier body down valley. From the DEMs determine preferential slopes and expositions of the cliffs in the catchment which have been shown to be essential aspects in explaining the backwasting process. In combination with field observations from one glacier, where most of these types were present, we can infer development processes of a number of systems over the whole catchment. It is also apparent that densities of these landforms vary greatly over the glacier surface, which can be explained with velocities or underlying bed topography in

  16. The Effect of Biofertilizers and Winter Cover Crops on Essential Oil Production and Some Agroecological Characteristics of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    M Jahan


    Full Text Available In searching for new strategies of medicinal plant production with high yield but without undesirable compounds or effects, it is important to investigate unconventional alternatives such as application of PGPR and cover crops cultivation. This experiment was conducted in a split plots arrangement with two factors based on randomized complete block design with three replications during years 2009-10, at Research Farm of Ferdowsi University of Mashhad. Cultivation and no cultivation of cover crops in autumn assigned to the main plots. The sub factor was biofertilizer application with four levels, included 1-Nitroxin (containing Azotobacter spp. and Azospirillum spp., 2-Biophosphorous (Bacillus sp. and Pseudomonas sp., 3-Nitroxin + Biophosphorous and 4-Control. During growing season plants were harvested by three cuts. Results showed that total shoots dry weight, leaves yield and LAI in plants under no cover crop cultivation had a significant advantage. Biofertilizers increased most characteristics e.g. fresh and dry total shoot yield, dry leaves and LAI. The interaction between fertilizer and cover crop was significant, as the highest yield of fresh shoots was observed in mix of nitroxin and biophosphorous with no cover crop, the highest and the lowest of leaf and green area index were obtained in plants treated by nitroxin without cover crop and biophosphorous with cover crop, respectively. Plants harvested in cut 3 had the lowest LAI and other two cuts had no significant difference concerning this trait. The highest and the lowest fresh and dry shoot yield were observed in cut 2 and 1, respectively. The most essential oil yield was in cut 2 and 3 (without significant difference and cut 1 was the lowest. The results showed that the interaction between biofertilizers and no cover crop cultivation was significant, as use of the biofertilizers especially nitroxin and biophosphorous in no cover crop condition enhanced the most characteristics of

  17. Monitoring climate-driven ice regime shifts of Pan-Arctic lakes with long-term satellite observations (United States)

    Surdu, Cristina; Fernandez Prieto, Diego; Duguay, Claude


    Arctic lakes represent an important part of the global cryosphere and the timing of the seasonal freeze-thaw cycle, and the fraction of lakes freezing to the bed in winter, are a useful tool for monitoring the impacts on the cryosphere from global climate change and warming Arctic temperatures. Lake ice-cover both forces and responds to climate variability. Freeze-up and break-up timing of the lake ice cover affects ecological processes and land-atmosphere energy exchanges. Trends in the phenology and thickness of the ice tend to be related to climatic and meteorological conditions, such as variations in air temperature and snow cover. To date, records of ice phenology and winter maximum ice thickness for shallow Arctic lakes are relatively sparse and vary in length thus limiting detection of longer-term trends at a regional scale. In this study, break-up timing and winter maximum ice thickness was observed for over 900, mainly small and medium size lakes, of various depths, many of which are shallow, across the Arctic, from 1992 to 2016, using satellite imagery. To evaluate the extent of changes that lake ice has undergone in recent climate conditions, three key, lake-rich Arctic regions were selected: the North Slope of Alaska (with the longest observational record), the Canadian Arctic Archipelago and the Lena Della in northern Siberia. This research provides a detailed spatial analysis of changes in ice break-up, winter maximum ice thickness and summer ice minimum for High Arctic lakes, investigating regional trends and regional comparison, and climatic drivers for each region.

  18. Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region? (United States)

    Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.


    During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.

  19. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations (United States)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.


    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  20. Increasing Arctic sea ice export driven by stronger winds (United States)

    Sorteberg, A.; Smedsrud, L. H.; Sirevaag, A.; Kloster, K.


    Arctic sea ice area has decreased steadily over the last three decades. A thinner and more seasonal Arctic ice cover, related to increased long wave radiation, has become evident. Changes in circulation, including drift patterns of the Arctic pack ice, have been less obvious. Arctic sea ice export estimates have been hampered by low resolution spatial and temporal satellite imagery, especially during summer, making accurate detection difficult. Here we present a new ice area export dataset calculated from sea ice motion and concentration profiles along 79N. Ice drift vectors are calculated from ice feature displacement using Envisat ASAR WideSwath images every 3 days from 2004 while ice concentration is based on DMSP F13 SSMI and AQUA AMSR-E brightness temperature data. The two data sets are combined to give the ice-area flux in consecutive 3-day periods, uninterrupted year-round coverage along 79N. It is shown that sea ice export variability is closely linked to the geostrophic wind in the Fram Strait (correlation of 0.84). Using geostrophic winds from reanalysis back to the 1950s as a proxy for ice export indicates that the Arctic sea ice has annually lost an increasing area since the 1950's driven by stronger winds. Ice concentration has decreased slightly, but does not contribute significantly. The ice export has overall increased by ~25% over the period. Using cyclone tracking the changes in winds seems directly related to a higher low pressure activity in the Nordic Seas. Our results demonstrate that the changes in atmospheric circulation over the Arctic and sub-Arctic have contributed to a trend in the Fram Strait ice export. The Fram Strait between Greenland and Svalbard with average sea ice concentration for summer (red, June through August) and winter (black, January through March). Solid lines are 50%, dashed lines are 15%. Above mean southward ice drift across 79N from August 2004 to July 2010 in 1 degree bins based on SAR imagery, and mean ice

  1. Winter Weather (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  2. Effects of break crops, and of wheat volunteers growing in break crops or in set-aside or conservation covers, all following crops of winter wheat, on the development of take-all (Gaeumannomyces graminisvar.tritici) in succeeding crops of winter wheat. (United States)

    Jenkyn, Jf; Gutteridge, Rj; White, Rp


    Experiments on the Rothamsted and Woburn Experimental Farms studied the effects on take-all of different break crops and of set-aside/conservation covers that interrupted sequences of winter wheat. There was no evidence for different effects on take-all of the break crops per se but the presence of volunteers, in crops of oilseed rape, increased the amounts of take-all in the following wheat. Severity of take-all was closely related to the numbers of volunteers in the preceding break crops and covers, and was affected by the date of their destruction. Early destruction of set-aside/conservation covers was usually effective in preventing damaging take-all in the following wheat except, sometimes, when populations of volunteers were very large. The experiments were not designed to test the effects of sowing dates but different amounts of take-all in the first wheats after breaks or covers apparently affected the severity of take-all in the following (second) wheats only where the latter were relatively late sown. In earlier-sown second wheats, take-all was consistently severe and unrelated to the severity of the disease in the preceding (first) wheats. Results from two very simple experiments suggested that substituting set-aside/conservation covers for winter wheat, for 1 year only, did not seriously interfere with the development of take-all disease or with the development or maintenance of take-all decline (TAD). With further research, it might be possible for growers wishing to exploit TAD to incorporate set-aside/conservation covers into their cropping strategies, and especially to avoid the worst effects of the disease on grain yield during the early stages of epidemics.

  3. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. (United States)

    Grzymski, Joseph J; Riesenfeld, Christian S; Williams, Timothy J; Dussaq, Alex M; Ducklow, Hugh; Erickson, Matthew; Cavicchioli, Ricardo; Murray, Alison E


    Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global 'dark ocean' mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content.

  4. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports (United States)

    King, Michael C.


    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  5. Winter MVC


    Castellón Gadea, Pasqual


    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  6. Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee (United States)

    Huang, Jonathan P.; Hoover, Richard B.; Andersen, Dale; Bej, Asim K.


    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis

  7. Movements and behaviour by juvenile Atlantic salmon in relation to ice conditions in small rivers in Canada and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Linnansaari, T.; Cunjak, R.A. [New Brunswick Univ., Saint John, NB (Canada). Canadian Rivers Inst., Dept. of Biology; Stickler, M.; Alfredsen, K. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Hydraulic and Environmental Engineering; Arnekleiv, J.V. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Museum of Natural History and Archeology; Fjeldstad, H.P.; Halleraker, J.H.; Harby, A. [Sintef Energy Research, Trondheim (Norway)


    Ice dominates aquatic habitats in temperate and polar regions for a large part of the year. Different ice formations below and above the water surface occur depending on the river characteristics and the local climate. Aquatic microhabitats are influenced by rapidly changing ice conditions which redistribute the flow pattern and cause water velocities and depths to change. In shallow streams significant variation occurs in the physical habitat even within a 24-h cycle in early winter. Increased movements of fish have been observed in response to declining water temperatures. In particular, salmonids may have problems acclimatizing to these rapidly changing conditions during early winter. Passive Integrated Transponder (PIT) technology was used in this study to track the individual movement and behaviour of 144 tagged Atlantic salmon parr during two winters from 2003-2005. This method has proven to be efficient even during the most challenging winter conditions. It allows for accurate spatial positioning of the fish across different mesohabitat classes in shallow headwater streams. The movements of PIT-tagged juvenile Atlantic salmon were followed under various ice conditions in 3 small streams: 1) Catamaran Brook in northern New Brunswick, 2) Dalaa River in Norway, and 3) Sokna River in Norway. The physical characteristics of the study sites were presented. All of the study sites were affected by variable ice formations between October and April and most of the surface area was ice covered by January. The water temperature regime during the study period was also presented. Juvenile Atlantic salmon was the dominant fish species in all of the study sites, with small populations of trout. The primary objective was to identify any causal mechanisms between ice formation and fish movement. Their behaviour and site fidelity was also investigated. The study revealed that fish often chose positions under ice cover if the ice was near to the initial territory of parr, but

  8. On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas (United States)

    Cavalieri, D. J.; Parkinson, C. L.


    The influence of the hemispheric atmospheric circulation on the sea ice covers of the Bering Sea and the Sea of Okhotsk is examined using data obtained with the Nimbus 5 electrically scanning microwave radiometer for the four winters of the 1973-1976 period. The 3-day averaged sea ice extent data were used to establish periods for which there is an out-of-phase relationship between fluctuations of the two ice covers. A comparison of the sea-level atmospheric pressure field with the seasonal, interannual, and short-term sea ice fluctuations reveal an association between changes in the phase and the amplitude of the long waves in the atmosphere and advance and retreat of Arctic ice covers.

  9. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

    Directory of Open Access Journals (Sweden)

    M. B. Chand


    Full Text Available Glaciers in the Himalayan region are often covered by extensive debris cover in ablation areas, hence it is essential to assess the effect of debris on glacier ice melt. Seasonal melting of ice beneath different thicknesses of debris on Lirung Glacier in Langtang Valley, Nepal, was studied during three seasons of 2013–14. The melting rates of ice under 5 cm debris thickness are 3.52, 0.09, and 0.85 cm d−1 during the monsoon, winter and pre-monsoon season, respectively. Maximum melting is observed in dirty ice (0.3 cm debris thickness and the rate decreases with the increase of debris thickness. The energy balance calculations on dirty ice and at 40 cm debris thickness show that the main energy source of ablation is net radiation. The major finding from this study is that the maximum melting occurs during the monsoon season than rest of the seasons.

  10. Effects of an Ice Plate Formed by Inundation before the Continuous Snow Cover on Surface Soil Water after Disappearance of the Snow Cover at a Rotational Paddy in a Snowy Cold Region in the Period from Autumn of 2007 to Spring of 2008 (United States)

    Matsuda, Shuh; Mukai, Hiroyuki; Sato, Yoshikazu

    When melt water remains on the soil surface for a long time in rotational paddies in Hokkaido, a snowy cold region of Japan, machine work in the early spring is delayed, resulting in growth delay of crops and decrease in income. Ice plates can be made in paddies in Hokkaido by filling the paddies with water before the continuous snow cover, and melt water flows from the edges of the ice plate. It is expected that the surface soil water after disappearance of the snow cover can be reduced if melt water can flow to an underdrain through open channels along the levees in the paddy. In this study, the effects of an ice plate formed by inundation before the continuous snow cover on surface soil water after disappearance of the snow cover at a rotational paddy in the period from autumn of 2007 to spring of 2008 were examined. It was found that the volumetric water content in the ice plate area was lower than that in the conventional area after disappearance of the snow cover.

  11. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul


    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  12. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica (United States)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.


    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  13. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. (United States)

    Tregoning, George S; Kempher, Megan L; Jung, Deborah O; Samarkin, Vladimir A; Joye, Samantha B; Madigan, Michael T


    Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Winter use of sea ice and ocean water mass habitat by southern elephant seals: The length and breadth of the mystery (United States)

    Labrousse, Sara; Vacquié-Garcia, Jade; Heerah, Karine; Guinet, Christophe; Sallée, Jean-Baptiste; Authier, Matthieu; Picard, Baptiste; Roquet, Fabien; Bailleul, Frédéric; Hindell, Mark; Charrassin, Jean-Benoit


    Understanding the responses of animals to the environment is crucial for identifying critical foraging habitat. Elephant seals (Mirounga leonina) from the Kerguelen Islands (49°20‧S, 70°20‧E) have several different foraging strategies. Why some individuals undertake long trips to the Antarctic continent while others utilize the relatively close frontal zones is poorly understood. Here, we investigate how physical properties within the sea ice zone are linked to foraging activities of southern elephant seals (SES). To do this, we first developed a new approach using indices of foraging derived from high temporal resolution dive and accelerometry data to predict foraging behaviour in an extensive, low resolution dataset from CTD-Satellite Relay Data Loggers (CTD-SRDLs). A sample of 37 post-breeding SES females were used to construct a predictive model applied to demersal and pelagic dive strategies relating prey encounter events (PEE) to dive parameters (dive duration, bottom duration, hunting-time, maximum depth, ascent speed, descent speed, sinuosity, and horizontal speed) for each strategy. We applied these models to a second sample of 35 seals, 20 males and 15 females, during the post-moult foraging trip to the Antarctic continental shelf between 2004 and 2013, which did not have fine-scale behavioural data. The females were widely distributed with important foraging activity south of the Southern Boundary Front, while males predominately travelled to the south-eastern part of the East Antarctica region. Combining our predictions of PEE with environmental features (sea ice concentration, water masses at the bottom phase of dives, bathymetry and slope index) we found higher foraging activity for females over shallower seabed depths and at the boundary between the overlying Antarctic Surface Water (AASW) and the underlying Modified Circumpolar Deep Water (MCDW). Increased biological activity associated with the upper boundary of MCDW, may provide

  15. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  16. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier


    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere......We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked...... undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer...

  17. Ice Cliff Backwasting over debris-covered Glaciers - Insights into their Formation and Development based on new Measurements and a point-scale Model (United States)

    Steiner, J. F.; Pellicciotti, F.; Buri, P.; Miles, E. S.; Reid, T. D.; Immerzeel, W.


    The presence of ice cliffs has been identified as one possible reason for relatively high overall ablation rates on debris covered glaciers. Few measurements exist for such cliffs and their formation and evolution processes are still poorly understood. On Lirung Glacier, in the Nepalese Himalayas, numerous cliffs were monitored for two consecutive years in the pre- and post-monsoon season. Slope varied between 30° and full vertical faces. Backwasting rates were highly variable depending on slope and aspect of the location on the cliff. Only a physically based energy balance model can reproduce this heterogeneity and provide insights into the importance of atmospheric forcing and cliff characteristics on their melt. Building on two previous studies such a model was developed. It was improved with measurements of radiative fluxes perpendicular to the cliff and by applying a high resolution DEM of the surrounding topography to estimate shading and radiative fluxes incident to the cliff including longwave radiation emitted by surrounding debris. We obtain a considerable reduction in incoming shortwave radiation for north-oriented cliffs compared to horizontal measurements, and significant incident longwave component that varies with height on the cliffs. Melt rates are highly variable in time and space for the cliff. While maximum values of up to 8 cm/day are reached during monsoon, melt rates in the post-monsoon season are considerably lower than in the pre-monsoon season. Nighttime refreezing processes during this period also played an important role. Apart from topography, cliff backwasting is extremely sensitive to albedo of the ice surface, reaching values as low as 0.05. Measurements of surface temperature and wind on the cliff further improved the understanding of outgoing radiation and turbulent fluxes. Once validated against stakes readings, the model was used to explain the presence and persistence of cliffs over Lirung glacier. We show that only North

  18. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015) (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.


    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  19. Sea ice and its effect on mass transport between the atmosphere and the Southern Ocean interior (United States)

    Loose, Brice; Schlosser, Peter


    We examine gas exchange in the presence of sea ice in the Southern Ocean using tracer data and simple models of the oceanic surface layer. Convective cooling leads to sea ice formation over much of the ocean surface, precisely when the water column is most turbulent and has the greatest ability to exchange mass across the air-sea interface. It is this asynchrony of sea ice advance and retreat, versus mixed-layer convection and stratification that determines the net physical flux of gases between the atmosphere and the abyssal ocean interior. However, there is very little antecedent knowledge of the gas transfer velocity, k, through ice-covered waters. The only known estimate, using the radon-deficit method in the Barents Sea, yielded a value of k660 = 6 cm h-1 under ca. 90% ice cover. Here we attempt a second estimate using an isopycnal inventory of three water column tracers measured during the 1992 Ice Station Weddell drift: 3He, CFC-11 and salinity. This effort produced a mean value of 0.9 cm h-1 through ca. 92% ice cover, which is markedly reduced, despite the apparent similarity in ice cover. However, it is difficult to assess the turbulent forcing conditions in both estimates, and therefore we lack a complete basis for comparison. We use these disparate estimates to formulate alternative scenarios for gas ventilation through the seasonal ice zone in the Southern Ocean, by applying them to the Robin boundary condition on a reactive transport model for inorganic carbon. The results show that CO2 flux through sea ice represents 13-34% of the net annual air-sea flux, depending on the relationship between sea ice cover and k. However, the model also indicates that more restriction of natural CO2 in winter produces greater ventilation in the springtime marginal ice zone, with fluxes increasing by 200-700% over the winter value, despite photosynthetic activity. These results highlight the importance of understanding the physical, as well as biological, processes

  20. The Influence of Platelet Ice and Snow on Antarctic Land-fast Sea Ice


    Hoppmann, Mario; Nicolaus, Marcel


    Sea ice fastened to coasts, icebergs and ice shelves is of crucial importance for climate- and ecosystems. Near Antarctic ice shelves, this land-fast sea ice exhibits two unique characteristics that distinguish it from most other sea ice: 1) Ice platelets form and grow in super-cooled water, which originates from ice shelf cavities. The crystals accumulate beneath the solid sea-ice cover and are incorporated into the sea-ice fabric, contributing between 10 and 60% to the mas...

  1. Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity (United States)

    Strand Ødegård, Rune; Nesje, Atle; Isaksen, Ketil; Andreassen, Liss Marie; Eiken, Trond; Schwikowski, Margit; Uglietti, Chiara


    Despite numerous spectacular archaeological discoveries worldwide related to melting ice patches and the emerging field of glacial archaeology, governing processes related to ice patch development during the Holocene and their sensitivity to climate change are still largely unexplored. Here we present new results from an extensive 6-year (2009-2015) field experiment at the Juvfonne ice patch in Jotunheimen in central southern Norway. Our results show that the ice patch has existed continuously since the late Mesolithic period. Organic-rich layers and carbonaceous aerosols embedded in clear ice show ages spanning from modern at the surface to ca. 7600 cal years BP at the bottom. This is the oldest dating of ice in mainland Norway. The expanding ice patch covered moss mats appearing along the margin of Juvfonne about 2000 years ago. During the study period, the mass balance record showed a strong negative balance, and the annual balance is highly asymmetric over short distances. Snow accumulation is poorly correlated with estimated winter precipitation, and single storm events may contribute significantly to the total winter balance. Snow accumulation is approx. 20% higher in the frontal area compared to the upper central part of the ice patch. There is sufficient meltwater to bring the permeable snowpack to an isothermal state within a few weeks in early summer. Below the seasonal snowpack, ice temperatures are between -2 and -4 °C. Juvfonne has clear ice stratification of isochronic origin. Reference: The Cryosphere, 11, 17-32, 2017.

  2. The Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine Mammal Habitat (United States)

    Stern, H. L.; Laidre, K. L.


    The Arctic is widely recognized as the front line of climate change. Arctic air temperature is rising at twice the global average rate, and the sea-ice cover is shrinking and thinning, with total disappearance of summer sea ice projected to occur in a matter of decades. Arctic marine mammals such as polar bears, seals, walruses, belugas, narwhals, and bowhead whales depend on the sea-ice cover as an integral part of their existence. While the downward trend in sea-ice extent in a given month is an often-used metric for quantifying physical changes in the ice cover, it is not the most relevant measure for characterizing changes in the sea-ice habitat of marine mammals. Species that depend on sea ice are behaviorally tied to the annual retreat of sea ice in the spring and advance in the fall. Changes in the timing of the spring retreat and the fall advance are more relevant to Arctic marine species than changes in the areal sea-ice coverage in a particular month of the year. Many ecologically important regions of the Arctic are essentially ice-covered in winter and ice-free in summer, and will probably remain so for a long time into the future. But the dates of sea-ice retreat in spring and advance in fall are key indicators of climate change for ice-dependent marine mammals. We use daily sea-ice concentration data derived from satellite passive microwave sensors to calculate the dates of sea-ice retreat in spring and advance in fall in 12 regions of the Arctic for each year from 1979 through 2013. The regions include the peripheral seas around the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, Kara, Barents), the Canadian Arctic Archipelago, and the marginal seas (Okhotsk, Bering, East Greenland, Baffin Bay, Hudson Bay). We find that in 11 of the 12 regions (all except the Bering Sea), sea ice is retreating earlier in spring and advancing later in fall. Rates of spring retreat range from -5 to -8 days/decade, and rates of fall advance range from +5 to +9

  3. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring (United States)

    Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.


    Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.

  4. Brief Communication: Trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff


    Full Text Available An analysis of Special Sensor Microwave/Imager (SSM/I satellite data reveals that the Whaler's Bay polynya north of Svalbard was considerably larger in the three winters from 2012 to 2014 compared to the previous 20 years. This increased polynya size leads to strong atmospheric convection during cold air outbreaks in a region north of Svalbard that was typically ice-covered in the last decades. The change in ice cover can strongly influence local temperature conditions. Dropsonde measurements from March 2013 show that the unusual ice conditions generate extreme convective boundary layer heights that are larger than the regional values reported in previous studies.

  5. Allelopathy of winter cover straws on the initial maize growthAlelopatia de palhadas de coberturas de inverno sobre o crescimento inicial de milho

    Directory of Open Access Journals (Sweden)

    Jaqueline Senen


    Full Text Available In agricultural crops is common planting the main crop on the remains of straw harvesting the crop earlier due to no-tillage system. The straw remaining in the soil can exert positive or negative influence on the main crop through the release of organic compounds that carry allelopathy on plants of the subsequent growing. This experiment consisted of mixing and blending of different types of turnip (Brassica rapa L., oats (Avena sativa L., crambe (Crambe abyssinica Hochst. Ex RE Fries, Safflower (Carthamus tinctorius L. and rapeseed (Brassica napus L . var in soil and placed in plastic trays where they planted the seeds of maize. The experimental design was completely randomized design with six treatments and three repetições. As ratings were: emergence, rate of emergence, shoot length, root length, root dry weight, dry weight of shoots. The cover crops canola and safflower showed a positive effect, as crambe, turnips and oats had a negative effect on initial growth of maize seedlings, are not suitable for cover crop to maize sowing.Nas lavouras agrícolas é comum o cultivo da cultura principal sobre os restos de palha da colheita do cultivo anterior em decorrência do sistema de plantio direto. A palhada remanescente no solo pode exercer influência positiva ou negativa sobre a cultura principal pela liberação de compostos orgânicos que exercem alelopatia sobre as plantas da cultura subsequente. Este experimento constou da mistura e homogeneização das palhas de nabo (Brassica rapa L., aveia (Avena sativa L., crambe (Crambe abyssinica Hochst. ex R. E. Fries, cartamo (Carthamus tinctorius L. e canola (Brassica napus L.var no solo, que foi colocado em bandejas plásticas onde semeou-se o milho. O delineamento experimental foi inteiramente casualizados com seis tratamentos e três repetições. As características analizadas foram: emergência, índice de velocidade de emergência, comprimento de parte aérea, comprimento de raiz, massa

  6. Produtividade de soja e milho após coberturas de inverno e descompactação mecânica do solo Soybean and corn yield after soil winter covers and soil mechanical loosening

    Directory of Open Access Journals (Sweden)

    Henrique Debiasi


    Full Text Available O objetivo deste trabalho foi avaliar o efeito de coberturas de inverno e da descompactação mecânica do solo sobre o desempenho de soja e milho, em sistema de plantio direto. Foram conduzidos dois experimentos em Eldorado do Sul, RS, sobre Argissolo Vermelho compactado, nas safras 2005/2006 e 2006/2007. No primeiro, o delineamento experimental foi em blocos ao acaso, com parcelas subdivididas. Os tratamentos consistiram de duas profundidades teóricas de atuação da haste sulcadora da semeadora (0,06 e 0,12 m, subparcela e de três tipos de coberturas do solo no inverno (parcela: pousio, aveia-preta (Avena strigosa e aveia-preta+ervilhaca (Vicia Sativa. Em 2006, a cobertura aveia-preta+ervilhaca foi substituída por nabo-forrageiro (Raphanus sativus. No segundo experimento, realizado em blocos ao acaso, o solo foi escarificado e os tratamentos consistiram do uso de aveia-preta ou nabo-forrageiro como cobertura de inverno. Os cultivos de cobertura reduziram a compactação superficial do solo (0-0,06 m em comparação ao pousio e, na safra 2006/2007, sob condições de baixa disponibilidade hídrica, proporcionaram maior produtividade de milho e soja. Isso não se repetiu em 2006/2007, quando a disponibilidade hídrica foi adequada. O aumento da profundidade de atuação das hastes sulcadoras não influenciou a produtividade da soja e do milho. A escarificação reduziu a produtividade da soja e do milho em relação ao SPD contínuo.The objective of this work was to evaluate the effect of soil winter covers and soil mechanical loosening on soybean and corn yield, in no-tillage system. Two experiments were carried oud in Rio Grande do Sul state, Brazil, in a compacted Argissolo Vermelho (Haplic Acrisol, in the 2005/2006 and 2006/2007 crop seasons. The first experiment was carried out in a complete block design, with a split plot arrangement. The treatments were two theoretical working depths of a driller chisel-type furrow opener (0.06 and 0

  7. 36 CFR 1002.19 - Winter activities. (United States)


    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Winter activities. 1002.19... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing.... (c) Failure to abide by area designations or activity restrictions established under this section is...

  8. 36 CFR 2.19 - Winter activities. (United States)


    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Winter activities. 2.19... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing, ice... designations or activity restrictions established under this section is prohibited. ...

  9. Wind influence on sea ice transport through the Svalbard - Franz-Josef Land gate (United States)

    Ridenour, Natasha; Eldevik, Tor; Smedsrud, Lars Henrik


    Arctic sea ice has declined substantially in all months over the last few decades, but mostly during summer. In contrast, sea ice in the Barents Sea has experienced the largest winter retreat in the Arctic region. Barents Sea ice experiences high inter-annual variability and is influenced by factors such as Atlantic inflow, regional atmospheric circulation, and ice import from the Arctic Ocean. The wind's influence on sea ice motion through the Svalbard - Franz-Josef Land gate, connecting the Barents Sea and Arctic Ocean, was investigated using drifting buoys, passive microwave derived ice drift, weather station observations, reanalysis, and model simulations. Wind forcing of sea ice near Svalbard was analyzed using sea ice buoy drift and observed winds from Hopen island from March to May 2006. A linear relationship of the form V ice = 0.0244V wind + 0.3681 [ms-1] was found between wind speed and ice drift using the free drift assumption. Meridional wind driven ice drift through the Svalbard - Franz-Josef Land gate was investigated using passive microwave satellite data and reanalysis pressure data (1979 to 2011), from which geostrophic wind was calculated. This resulted in a linear relationship of V ice = 0.0021V g - 0.002 [ms-1]. The relationship between wind speed and ice drift was found to be stronger on shorter time scales (hourly/daily) than longer time scales (monthly). Furthermore, the wind had greater influence on sea ice drift when ice cover was thinner, as was the case near Svalbard. Analysis demonstrated that, on average, present ice import from the Arctic Ocean to the Barents Sea through the Svalbard - Franz-Josef Land gate is small. Sea ice drifts faster on the eastern side of the gate compared to the west. However, large ice transport events do occur in winter, given specific atmospheric circulation conditions. Quantification of how effective wind forcing is for ice drift in this region is important for understanding the year-to-year variability, and

  10. Desempenho operacional de semeadura-adubadora em diferentes manejos da cobertura e da velocidade Operational performance of seeder in different forward speed and winter cover crop management

    Directory of Open Access Journals (Sweden)

    Carlos E. A. Furlani


    Full Text Available O presente trabalho teve como objetivo avaliar o desempenho de uma semeadora-adubadora no sistema plantio direto. Os fatores estudados foram três manejos das culturas de cobertura, selecionados em função do tamanho de fragmentos da vegetação, triturador de palhas (palha totalmente triturada, roçadora (palha parcialmente picada e rolo-facas (palha acamada, combinados com três velocidades do conjunto trator-semeadora-adubadora, sendo 4,0; 5,0 e 6,0 km h-1. O delineamento experimental foi em blocos casualizados, em esquema fatorial 3 x 3, com nove tratamentos e oito repetições, totalizando 72 observações. Para comparar os tratamentos, avaliaram-se a capacidade de campo operacional, a força de tração e a potência na barra, o consumo horário e por área, e a patinagem dos rodados do trator. O desempenho da semeadora-adubadora não foi influenciado pelos três manejos na cultura de cobertura vegetal. O aumento da velocidade provocou diminuição da força de tração, sendo o inverso para a capacidade de campo operacional e a potência na barra. O consumo horário de combustível aumentou com a velocidade, enquanto o operacional diminuiu.The present work aimed to evaluate the seeder performance in the direct sowing system. The studied factors were three cover crop managements, chosen according to the size of the vegetation fragment, such as straw (straw totally triturated, weeder (straw partially chopped and knife-rolls (straw practically entire, combined with three speeds of the seeder, being 4.0; 5.0 and 6.0 km h-1. The experimental outlining was carried out in casual blocks in factorial scheme 3 x 3, with nine treatments and eight repetitions, totalizing 72 observations. In the course of the experiment the following variants were evaluated: effective field capacity, force and power in the bar, hourly and area consumption of fuel and tractor’s pulleys sliding. The data reached were tabulated and submitted to factorial variant

  11. Comparison of DNDC and RZWQM2 for simulating hydrology and nitrogen dynamics in a corn-soybean system with a winter cover crop (United States)

    Desjardins, R.; Smith, W.; Qi, Z.; Grant, B.; VanderZaag, A.


    Biophysical models are needed for assessing science-based mitigation options to improve the efficiency and sustainability of agricultural cropping systems. In order to account for trade-offs between environmental indicators such as GHG emissions, soil C change, and water quality it is important that models can encapsulate the complex array of interrelated biogeochemical processes controlling water, nutrient and energy flows in the agroecosystem. The Denitrification Decomposition (DNDC) model is one of the most widely used process-based models, and is arguably the most sophisticated for estimating GHG emissions and soil C&N cycling, however, the model simulates only simple cascade water flow. The purpose of this study was to compare the performance of DNDC to a comprehensive water flow model, the Root Zone Water Quality Model (RZWQM2), to determine which processes in DNDC may be limiting and recommend improvements. Both models were calibrated and validated for simulating crop biomass, soil hydrology, and nitrogen loss to tile drains using detailed observations from a corn-soybean rotation in Iowa, with and without cover crops. Results indicated that crop yields, biomass and the annual estimation of nitrogen and water loss to tiles drains were well simulated by both models (NSE > 0.6 in all cases); however, RZWQM2 performed much better for simulating soil water content, and the dynamics of daily water flow (DNDC: NSE -0.32 to 0.28; RZWQM2: NSE 0.34 to 0.70) to tile drains. DNDC overestimated soil water content near the soil surface and underestimated it deeper in the profile which was presumably caused by the lack of a root distribution algorithm, the inability to simulate a heterogeneous profile and lack of a water table. We recommend these improvements along with the inclusion of enhanced water flow and a mechanistic tile drainage sub-model. The accurate temporal simulation of water and N strongly impacts several biogeochemical processes.

  12. A New Approach for Monitoring the Terra Nova Bay Polynya through MODIS Ice Surface Temperature Imagery and Its Validation during 2010 and 2011 Winter Seasons

    Directory of Open Access Journals (Sweden)

    Giuseppe Aulicino


    Full Text Available Polynyas are dynamic stretches of open water surrounded by ice. They typically occur in remote regions of the Arctic and Antarctic, thus remote sensing is essential for monitoring their dynamics. On regional scales, daily passive microwave radiometers provide useful information about their extent because of their independence from cloud coverage and daylight; nonetheless, their coarse resolution often does not allow an accurate discrimination between sea ice and open water. Despite its sensitivity to the presence of clouds, thermal infrared (TIR Moderate Resolution Imaging Spectroradiometer (MODIS provides higher-resolution information (typically 1 km at large swath widths, several times per day, proving to be useful for the retrieval of the size of polynyas. In this study, we deal with Aqua satellite MODIS observations of a frequently occurring coastal polynya in the Terra Nova Bay (TNB, Ross Sea (Antarctica. The potential of a new methodology for estimating the variability of this polynya through MODIS TIR during the 2010 and 2011 freezing season (April to October is presented and discussed. The polynya is observed in more than 1600 radiance scenes, after a preliminary filter evaluates and discards cloudy and fog-contaminated scenes. This reduces the useful MODIS swaths to about 50% of the available acquisitions, but a revisit time of less than 24 h is kept for about 90% of the study period. As expected, results show a high interannual variability with an opening/closing fluctuation clearly depending on the regime of the katabatic winds recorded by the automatic weather stations Rita and Eneide along the TNB coast. Retrievals are also validated through a comparison with a set of 196 co-located high-resolution ENVISAT ASAR images. Although our estimations slightly underestimate the ASAR derived extents, a good agreement is found, the linear correlation reaching 0.75 and the average relative error being about 6%. Finally, a sensitivity test on

  13. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait

    Directory of Open Access Journals (Sweden)

    T. Opel


    Full Text Available To reconstruct palaeoclimate and palaeoenvironmental conditions in the northeast Siberian Arctic, we studied late Quaternary permafrost at the Oyogos Yar coast (Dmitry Laptev Strait. New infrared-stimulated luminescence ages for distinctive floodplain deposits of the Kuchchugui Suite (112.5 ± 9.6 kyr and thermokarst-lake deposits of the Krest Yuryakh Suite (102.4 ± 9.7 kyr, respectively, provide new substantial geochronological data and shed light on the landscape history of the Dmitry Laptev Strait region during Marine Isotope Stage (MIS 5. Ground-ice stable-isotope data are presented together with cryolithological information for eight cryostratigraphic units and are complemented by data from nearby Bol'shoy Lyakhovsky Island. Our combined record of ice-wedge stable isotopes as a proxy for past winter climate conditions covers about 200 000 years and is supplemented by stable isotopes of pore and segregated ice which reflect annual climate conditions overprinted by freezing processes. Our ice-wedge stable-isotope data indicate substantial variations in northeast Siberian Arctic winter climate conditions during the late Quaternary, in particular between glacial and interglacial times but also over the last millennia to centuries. Stable isotope values of ice complex ice wedges indicate cold to very cold winter temperatures about 200 kyr ago (MIS7, very cold winter conditions about 100 kyr ago (MIS5, very cold to moderate winter conditions between about 60 and 30 kyr ago, and extremely cold winter temperatures during the Last Glacial Maximum (MIS2. Much warmer winter conditions are reflected by extensive thermokarst development during MIS5c and by Holocene ice-wedge stable isotopes. Modern ice-wedge stable isotopes are most enriched and testify to the recent winter warming in the Arctic. Hence, ice-wedge-based reconstructions of changes in winter climate conditions add substantial information to those derived from

  14. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern


    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  15. Sea-ice indicators of polar bear habitat (United States)

    Stern, Harry L.; Laidre, Kristin L.


    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  16. Temperatura do solo em função do preparo do solo e do manejo da cobertura de inverno Soil temperature as affected by soil tillage and management of winter cover crops

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Angeli Furlani


    Full Text Available Com o objetivo de avaliar o efeito do preparo do solo e do manejo da cobertura de inverno (consórcio aveia-preta + nabo forrageiro sobre a temperatura do solo, realizou-se um experimento em um Nitossolo em Botucatu-SP no outono/inverno de 2000. Utilizou-se um delineamento em blocos casualizados em esquema fatorial 3 x 3 (três preparos e três manejos. O preparo do solo constou de: preparo convencional, preparo conservacionista com escarificação e plantio direto, e o manejo da cobertura: consórcio dessecado, rolado e triturado. Foram avaliados a temperatura do solo (termopares a 5 cm de profundidade, de hora em hora, aos 7, 14, 30, 45 e 60 dias após a emergência das plantas do consórcio; o teor de água do solo na profundidade de 10 cm, nas mesmas épocas; e a cobertura do solo (massa seca e índice de cobertura, imediatamente após aplicação dos tratamentos. O sistema plantio direto apresentou temperaturas do solo menores que as do preparo convencional, até o 14º dia após emergência (DAE das plantas. A partir do 30° DAE das plantas, a temperatura não foi mais influenciada pelos tratamentos, devido à cobertura do consórcio e ocorrência de boa disponibilidade de água no solo. Os manejos da cobertura com rolo-faca, triturador e herbicida não influenciaram a temperatura do solo. A temperatura do solo não interferiu no crescimento e desenvolvimento das culturas de cobertura.To evaluate the effect of soil tillage and management of winter cover crops (black oat + radish intercrop on the soil temperature, an experiment was conducted in a Nitossol (Alfisol in Botucatu, state of São Paulo, Brazil, in the 2000 fall/winter season. A design in randomized blocks was used in a 3 x 3 factorial scheme (three tillage and three cover crop managements. Soil tillage consisted of: conventional tillage, conservation tillage with chiseling, and no-tillage. The cover crops managements included plant killing with post-emergence herbicide, rolling

  17. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    U. Löptien


    Full Text Available The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS, with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.

  18. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard (United States)

    Christiansen, H. H.


    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  19. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys (United States)


    project is an integrated observation and modeling program aimed at understanding the interplay of atmosphere, ice, and ocean in the SIZ of the Beaufort...Atmospheric Radiation Program (ARM) are utilized to validate instrumentation. Sea surface temperatures, ice concentrations, and floe size...clearly identifies the two cloud layers apparent in the ceilometer data. Note that the lower layer at about 400m is very thin and diffuse

  20. Acquisition of Ice Thickness and Ice Surface Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guards Arctic Domain Awareness Program (United States)


    ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very thin ice are centers...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acquisition of Ice Thickness and Ice Surface...Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program PI: Mark A. Tschudi University of

  1. Nenana Ice Classic: Tanana River Ice Annual Breakup Dates (United States)

    National Aeronautics and Space Administration — The Nenana river in the Interior of Alaska usually freezes over during October and November. The ice continues to grow throughout the winter accumulating an average...

  2. State of the Earth’s cryosphere at the beginning of the 21st century : glaciers, global snow cover, floating ice, and permafrost and periglacial environments: Chapter A in Satellite image atlas of glaciers of the world (United States)

    Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.


    This chapter is the tenth in a series of 11 book-length chapters, collectively referred to as “this volume,” in the series U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World. In the other 10 chapters, each of which concerns a specific glacierized region of Earth, the authors used remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, in order to analyze that glacierized region and to monitor changes in its glaciers. Landsat images, acquired primarily during the period 1972 through 1981, were used by an international team of glaciologists and other scientists to study the various glacierized regions and (or) to discuss related glaciological topics. In each glacierized region, the present distribution of glaciers within its geographic area is compared, wherever possible, with historical information about their past areal extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of an expanding international scientific effort to measure global environmental change on the Earth’s surface. However, this chapter differs from the other 10 in its discussion of observed changes in all four elements of the Earth’s cryosphere (glaciers, snow cover, floating ice, and permafrost) in the context of documented changes in all components of the Earth System. Human impact on the planet at the beginning of the 21st century is pervasive. The focus of Chapter A is on changes in the cryosphere and the importance of long-term monitoring by a variety of sensors carried on Earth-orbiting satellites or by a ground-based network of observatories in the case of permafrost. The chapter consists of five parts. The first part provides an introduction to the Earth System, including the interrelationships of the geosphere (cryosphere, hydrosphere, lithosphere, and atmosphere), the biosphere, climate processes, biogeochemical cycles, and the

  3. Long-term monitoring of sea ice conditions in the Kerch Strait by remote sensing data (United States)

    Lavrova, Olga Yu.; Mityagina, Marina I.; Bocharova, Tatiana Yu.; Kostianoy, Andrey G.


    The results of multi-year satellite monitoring of ice conditions in the Kerch Strait connecting the Black and Azov Seas are discussed. The issue gained importance in view of the ongoing construction of the Crimean Bridge across the strait. Our monitoring has been based on the whole variety of available satellite data including visible and radar data over the past 17 years. Every year the Azov Sea becomes fully or partially covered by ice during the cold season. In severe winters, ice often is carried to the Kerch Strait and even the Black Sea. An analysis of ice drift hydrometeorological conditions is presented. The ice conditions of 2017 are under special consideration. Everyday satellite monitoring of the Kerch Strait, including the construction area of the Crimean Bridge, revealed ice formation and drift features on the way from the Azov Sea through the Kerch Strait as well as ice interaction with the piers of the main and technological bridges under construction. It was found that, even under strong northeast winds, ice can pass neither through the piers, nor via the widest shipway. At present, it is hard to discern the impacts of the two bridges on floating ice, nevertheless when the construction is over and the technological bridge is gone, by all appearances the main bridge will strongly affect ice conditions in the Kerch Strait. This perspective calls for continuous satellite monitoring of the area that is enabled by cutting-edge systems and technologies.

  4. Manejo de Conyza bonariensis resistente ao glyphosate: coberturas de inverno e herbicidas em pré-semeadura da soja Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding

    Directory of Open Access Journals (Sweden)

    F.P. Lamego


    Full Text Available Conyza bonariensis tornou-se a principal planta daninha da cultura da soja no Sul do Brasil, em decorrência da evolução para resistência ao herbicida glyphosate. O objetivo deste trabalho foi avaliar o efeito de diferentes coberturas de inverno e da associação de manejo de dessecação pré-semeadura da soja, visando ao controle de C. bonariensis resistente ao glyphosate. Um experimento foi conduzido em campo, na safra 2010/2011. Os tratamentos foram conduzidos em esquema de parcelas subdivididas, em que as coberturas de inverno foram alocadas nas parcelas principais: aveia-preta, nabo, ervilhaca, azevém, trigo e pousio. Nas subparcelas, foram alocados os tratamentos de manejo de dessecação pré-semeadura da soja: glyphosate (720 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha‑1 e roçada. O nabo foi a espécie de cobertura que produziu o maior volume de massa seca durante o inverno, enquanto a ervilhaca foi a que apresentou maior efeito supressor sobre a germinação e o desenvolvimento inicial de C. bonariensis. Associações de glyphosate com 2,4-D ou chlorimuron-ethyl, seguidas da aplicação sequencial de paraquat + diuron, causaram maior redução na infestação de C. bonariensis.Conyza bonariensis became the main weed in soybean crop in Southern Brazil, as a consequence of the evolution of resistance to the herbicide glyphosate. The objective of this work was to evaluate the effect of different winter cover crops and the association of burn-down herbicides on the control of glyphosate-resistant C. bonariensis. A field experiment was conducted in the 2010/2011 season. The treatments were arranged in a split-plot scheme, with the winter

  5. Is there a see-saw over an ice-free Arctic Ocean? (United States)

    Stendel, Martin; Yang, Shuting; Langen, Peter; Rodehacke, Christian; Mottram, Ruth; Hesselbjerg Christensen, Jens


    The "see-saw" in winter temperatures between western Greenland and the Canadian Arctic on one side and northern Europe on the other has been described by Loewe already in 1937, but actually this behaviour was at least known since the Danish colonization of Greenland in the early 18th century. The see-saw is associated with pressure anomalies not only near the region of interest, but as remote as the Mediterranean and the North Pacific. Recent research has pointed out the role of sea ice in maintaining the see-saw in either its warm or its cold phase over extended periods, which strongly affects European winter temperatures. What would happen to the seesaw if Arctic sea ice were to disappear suddenly? In the framework of the FP7-funded project ice2ice, we try to answer this and related questions. We have conducted a very long global simulation with a global climate model interactively coupled to a Greenland ice sheet component, covering the period 1850-3250 at a horizontal resolution of approximately 125 km. Up to 2005, the forcing is from observed greenhouse gas concentrations, and from 2006 onward it follows the extended RCP8.5 scenario, in which greenhouse gas concentrations continue to increase and eventually level out around 2250. With such a strong forcing, all Arctic sea ice has completely disappeared by roughly the same time, and the surface mass balance of the Greenland Ice Sheet becomes strongly negative. We investigate how the see-saw behaves in such an ice-free world and which implications circulation changes have in the Arctic and over Europe. To further elucidate the role of sea ice distribution on the atmospheric flow and the role of surface fluxes in maintaining the Greenland-European see-saw, we intend at a later time to expand our analysis to include a contrasting simulation with both western Greenland and northern Europe covered by ice during the Last Glacier Maximum.

  6. Wave-ice Interaction and the Marginal Ice Zone (United States)


    single buoys that were moved from place to place. These new data, obtained within the comprehensive set of ocean, ice and atmosphere sensors and remote...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- ice interaction and the Marginal Ice Zone Prof...between ocean waves and a sea ice cover, in terms, of scattering, attenuation, and mechanical effect of the waves on the ice . OBJECTIVES The

  7. Human impacts on river ice regime in the Carpathian Basin (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán


    examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime

  8. Quantification of sea ice production in Weddell Sea polynyas (United States)

    Zentek, Rolf; Heinemann, Günther; Paul, Stephan; Stulic, Lukrecia; Timmermann, Ralph


    The regional climate model COSMO-CLM was used to perform simulations the Weddell Sea region in Antarctica for the time period 2002-2015 with the focus on atmosphere-ocean-sea ice interactions. The original model was adapted to polar regions by the use of a thermodynamic sea ice module with snow cover and an temperature-dependent albedo scheme for sea ice. The recently published topography RTopo2 was used. The model was run with nesting in ERA-Interim data in a forecast mode. Sea ice concentrations were taken from satellite measurements (AMSR-E, SSMI/S, AMSR2) and were updated daily to allow for a close-to-reality hindcast. Simulations were done with 15 km resolution for the whole period 2002-2015 with the goal to force the sea-ice ocean model FESOM. In a second step a 5 km simulation was one-way nested for the winter period (April - September) 2002-2015 to allow for a better quantification of sea ice production in the Weddell Sea. Estimates of sea ice production and comparisons of the results to remote sensing data will be presented.

  9. The role of feedbacks in Antarctic sea ice change (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.


    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  10. Ross sea ice motion, area flux, and deformation (United States)

    kwok, Ron


    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  11. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    Directory of Open Access Journals (Sweden)

    Brage Bremset Hansen


    Full Text Available One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of “extreme” weather events. Heavy rain-on-snow (ROS is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rangifer tarandus platyrhynchus to use marine habitat in late winter 2010. A thick coat of ground ice covered 98% of the lowland ranges, almost completely blocking access to terrestrial forage. Accordingly, a population census revealed that 13% of the total population (n=26 of 206 individuals and 21% of one sub-population were feeding on washed-up kelp and seaweed on the sea-ice foot. Calves were overrepresented among the individuals that applied this foraging strategy, which probably represents a last attempt to avoid starvation under particularly severe foraging conditions. The study adds to the impression that extreme weather events such as heavy ROS and associated icing can trigger large changes in the realized foraging niche of Arctic herbivores.

  12. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.


    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  13. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole


    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  14. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska (United States)

    Rickman, R.L.


    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  15. High turnover rates indicated by changes in the fixed N forms and their stable isotopes in Antarctic landfast sea ice (United States)

    Fripiat, François; Sigman, Daniel M.; Massé, Guillaume; Tison, Jean-Louis


    We report concentration and nitrogen and oxygen isotopic measurements of nitrate, total dissolved nitrogen, and particulate nitrogen from Antarctic landfast sea ice, covering almost the complete seasonal cycle of sea ice growth and decay (from April to November). When sea ice forms in autumn, ice algae growth depletes nitrate and accumulates organic N within the ice. Subsequent low biological activity in winter imposes minor variations in the partitioning of fixed N. In early spring, the coupling between nitrate assimilation and brine convection at the sea ice bottom traps a large amount of fixed N within sea ice, up to 20 times higher than in the underlying seawater. At this time, remineralization and nitrification also accelerate, yielding nitrate concentrations up to 5 times higher than in seawater. Nitrate δ15N and δ18O are both elevated, indicating a near-balance between nitrification and nitrate assimilation. These findings require high microbially mediated turnover rates for the large fixed N pools, including nitrate. When sea ice warms in the spring, ice algae grow through the full thickness of the ice. The warming stratifies the brine network, which limits the exchange with seawater, causing the once-elevated nitrate pool to be nearly completely depleted. The nitrate isotope data point to light limitation at the base of landfast ice as a central characteristic of the environment, affecting its N cycling (e.g., allowing for nitrification) and impacting algal physiology (e.g., as reflected in the N and O isotope effects of nitrate assimilation).

  16. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment. (United States)

    Nerentorp Mastromonaco, Michelle G; Gårdfeldt, Katarina; Langer, Sarka; Dommergue, Aurélien


    Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L -1 ) to spring (4.7 ng L -1 ) while the average elemental mercury concentration increased from winter (0.07 ng L -1 ) to summer (0.105 ng L -1 ). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.

  17. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations (United States)

    Hu, Xianmin; Sun, Jingfan; Chan, Ting On; Myers, Paul G.


    Sea ice thickness evolution within the Canadian Arctic Archipelago (CAA) is of great interest to science, as well as local communities and their economy. In this study, based on the NEMO numerical framework including the LIM2 sea ice module, simulations at both 1/4 and 1/12° horizontal resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice (˜ 4 m and thicker) in the northern CAA, thick sea ice (2.5 to 3 m) in the west-central Parry Channel and M'Clintock Channel, and thin ( Environment and Climate Change Canada (ECCC) New Ice Thickness Program data at first-year landfast ice sites except at the northern sites with high concentration of old ice. At 1/4 to 1/12° scale, model resolution does not play a significant role in the sea ice simulation except to improve local dynamics because of better coastline representation. Sea ice growth is decomposed into thermodynamic and dynamic (including all non-thermodynamic processes in the model) contributions to study the ice thickness evolution. Relatively smaller thermodynamic contribution to ice growth between December and the following April is found in the thick and very thick ice regions, with larger contributions in the thin ice-covered region. No significant trend in winter maximum ice volume is found in the northern CAA and Baffin Bay while a decline (r2 ≈ 0.6, p < 0.01) is simulated in Parry Channel region. The two main contributors (thermodynamic growth and lateral transport) have high interannual variabilities which largely balance each other, so that maximum ice volume can vary interannually by ±12 % in the northern CAA, ±15 % in Parry Channel, and ±9 % in Baffin Bay. Further quantitative evaluation is required.

  18. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.


    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  19. Winter Wonderlands (United States)

    Coy, Mary


    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  20. Lake ice records used to detect historical and future climatic changes (United States)

    Robertson, Dale M.; Ragotzkie, R.A.; Magnuson, John J.


    Historical ice records, such as freeze and breakup dates and the total duration of ice cover, can be used as a quantitative indicator of climatic change if long homogeneous records exist and if the records can be calibrated in terms of climatic changes. Lake Mendota, Wisconsin, has the longest uninterrupted ice records available for any lake in North America dating back to 1855. These records extend back prior to any reliable air temperature data in the midwestern region of the U.S. and demonstrate significant warming of approximately 1.5 °C in fall and early winter temperatures and 2.5 °C in winter and spring temperatures during the past 135 years. These changes are not completely monotonie, but rather appear as two shorter periods of climatic change in the longer record. The first change was between 1875 and 1890, when fall, winter, and spring air temperatures increased by approximately 1.5 °C. The second change, earlier ice breakup dates since 1979, was caused by a significant increase in winter and early spring air temperatures of approximately 1.3 °C. This change may be indicative of shifts in regional climatic patterns associated with global warming, possibly associated with the ‘Greenhouse Effect’.

  1. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.


    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  2. Arctic sea ice a major determinant in Mandt's black guillemot movement and distribution during non-breeding season (United States)

    Divoky, G.J.; Douglas, David C.; Stenhouse, I. J.


    Mandt's black guillemot (Cepphus grylle mandtii) is one of the few seabirds associated in all seasons with Arctic sea ice, a habitat that is changing rapidly. Recent decreases in summer ice have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September–May), when changes in sea ice extent and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea ice to non-breeding Mandt's black guillemots, we deployed and recovered (n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011–2015. Black guillemots moved north to the marginal ice zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January–April. Most birds occupied the MIZ in regions averaging 30–60% sea ice concentration, with little seasonal variation. Birds regularly roosted on ice in all seasons averaging 5 h d−1, primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by ice.

  3. The direct mechanical influence of sea ice state on ice sheet mass loss via iceberg mélange (United States)

    Robel, A.


    The interaction between sea ice and land ice has typically been considered as a large-scale exchange of moisture, heat and salinity through the ocean and atmosphere. However, recent observations from marine-terminating glaciers in Greenland indicate that the long-term decline of local sea ice cover has been accompanied by an increase in nearby iceberg calving and associated ice sheet mass loss. Near glacier calving fronts, sea ice binds icebergs together into an aggregate granular material known as iceberg mélange. Studies have hypothesized that mélange may suppress calving by exerting a mechanical buttressing force directly on the glacier terminus. Here, we show explicitly how sea ice thickness and concentration play a critical role in setting the material strength of mélange. To do so, we adapt a discrete element model to simulate mélange as a cohesive granular material. In these simulations, mélange laden with thick, dense, landfast sea ice can produce enough resistance to shut down calving at the terminus. When sea ice thins, mélange weakens, reducing the mechanical force of mélange on the glacier terminus, and increasing the likelihood of calving. We discuss whether longer periods of sea-ice-free conditions in winter may lead to a transition from currently slow calving, predominantly occurring in the summer, to rapid calving, occurring throughout the year. We also discuss the potential role of freshwater discharge in promoting sea ice formation in fjords, potentially strengthening mélange.

  4. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders


    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...... under humid, sub-polar conditions? Does this rate differ from rates reported from polar environments of dry continental nature? How will the sedimentary architecture appear in the geological record? How will the final landsystem appear? These key questions are answered in a review of research...

  5. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica (United States)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit


    diurnal vertical migration) in the pack ice region, likely attracted by an ice algal autumn bloom that sustains an under-ice ecosystem. In contrast, male foraging effort increased when they remained deep within the sea ice (420-960 km from the ice edge) over the shelf. Males had a longer foraging activity (i) in the lowest sea ice concentration at their position, and (ii) when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km) presumably in polynyas or flaw leads between land fast and pack ice. This provides access to zones of enhanced resources in autumn or in early spring such as polynyas, the Antarctic shelf and slope. Our results suggest that some seals utilized a highly sea ice covered environment, which is key for their foraging effort, sustaining or concentrating resources during winter.

  6. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping

    Directory of Open Access Journals (Sweden)

    Simon Kraatz


    Full Text Available The capability of frequently and accurately monitoring ice on rivers is important, since it may be possible to timely identify ice accumulations corresponding to ice jams. Ice jams are dam-like structures formed from arrested ice floes, and may cause rapid flooding. To inform on this potential hazard, the CREST River Ice Observing System (CRIOS produces ice cover maps based on MODIS and VIIRS overpass data at several locations, including the Susquehanna River. CRIOS uses the respective platform’s automatically produced cloud masks to discriminate ice/snow covered grid cells from clouds. However, since cloud masks are produced using each instrument’s data, and owing to differences in detector performance, it is quite possible that identical algorithms applied to even nearly identical instruments may produce substantially different cloud masks. Besides detector performance, cloud identification can be biased due to local (e.g., land cover, viewing geometry, and transient conditions (snow and ice. Snow/cloud confusions and large view angles can result in substantial overestimates of clouds and ice. This impacts algorithms, such as CRIOS, since false cloud cover precludes the determination of whether an otherwise reasonably cloud free grid consists of water or ice. Especially for applications aiming to frequently classify or monitor a location it is important to evaluate cloud masking, including false cloud detections. We present an assessment of three cloud masks via the parameter of effective revisit time. A 100 km stretch of up to 1.6 km wide river was examined with daily data sampled at 500 m resolution, examined over 317 days during winter. Results show that there are substantial differences between each of the cloud mask products, especially while the river bears ice. A contrast-based cloud screening approach was found to provide improved and consistent cloud and ice identification within the reach (95%–99% correlations, and 3%–7% mean

  7. Observations and modelling of fast ice growth in the Tiksi Bay, Laptev Sea (United States)

    Bogorodsky, Petr; Makshtas, Aleksandr; Grubiy, Andrey; Kustov, Vasiliy


    Fast ice is one of the main features of sea ice cover in the Laptev Sea. The formation of this immobile ice which occupies up to 30% of the sea area and significantly affects the intensity of air-sea energy exchange in the coastal zones had been investigated during winter 2014-2015 in the Tiksi Bay (Buor-Khaya Gulf). The temperature measurements within sea ice thickness and under-ice sea layer using GeoPrecision thermistor string of 10 sensors together with measurements of snow and ice thicknesses were carried out at the distance of 0.5 km from the shore at the 3.5 m water depth. According to measurements temperature variations qualitatively repeat air temperature variations and, damping with depth, approach to sea water freezing temperature. Vertical temperature distributions allow to recognize snow, ice and water layers by profile inclination in each layer. The temperature profiles within growing ice were quasi-linear, indicating permanence of heat flux inside ice. The linearity of temperature profiles increased during ice growth. For calculations of fast ice evolution one-dimensional thermodynamic model was used. Besides the empirical formulae, based on frost degree-days, developed in 1930th for the Tiksi Bay was applied. Numerical experiments were carried out with constant values of thermal properties of all media and 10 ppt water salinity, as initial condition. The daily average data from Hydrometeorological Observatory Tiksi, located approximately 1 km from the site of ice observations, were used as atmospheric forcing. For the examined area evolutions of ice cover thickness estimated from direct measurements, the thermodynamic model and the empirical formulae were almost identical. The result indicates stability of hydrological and meteorological conditions, determining fast ice growth in the Tiksi Bay during last 75 years. Model simulations showed that in shallow waters the growth of ice thickness is stabilized due to increase of sub-ice water layer

  8. Loss of sea ice in the Arctic. (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A


    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  9. Quantification of sea ice production at coastal polynyas in the southern Weddell Sea (United States)

    Stulic, Lukrecia; Timmermann, Ralph; Zentek, Rolf; Heinemann, Günther


    Sea ice production and associated High Salinity Shelf Water (HSSW) formation in the southern Weddell Sea is an important driver for the global thermohaline ocean circulation and determines the properties of shelf water inflow that fuels ice shelf basal melting. In the southern Weddell Sea, coastal polynyas cover 1% of the area, but contribute about 10% to the total winter sea ice production. This project aims to improve estimates of the sea ice production and HSSW formation in the southern Weddell Sea coastal polynyas by a synergy of numerical simulations and remote sensing data. Sea ice-ocean simulations are performed with the Finite Element Sea ice-Ocean Model (FESOM) with a horizontal resolution close to the Rossby radius over the whole Weddell Sea to better represent eddy dynamics. In order to asses sensitivity of polynya characteristics and HSSW formation rates to the atmospheric forcing, FESOM is forced with different reanalysis data (ERA-Interim, NCEP-CFSR). Mean sea ice growth for the simulated period (1979-2012) is lower and more localized along the coastline/ice shelf front in the NCEP-CFSR run. Differences may be attributed to the colder air temperatures and stronger offshore winds in ERA-Interim forcing. FESOM will be forced with output from the regional atmospheric model COSMO-CLM (CCLM) to further investigate sensitivity with respect to different atmospheric forcing. The best and most realistic ice production and HSSW formation estimates are expected to be obtained by assimilation of thin ice thickness data derived from MODIS retrievals into FESOM. This will lead to a high resolution data set of sea ice coverage and ice thickness fields that can be used as reference data set for other sea ice models and as an input for high-resolution atmospheric models.

  10. Reconstruction of historic sea ice conditions in a sub-Arctic lagoon (United States)

    Petrich, Chris; Tivy, Adrienne C.; Ward, David H.


    Historical sea ice conditions were reconstructed for Izembek Lagoon, Bering Sea, Alaska. This lagoon is a crucial staging area during migration for numerous species of avian migrants and a major eelgrass (Zostera marina) area important to a variety of marine and terrestrial organisms, especially Pacific Flyway black brant geese (Branta bernicla nigricans). Ice cover is a common feature of the lagoon in winter, but appears to be declining, which has implications for eelgrass distribution and abundance, and its use by wildlife. We evaluated ice conditions from a model based on degree days, calibrated to satellite observations, to estimate distribution and long-term trends in ice conditions in Izembek Lagoon. Model results compared favorably with ground observations and 26 years of satellite data, allowing ice conditions to be reconstructed back to 1943. Specifically, periods of significant (limited access to eelgrass areas) and severe (almost complete ice coverage of the lagoon) ice conditions could be identified. The number of days of severe ice within a single season ranged from 0 (e.g., 2001) to ≥ 67 (e.g., 2000). We detected a slight long-term negative trend in ice conditions, superimposed on high inter-annual variability in seasonal aggregate ice conditions. Based on reconstructed ice conditions, the seasonally cumulative number of significant or severe ice days correlated linearly with mean air temperature from January until March. Further, air temperature at Izembek Lagoon was correlated with wind direction, suggesting that ice conditions in Izembek Lagoon were associated with synoptic-scale weather patterns. Methods employed in this analysis may be transferable to other coastal locations in the Arctic.

  11. Pre-partum diet of adult female bearded seals in years of contrasting ice conditions. (United States)

    Hindell, Mark A; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M


    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13)C and δ(15)N) measured in whiskers collected from their newborn pups. The δ(15)N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.

  12. Pre-partum diet of adult female bearded seals in years of contrasting ice conditions.

    Directory of Open Access Journals (Sweden)

    Mark A Hindell

    Full Text Available Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus during three spring breeding periods (2005, 2006 and 2007 with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13C and δ(15N measured in whiskers collected from their newborn pups. The δ(15N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005, the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006, the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.

  13. Historical Trends, Drivers, and Future Projections of Ice Phenology in Small North Temperate Lakes in the Laurentian Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Bailey A. Hewitt


    Full Text Available Lake ice phenology (timing of ice breakup and freeze up is a sensitive indicator of climate. We acquired time series of lake ice breakup and freeze up, local weather conditions, and large-scale climate oscillations from 1981–2015 for seven lakes in northern Wisconsin, USA, and two lakes in Ontario, Canada. Multiple linear regression models were developed to understand the drivers of lake ice phenology. We used projected air temperature and precipitation from 126 climate change scenarios to forecast the day of year of ice breakup and freeze up in 2050 and 2070. Lake ice melted 5 days earlier and froze 8 days later over the past 35 years. Warmer spring and winter air temperatures contributed to earlier ice breakup; whereas warmer November temperatures delayed lake freeze. Lake ice breakup is projected to be 13 days earlier on average by 2070, but could vary by 3 days later to 43 days earlier depending upon the degree of climatic warming by late century. Similarly, the timing of lake freeze up is projected to be delayed by 11 days on average by 2070, but could be 1 to 28 days later. Shortened seasonality of ice cover by 24 days could increase risk of algal blooms, reduce habitat for coldwater fisheries, and jeopardize survival of northern communities reliant on ice roads.

  14. Sea ice inertial oscillations in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert


    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  15. Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps (United States)

    Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele


    In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).

  16. Using nuclear magnetic resonance and transient electromagnetics to characterise water distribution beneath an ice covered volcanic crater: the case of Sherman Crater Mt. Baker Washington. (United States)

    Irons, Trevor P.; Martin, Kathryn; Finn, Carol A.; Bloss, Benjamin; Horton, Robert J.


    Surface and laboratory Nuclear Magnetic Resonance (NMR) measurements combined with transient electromagnetic (TEM) data are powerful tools for subsurface water detection. Surface NMR (sNMR) and TEM soundings, laboratory NMR, complex resistivity, and X-Ray Diffraction (XRD) analysis were all conducted to characterise the distribution of water within Sherman Crater on Mt. Baker, WA. Clay rich rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-travelled, destructive debris flows. Detecting the presence and volume of shallow groundwater is critical for evaluating these landslide hazards. The TEM data identified a low resistivity layer (<10 ohm-m), under 60 m of glacial ice related to water saturated clays. The TEM struggles to resolve the presence or absence of a plausible thin layer of bulk liquid water on top of the clay. The sNMR measurements did not produce any observable signal, indicating the lack of substantial accumulated bulk water below the ice. Laboratory analysis on a sample from the crater wall that likely represented the clays beneath the ice confirmed that the controlling factor for the lack of sNMR signal was the fine-grained nature of the media. The laboratory measurements further indicated that small pores in clays detected by the XRD contain as much as 50% water, establishing an upper bound on the water content in the clay layer. Forward modelling of geologic scenarios revealed that bulk water layers as thin as ½ m between the ice and clay layer would have been detectable using sNMR. The instrumentation conditions which would allow for sNMR detection of the clay layer are investigated. Using current instrumentation the combined analysis of the TEM and sNMR data allow for valuable characterisation of the groundwater system in the crater. The sNMR is able to reduce the uncertainty of the TEM in regards to the presence of a bulk water layer, a valuable

  17. Variability and trends in Laptev Sea ice outflow between 1992-2011 (United States)

    Krumpen, T.; Janout, M.; Hodges, K. I.; Gerdes, R.; Girard-Ardhuin, F.; Hölemann, J. A.; Willmes, S.


    Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (October to May) ice area transport across the northern and eastern Laptev Sea boundaries (NB and EB) of 3.48 × 105 km2. The average transport across the NB (2.87 × 105 km2) is thereby higher than across the EB (0.61 × 105 km2), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 105 km2 decade-1, p > 0.95), dominated by increasing export through the EB (0.55 × 105 km2 decade-1, p > 0.90), while the increase in export across the NB is smaller (0.3 × 105 km2 decade-1) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric indices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in concentration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the central and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our results imply that years of high ice export in late winter (February to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.

  18. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations. (United States)


    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  19. Impact of sea ice on the marine iron cycle and phytoplankton productivity (United States)

    Wang, S.; Bailey, D.; Lindsay, K.; Moore, J. K.; Holland, M.


    Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to the dynamics of sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. In order to adequately study the effect of sea ice on the polar iron cycle, sea ice bearing iron was incorporated in the Community Earth System Model (CESM). Sea ice acts as a reservoir for iron during winter and releases the trace metal to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations in regions where iron concentrations are relatively low. The maximum iron concentrations simulated in Arctic and Antarctic sea ice are much lower than observed, which is likely due to underestimation of iron inputs to sea ice or missing mechanisms. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month-1 in the Arctic and 4.1 × 106 mol Fe month-1 in the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. The impact of ice to ocean iron fluxes on marine ecosystems is negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea

  20. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.


    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  1. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai. (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan


    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter


    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  3. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne


    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  4. Prediction of thermal behavior of pervious concrete pavements in winter. (United States)


    Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and : mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing,...

  5. The role of mechanics and kinematics on the Arctic sea ice decline (United States)

    Weiss, J.


    IPCC AR4 climate models unforeseen the recent Arctic sea ice decline, either in terms of extent or thinning rate. Owing to the complexity of the Arctic basin as a physical system involving many interacting processes and feedbacks (negative or positive), several tracks are currently followed to try to improve the representation of these processes. Here we focus on the representation of sea ice mechanics and kinematics (drift, deformation). Indeed, the spectacular evolution of the Arctic sea ice cover is not restricted to the shrinking of ice extent or to thinning. Kinematics is affected as well, and its evolution plays a central role in the changes underwent nowadays in the Arctic ocean. As observed from buoy drift data, the sea ice mean speed increased at a rate of 9% per decade from 1979 to 2007, whereas the mean deformation rate increased by more than 50% per decade over the same period. These two aspects of recent sea ice evolution, i.e. strong decline and accelerated kinematics, are likely intimately coupled. Increasing deformation means stronger fracturing, hence more lead opening and a decreasing albedo. As a result, ocean warming, in turn, favors sea ice thinning in summer and delays refreezing in early winter, i.e. strengthens sea ice decline. This thinning decreases the mechanical strength, therefore allowing even more fracturing, hence larger speed and deformation. A consequence is the acceleration of sea ice export through Fram or Nares Strait with a significant impact on sea ice mass balance. The coupling between the ice state (thickness and concentration) and ice velocity is unexpectedly weak in most IPCC AR4 models. In particular, sea ice drifts faster during the months when it is thick and packed than when it is thin, contrary to what is observed; also models with larger long-term thinning trends do not show higher drift acceleration. This weak coupling behavior (i) suggests that the positive feedbacks mentioned above are underestimated, and (ii) can

  6. Ice Caps and Ice Belts: The Effects of Obliquity on Ice-Albedo Feedback (United States)

    Rose, Brian E. J.; Cronin, Timothy W.; Bitz, Cecilia M.


    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice-albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  7. Antarctic sea ice variability using NASA team algorithm data (United States)

    Barreira, S.; Compagnucci, R.

    Sea ice is an important, highly variable feature of the Earth's surface, both reflecting and influencing climatic conditions. Sea ice covers approximately 7 percent of the world oceans, significantly reduces the amount of solar radiation absorbed at the Earth's surface, greatly restricts the transfer of heat from the ocean to the atmosphere in winter, and influences global atmospheric and oceanic circulation. In this paper, monthly through interannual variability of the sea ice between 0 and 120W is analysed for the 22-year period 1979 through 2000. The monthly Polar Gridded Sea Ice Concentrations data set derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense Meteorological Satellite Program's (DMSP) DMSP-F8, F11 and F13, Special Sensor Microwave/Imager (SSM/I) generated by NASA team algorithm were used. This data were acquired from the National Snow and Ice Data Center (NSIDC) and are gridded on the SSM/I polar stereographic grid (25 x 25 km) provided in two-byte integer format. Principal Components Analysis in T-Mode was performed on pre-processed sea ice data (anomalies from which have been removed continent and perennial open water), in order to investigate which are the main space patterns, when do they present and how they are coupled to different atmospheric variables. This analysis provide 12 patterns (6 in direct mode and 6 in inverse mode) that represent the most important spatial features that dominate sea ice variability in the Weddell, Amudsen and Bellinghausen Seas. These 12 patterns, or their combinations, describe completely the behavior of the 264 month means sea ice concentration anomalies of the record we used of the selected Antarctic region.


    Directory of Open Access Journals (Sweden)

    Emil Mihalina


    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  9. Analysis of sea ice dynamics (United States)

    Zwally, J.


    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  10. Global Lake and River Ice Phenology Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  11. Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends (United States)

    Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.


    The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.

  12. Winter Weather: Frostbite (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  13. Evaluation and Economic Value of Winter Weather Forecasts


    Snyder, Derrick William


    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of ...

  14. Forecasting Future Sea Ice Conditions: A Lagrangian Approach (United States)


    the sea-ice extent minimum) is complete. These include, multi-year ice advective flux away from coastlines in winter, Bering Strait heat inflow and...anomalous sea ice extent and position of the MIZ as thermodynamic effect. Results also show a strong correlation (r = 0.8) between the Bering Strait ...melting via radiative/turbulent losses. We define dynamic loss as summer sea ice extent loss via sea ice export through Fram Strait (mainly) or sea

  15. Statistical Mechanics and the Climatology of the Arctic Sea Ice Thickness Distribution (United States)

    Toppaladoddi, Srikanth; Wettlaufer, J. S.


    We study the seasonal changes in the thickness distribution of Arctic sea ice, g( h), under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for g( h) (Toppaladoddi and Wettlaufer in Phys Rev Lett 115(14):148501, 2015), in which the thermodynamic growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to the observationally consistent thermodynamic model of Eisenman and Wettlaufer (Proc Natl Acad Sci USA 106:28-32, 2009). We find that due to the combined effects of thermodynamics and mechanics, g( h) spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2 (Kwok and Cunningham in Philos Trans R Soc A 373(2045):20140157, 2015). Because g( h) is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as greenhouse-gas radiative forcing, Δ F_0, increases. The mean ice thickness decays exponentially with Δ F_0, but much slower than do solely thermodynamic models. This exhibits the crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice to thick ice-far more rapidly than can thermal growth alone.

  16. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow (United States)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui


    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  17. Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001–2002 (United States)

    Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.


    In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001–2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey

  18. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas


    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  19. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica

    Directory of Open Access Journals (Sweden)

    F. Schwanck


    Full Text Available The Mount Johns (MJ ice core (79°55′ S; 94°23′ W was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers approximately 125 years (1883–2008, showing marked seasonal variability. Trace element concentrations in 2137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations at the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and secondary northeasterly transport in the summer. During summer months, the trajectories present slow-moving (short transport and are more locally influenced than in other seasons. Finally, our reanalysis correlations with trace element suggest that marine-derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies. The results show that seasonal elemental concentration maxima in sea salt elements correlate well with the sea ice concentration winter maxima in the west Amundsen and Ross seas. Lastly, we observed an increased concentration of marine aerosols when sea surface temperature decreased.

  20. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.


    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  1. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.


    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  2. Winter: Public Enemy #1 for Accessibility EXPLORING NEW SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ernesto Morales


    Full Text Available Abstract: Winter is expensive. For countries situated in the northern hemisphere, closer to the north pole, such as Canada, Russia and Scandinavia, winter requires the acquisition of special clothing, car tires, and sports equipment, snow removal or plowing from the streets, and is associated with the presence of ice patches, along with accidents and illnesses associated with cold weather. Fall-related injuries due to winter conditions have been estimated to cost the Canadian health care system $ 2.8 billion a year. However, the greatest cost snow entails every year is the social isolation of seniors as well as wheelchair and walker users. This results from the lack of accessibility, as it is difficult to circulate on snow-covered streets even for the able-bodied. Social isolation has been associated with other negative consequences such as depression and even suicide. This exploratory pilot study aimed at finding possible and feasible design solutions for improving the accessibility of sidewalks during winter conditions. For this project we used a Co-Design methodology. Stakeholders (City of Quebec representatives, designers, urban planners, occupational therapists, and adults with motor, visual and aural disabilities were invited to participate in the design process. In order to meet the objectives, two main steps were carried out: 1. Conception of the design solutions (through Co-design sessions in a Focus-group format with seniors, designers and researchers; and 2. Validation of the design solutions (consultation with experts and stakeholders. The results are a wide variety of possible and feasible solutions, including the reorganisation of the snow-removal procedure and the development of heated curb cuts. This project was funded by the City of Quebec in partnership with the Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS. Ultimately, the project sought to explore possible solutions to be implemented

  3. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.


    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  4. Causes and consequences of mid–21st-century rapid ice loss events simulated by the Rossby centre regional atmosphere-ocean model

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Paquin


    Full Text Available Recent observations and modelling studies suggest that the Arctic climate is undergoing important transition. One manifestation of this change is seen in the rapid sea-ice cover decrease as experienced in 2007 and 2012. Although most numerical climate models cannot adequately reproduce the recent changes, some models produce similar Rapid Ice Loss Events (RILEs during the mid–21st-century. This study presents an analysis of four specific RILEs clustered around 2040 in three transient climate projections performed with the coupled Rossby Centre regional Atmosphere-Ocean model (RCAO. The analysis shows that long-term thinning causes increased vulnerability of the Arctic Ocean sea-ice cover. In the Atlantic sector, pre-conditioning (thinning of sea ice combined with anomalous atmospheric and oceanic heat transport causes large ice loss, while in the Pacific sector of the Arctic Ocean sea-ice albedo feedback appears important, particularly along the retreating sea-ice margin. Although maximum sea-ice loss occurs in the autumn, response in surface air temperature occurs in early winter, caused by strong increase in ocean-atmosphere surface energy fluxes, mainly the turbulent fluxes. Synchronicity of the events around 2040 in the projections is caused by a strong large-scale atmospheric circulation anomaly at the Atlantic lateral boundary of the regional model. The limited impact on land is caused by vertical propagation of the surface heat anomaly rather than horizontal, caused by the absence of low-level temperature inversion over the ocean.

  5. An Investigation of Ice Surface Albedo and Its Influence on the High-Altitude Lakes of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiahe Lang


    Full Text Available Most high-altitude lakes are more sensitive to global warming than the regional atmosphere. However, most existing climate models produce unrealistic surface temperatures on the Tibetan Plateau (TP lakes, and few studies have focused on the influence of ice surface albedo on high-altitude lakes. Based on field albedo measurements, moderate resolution imaging spectrometer (MODIS albedo products and numerical simulation, this study evaluates the ice albedo parameterization schemes in existing lake models and investigates the characteristics of the ice surface albedo in six typical TP lakes, as well as the influence of ice albedo error in the FLake model. Compared with observations, several ice albedo schemes all clearly overestimate the lake ice albedo by 0.26 to 0.66, while the average bias of MODIS albedo products is only 0.07. The MODIS-observed albedo of a snow-covered lake varies with the snow proportion, and the lake surface albedo in a snow-free state is approximately 0.15 during the frozen period. The MODIS-observed ice surface (snow-free albedos are concentrated within the ranges of 0.14–0.16, 0.08–0.10 and 0.10–0.12 in Aksai Chin Lake, Nam Co Lake and Ngoring Lake, respectively. The simulated lake surface temperature is sensitive to variations in lake ice albedo especially in the spring and winter.

  6. Mass balance of the Amitsulôq ice cap, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, Carl Egede; Olesen, Ole B.


    We present detailed mass balance measurements from the Amitsulôq ice cap in West Greenland spanning from 1982 to 1990. The data includes summer and winter balances from 26 stake locations distributed over five transects covering the whole ice cap. The mass balance measurements are combined...... with a recent satellite-derived digital elevation model to calculate the specific balance, which is in turn compared to discharge data from the adjacent Tasersiaq basin. The correlation between specific summer balance and discharge is R2 = 0.93 indicating that the basin discharge is dominated by glacial...... meltwater, linking the hydropower potential of the basin closely to the fate of the adjoining Greenland ice-sheet margin....

  7. Winter School Les Houches

    CERN Document Server

    Lannoo, Michel; Bastard, Gérald; Voos, Michel; Boccara, Nino


    The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super­ lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron­ ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorgani...

  8. Nenana Ice Classic: Tanana River Ice Annual Breakup Dates, Version 1 (United States)

    National Aeronautics and Space Administration — The Tanana river in the Interior of Alaska usually freezes over during October and November. The ice continues to grow throughout the winter accumulating an average...

  9. Winter chemistry of North Slope lakes (United States)

    Chambers, M. K.; White, D. M.; Lilly, M. R.; Hinzman, L. D.; Hilton, K. M.; Busey, R.


    Lakes are important water resources on the North Slope of Alaska. Oilfield exploration and production requires water for facility use as well as transportation. Ice road construction requires winter extraction of fresh water. Since most North Slope lakes are relatively shallow, the quantity and quality of the water remaining under the ice by the end of the winter are important environmental management issues. Currently permits are based on the presence of overwintering fish populations and their sensitivity to low oxygen. Sampling during the winter of 2004 2005 sheds light on the winter chemistry of several pumped lakes and one unpumped lake on the North Slope. Dissolved oxygen, conductivity, pH, and temperature profiles were taken along with ice thickness and water depth measurements. Water samples were extracted and analyzed for Na, Ca, K, Mg, Fe, DOC, and alkalinity in the laboratory. Lake properties, rather than pumping activities, were the best predictors of oxygen depletion, with the highest levels of dissolved oxygen maintained in the lake with the least dissolved constituents. As would be expected, specific conductance increased with depth in the lake while dissolved oxygen decreased with depth. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May. The summarized data provides a view of North Slope lake chemistry trends, while continued studies investigate the chemical impacts of pumping North Slope lakes through continued sampling and modeling efforts.

  10. Sensing winter soil respiration dynamics in near-real time (United States)

    Contosta, A.; Burakowski, E. A.; Varner, R. K.; Frey, S. D.


    Some of the largest reductions in seasonal snow cover are projected to occur in temperate latitudes. Limited measurements from these ecosystems indicate that winter soil respiration releases as much as 30% of carbon fixed during the previous growing season. This respiration is possible with a snowpack that insulates soil from ambient fluctuations in climate. However, relationships among snowpack, soil temperature, soil moisture, and winter soil respiration in temperate regions are not well-understood. Most studies have infrequently sampled soil respiration and its drivers, and most measurements have been limited to the soil surface. We made near-real time, continuous measurements of temperature, moisture, and CO2 fluxes from the soil profile, through the snowpack, and into the atmosphere in a deciduous forest of New Hampshire, USA. We coupled these data with daily sampling of snow depth and snow water equivalent (SWE). Our objectives were to continuously measure soil CO2 production (Psoil) and CO2 flux through the snowpack (Fsnow) and to compare Fsnow and Psoil with environmental drivers. We found that Fsnow was more dynamic than Psoil, changing as much as 30% over several days with shifting environmental conditions. Multiple regression indicated that SWE, air temperature, surface soil temperature, surface soil CO2 concentrations, and soil moisture at 15 cm were significant predictors of Fsnow. The transition of surface temperature from below to above 0°C was particularly important as it represented a phase change from ice to liquid water. Only air temperature and soil moisture at 15 cm were significant drivers of Psoil, where higher moisture at 15 cm resulted in lower Psoil rates. Time series analysis showed that Fsnow lagged 40 days behind Psoil. This lag may be due to slow CO2 diffusion through soil to overlying snow under high moisture conditions. Our results suggest that surface soil CO2 losses are driven by rapid changes in snow cover, surface temperature

  11. The physical impact of ice on an intertidal mussel bed. (United States)

    Donker, Jasper; van der Vegt, Maarten; Hoekstra, Piet


    We show that cold winters can have major impact on intertidal mussel communities in the Wadden Sea. Observed losses are larger than those caused by wave attacks or predation. These observations were done in the context of the Mosselwad project. Mosselwad studies the stability of mussel beds in the Dutch Wadden Sea with respect to hydrodynamic forcing, predation and other biotic process. The goal is to determine contribution of each process to the destabilization of a mussel bed, which can be used to improve protection and restoration efforts. To achieve this a mussel bed is monitored using a camera system, which makes daily panoramic pictures of the mussel bed. Additionally, four times a year a detailed elevation map of the mussel bed is created using a 3D laserscanner. During first two weeks of February 2012 the monitored bed was covered with ice. After the ice was gone a large decrease in mussel cover near the camera location was revealed. Nearly 30% mussel areal was lost in 2 weeks, while during the rest of the monitoring period little variation in mussel cover was observed. Data from the monitoring campaign were used to investigate 1) the conditions under which the losses occur; 2) the spatial distribution of losses and reallocation of mussels; 3) the recovery of the mussel bed afterwards. Two mechanisms by which ice can damage mussel beds have been put forward. Firstly, drift ice pushed forward by wind ploughs through the mussel bed. Exposed to this mechanism are higher parts of the mussel bed on the wind ward side. Secondly, buoyant forces pick up ice slabs with mussels frozen into it during high-water. This mechanism requires that water puddles remain on the bed during low water and therefore requires muddy sediment. Results show that the largest losses occurred at the higher lying areas at the wind ward side of the bed. Furthermore, large tracks starting at the front of the bed going through the bed were observed. Mussels appear to be piled up at the sides

  12. The ringed seal's last refuge and the importance of snow cover (United States)

    Kelly, B. P.; Bitz, C. M.


    Ringed seals are strongly adapted to inhabiting seasonal ice cover throughout the Arctic Ocean, marginal seas, and some freshwater lakes. Their distribution has expanded and contracted with northern hemisphere ice cover and is expected to mirror declining ice cover in coming decades. Ringed seals require snow cover to provide shelter from extreme cold and from predators, and the southern extent of their range corresponds to the latitudes to which snow cover—sufficient to form and maintain subnivean lairs—extends. The lairs are especially critical to the survival of pups born and nursed under the snow in late March through May. Snow drifts 50 cm or deeper are necessary for lair occupation, and field measurements indicate that such drifting occurs only where average snow depths (on flat ice) exceed 20 cm. When snow depths are less, ringed seal pups freeze in their lairs and are vulnerable to predation by carnivores and birds. As the climate warms, winter precipitation is expected to increase in the Arctic Ocean, potentially favoring formation and occupation of lairs. At the same time, increasingly late ice formation is expected to decrease the overall accumulation of snow, an effect exacerbated by the high fraction of annual snow fall that occurs in autumn. Early snow melts also contribute to pup mortality and are likely to increase as the climate warms. We forecast April snow depths on Arctic sea ice through the year 2100 in seven runs of CCSM3. Despite predicted increases in winter precipitation in the Arctic, the model forecasted that the accumulation of snow on sea ice will decrease by almost 50% in this century. The timing of the onset of snow melt changes little in the projections, but the shallower snow pack will melt more quickly in the warmer climate. In almost all portions of the range, average snow depths are expected to be less than 20 cm and inadequate for successful rearing of ringed seal young by the end of the century and—in many locations

  13. Multiple climate regimes in an idealized lake-ice-atmosphere model (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul


    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  14. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.


    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  15. Frictional Sliding Along Coulombic Shear Faults in Ice (United States)

    Fortt, A. L.; Schulson, E. M.


    There is increasing evidence that the processes underlying the deformation of the arctic sea ice cover are independent of spatial scale. Among them, and possibly the dominant one during winter, is frictional sliding. With the objective of characterizing and then understanding this process, we performed a series of sliding experiments along Coulombic shear faults that were created in the laboratory in both S2 freshwater ice and S2 first-year arctic sea ice. The principal variables were sliding velocity (4 × 10-3 m s-1 to 8 × 10-7 m s-1, temperature (-3 °C, -10 °C and -40 °C) and confinement (up to 2 MPa). The results show that in both materials Coulomb's failure criterion describes the relationship between the shear stress along the fault and the normal stress across it. The friction coefficient reaches a maximum at an intermediate velocity, at ~ 10-5 m s-1 for the fresh-water material and at ~ 10-4 s-1 for the sea ice, and it increases with decreasing temperature. We propose that at lower velocities where velocity-strengthening is observed, frictional resistance is governed by creep deformation within the damage zone that constitutes the fault, while at higher velocities additional fracture and frictional melting are at play.

  16. Linkage of the king eider population in Northeast Greenland: Migration, moult and discovery of a new offshore wintering area at Spitsbergenbanken

    DEFF Research Database (Denmark)

    Mosbech, Anders; Johansen, Kasper Lambert; Sonne, Christian

    In late July 2009, two female king eiders were caught on the breeding grounds in Myggbukta, Northeast Greenland and equipped with satellite transmitters. Both individuals were tracked for approximately two years. The birds remained in the Myggbukta area until the onset of the autumn migration...... arrival 6 April) where they stayed for some time before returning on the spring migration to Greenland. During a ship-based survey in the offshore winter location at Spitsbergenbanken in April 2013, a previously unknown wintering ground with approximately 10.000 king eiders was discovered. The birds were...... concentrated in a partly ice-covered area 79 km from shore and of about 20 m depth. The number of king eiders indicated that Spitsbergenbanken is a wintering area for both the East Greenland and the Svalbard breeding populations. The discovery has important conservation implications due to the expanding...

  17. The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012

    Directory of Open Access Journals (Sweden)

    A. Devasthale


    Full Text Available The record sea ice minimum (SIM extents observed during the summers of 2007 and 2012 in the Arctic are stark evidence of accelerated sea ice loss during the last decade. Improving our understanding of the Arctic atmosphere and accurate quantification of its characteristics becomes ever more crucial, not least to improve predictions of such extreme events in the future. In this context, the Atmospheric Infrared Sounder (AIRS instrument onboard NASA's Aqua satellite provides crucial insights due to its ability to provide 3-D information on atmospheric thermodynamics. Here, we facilitate comparisons in the evolution of the thermodynamic state of the Arctic atmosphere during these two SIM events using a decade-long AIRS observational record (2003–2012. It is shown that the meteorological conditions during 2012 were not extreme, but three factors of preconditioning from winter through early summer played an important role in accelerating sea ice melt. First, the marginal sea ice zones along the central Eurasian and North Atlantic sectors remained warm throughout winter and early spring in 2012 preventing thicker ice build-up. Second, the circulation pattern favoured efficient sea ice transport out of the Arctic in the Atlantic sector during late spring and early summer in 2012 compared to 2007. Third, additional warming over the Canadian archipelago and southeast Beaufort Sea from May onward further contributed to accelerated sea ice melt. All these factors may have lead the already thin and declining sea ice cover to pass below the previous sea ice extent minimum of 2007. In sharp contrast to 2007, negative surface temperature anomalies and increased cloudiness were observed over the East Siberian and Chukchi seas in the summer of 2012. The results suggest that satellite-based monitoring of atmospheric preconditioning could be a critical source of information in predicting extreme sea ice melting events in the Arctic.

  18. Microfabricated Ice-Detecti