WorldWideScience

Sample records for winter climate variability

  1. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.

    Science.gov (United States)

    Roland, Jens; Matter, Stephen F

    2013-01-01

    We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.

  2. Marine assemblages respond rapidly to winter climate variability.

    Science.gov (United States)

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  3. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  4. Centennial Variability in Winter Climate and Water Column Oxygenation During Mediterranean Sapropel S1

    Science.gov (United States)

    Jilbert, T.; Reichart, G.; Mason, P.; de Lange, G. J.

    2008-12-01

    Eastern Mediterranean sapropels have been intensively studied as part of the oceanographic response to climate variability on orbital timescales, but the potential of laminated sapropel intervals for more highly resolved climate reconstruction remains underexploited. Even the highest resolution discrete sample series have been shown to alias short term variability in bottom water oxygenation, a key tracer of regional winter climate. Here we present trace elemental profiles of a laminated S1 sapropel, measured by Laser Ablation ICP-MS scanning of resin embedded sediment at <100µm resolution. The profiles reveal persistent centennial scale oscillations in the accumulation of V, Mo and U, interpreted to record variable oxygenation of the Eastern Mediterranean water column during S1. The results question existing theories about the stability of the 'sapropel state' and provide a new archive of centennial-scale winter climate variability in the wider European region.

  5. Variability of East Asian winter monsoon in Quaternary climatic extremes in North China.

    NARCIS (Netherlands)

    Lu, H.; van Huissteden, J.; Zhou, J.

    2000-01-01

    In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climate extremes, two typical loess-paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the "Upper sand" and "Lower sand" (layers L9 and L15, respectively),

  6. The Effect of Climate Variability on Gray Whales (Eschrichtius robustus) within Their Wintering Areas.

    Science.gov (United States)

    Salvadeo, Christian J; Gómez-Gallardo U, Alejandro; Nájera-Caballero, Mauricio; Urbán-Ramirez, Jorge; Lluch-Belda, Daniel

    2015-01-01

    The environmental conditions of the breeding and feeding grounds of the gray whale (Eschrichtius robustus) fluctuates at inter-annual scales in response to regional and basin climate patterns. Thus, the goals of this study were to assess if there are any relationships between summer sea ice on their feeding ground and counts of gray whale mother-calf (MC) pairs at Ojo de Liebre Lagoon (OLL); and if El Niño Southern Oscillation (ENSO) influences the winter distribution of gray whales MC pairs in the three primary breeding lagoons of OLL, San Ignacio Lagoon (SIL) and Santo Domingo Channel north of Bahia Magdalena (SDCh). Maximum February counts of MC pairs were compared with the length of the open-water season at the Bering Sea during the previous year. Then, an ENSO index and sea surface temperature anomalies outside the primary lagoons was compared with the maximum February counts of MC pairs at these lagoons. Results showed that maximum counts of MC pairs in OLL correlates with sea ice conditions in their feeding grounds from the previous feeding season, and this relationship can be attributed to changes in nutritive condition of females. ENSO-related variability influences distribution of MC pairs in the southern area of SDCh during the warm 1998 El Niño and cold 1999 La Niña. This supports the hypothesis that changes in the whales' distribution related to sea temperature occurs to reduce thermal-stress and optimize energy utilization for newborn whales. Although this last conclusion should be considered in view of the limited data available from all the whales' wintering locations in all the years considered.

  7. The role of climatic variables in winter cereal yields: a retrospective analysis.

    Science.gov (United States)

    Luo, Qunying; Wen, Li

    2015-02-01

    This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.

  8. Tree-ring analysis of winter climate variability and ENSO in Mediterranean California

    International Nuclear Information System (INIS)

    Woodhouse, C.A.; Univ. of Colorado, Boulder

    2006-01-01

    The feasibility of using tree-ring data as a proxy for regional precipitation and ENSO events in the Mediterranean region of California is explored. A transect of moisture-sensitive tree-ring sites, extending from southwestern to north-central California, documents regional patterns of winter precipitation and replicates the regional response to ENSO events in the 20. century. Proxy records of ENSO were used with the tree-ring data to examine precipitation/ENSO patterns in the 18. and 19. centuries. Results suggest some temporal and spatial variability in the regional precipitation response to ENSO over the last three centuries

  9. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab

    2013-10-01

    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  10. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  11. Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region

    Science.gov (United States)

    Huang, Ruping; Chen, Shangfeng; Chen, Wen; Hu, Peng

    2018-01-01

    This study investigates interannual variability of boreal winter regional Hadley circulation over western Pacific (WPHC) and its climatic impacts. A WPHC intensity index (WPHCI) is defined as the vertical shear of the divergent meridional winds. It shows that WPHCI correlates well with the El Niño-Southern Oscillation (ENSO). To investigate roles of the ENSO-unrelated part of WPHCI (WPHCIres), variables that are linearly related to the Niño-3 index have been removed. It reveals that meridional sea surface temperature gradient over the western Pacific plays an essential role in modulating the WPHCIres. The climatic impacts of WPHCIres are further investigated. Below-normal (above-normal) precipitation appears over south China (North Australia) when WPHCIres is stronger. This is due to the marked convergence (divergence) anomalies at the upper troposphere, divergence (convergence) at the lower troposphere, and the accompanied downward (upward) motion over south China (North Australia), which suppresses (enhances) precipitation there. In addition, a pronounced increase in surface air temperature (SAT) appears over south and central China when WPHCIres is stronger. A temperature diagnostic analysis suggests that the increase in SAT tendency over central China is primarily due to the warm zonal temperature advection and subsidence-induced adiabatic heating. In addition, the increase in SAT tendency over south China is primarily contributed by the warm meridional temperature advection. Further analysis shows that the correlation of WPHCIres with the East Asian winter monsoon (EAWM) is weak. Thus, this study may provide additional sources besides EAWM and ENSO to improve understanding of the Asia-Australia climate variability.

  12. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models

    DEFF Research Database (Denmark)

    Palosuo, Taru; Kersebaum, Kurt Christian; Angulo, Carlos

    2011-01-01

    We compared the performance of eight widely used, easily accessible and well-documented crop growth simulation models (APES, CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS and WOFOST) for winter wheat (Triticum aestivum L.) during 49 growing seasons at eight sites in northwestern, Central and sout......We compared the performance of eight widely used, easily accessible and well-documented crop growth simulation models (APES, CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS and WOFOST) for winter wheat (Triticum aestivum L.) during 49 growing seasons at eight sites in northwestern, Central...... values were lowest (1428 and 1603 kg ha−1) and the index of agreement (0.71 and 0.74) highest. CROPSYST systematically underestimated yields (MBE – 1186 kg ha−1), whereas HERMES, STICS and WOFOST clearly overestimated them (MBE 1174, 1272 and 1213 kg ha−1, respectively). APES, DAISY, HERMES, STICS...

  13. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  14. Overview of climatic effects of nuclear winter

    International Nuclear Information System (INIS)

    Jones, E.M.; Malone, R.C.

    1985-01-01

    A general description of the climatic effects of a nuclear war are presented. This paper offers a short history of the subject, a discussion of relevant parameters and physical processes, and a description of plausible nuclear winter scenario. 9 refs

  15. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  16. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  17. Winter climate change: a critical factor for temperate vegetation performance.

    Science.gov (United States)

    Kreyling, Juergen

    2010-07-01

    Winter ecological processes are important drivers of vegetation and ecosystem functioning in temperate ecosystems. There, winter conditions are subject to rapid climate change. The potential loss of a longer-lasting snow cover with implications to other plant-related climate parameters and overwintering strategies make the temperate zone particularly vulnerable to winter climate change. A formalized literature search in the ISI Web of Science shows that plant related research on the effects of winter climate change is generally underrepresented. Temperate regions in particular are rarely studied in this respect, although the few existing studies imply strong effects of winter climate change on species ranges, species compositions, phenology, or frost injury. The generally positive effect of warming on plant survival and production may be counteracted by effects such as an increased frost injury of roots and shoots, an increased insect pest risk, or a disrupted synchrony between plants and pollinators. Based on the literature study, gaps in current knowledge are discussed. Understanding the relative effects of interacting climate parameters, as well as a stronger consideration of shortterm events and variability of climatic conditions is urgent. With respect to plant response, it would be particularly worthwhile to account for hidden players such as pathogens, pollinators, herbivores, or fungal partners in mycorrhization.

  18. Winter season mortality: will climate warming bring benefits?

    Science.gov (United States)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  19. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    Science.gov (United States)

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  20. Reindeer (Rangifer tarandus and climate change: Importance of winter forage

    Directory of Open Access Journals (Sweden)

    Thrine Moen Heggberget

    2002-06-01

    Full Text Available As a consequence of increasing greenhouse gas concentrations, climate change is predicted to be particularly pronounced, although regionally variable, in the vast arctic, sub-arctic and alpine tundra areas of the northern hemisphere. Here, we review winter foraging conditions for reindeer and caribou (Rangifer tarandus living in these areas, and consider diet, forage quality and distribution, accessibility due to snow variation, and effects of snow condition on reindeer and caribou populations. Finally, we hypothesise how global warming may affect wild mountain reindeer herds in South Norway. Energy-rich lichens often dominate reindeer and caribou diets. The animals also prefer lichens, and their productivity has been shown to be higher on lichen-rich than on lichen-poor ranges. Nevertheless, this energy source appears to be neither sufficient as winter diet for reindeer or caribou (at least for pregnant females nor necessary. Some reindeer and caribou populations seem to be better adapted to a non-lichen winter diet, e.g. by a larger alimentary tract. Shrubs appear to be the most common alternative winter forage, while some grasses appear to represent a good, nutritionally-balanced winter diet. Reindeer/caribou make good use of a wide variety of plants in winter, including dead and dry parts that are digested more than expected based on their fibre content. The diversity of winter forage is probably important for the mineral content of the diet. A lichen-dominated winter diet may be deficient in essential dietary elements, e.g. minerals. Sodium in particular may be marginal in inland winter ranges. Our review indicates that most Rangifer populations with lichen-dominated winter diets are either periodically or continuously heavily harvested by humans or predators. However, when population size is mainly limited by food, accessible lichen resources are often depleted. Plant studies simulating climatic change indicate that a warmer, wetter

  1. The effect of winter length on duration of dormancy and survival of specialized herbivorous Rhagoletis fruit flies from high elevation environments with acyclic climatic variability.

    Science.gov (United States)

    Rull, J; Tadeo, E; Lasa, R; Aluja, M

    2017-09-19

    Dormancy can be defined as a state of suppressed development allowing insects to cope with adverse conditions and plant phenology. Among specialized herbivorous insects exploiting seasonal resources, diapause frequently evolves as a strategy to adjust to predictable plant seasonal cycles. To cope with acyclic and unpredictable climatic events, it has been found for some insects that a proportion of the population undergoes prolonged dormancy. We compared the response of three species in the Rhagoletis cingulata species group exploiting plants differing in fruiting phenology from environments varying in frequency and timing of acyclic climatic catastrophic events (frost during flowering and fruit set) and varying also in the time of the onset of the rainy season. Small proportions (10 months), and large proportions of pupae died without emerging as adults. The number of days elapsed from the end of artificial winter and adult eclosion was longer for R. cingulata exploiting late fruiting Prunus serotina in Northeastern Mexico than for flies recovered from earlier fruiting plants in the central Altiplano. Rhagoletis turpiniae and northeastern R. cingulata pupae suffered high proportions of parasitism. Large proportions of R. cingulata from central Mexico engaging in prolonged dormancy may be explained by the fact that flowering and fruit set for its host, P. serotina var capuli, driven by the timing of maximum precipitation, matches a period of highest probability of frost often resulting in large areas with fruitless trees at unpredictable time intervals. As a consequence of differences in host plant fruiting phenology, central and northeastern Mexican R. cingulata were found to be allochronically isolated. Prolonged dormancy may have resulted in escape from parasitism.

  2. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    Science.gov (United States)

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  3. Zoonoses and climate variability.

    Science.gov (United States)

    Cardenas, Rocio; Sandoval, Claudia M; Rodriguez-Morales, Alfonso J; Vivas, Paul

    2008-12-01

    Leishmaniasis in the Americas is transmitted by Lutzomyia spp., which have many animal reservoirs. Previous studies indicated potential changes in vectors of climate-related distribution, but impact outcomes need to be further studied. We report climatic and El Niño events during 1985-2002 that may have had an impact on leishmaniasis in 11 southern departments of Colombia: Amazonas, Caquetá, Cauca (Ca), Huila, Meta (Mt), Nariño, Putumayo (Py), Tolima, Valle (Va), Vaupes (Vp), and Vichada. Climatic data were obtained by satellite and epidemiologic data were obtained from the Health Ministry. NOAA climatic classification and SOI/ONI indexes were used as indicators of global climate variability. Yearly variation comparisons and median trend deviations were made for disease incidence and climatic variability. During this period there was considerable climatic variability, with a strong El Niño for 6 years and a strong La Niña for 8. During this period, 19,212 cases of leishmaniasis were registered, for a mean of 4756.83 cases/year. Disease in the whole region increased (mean of 4.98%) during the El Niño years in comparison to the La Niña years, but there were differences between departments with increases during El Niño (Mt 6.95%, Vp 4.84%), but the rest showed an increase during La Niña (1.61%-64.41%). Differences were significant in Va (P= 0.0092), Py (P= 0.0001), Ca (P= 0.0313), and for the whole region (P= 0.0023), but not in the rest of the departments. The importance of climate change is shown by shifts in insect and animal distributions. These data reflect the importance of climate on transmission of leishmaniasis and open further investigations related to forecasting and monitoring systems, where understanding the relationship between zoonoses and climate variability could help to improve the management of these emerging and reemerging diseases.

  4. Surfing wave climate variability

    Science.gov (United States)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  5. The winter St. Helena climate index and extreme Benguela upwelling

    Science.gov (United States)

    Hagen, Eberhard; Agenbag, Jacobus J.; Feistel, Rainer

    2005-09-01

    Climate changes in the subtropical South-east Atlantic turn out to be well described by the St. Helena Island Climate Index (HIX) and observed fluctuations are in good agreement with inter-decadal variability of the entire South Atlantic Ocean. Year-to-year variations of the averaged austral winter HIX (July-September), representative of the main upwelling season, were compared with (i) corresponding averages of the geostrophic alongshore component of the south-east trade wind (SET) between St. Helena Island in the south-west and Luanda/Angola in the north-east, (ii) the meridional distribution of surface waters colder than 13 °C to characterise intense Benguela upwelling (IBU), and (iii) the meridional position of the Angola-Benguela Frontal Zone (ABFZ) determined by means of sea surface temperature images for offshore distances between 50 and 400 km. Temporal changes of these parameters were investigated and showed that the frequency of consecutive years of strong and relaxed Benguela upwelling is characterised by a quasi-cycle of about 11-14 years. It is proposed that the index of the winter HIX may be used as a 'surveyor's rod' to describe interannual changes in the Benguela upwelling regime as well as those of the embedded marine ecosystem.

  6. Characteristic features of winter precipitation and its variability over ...

    Indian Academy of Sciences (India)

    Keywords. Northwest India; winter precipitation; western disturbances; rabi crops; precipitation variability; precipitation epochs. ... The precipitation is mainly associated with the sequence of synoptic systems known as 'western disturbances'. The precipitation has ... National Atmospheric Research Laboratory, Tirupati, India.

  7. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  8. European seasonal mortality and influenza incidence due to winter temperature variability

    Science.gov (United States)

    Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.

    2017-12-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.

  9. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  10. Climatic variability of east Malaysia

    International Nuclear Information System (INIS)

    Camerlengo, A.L.; Saadon, M.N.; Awang, M.; Somchit, H.; Rang, L.Y.

    2001-01-01

    The objective of this paper is to learn the variability of atmospheric pressure, relative humidity and insolation in East Malaysia. The main results of our study are: (1) a gentle pressure gradient is observed at the east coast in the boreal winter, (2) smaller atmospheric pressure values are noted during the first inter-monsoon period all across East Malaysia, (3) lesser insolation values are observed in Sarawak and at the east coast during the boreal winter as compared to the boreal summer, and (4) a poleward increase of insolation is registered. (author)

  11. Solar Variability and Climate Change

    Science.gov (United States)

    Pap, J. M.

    2004-12-01

    One of the most exciting and important challenges in science today is to understand climate variability and to make reliable predictions. The Earth's climate is a complex system driven by external and internal forces. Climate can vary over a large range of time scales as a consequence of natural variability or anthropogenic influence, or both. Observations of steadily increasing concentrations of greenhouse gases --primarily man-made-- in the Earth's atmosphere have led to an expectation of global warming during the coming decades. However, the greenhouse effect competes with other climate forcing mechanisms, such as solar variability, cosmic ray flux changes, desertification, deforestation, and changes in natural and man-made atmospheric aerosols. Indeed, the climate is always changing, and has forever been so, including periods before the industrial era began. Since the dominant driving force of the climate system is the Sun, the accurate knowledge of the solar radiation received by Earth at various wavelengths and from energetic particles with varying intensities, as well as a better knowledge of the solar-terrestrial interactions and their temporal and spatial variability are crucial to quantify the solar influence on climate and to distinguish between natural and anthropogenic influences. In this paper we give an overview on the recent results of solar irradiance measurements over the last three decades and the possible effects of solar variability on climate.

  12. Winter Arctic sea ice growth: current variability and projections for the coming decades

    Science.gov (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.

    2017-12-01

    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  13. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  14. Mirador - Climate Variability and Change

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. NASA's role in climate variability study is centered around providing the global scale observational data sets on oceans and...

  15. Climatic potential for summer and winter wine production.

    Science.gov (United States)

    de Oliveira Aparecido, Lucas Eduardo; Moreto, Victor Brunini; de Souza Rolim, Glauco; da Silva Cabral de Moraes, José Reinaldo; Valeriano, Taynara Tuany Borges; de Souza, Paulo Sergio

    2018-03-01

    The geoviticultural multicriteria climatic classification (MCC) system provides an efficient guide for assessing the influence of climate on wine varieties. Paraná is one of the three states in southern Brazil that has great potential for the expansion of wine production, mainly due to the conditions that favour two harvests a year. The objective was to apply the geoviticultural MCC system in two production seasons. We used maximum, mean and minimum air temperature and precipitation for 1990-2015 for the state of Paraná. Air temperature and Precipitation were used to calculate the evapotranspiration and water balance. We applied the MCC system to identify potential areas for grapevine production for harvests in both summer and winter and then determined the climatic zones for each geoviticultural climate. Paraná has viticultural climates with conditions favourable for grapevine cultivation for the production of fine wines from summer and winter harvests. The conditions for the winter harvest provided wines with good coloration and high aromatic potential relative to the summer harvest. Chardonnay, Merlot, Pinot Blanc and Müller-Thurgau were suitable for regions with lower air temperatures and water deficits. Pinot Blanc and Müller-Thurgau were typical for the southern region of Paraná. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India

    Science.gov (United States)

    Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.

    2015-12-01

    India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts

  17. Interdecadal variability of winter precipitation in Southeast China

    OpenAIRE

    Zhang, L.; Zhu, X.; Fraedrich, K.; Sielmann, F.; Zhi, X.

    2014-01-01

    Interdecadal variability of observed winter precipitation in Southeast China (1961–2010) is characterized by the first empirical orthogonal function of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean. For interdecadal time scales the dominating spatial modes represent monopole features involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies. Dynamic composite analysis (based on NCEP/NCAR reanalyzes) reveals the followin...

  18. Characteristics of the East Asian Winter Climate Associated with the Westerly Jet Stream and ENSO

    Science.gov (United States)

    Yang, Song; Lau, K.-M.; Kim, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this study, the influences of the East Asian jet stream (EAJS) and El Nino/Southern Oscillation (ENSO) on the interannual variability of the East Asian winter climate are examined with a focus on the relative climate impacts of the two phenomena. Although the variations of the East Asian winter monsoon and the temperature and precipitation of China, Japan, and Korea are emphasized, the associated changes in the broad-scale atmospheric circulation patterns over Asia and the Pacific and in the extratropical North Pacific sea surface temperature (SST) are also investigated. It is demonstrated that there is no apparent relationship between ENSO and the interannual variability of EAJS core. The EAJS and ENSO are associated with distinctly different patterns of atmospheric circulation and SST in the Asian-Pacific regions. While ENSO causes major climate signals in the Tropics and over the North Pacific east of the dateline, the EAJS produces significant changes in the atmospheric circulation over East Asia and western Pacific. In particular, the EAJS explains larger variance of the interannual signals of the East Asian trough, the Asian continental high, the Aleutian low, and the East Asian winter monsoon. When the EAJS is strong, all these atmospheric systems intensify significantly. The response of surface temperature and precipitation to EAJS variability and ENSO is more complex. In general, the East Asian winter climate is cold (warm) and dry (wet) when the EAJS is strong (weak) and it is warm during El Nino years. However, different climate signals are found during different La Nina years. In terms of linear correlation, both the temperature and precipitation of northern China, Korea, and central Japan are more significantly associated with the EAJS than with ENSO.

  19. Climate and changing winter distribution of alcids in the Northwest Atlantic

    Directory of Open Access Journals (Sweden)

    Richard R. Veit

    2015-04-01

    Full Text Available Population level impacts upon seabirds from changing climate are increasingly evident, and include effects on phenology, migration, dispersal, annual survivorship and reproduction. Most population data on seabirds derive from nesting colonies; documented climate impacts on winter ecology are scarce. We studied interannual variability in winter abundance of six species of alcids (Charadriiformes, Alcidae from a 58-year time series of data collected in Massachusetts 1954-2011. We used counts of birds taken during fall and winter from coastal vantage points. Counts were made by amateur birders, but coverage was consistent in timing and location. We found significant association between winter abundance of all six species of alcids and climate, indexed by North Atlantic Oscillation (NAO, at two temporal scales: 1. Significant linear trends at the 58-year scale of the time series; and 2. Shorter term fluctuations corresponding to the 5-8 year periodicity of NAO. Thus, variation in winter abundance of all six species of alcids was significantly related to the combined short-term and longer-term components of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot peaked during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre peaked during NAO negative years. For Common Murres and Razorbills, southward shifts in winter distribution have been accompanied by southward expansion of breeding range, and increase within the core of the range. The proximate mechanism governing these changes is unclear, but, as for most other species of seabirds whose distributions have changed with climate, seems likely to be through their prey.

  20. Climatic variability, plant phenology, and northern ungulates

    Energy Technology Data Exchange (ETDEWEB)

    Post, E.; Stenseth, N.C. [Univ. of Oslo (Norway)

    1999-06-01

    Models of climate change predict that global temperatures and precipitation will increase within the next century, with the most pronounced changes occurring in northern latitudes and during winter. A large-scale atmospheric phenomenon, the North Atlantic Oscillation (NAO), is a strong determinant of both interannual variation and decadal trends in temperatures and precipitation during winter in northern latitudes, and its recent persistence in one extreme phase may be a substantial component of increases in global temperatures. Hence, the authors investigated the influences of large-scale climatic variability on plant phenology and ungulate population ecology by incorporating the NAO in statistical analyses of previously published data on: (1) the timing of flowering by plants in Norway, and (2) phenotypic and demographic variation in populations of northern ungulates. The authors analyzed 137 time series on plant phenology for 13 species of plants in Norway spanning up to 50 yr and 39 time series on phenotypic and demographic traits of 7 species of northern ungulates from 16 populations in North America and northern Europe spanning up to 30 yr.

  1. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Spatial and temporal variations of winter discharge under climate change: Case study of rivers in European Russia

    Directory of Open Access Journals (Sweden)

    E. A. Telegina

    2015-05-01

    Full Text Available An important problem in hydrology is the re-evaluation of the current resources of surface and underground waters in the context of ongoing climate changes. The main feature of the present-day changes in water regime in the major portion of European Russia (ER is the substantial increase in low-water runoff, especially in winter. In this context, some features of the spatial–temporal variations of runoff values during the winter low-water period are considered. Calculations showed that the winter runoff increased at more than 95% of hydrological gauges. Changes in the minimum and average values of runoff during winter low-water period and other characteristics are evaluated against the background of climate changes in the recent decades. The spatial and temporal variability of winter runoff in European Russia is evaluated for the first time.

  3. Variability of Winter Air Temperature in Mid-Latitude Europe

    Science.gov (United States)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  4. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    Science.gov (United States)

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  5. Climate and smoke: an appraisal of nuclear winter.

    Science.gov (United States)

    Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C

    1990-01-12

    The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.

  6. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  7. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke; Yang, Hongqing

    2017-12-01

    The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of

  8. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.

    Directory of Open Access Journals (Sweden)

    José L Tellería

    Full Text Available We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs or indirect effects (primary productivity. Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction. Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.

  9. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.

    Science.gov (United States)

    Tellería, José L; Fernández-López, Javier; Fandos, Guillermo

    2016-01-01

    We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.

  10. Flow variability within the Alaska Coastal Current in winter

    Science.gov (United States)

    Jarosz, Ewa; Wang, David; Wijesekera, Hemantha; Scott Pegau, W.; Moum, James N.

    2017-05-01

    Coastal circulation off Kayak Island in the northern Gulf of Alaska was explored in wintertime (October 2012 to March 2013) by deploying nine moorings within the Alaska Coastal Current (ACC). Hydrographic, bottom-pressure, and velocity observations depicted well the winter variability of the ACC. Atmospheric observations showed a net loss of heat, 30 W m-2 or more, from the ocean to the atmosphere and indicated that storms with downwelling-favorable winds over 10 m s-1 frequently passed over the area. Due to vigorous mixing during storms, the waters were well-mixed or weakly stratified whereas bottom-pressure anomalies were mainly related to surface-elevation fluctuations and indicated that there was also a cross-shelf surface-elevation gradient. Current observations showed along-shelf nearly barotropic subtidal flow of 40 cm s-1 or more throughout the water column. They also indicated that along-shelf flow was primarily driven by the cross-shelf pressure gradient resulting from the cross-shelf surface-elevation gradient and not by wind stress. Analyses suggested that flow dynamics within the ACC in winter were well-described by vertically averaged momentum equations and showed a dominance of the cross-shelf pressure gradient that was mainly balanced by the Coriolis term. Observations also showed that when winds relaxed, cold low-salinity waters moved offshore and stratification was reestablished. Consequently, near-shore waters were less dense, i.e., cooler and fresher than offshore waters resulting in the cross-shelf density gradient that may have contributed to the along-shelf flow by generating near-surface currents of ˜20 cm s-1.

  11. The Year Without a Ski Season: An Analysis of the Winter of 2015 for Three Ski Resorts in Western Canada Using Historical and Simulation Model Forecasted Climate Data

    Science.gov (United States)

    Pidwirny, M. J.; Goode, J. D.; Pedersen, S.

    2015-12-01

    The winter of 2015 will go down as "the year without a ski season" for many ski resorts located close to the west coast of Canada and the USA. During this winter season, a large area of the eastern North Pacific Ocean had extremely high sea surface temperatures. These high sea surface temperatures influenced weather patterns on the west coast of North America producing very mild temperatures inland. Further, in alpine environments precipitation that normally arrives in the form of snow instead fell as rain. This research examines the climate characteristics of the winter of 2015 in greater detail for three ski resorts in British Columbia, Canada: Mount Washington, Cypress Mountain and Hemlock Valley. For these resorts, historical (1901 to 2013) and IPCC AR5 climate model forecasted climate data (RCP8.5 for 2025, 2055, and 2085) was generated for the variable winter degree days climate database ClimateBC. A value for winter degree days climate data at nearby meteorological stations for comparative analysis. For all three resorts, the winter of 2015 proved to be warmer than any individual year in the period 1901 to 2013. Interpolations involving the multi-model ensemble forecast means suggest that the climate associated with winter of 2015 will become the average normal for these resorts in only 35 to 45 years under the RCP8.5 emission scenario.

  12. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  13. Variability of the earth's climate

    International Nuclear Information System (INIS)

    Duplessy, J.C.

    1991-01-01

    In this paper, the global evolution of the Earth's climate since the Precambrian is described and the reconstruction of the last major oscillations generally referred to as the last climatic cycles which occurred during the Quarternary is presented: isotope geochemistry, micropaleontological transfer functions; ice volume and sea level, temperatures, deep water circulation of the last climatic cycle

  14. Impacts of climate change for Swiss winter and summer tourism: a general equilibrium analysis

    OpenAIRE

    Thurm, Boris; Vielle, Marc; Vöhringer, Frank

    2017-01-01

    Tourism could be greatly affected by climate change due to its strong dependence on weather. In Switzerland, the sector represents an appreciable share of the economy. Thus, studying climate effects on tourism is necessary for developing adequate adaptation strategies. While most of the studies focused on winter tourism, we investigate the climate change impacts on both winter and summer tourism in Switzerland. Using a computable general equilibrium (CGE) model, we simulate the impacts of tem...

  15. Relationships between climate and winter cereal grain quality in Finland and their potential for forecasting

    Directory of Open Access Journals (Sweden)

    P. D. HOLLINS

    2008-12-01

    Full Text Available Many studies have demonstrated the effects of climate on cereal yield, but there has been little work carried out examining the relationships between climate and cereal grain quality on a national scale. In this study national mean hectolitre weight for both rye and winter wheat in Finland was modelled using monthly gridded accumulated snow depth, precipitation rate, solar radiation and temperature over the period 1971 to 2001. Variables with significant relationships in correlation analysis both before and after difference detrending were further investigated using forward stepwise regression. For rye, March snow depth, and June and July solar radiation accounted for 66% of the year-to-year variance in hectolitre weight, and for winter wheat January snow depth, June solar radiation and August temperature accounted for 62% of the interannual variance in hectolitre weight. Further analysis of national variety trials and weather station data was used to support proposed biological mechanisms. Finally a cross validation technique was used to test forecast models with those variables available by early July by making predictions of above or below the mean hectolitre weight. Analysis of the contingency tables for these predictions indicated that national hectolitre weight forecasts are feasible for both cereals in advance of harvest.;

  16. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    Future climate change is generally believed to lead to an increase in climate variability and in the frequency and intensity of extreme events. Extreme climate events such as floods and dry spells have significant impacts on society. As noted by the Bureau of Meteorology, Canada, to examine whether such extremes have ...

  17. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    Abstract. Future climate change is generally believed to lead to an increase in climate variability and in the frequency and intensity of extreme events. Extreme ... However, since people tend to adapt to their local climate, a threshold considered extreme in one part of Australia could be considered quite normal in another.

  18. Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter

    Science.gov (United States)

    Tomaziello, Ana Carolina Nóbile; Carvalho, Leila M. V.; Gandu, Adilson W.

    2016-09-01

    The Atlantic Intertropical Convergence Zone (A-ITCZ) exhibits variations on several time-scales and plays a crucial role in precipitation regimes of northern South America and western Africa. Here we investigate the variability of the A-ITCZ on intraseasonal time-scales during austral summer (November-March) and winter (May-September) based on a multivariate index that describes the main atmospheric features of the A-ITCZ and retains its variability on interannual, semiannual, and intraseasonal time-scales. This index is the time coefficient of the first combined empirical orthogonal function mode of anomalies (annual cycle removed) of precipitation, and zonal and meridional wind components at 850 hPa from the climate forecast system reanalysis (1979-2010). We examine associations between the intraseasonal variability of the A-ITCZ and the activity of the Madden-Julian oscillation (MJO). We show that during austral summer intraseasonal variability of the A-ITCZ is associated with a Rossby wave train in the Northern Hemisphere. In austral winter this variability is associated with the propagation of a Rossby wave in the Southern Hemisphere consistent with the Pacific-South American pattern. Moreover, we show that intense A-ITCZ events on intraseasonal time-scales are more frequent during the phase of MJO characterized by convection over western Pacific and suppression over the Indian Ocean. These teleconnection patterns induce anomalies in the trade winds and upper level divergence over the equatorial Atlantic that modulate the intensity of the A-ITCZ.

  19. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  20. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  1. Climate variability and vulnerability to climate change: a review.

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. © 2014 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  2. Climate change projections for winter precipitation over Tropical America using statistical downscaling

    Science.gov (United States)

    Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4

  3. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France

    Science.gov (United States)

    Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco

    2017-05-01

    Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.

  4. Seasonal climate variability in Medieval Europe (1000 to 1499)

    Science.gov (United States)

    Pfister, C.

    2009-04-01

    In his fundamental work on medieval climate Alexandre (1987) highlighted the significance of dealing with contemporary sources. Recently, long series of temperature indices for "summer" and "winter" were set up by Shabalova and van Engelen (2003) for the Low Countries, but the time resolution is not strictly seasonal. This paper worked out within the EU 6th Framework Project "Millennium" draws on critically reviewed documentary evidence from a spatially extensive area of Western and Central Europe (basically England, France, BENELUX, Western Germany, Switzerland, Austria, Poland, Hungary and todays Czech Republic. The narrative evidence is complemented with dendro-climatic series from the Alps (Büntgen et al. 2006). Each "climate observation" is georeferenced which allows producing spatial displays of the data for selected spaces and time-frames. The spatial distribution of the information charts can be used as a tool for the climatological verification of the underlying data. Reconstructions for winter (DJF) and summer (JJA) are presented in the form of time series and charts. Cold winters were frequent from 1205 to 1235 i.e. in the "Medieval Warm Period" and in the Little Ice Age (1306-1330; 1390-1470). Dry and warm summers prevailed in Western and Central Europe in the first half of the 13th century. During the Little Ice Age cold-wet summers (triggered by volcanic explosions in the tropics) were more frequent, though summer climate remained highly variable. Results are discussed with regard to the "Greenhouse Debate" and the relationship to glacier fluctuations in the Alps is explored. References -Alexandre, Pierre, 1987: Le Climat en Europe au Moyen Age. Contribution à l'histoire des variations climatiques de 1000 à 1425. Paris. -Büntgen, Ulf et al. 2006: Summer Temperature Variation in the European Alps, AD. 755-2004, J. of Climate 19 5606-5623. - Pfister, Christian et al. 1998: Winter air temperature variations in Central Europe during the Early and

  5. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    Science.gov (United States)

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.

  6. Potential volcanic impacts on future climate variability

    Science.gov (United States)

    Bethke, Ingo; Outten, Stephen; Otterå, Odd Helge; Hawkins, Ed; Wagner, Sebastian; Sigl, Michael; Thorne, Peter

    2017-11-01

    Volcanic activity plays a strong role in modulating climate variability. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios. Here, we explore how sixty possible volcanic futures, consistent with ice-core records, impact climate variability projections of the Norwegian Earth System Model (NorESM) under RCP4.5 (ref. ). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ~50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

  7. Arctic climate change and decadal variability

    NARCIS (Netherlands)

    Linden, van der Eveline C.

    2016-01-01

    High northern latitudes exhibit enhanced near-surface warming in a climate with increasing greenhouse gases compared to other parts of the globe, indicating an amplified climate response to external forcing. Decadal to multidecadal variability sometimes enhances and at other times reduces the

  8. Arctic climate change and decadal variability

    NARCIS (Netherlands)

    Linden, van der Eveline C.

    2016-01-01

    High northern latitudes exhibit enhanced near-surface warming in a climate with increasing greenhouse gases compared to other parts of the globe, indicating an amplified climate response to external forcing. Decadal to multidecadal variability sometimes enhances and at other times reduces the

  9. Impacts of Climate Change and Climate Variability on Cocoa ...

    African Journals Online (AJOL)

    Impacts of Climate Change and Climate Variability on Cocoa ( Theobroma Cacao ) Yields in Meme Division, South West Region of Cameroon. ... Farm selection was based on age, consistency of sizes and management practices in an attempt to keep the factors affecting cocoa yield constant. Data on cocoa yield, flowering, ...

  10. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    Science.gov (United States)

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  11. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.; Chen, Y.; Wang, Z.

    2015-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  12. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  13. Correlation of climate variability and malaria: A retrospective ...

    African Journals Online (AJOL)

    BACKGROUND: Climatic variables can determine malaria transmission dynamics. To see the correlation between malaria occurrence and climatic variables, records of malaria episodes over eight years period were analyzed incorporating climatic variables around Gilgel-Gibe Hydroelectric Dam and control sites.

  14. The role of human influence on climate in recent UK winter floods and their impacts

    Science.gov (United States)

    Schaller, Nathalie; Yiou, Pascal; Kay, Alison; Lamb, Rob; Massey, Neil; van Oldenborgh, Geert Jan; Otto, Friederike; Sparrow, Sarah; Vautard, Robert; Bowery, Andy; Crooks, Susan; Huntingford, Chris; Ingram, William; Jones, Richard; Legg, Tim; Miller, Jonathan; Skeggs, Jessica; Wallom, David; Wilson, Simon; Allen, Myles

    2015-04-01

    The whole winter of 2013/2014 was characterized by a near-continuous succession of westerly storms. Accumulated rainfall during January 2014 was the largest ever recorded for that month across much of southern England, including the Radcliffe Observatory record in Oxford that begins in 1767. Severe floods resulted, causing major disruption. So far, quantifying any contribution from human influence on climate to such weather events and resulting floods has been difficult due to the large natural variability of winter precipitation in the North Atlantic and European regions. The emerging science of probabilistic event attribution however increasingly allows us to evaluate the extent to which human-induced climate change is affecting localised weather events. Under the project "EUropean CLimate and weather Events: Interpretation and Attribution" (EUCLEIA), an end-to-end attribution study is performed for the first time. An ensemble of 134,354 general circulation model simulations is run using the citizen science project weather@home. We find that the frequency of days in January in zonal flows increases jointly with increases in precipitation as a result of anthropogenic climate change. The best estimate of the change in risk of extreme (1-in-100-year in pre-industrial conditions) precipitation for January in southern England is an increase by around 40%, but the uncertainty range includes no change or an increase by over 150% due to uncertainty in the pattern of anthropogenic warming. A hydrological model driven by the model-simulated precipitation gives similar increases in risk compared to precipitation for 30-day peak river flows for the Thames at Kingston. Given these river flows we estimate that anthropogenic climate change has placed an additional 3,500 properties in the Thames catchment (upstream of the tidal reach through London) at risk of flooding from rivers over a broad range of return-times. Our study provides for the first time an estimate of the scale

  15. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  16. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; Makoto, K.

    2014-01-01

    It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation-soil feedbacks. One fruitful avenue for studying such

  17. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark

    DEFF Research Database (Denmark)

    Montesino-San Martin, M; Olesen, Jørgen E; Porter, John Roy

    2014-01-01

    in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated......Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower...... latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SRES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes...

  18. Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind

    2012-01-01

    Sensitivity of wheat yield and soil nitrogen (N) losses to stepwise changes in means and variances of climatic variables were determined using the FASSET model. The LARS-WG was used to generate climate scenarios using observed climate data (1961–90) from two sites in Denmark, which differed...... in climate and soil conditions. Scenarios involved changes to (i) mean temperature alone, (ii) mean and variability of temperature, (iii) winter and summer precipitation amounts and (iv) duration of dry and wet series. The model predicted lower grain yield and N uptake in response to increases in mean...... temperatures, caused by early maturity, with little change in variability. This, however, increased soil mineral N causing increased N losses. On sandy loam, larger temperature variability lowered grain yields and increased N losses coupled with higher variability at all the mean temperature ranges. On coarse...

  19. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  20. Assessment of climate variability and hydrological alterations in Kaidu Basin

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2017-04-01

    Climate change and hydrological alterations are major concerns in a mountain river ecosystem. We provide an essential assessment of climate variability (1961-2011) in Kaidu basin by means of Mann-Kendall test and cumulative anomalies. The Indicator of Hydrologic Alteration (IHA) was further performed to analyze hydrological alterations (1972-2008). Change in the triggering of snowmelt runoff timing was analyzed by the winter/spring snowmelt runoff center time (WSCT). Results reveal that annual precipitation and temperature show an increase tendency, but with a significant trend in winter and summer, respectively, while the discharge reveals significant rises in both annual and seasonal scales. However, all the hydro-meteorological parameters show an obvious increase tendency especially in the mid-1990s. WSCT has a significant decreasing trend and was observed earlier by nearly 10 days in Kaidu Basin. Higher relationship between WSCT with temperatures (March to April, R= - 0.51) and precipitation (February to March, R=0.33) were found that temperature may play a major role in causing the earlier WSCT. Account for the reservoirs influences, the rise rate and monthly flows have increased evidently before and after the reservoirs regulation. Monthly streamflow was found higher in pre-impact (1972-1992) than post-impact period (1993-2008) based on the flow duration curves. Nevertheless, the base flow index displayed no change before and after the impact period. Consequently, both of climate change and reservoir regulation lead to a concentrated streamflow. Research should take this influence into consideration in hydrological analysis and modelling in terms of uncertainties. These findings deepen our understanding of climate change and hydrological alterations in Kaidu basin, and are useful for flood risk regulation, ecological restoration and future hydropower plants. Keywords: Climate change; Spring snowmelt runoff time; WSCT; hydrological alterations; IHA

  1. Variability in surface inversion characteristics over India in winter ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1. Variability in surface inversion ... Decadal variations in inversion strength show weak inversion frequencies decreasing from the 1st to the 3rd decade while moderate/strong inversions occur more frequently at most stations. Frequencies of very strong ...

  2. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  3. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  4. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  5. Climatic Variability In Tropical Countries

    Science.gov (United States)

    Seneviratne, L. W.

    2003-04-01

    atmospheric condition and hence reduces rainfall for about 1.5 years in tropical countries. This was proved in 2001. This forecast was presented as a paper in 1998 Stockholm Water Symposium. The results were true for Brazil as well. The danger is now over when the episode is relaxed. Second half of 2002 was heavily wet and all the tanks in Sri Lanka except Kirindioya complex in Hambanthoa area got filled. This condition was seen in 1997 where all tanks got filled. El Nino analysts declared 1997 as a drought year as the previous year had experienced warming in Pacific Ocean. Southern Oscillation events are now dissociating to conformity. Discussion Hambanthoa District remained in the dry zone of Sri Lanka for 2000 years as the soil forms expressed as reddish brown earths. Original kingdoms had its base in Anuradhapura in Northcentral Province and Magama in Hambanthota district. Tools used by contemporary farmers were not powerful to use enormous water resources in wet zone. A system of diversion dams and use of run of the river irrigation has proved as the main criteria of that era. Diversion dams and canal projects were in existence. The diversion dams with special shape was mistaken by british surveyors and marked as broken dams in plans. DLOMendis later identified these as effective deflecting dams. The purpose was to wet the area to do cultivation. This system of wetting the land was suitable for dry climates with low rainfall. High technology was introduced by Irrigation Department to construct several reservoirs in Hambanthota. This was planned after the insufficient water use of Ellagala anicut from Kirindi Oya. Next step was to plan a reservoir project at Lunugamvehera dam site. Precipitation data available for 50 years were studied and a reservoir was designed for 20 000acres of paddy. It was planned to cultivate rice for Maha season and other field crops for Yala season. Cultivation commenced in 1985 and the farmers had enough water for 20000acres including

  6. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines

    DEFF Research Database (Denmark)

    Barbet-Massin, Morgane; Walther, Bruno A; Thuiller, Wilfried

    2009-01-01

    We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible...... changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian...... Peninsula and major decreases in southern and eastern Africa....

  7. Climate Variability and Oceanographic Settings Associated with Interannual Variability in the Initiation of Dinophysis acuminata Blooms

    Science.gov (United States)

    Díaz, Patricio A.; Reguera, Beatriz; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Velo-Suárez, Lourdes; Berger, Henrick; Sourisseau, Marc

    2013-01-01

    In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter. PMID:23959151

  8. Climate Variability and Oceanographic Settings Associated with Interannual Variability in the Initiation of Dinophysis acuminata Blooms

    Directory of Open Access Journals (Sweden)

    Henrick Berger

    2013-08-01

    Full Text Available In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain and Arcachon Bay (SW France. Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter.

  9. climate change and variability: smallholder farming communities

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Increasing awareness of risks associated with climate change and variability among smallholder farmers is critical in building their capacity to develop the necessary adaptive measures. Using farmer participatory research approaches and formal questionnaire surveys, interaction has been made with >800 farmers in two ...

  10. Climate Change and Variability in Ghana: Stocktaking

    Directory of Open Access Journals (Sweden)

    Felix A. Asante

    2014-12-01

    Full Text Available This paper provides a holistic literature review of climate change and variability in Ghana by examining the impact and projections of climate change and variability in various sectors (agricultural, health and energy and its implication on ecology, land use, poverty and welfare. The findings suggest that there is a projected high temperature and low rainfall in the years 2020, 2050 and 2080, and desertification is estimated to be proceeding at a rate of 20,000 hectares per annum. Sea-surface temperatures will increase in Ghana’s waters and this will have drastic effects on fishery. There will be a reduction in the suitability of weather within the current cocoa-growing areas in Ghana by 2050 and an increase evapotranspiration of the cocoa trees. Furthermore, rice and rooted crops (especially cassava production are expected to be low. Hydropower generation is also at risk and there will be an increase in the incidence rate of measles, diarrheal cases, guinea worm infestation, malaria, cholera, cerebro-spinal meningitis and other water related diseases due to the current climate projections and variability. These negative impacts of climate change and variability worsens the plight of the poor, who are mostly women and children.

  11. Climate variability, farmland value, and farmers’ perceptions of climate change

    NARCIS (Netherlands)

    Arshad, Muhammad; Kächele, Harald; Krupnik, Timothy J.; Amjath-Babu, T.S.; Aravindakshan, Sreejith; Abbas, Azhar; Mehmood, Yasir; Müller, Klaus

    2017-01-01

    Many studies have examined the impact of climatic variability on agricultural productivity, although an understanding of these effects on farmland values and their relationship to farmers’ decisions to adapt and modify their land-use practices remains nascent in developing nations. We estimated

  12. Does day length affect winter bird distribution? Testing the role of an elusive variable.

    Science.gov (United States)

    Carrascal, Luis M; Santos, Tomás; Tellería, José L

    2012-01-01

    Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus) in 26 localities of Spanish juniper (Juniperus thurifera) dwarf woodlands (average height of 5 m) located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density). Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47' latitudinal interval (190 km) included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions.

  13. Does day length affect winter bird distribution? Testing the role of an elusive variable.

    Directory of Open Access Journals (Sweden)

    Luis M Carrascal

    Full Text Available Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus in 26 localities of Spanish juniper (Juniperus thurifera dwarf woodlands (average height of 5 m located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density. Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47' latitudinal interval (190 km included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions.

  14. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea

    Science.gov (United States)

    Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep

    2018-04-01

    The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by

  15. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  16. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  17. Winter climate change effects on soil C and N cycles in urban grasslands.

    Science.gov (United States)

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost. © 2013 John Wiley & Sons Ltd.

  18. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.

    Science.gov (United States)

    Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten

    2018-03-02

    Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  20. Climate Change Impacts on Winter and Spring Runoff and Recharge in Wisconsin

    Science.gov (United States)

    Murdock, E. A.; Potter, K. W.

    2011-12-01

    Our research seeks to quantify the impacts of warming winter temperatures and increased winter precipitation on water resources in Wisconsin. We are currently working to calibrate a Precipitation-Runoff Modeling System (PRMS) model of the Black Earth Creek Watershed, and will be using a newly-created frost module to examine the impacts of warming winter temperatures on winter and spring infiltration. As a class 1 trout stream, Black Earth Creek is of particular interest as a sensitive and economically important natural resource. Research carried out over 2010 utilized a one-dimensional soil model (Simultaneous Heat and Water, or SHAW) that simulates heat and water fluxes as well as frost processes. This model was driven by climate data obtained from a set of statistically-downscaled and de-biased General Circulation Model (GCM) data for historic and projected future for the years 2046-2065 and 2081-2100 under the SRES A1B emissions scenario. This research suggested that warming temperatures and reduced snow cover, along with a projected increase in winter precipitation, would lead to decreased soil frost formation and a commensurate increase in winter and spring infiltration and recharge. The one-dimensional structure of the model, however, made it difficult to calibrate at the landscape scale, as it is fundamentally unable to replicate the complex spatial processes that are critically important to hydrologic response. We hope that the PRMS model, driven with the same modeled climatic data, will be able to confirm the results of our SHAW modeling; namely that winter and spring recharge will increase significantly in a warming climate. Such an increase in recharge could have profound impacts on Wisconsin fisheries, agriculture, and development.

  1. Intraseasonal variability of the cloud amount in the mid-latitude during the boreal winter

    Science.gov (United States)

    Satoh, R.; Nishi, N.; Mukougawa, H.

    2016-12-01

    Global cloud data observed by geostationary satellites has been archived over 30 years and is long enough to conduct statistical analyses of low frequency variabilities of various cloud properties such as cloud amount. We investigate the intraseasonal variability of cloud properties in the boreal winter to clarify whether the variation is related to large-scale intraseasonal disturbances including quasi-stationary Rossby waves and blockings, by using Reanalysis Interim (ERA-interim) data from European Centre Medium-Range Weather Forecast (ECMWF) and D1 data obtained from International Satellite Cloud Climatology Project (ISCCP). By examining correlation coefficients among the time series of geopotential height (Φ), temperature (T), and the cloud amount fields which are band-pass filtered with a period of 15-60 days, we find a significant relationship among them over a region extending from the south of the Caspian Sea to Japan; the cloud amount attains a maximum when T near the surface and Φ at 500 hPa have maximum decreasing rates in time. The cloud amount also has a significant relationship with the zonal gradient of Φ in this region: a trough is located to the west of the maximum of the cloud amount. Moreover, the correlation between the tendency of Φ at 500hPa and the cloud amount is larger in the years when eastward moving Rossby waves are conspicuous, which suggests a controlling effect of eastward moving Rossby waves on the cloud amount over the region. In contrast, the phase relationship among the cloud amount, Φ, and T is found to be fairly different over the Pacific and the North America. Hence, we will discuss the regionality of the relationship in terms of spatio-temporal characteristics of large-scale intraseasonal distrurbances and climatic environment to affect the cloud properties.

  2. Projected changes in winter climate in Beskids Mountains during 21st century

    Czech Academy of Sciences Publication Activity Database

    Farda, Aleš; Štěpánek, Petr; Zahradníček, Pavel; Skalák, Petr; Meitner, Jan

    2017-01-01

    Roč. 10, 1-2 (2017), s. 123-134 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Keywords : climate change * winter season * Euro-Cordex * Lysá Hora Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences

  3. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  4. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  5. Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia

    Science.gov (United States)

    Lim, Young-Kwon; Kim, Hae-Dong

    2013-01-01

    Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between

  6. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  7. Interannual and spatial variability of maple syrup yield as related to climatic factors.

    Science.gov (United States)

    Duchesne, Louis; Houle, Daniel

    2014-01-01

    Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001-2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions.

  8. Electricity consumption and climate, relationship with climatic variable

    International Nuclear Information System (INIS)

    Fonte Hernandez, Aramis; Rivero Jaspe, Zoltan

    2004-01-01

    Perhaps, since in the world people is more concerned about the possibility of climatic impact on the energy consumption, actually it is an attractive theme not only for undeveloped countries, but also for developed. In this work, a study on the electricity consumption of residential sector in the province of Camaguey, Cuba, during the last ten years of X X century, was done. In it, climatic variables like temperature, relative humidity, sunshine hours, and wind speed, were included. Specifically, in the case of temperature, it was used both in its primitive form, and like a derived variable in the form of degree-day. For this reason, firstly the appropriate value of base temperature for the area under study was determined, obtaining a value of 23.6 Celsius Degrade. After that, using nonlinear regression analysis, statistical models with acceptable predictive capacity, were obtained

  9. Advances in Understanding Decadal Climate Variability

    Science.gov (United States)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  10. Numerical simulation of nuclear winter ocean upper layer cooling and climate relaxation

    International Nuclear Information System (INIS)

    Ganopol'skij, A.V.; Stenchikov, G.L.

    1987-01-01

    Numerical simulation of 'nuclear winter', based on earlier developed scenario is presented. According to the scenario the total power of explosions will be equal to 6500 Mt. 1500 Mt out of them will be directed to destruction of cities. 'Nuclear winter' will be initiated by the injection of 180 Tg of flue aerosol into the atmosphere in result of city, forest and industrial object fires. The mechanism of fast reconstruction of thermal structure of the upper ocean layer in result of intensification of wind mixing in regions with high temperature gradients is considered. On the average the temperature of ocean surface over the globe decreases by 1.2 deg C due to mixing , and especially during the first month. Calculation of long-term relaxation of climatic system after perturbation, caused by nuclear conflict, was conducted with the use of energy balance climate model. Recovery of perturbated season course of climatic characteristics continues 2-3 years

  11. Transient nature of late Pleistocene climate variability.

    Science.gov (United States)

    Crowley, Thomas J; Hyde, William T

    2008-11-13

    Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.

  12. Predictability of Pacific Decadal Climate Variability and Climate Impacts (Invited)

    Science.gov (United States)

    Newman, M.

    2013-12-01

    Predictability of Pacific sea surface temperature (SST) climate variations and climate impacts on time scales of 1-10 years is discussed, using a global linear inverse model (LIM) as an empirical benchmark for decadal surface temperature forecast skill. Constructed from the observed simultaneous and 1-yr lag covariability statistics of annually averaged sea surface temperature (SST) and surface (2 m) land temperature global anomalies during 1901-2009, the LIM has hindcast skill for leads of 2-5 yr and 6-9 yr comparable to and sometimes even better than skill of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) model hindcasts initialized annually over the period 1960-2000 and has skill far better than damped persistence (e.g., a local univariate AR1 process). Pronounced similarity in geographical variations of skill between LIM and CMIP5 hindcasts suggests similarity in their sources of skill as well, supporting additional evaluation of LIM predictability. For forecast leads above 1-2 yr, LIM skill almost entirely results from three nonorthogonal patterns: one corresponding to the secular trend and two more, each with about 10-yr decorrelation time scales but no trend, that represent most of the predictable portions of the Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) indices, respectively. In contrast, for forecasts greater than about two years, ENSO acts as noise and degrades forecast skill. These results suggest that current coupled model decadal forecasts may not yet have much skill beyond that captured by multivariate, predictably linear dynamics. A particular focus will be on the predictability of the PDO, which represents the dominant mode of Pacific decadal SST variability. The PDO is shown to represent a few different physical processes, including wind-driven changes of SSTs that can occur either due to daily weather variability or to tropical forcing, and variations in the North Pacific western boundary

  13. Ducks change wintering patterns due to changing climate in the important wintering waters of the Odra River Estuary

    Directory of Open Access Journals (Sweden)

    Dominik Marchowski

    2017-07-01

    Full Text Available Some species of birds react to climate change by reducing the distance they travel during migration. The Odra River Estuary in the Baltic Sea is important for wintering waterfowl and is where we investigated how waterbirds respond to freezing surface waters. The most abundant birds here comprise two ecological groups: bottom-feeders and piscivores. Numbers of all bottom-feeders, but not piscivores, were negatively correlated with the presence of ice. With ongoing global warming, this area is increasing in importance for bottom-feeders and decreasing for piscivores. The maximum range of ice cover in the Baltic Sea has a weak and negative effect on both groups of birds. Five of the seven target species are bottom-feeders (Greater Scaup Aythya marila, Tufted Duck A. fuligula, Common Pochard A. ferina, Common Goldeneye Bucephala clangula and Eurasian Coot Fulica atra, and two are piscivores (Smew Mergellus albellus and Goosander Mergus merganser. Local changes at the level of particular species vary for different reasons. A local decline of the Common Pochard may simply be a consequence of its global decline. Climate change is responsible for some of the local changes in the study area, disproportionately favoring some duck species while being detrimental to others.

  14. Physical activity levels of community-dwelling older adults are influenced by winter weather variables.

    Science.gov (United States)

    Jones, G R; Brandon, C; Gill, D P

    2017-07-01

    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  16. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  17. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... in northern Sweden. Both climate and vegetation type were strong interactive controls on ecosystem CO2 production rates during winter. Of all variables tested, soil temperature explained by far the largest amount of variation in respiration rates (41-75%). Our results indicate that vegetation type only...... respiration, suggesting that spatial variations in maximum snowdepth may be a primary determinant of regional patterns of wintertime CO2 release. Together, our results have important implications for predictions of how the distribution of tundra vegetation types and the carbon balances of arctic ecosystems...

  18. Cocoa farming households' vulnerability to climate variability in Ekiti ...

    African Journals Online (AJOL)

    BRO OKOJIE

    Rural livelihoods in south western Nigeria are at risk to climate variability on the short run and climate change on .... to reduce their vulnerability to climate variability as well as longer-term climate change. Nigeria has lost her leading role in exportation of cocoa. This has been attributed .... sizes and type of farm ownership.

  19. Variable temperature seat climate control system

    Science.gov (United States)

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  20. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S

    2005-12-15

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  1. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  2. Atmospheric River Characteristics under Decadal Climate Variability

    Science.gov (United States)

    Done, J.; Ge, M.

    2017-12-01

    How does decadal climate variability change the nature and predictability of atmospheric river events? Decadal swings in atmospheric river frequency, or shifts in the proportion of precipitation falling as rain, could challenge current water resource and flood risk management practice. Physical multi-scale processes operating between Pacific sea surface temperatures (SSTs) and atmospheric rivers over the Western U.S. are explored using the global Model for Prediction Across Scales (MPAS). A 45km global mesh is refined over the Western U.S. to 12km to capture the major terrain effects on precipitation. The performance of the MPAS is first evaluated for a case study atmospheric river event over California. Atmospheric river characteristics are then compared in a pair of idealized simulations, each driven by Pacific SST patterns characteristic of opposite phases of the Interdecadal Pacific Oscillation (IPO). Given recent evidence that we have entered a positive phase of the IPO, implications for current reservoir management practice over the next decade will be discussed. This work contributes to the NSF-funded project UDECIDE (Understanding Decision-Climate Interactions on Decadal Scales). UDECIDE brings together practitioners, engineers, statisticians, and climate scientists to understand the role of decadal climate information for water management and decisions.

  3. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...... measurements were quality controlled and discarded from the analysis if flagged for errors. Daily values of ET from the reference crop and winter wheat calculated from hourly values were used to calculate the crop coefficients. Average daily crop coefficients were in the 1.1-1.15 range during mid...

  4. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    Bengtsson, Lennart

    1999-01-01

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  5. Climatic potential for tourism in the Black Forest, Germany--winter season.

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  6. Climatic potential for tourism in the Black Forest, Germany — winter season

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  7. What is the variability in US west coast winter precipitation during strong El Niño events?

    Science.gov (United States)

    Kumar, Arun; Chen, Mingyue

    2017-10-01

    Motivated by the fact that the spatial pattern of the observed precipitation anomalies during 2015/16 winter (a year of strong El Niño) over the west coast of the US and that of the El Niño composite precipitation pattern had considerable differences, the variability in the winter precipitation during strong El Niño events is assessed. The analysis is based on a set of hindcasts (1982-2011) and real-time forecasts (2012-2015) from NCEP Climate Forecast System version 2 (CFSv2), and the following aspects for seasonal mean precipitation variability were examined: (1) the mean signal during strong El Niño based on the composite analysis, and further, the variability from the composite on an event-to-event basis; (2) probability of occurrence for precipitation anomalies to be opposite to the signal (inferred as the composite mean); (3) the probability to have precipitation anomaly in different categories varying from wet to dry; and (4) variations in the characteristics of precipitation from OND, NDJ, to DJF (early to late boreal winter). The results show that the model forecasted seasonal mean precipitation composite for strong El Niño was similar to the linear regression signal with the Niño 3.4 index in observations, with negative anomalies over the Pacific Northwest and positive anomalies over California. However, although in response to an El Niño event, the California precipitation PDF was shifted towards positive values relative to the climatological PDF, the overlap between climatological PDF and the PDF for El Niño events was considerable. This is because of the large variability in seasonal mean outcomes of precipitation from one forecast to another, and therefore, chances to have precipitation anomalies with their sign opposite to the composite El Niño signal remain appreciable. In this paradigm, although the seasonal mean precipitation during 2015/16 winter over the west coast of the US differed from the mean signal for a strong El Niño event, the

  8. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines.

    Science.gov (United States)

    Barbet-Massin, Morgane; Walther, Bruno A; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric

    2009-04-23

    We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is -13 per cent (from -97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500+/-373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa.

  9. Impact of Climate Change on Winter Chilling Trend for Deciduous Fruit Trees (Case Study: Hamadan

    Directory of Open Access Journals (Sweden)

    A.A. sabziparvar

    2016-02-01

    Full Text Available Introduction :Higher temperature as the result of climate change are likely to affect horticultural production. Deciduous fruit trees need winter chilling to break winter dormancy. Climate plays an important role in the successful production of deciduous fruit. Winter dormancy is one of the key factors of the annual cycle of deciduous fruit and nut trees along with the following breaking of the dormant state. This state is maintained through the winter period each year to protect against damaging cold temperatures. To be released from dormancy, trees require exposure to a predetermined quantity of cold temperatures in a process known as winter chilling or vernalization. Insufficient chilling can lead to sporadic and light bud break, poor fruit development, small fruit size and uneven ripening times. The main objective of this study is to investigate climate change effect on the winter chilling requirement (WCR in Hamadan. Materials and Methods:This research was performed based on the General Circulation Models (BCM2, HADCM3,GFCM2 and IPCM4 and different emission scenarios (A2, B1, A1B, as recommended by the Forth Report of the IPCC. The output of the GCMs was downscaled by LARS-WG model. The hourly weather data were generated as the inputs of three different Chilling Requirement Models (CRMs, and the winter chilling trend of deciduous fruit trees were predicted for Hamadan. The projected daily temperature time series were then converted into hourly temperatures. The projected hourly temperature data were run through each of the three chill models for all four GCMs in different scenarios. Three chill models [the 0.0–7.2°C (CH, the Utah (UT, and the Utah Positive (UTPos models] were used to investigate changes in chill accumulation in Hamadan, according to localized temperature change related to increases in global average temperatures. In addition, the winter chilling requirement time series were divided into two periods: baseline and future

  10. Climate variability and change and related drought on Balkan Peninsula

    International Nuclear Information System (INIS)

    Alexandrov, Vesselin

    2004-01-01

    In this paper, results on climate variability including variations of air temperature and precipitation in Bulgaria during the 20th century are presented. There has been an increase of air temperature during the last two decades. The years 1994 and 2000 were the warmest years on record in the country. Annual precipitation in Bulgaria varied considerably from year to year during the 20th century. In some years, very low annual precipitation caused droughts of different intensities. The country has experienced severe drought episodes in the 1940s, 1980s and 1990s. There was a decreasing trend in precipitation during the period April-September from the end of 1970s. Precipitation was below the 1961-1990 average for 14 of the last 20 years of investigation. A winter precipitation deficit was observed during the last decade. Both spring and summer as well as autumn precipitation had a tendency to decrease at the end of the 20th century. The anomalies of annual air temperature and precipitation as well as related drought occurrence on the Balkan Peninsula were also analyzed. For this purpose, different weather sources (such as the CRU climate dataset, ATEAM weather dataset for Europe, etc.) were used. Several climate change scenarios for the Balkan Peninsula were developed and analyzed. These scenarios were based on GCM (global circulation model) weather outputs. Both GCM outputs with coarse spatial resolution (e.g. MAGICC/SCENGEN scenarios: 500 km x 500 km) as well as with high resolution (e.g. HadCM3 scenarios: 10'x 10' (less than 20 km x 20 km)) were used. The GCM climate change scenarios created by the Tyndall Centre (UK) for the Balkan countries were also considered and discussed. (Author)

  11. Food Price Volatility and Decadal Climate Variability

    Science.gov (United States)

    Brown, M. E.

    2013-12-01

    The agriculture system is under pressure to increase production every year as global population expands and more people move from a diet mostly made up of grains, to one with more meat, dairy and processed foods. Weather shocks and large changes in international commodity prices in the last decade have increased pressure on local food prices. This paper will review several studies that link climate variability as measured with satellite remote sensing to food price dynamics in 36 developing countries where local monthly food price data is available. The focus of the research is to understand how weather and climate, as measured by variations in the growing season using satellite remote sensing, has affected agricultural production, food prices and access to food in agricultural societies. Economies are vulnerable to extreme weather at multiple levels. Subsistence small holders who hold livestock and consume much of the food they produce are vulnerable to food production variability. The broader society, however, is also vulnerable to extreme weather because of the secondary effects on market functioning, resource availability, and large-scale impacts on employment in trading, trucking and wage labor that are caused by weather-related shocks. Food price variability captures many of these broad impacts and can be used to diagnose weather-related vulnerability across multiple sectors. The paper will trace these connections using market-level data and analysis. The context of the analysis is the humanitarian aid community, using the guidance of the USAID Famine Early Warning Systems Network and the United Nation's World Food Program in their response to food security crises. These organizations have worked over the past three decades to provide baseline information on food production through satellite remote sensing data and agricultural yield models, as well as assessments of food access through a food price database. Econometric models and spatial analysis are used

  12. Impact of climate variability on tropospheric ozone

    International Nuclear Information System (INIS)

    Grewe, Volker

    2007-01-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Nino), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO x emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  13. Comparing farmers' perception of climate change and variability with ...

    African Journals Online (AJOL)

    Perception of climate change and variability supported by local knowledge has helped to advance understanding of climate change and its impacts on agricultural land-use systems. This study compares farmers' perception of climate change and variability in four communities of the Upper East Region of Ghana. Using a ...

  14. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Aizebeokhai

    This paper attempts to assess the potential impacts of climate change and variability on groundwater resources availability and sustainability in Nigeria. Key words: Climate change, climate variability, hydrological systems, groundwater resources, potential impacts, vulnerability. INTRODUCTION. All life on Earth, water and ...

  15. Drastic shifts in the Levant hydroclimate during the last interglacial indicate changes in the tropical climate and winter storm tracks

    Science.gov (United States)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2017-12-01

    Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion

  16. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2014-09-01

    Full Text Available The long-term trends of the total column ozone (TCO over the Tibetan Plateau (TP and factors responsible for the trends are analysed in this study using various observations and a chemistry–climate model (CCM. The results indicate that the total column ozone low (TOL over the TP during winter and spring is deepening over the recent decade, which is opposite to the recovery signal in annual mean TCO over the TP after mid-1990s. The TOL intensity is increasing at a rate of 1.4 DU/decade and the TOL area is extending with 50,000 km2/decade during winter for the period 1979–2009. The enhanced transport of ozone-poor air into the stratosphere and elevated tropopause due to the rapid and significant warming over the TP during winter reduce ozone concentrations in the upper troposphere and lower stratosphere and hence lead to the deepening of the TOL. Based on the analysis of the multiple regression model, the thermal dynamical processes associated with the TP warming accounts for more than 50% of TCO decline during winter for the period 1979–2009. The solar variations during 1995–2009 further enlarge ozone decreases over the TP in the past decade. According to the CCM simulations, the increases in NOx emissions in East Asia and global tropospheric N2O mixing ratio for the period 1979–2009 contribute to no more than 20% reductions in TCO during this period.

  17. Robust Projected Weakening of Winter Monsoon Winds Over the Arabian Sea Under Climate Change

    Science.gov (United States)

    Parvathi, V.; Suresh, I.; Lengaigne, M.; Izumo, T.; Vialard, J.

    2017-10-01

    The response of the Indian winter monsoon to climate change has received considerably less attention than that of the summer monsoon. We show here that all Coupled Model Intercomparison Project Phase 5 (CMIP5) models display a consistent reduction (of 6.5% for Representative Concentration Pathways 8.5 and 3.5% for 4.5, on an average) of the winter monsoon winds over the Arabian Sea at the end of 21st century. This projected reduction weakens but remains robust when corrected for overestimated winter Arabian Sea winds in CMIP5. This weakening is driven by a reduction in the interhemispheric sea level pressure gradient resulting from enhanced warming of the dry Arabian Peninsula relative to the southern Indian Ocean. The wind weakening reduces winter oceanic heat losses to the atmosphere and deepening of convective mixed layer in the northern Arabian Sea and hence can potentially inhibit the seasonal chlorophyll bloom that contributes substantially to the Arabian Sea annual productivity.

  18. Climate Change or Climate Variability? History, Science and Politics in the Mesoamerican Climate

    Directory of Open Access Journals (Sweden)

    Daniel Poleo

    2016-08-01

    Full Text Available Climate variations in Mesoamerica have influenced the development and decay of populations from the earliest human settlements. The present time is no exception; there is no evidence that global warming will impact rainfall in the region, but rather there are important studies showing a response of rainfall to climate variability in the American tropics. Since our tropical region is vulnerable to climate variability, public policies must be congruent to avoid the mistakes of previous generations and achieve, with the help of science, a real progress in the fight against global warming.

  19. Societal Vulnerability to Climate Change and Variability

    International Nuclear Information System (INIS)

    Handmer, J.W.; Dovers, S.; Downing, T.E.

    1999-01-01

    Institutions in many wealthy industrialised countries are robust and their societies appear to be relatively well insulated against the impacts of climate variability, economic problems elsewhere and so on. However, many countries are not in this position, and there is a growing group of humanity which is not benefiting from the apparent global adaptive trends. Worst case scenarios reinforce the impact of this uneven distribution of adaptive capacity, both between and within countries. Nevertheless, at the broad global scale human societies are strongly adaptive and not threatened by climate change for many decades. At the local level the picture is quite different and the survival of some populations at their present locations is in doubt. In the absence of abatement, the longer term outlook is highly uncertain. Adaptation research needs to begin with an understanding of social and economic vulnerability. It requires a different approach to the traditional IPCC impacts assessment, as human behaviour, institutional capacity and culture are more important than biophysical impacts. This is consistent with the intellectual history of the IPCC which has gradually embraced an increasing range of disciplines. 32 refs

  20. The effects of solar variability on climate

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1990-01-01

    It has been hypothesized for at least a century that some of the observed variance in global temperature records arises from variations in solar output. Theories of solar-variability effects on climate could not be tested directly prior to satellite measurements because uncertainties in ground-based measurements of solar irradiance were larger than the solar variations themselves. Measurements by the Active Cavity Radiometer (ACRIM) onboard the Solar Max satellite and by the Earth Radiation Budget (ERB) instrument onboard Nimbus 6 are now available which indicate solar-constant variations are positively correlated with solar activity over an 11-yr solar cycle, and are of order ± 1.0 W m -2 relative to a mean solar constant of S 0 = 1,367 W m -2 , ΔS/S 0 ∼ ± 0.07%. For a typical climate sensitivity parameter of β = S 0 ∂T/∂S ∼ 100 C, the corresponding variations in radiative equilibrium temperature at the Earth's surface are ΔT e ∼ ± 0.07 C. The realized temperature variations from solar forcing, ΔT, can be significantly smaller because of thermal damping by the ocean. The author considers effects of solar variability on the observed and projected history of the global temperature record in light of this data using an upwelling-diffusion ocean model to assess the effect of ocean thermal inertia on the thermal response. The response to harmonic variations of the 11-yr sunspot cycle is of order ΔT ∼ ± 0.02 C, though the coupling between response and forcing is stronger for long-term variations in the envelope of the solar cycle which more nearly match the thermal response time of the deep ocean

  1. Nevada Monitoring System to Assess Climate Variability and Change

    Science.gov (United States)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the

  2. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii in China for the 21st century

    Directory of Open Access Journals (Sweden)

    Chunrong Mi

    2016-02-01

    Full Text Available The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii, a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest with two sets of variables (correlated variables removed or not. We used common evaluation methods area under the receiver operating characteristic curves (AUC and the True Skill Statistic (TSS as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs, and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat

  3. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century.

    Science.gov (United States)

    Mi, Chunrong; Falk, Huettmann; Guo, Yumin

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500-2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil

  4. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.

    Science.gov (United States)

    Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher

    2015-01-15

    Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014

  5. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    Science.gov (United States)

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  6. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  7. Climate variability in Oklahoma - get ready for more

    Science.gov (United States)

    Our climate is changing relatively rapidly now, with the most critical changes for agriculture in Oklahoma manifesting as increases in the number of intense rainfall events and prolonged droughts, wild swings in the winter and early spring between "too cold" and "too hot", and higher-than-previous o...

  8. Effects of interannual climate variability on tropical tree cover

    NARCIS (Netherlands)

    Holmgren, M.; Hirota, M.; Nes, van E.H.; Scheffer, M.

    2013-01-01

    Climatic warming is substantially intensifying the global water cycle1 and is projected to increase rainfall variability2. Using satellite data, we show that higher climatic variability is associated with reduced tree cover in the wet tropics globally. In contrast, interannual variability in

  9. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle

    Science.gov (United States)

    Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang

    2018-03-01

    Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.

  10. Snow Based Winter Tourism and Kinds of Adaptations to Climate Change

    Science.gov (United States)

    Breiling, M.

    2009-04-01

    Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.

  11. Winter climate extremes and their role for priming SOM decomposition under the snow

    Science.gov (United States)

    Gavazov, Konstantin; Bahn, Michael

    2015-04-01

    The central research question of this project is how soil respiration and soil microbial community composition and activity of subalpine grasslands are affected by extreme winter climate events, such as mid-winter snowmelt and subsequent advanced growing season date. In the scope of this talk, focus will be laid on the assumptions that (1) reduced snow cover leads to intensive freeze-thaw cycles in the soil with larger amplitudes of microbial biomass, DOC and soil CO2 production and efflux over the course of winter, and shifts peak microbial activity to deeper soil layers with limited and recalcitrant substrate; (2) causes a shift in microbial community composition towards decreased fungal/bacterial ratios; and (3) results in a stronger incorporation of labile C in microbial biomass and more pronounced priming effects of soil organic matter turnover. Our findings indicate that snow removal, induces a strong and immediate negative effect on the physiology of soil microbes, impairing them in their capacity for turnover of SOM in the presence of labile substances (priming). This effect however is transient and soil microbes recover within the same winter. The reason for that is that snow removal did not produce any measurable (PLFA) changes in soil microbial community composition. The advanced start of the growing season, as a result of snow removal in mid-winter, granted the bacterial part of the microbial community more active in the uptake of labile substrates and the turnover of SOM than the fungal one. This finding is in line with the concept for a seasonal shift towards bacterial-dominated summer microbial community composition and could bring about implications for the plant-microbe competition for resources at the onset of the growing season.

  12. A Multi-proxy Reconstruction of the Winter Pacific North American Variability over the Past Millennium

    Science.gov (United States)

    Liu, Z.; Tang, Y.; Jian, Z.; Poulsen, C. J.; Bowen, G. J.

    2016-12-01

    The Pacific North American (PNA) pattern is the most prominent mode of atmospheric variability in the North Pacific and North American sectors, strongly influencing temperature, precipitation and storm tracks in North America. The instrumental record indicates a persistent trend toward positive PNA phase in recent decades, which has led to accelerated warming and snowpack decline in northwestern North America. The brevity of the instrumental record, however, limits our understanding of long-term PNA variability and its dynamics. Here we develop a 937-year long reconstruction of the winter PNA based on a network of annually resolved proxy records across the North American continent. We find that the recent persistent positive PNA pattern is unprecedented over the past millennium. The change in PNA may have played a principal role in modulating decadal-to-multidecadal hydroclimate variability over North America, especially in western North America where severe droughts are associated with extreme negative PNA phase. The reconstructed PNA shows a teleconnected response to Pacific sea surface temperature (SST) on interannual and interdecadal timescales. The reconstruction also reveals a positive PNA response to low solar irradiance or strong volcanic eruption during the first post-eruption winter, further corroborating statistical links between the PNA and radiative forcing based on historical and reanalysis data.

  13. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  14. Summer/winter variability of the surfactants in aerosols from Grenoble, France

    Science.gov (United States)

    Baduel, Christine; Nozière, Barbara; Jaffrezo, Jean-Luc

    2012-02-01

    Many atmospheric aerosols seem to contain strong organic surfactants likely to enhance their cloud-forming properties. Yet, few techniques allow for the identification and characterization of these compounds. Recently, we introduced a double extraction method to isolate the surfactant fraction of atmospheric aerosol samples, and evidenced their very low surface tension (≤30 mN m -1). In this work, this analytical procedure was further optimized. In addition to an optimized extraction and a reduction of the analytical time, the improved method led to a high reproducibility in the surface tension curves obtained (shapes and minimal values), illustrated by the low uncertainties on the values, ±10% or less. The improved method was applied to PM 10 aerosols from the urban area of Grenoble, France collected from June 2009 to January 2010. Significant variability was observed between the samples. The minimum surface tension obtained from the summer samples was systematically lower (30 mN m -1) than that of the winter samples (35-45 mN m -1). Sharp transitions in the curves together with the very low surface tensions suggested that the dominating surfactants in the summer samples were biosurfactants, which would be consistent with the high biogenic activity in that season. One group of samples from the winter also displayed sharp transitions, which, together with the slightly higher surface tension, suggested the presence of weaker, possibly man-made, surfactants. A second group of curves from the winter did not display any clear transition but were similar to those of macromolecular surfactants such as polysaccharides or humic substances from wood burning. These surfactants are thus likely to originate from wood burning, the dominating source for aerosols in Grenoble in winter. These observations thus confirm the presence of surfactants from combustion processes in urban aerosols reported by other groups and illustrates the ability of our method to distinguish between

  15. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators

    Science.gov (United States)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.

    2012-04-01

    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of

  16. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    Science.gov (United States)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  17. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of winter season increased significantly, the trend of chilling and drought decreased, however, the extreme disasters occurred frequently and the risks were higher in winter production areas. It was suggested that the winter planting should be closely integrated with climate resources and the occurrence law of meteorological disasters in growing season.

  18. Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2009-09-01

    Full Text Available Using four different climate models, we investigate sea level pressure variability in the extratropical North Atlantic in the preindustrial climate (1750 AD and at the Last Glacial Maximum (LGM, 21 kyrs before present in order to understand how changes in atmospheric circulation can affect signals recorded in climate proxies.

    In general, the models exhibit a significant reduction in interannual variance of sea level pressure at the LGM compared to pre-industrial simulations and this reduction is concentrated in winter. For the preindustrial climate, all models feature a similar leading mode of sea level pressure variability that resembles the leading mode of variability in the instrumental record: the North Atlantic Oscillation (NAO. In contrast, the leading mode of sea level pressure variability at the LGM is model dependent, but in each model different from that in the preindustrial climate. In each model, the leading (NAO-like mode of variability explains a smaller fraction of the variance and also less absolute variance at the LGM than in the preindustrial climate.

    The models show that the relationship between atmospheric variability and surface climate (temperature and precipitation variability change in different climates. Results are model-specific, but indicate that proxy signals at the LGM may be misinterpreted if changes in the spatial pattern and seasonality of surface climate variability are not taken into account.

  19. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  20. Effects of climatic variability and change

    Science.gov (United States)

    Michael G. Ryan; James M. Vose

    2012-01-01

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...

  1. Climatic history - answers on the variability of weather and climate?

    International Nuclear Information System (INIS)

    Glaser, R.; Hagedorn, H.

    1994-01-01

    The paper is concerned with various aspects of climatic history. Emphasis is on the spectrum of data and methods used in historical climatology. The following section is devoted to an outline of the short- and long-range climatic changes since 1500 A.D. that show how much the climate has varied in space and time. It is pointed out that climatic extremes have been an ever-recurrent phenomenon throughout history. (orig.) [de

  2. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  3. Relationships between the climate change and the grain filling of winter wheat

    International Nuclear Information System (INIS)

    Shang, Z.; Jiang, D.

    2016-01-01

    The present study is based on the material in a grain filling rate experiment of winter wheat and hourly weather data organised by Xinghua city of Jiangsu Province. The aims are to objectively evaluate the possible influences of the temperature, precipitation, sunshine at the different time of the same day on the grain filling rate of winter wheat. The grain filling rate evaluation model of climate change is firstly developed, and then, the model calculation results are compared with the observed data. The along the changes of the microclimate, changes of the grain filling rate of winter wheat, which is not same in the gradual, rapid and slow increase stages. The changes in grain filling rate of winter wheat, which were caused by variations of temperature, precipitation and sunshine duration, showed periodic fluctuation. Variation in temperature resulted in 1.36 g d/sup -1/(10a)/sup -1/ of grain filling rate change; variation in precipitation resulted in -1.35 g d/sup -1/. (10a)/sup -1/ of grain filling rate change; and variation in sunshine duration resulted in 0.07 g d/sup -1/ (10a)/sup -1/ of grain filling rate change. Three samples showed a grain filling rate change of 0.08 g d/sup -1/(10a)/sup -1/. These findings indicate that the increase in temperature and sunshine duration caused the elevation of grain filling rate, whereas the increase in precipitation decreased the grain filling rate. Therefore, monitoring and predication capability of Meteorological disasters, such as drought caused by high temperature, should be strengthened to ensure the favourable weather condition and improve the grain filling rate through scientific methods such as artificial precipitation. (author)

  4. North Atlantic variability and its links to European climate over the last 3000 years.

    Science.gov (United States)

    Moffa-Sánchez, Paola; Hall, Ian R

    2017-11-23

    The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.

  5. Ecological and evolutionary impacts of changing climatic variability.

    Science.gov (United States)

    Vázquez, Diego P; Gianoli, Ernesto; Morris, William F; Bozinovic, Francisco

    2017-02-01

    While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention. © 2015 Cambridge Philosophical Society.

  6. Arctic Climate Variability and Trends from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Xuanji Wang

    2012-01-01

    Full Text Available Arctic climate has been changing rapidly since the 1980s. This work shows distinctly different patterns of change in winter, spring, and summer for cloud fraction and surface temperature. Satellite observations over 1982–2004 have shown that the Arctic has warmed up and become cloudier in spring and summer, but cooled down and become less cloudy in winter. The annual mean surface temperature has increased at a rate of 0.34°C per decade. The decadal rates of cloud fraction trends are −3.4%, 2.3%, and 0.5% in winter, spring, and summer, respectively. Correspondingly, annually averaged surface albedo has decreased at a decadal rate of −3.2%. On the annual average, the trend of cloud forcing at the surface is −2.11 W/m2 per decade, indicating a damping effect on the surface warming by clouds. The decreasing sea ice albedo and surface warming tend to modulate cloud radiative cooling effect in spring and summer. Arctic sea ice has also declined substantially with decadal rates of −8%, −5%, and −15% in sea ice extent, thickness, and volume, respectively. Significant correlations between surface temperature anomalies and climate indices, especially the Arctic Oscillation (AO index, exist over some areas, implying linkages between global climate change and Arctic climate change.

  7. Climate variability and livelihood strategies pursued by the pastoral ...

    African Journals Online (AJOL)

    A semi-structured questionnaire, key informant interviews, focus group discussions were used to elicit data climate variability and livelihood strategies in the community. One hundred twenty randomly selected sample respondents were used for the study. Assessment of the climate variability was based on reports of ...

  8. Some aspects of climate variability in the north east Ethiopian ...

    African Journals Online (AJOL)

    This paper presents a review of climate variability in the northeast Ethiopian Highlands, particularly Wollo and Tigray, during the last 10000 years (the Holocene) and an analysis of rainfall variability during the historical period. To date little work has been done on climate reconstruction in Tigray and Wollo, however, ...

  9. Climate variability and sustainable food production: Insights from ...

    African Journals Online (AJOL)

    The past two decades have seen invigorated debates on the causal link between climate variability and food crop production. This study[1] extends the debate further by investigating how climate variability has affected the production of four specific food crops: maize, millet, rice, and groundnuts in north-eastern Ghana.

  10. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...

  11. The effects of climatic variables and crop area on maize yield and variability in Ghana

    OpenAIRE

    Acquah, Henry; Kyei, Clement

    2012-01-01

    Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional fo...

  12. Thermal tolerance ranges and climate variability : A comparison between bivalves from differing climates

    NARCIS (Netherlands)

    Compton, Tanya J.; Rijkenberg, Micha J. A.; Drent, Jan; Piersma, Theunis

    2007-01-01

    The climate variability hypothesis proposes that in variable temperate climates poikilothermic animals have wide thermal tolerance windows, whereas in constant tropical climates they have small thermal tolerance windows. In this study we quantified and compared the upper and lower lethal thermal

  13. Frost stress evolution and winter pea ideotype in the context of climate warming at a regional scale

    OpenAIRE

    Castel Thierry; Lecomte Christophe; Richard Yves; Lejeune-Hénaut Isabelle; Larmure Annabelle

    2017-01-01

    Pea (Pisum sativum L.) is an important crop in temperate regions for its high seed protein concentration that is particularly sensitive to abiotic stresses. The abrupt temperature increase known as the “1987/1988 temperature regime shift” that occurs over Europe is questioning how winter pea will perform in the changing climate. This study assessed the winter frost damage evolution along from 1961 to 2015 in Burgundy-Franche-Comté by using: (1) daily observed and gridded regional temperature ...

  14. Present and Future Modes of Low Frequency Climate Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  15. A Multi-sensor Approach to Identify Crop Sensitivity Related to Climate Variability in Central India

    Science.gov (United States)

    Mondal, P.; DeFries, R. S.; Jain, M.; Robertson, A. W.; Galford, G. L.; Small, C.

    2012-12-01

    Agriculture is a primary source of livelihood for over 70% of India's population, with staple crops (e.g. winter wheat) playing a pivotal role in satisfying an ever-increasing food-demand of a growing population. Agricultural yield in India has been reported to be highly correlated with the timing and total amount of monsoon rainfall and/or temperature depending on crop type. With expected change in future climate (temperature and precipitation), significant fluctuations in crop yields are projected for near future. To date, little work has identified the sensitivity of cropping intensity, or the number of crops planted in a given year, to climate variability. The objective of this study is to shed light on relative importance of different climate parameters through a statistical analysis of inter-annual variations in cropping intensity at a regional scale, which may help identify adaptive strategies in response to future climate anomalies. Our study focuses on a highly human-modified landscape in central India, and uses a multi-sensor approach to determine the sensitivity of agriculture to climate variability. First, we assembled the 16-day time-series of 250m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), and applied a spline function-based smoothing algorithm to develop maps of monsoon and winter crops in Central India for a decadal time-span. A hierarchical model involving moderate resolution Landsat (30m) data was used to estimate the heterogeneity of the spectral signature within the MODIS dataset (250m). We then compared the season-specific cropping patterns with spatio-temporal variability in climate parameters derived from the Tropical Rainfall Measuring Mission (TRMM) data. Initial data indicates that the existence of a monsoon crop has moderate to strong correlation with wet season end date (ρ = .522), wet season length (ρ = .522), and the number of rainy days during wet season (ρ = .829). Existence of a winter

  16. Statistical structure of intrinsic climate variability under global warming

    Science.gov (United States)

    Zhu, Xiuhua; Bye, John; Fraedrich, Klaus

    2017-04-01

    Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.

  17. Variability of yield traits and disease resistance in winter triticale genetic resources accessions

    Directory of Open Access Journals (Sweden)

    Wanda Kociuba

    2014-07-01

    Full Text Available A systematic gathering of winter triticale accessions was started in Poland in 1982 by the Institute of Genetics, Breeding and Seed Science at the Agricultural University in Lublin (at present its name is: Institute of Genetics, Breeding and Plant Biotechnology at the University of Life Sciences in Lublin. First, breeding lines obtained in local breeding stations were gathered. Next, accessions were imported from the following world gene banks: Beltsville, Gatersleben, and VIR. Interesting hybrid materials obtained in research centers were also included in the collection. Now, the collection includes 2349 accessions (1329 of winter triticale and 1020 of spring triticale. The evaluation is conducted in a 4-year cycle of field experiments using the same methods. The gathered accessions represent a large range of variability of both morphological and commercial traits. The large differentiation of accessions especially concerns traits such as: plant height, number and weight of grains per spi- ke, protein content in grain, field resistance to powdery mildew, brown rust and leaf and spike diseases.

  18. Solar Variability and Climate Change in the Last 2000 Years

    Science.gov (United States)

    Pang, K.; Yau, K.

    2002-12-01

    Studying past climatic data can help us better understand present natural variations and predict future trends. Identification of cycles can be useful to forecasting. However, various reconstructions of the climate of the last 1000 years have given only broad similarities, with large variances in time and space [Briffa JGR 106, 2929, 2001]. For example, during the Little Ice Age (ca. 1600-1800) severe winters were frequent in Europe and China, but not over Greenland [Sci. Amer., 2/1992, 21]. The differences in modeling results are partly due to uncertainties in the past radiative forcing [Mann, Eos 82 (46), 2001]. Another outstanding question is whether we are in a time similar to Medieval Warm Period. From the frequencies of sunspot and aurora sightings, abundance of carbon-14 in the rings of long-lived trees, and beryllium-10 in the annual layers of polar ice cores, we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of changes in brightness. While these long-term changes account for less than one percent of the total irradiance, there is a clear evidence that they affect the climate. During the Maunder Minimum (1645-1715) few sunspots were seen--about 1 in 10 yr from China or Europe--indicative of a weak Sun. Eddy [Science 192, 1189, 1976] used historical aurora, C-14 and climate data to confirm its reality, and link it to the Little Ice Age. Using new historical sunspot catalogues [Yau, Quart. J. Roy. Astron. Soc., 29, 175, 1988], we have identified or confirmed earlier solar minima at 200-300, 400-500, 580-820, 980-1070, 1280-1350, 1410-1590; and maxima at 1080-1280, 1350-1400, etc. All these features are coincident with respective minima or maxima in the frequency of aurora sightings from Europe or Asia. Both time series are in turn consistent with radioisotope data [Pang, Eos. 9/2002]. Carbon-14 and beryllium-10 are made by cosmic rays high in the atmosphere. When the Sun is active the solar

  19. Climate Variability and Trends in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kabat, P.

    2013-01-01

    Climate-related disasters in Bolivia are frequent, severe, and manifold and affect large parts of the population, economy, and ecosystems. Potentially amplified through climate change, natural hazards are of growing concern. To better understand these events, homogenized daily observations of

  20. Interannual variability of Mediterranean evaporation and its relation to regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Zveryaev, Igor I. [Moscow State University, P.P. Shirshov Institute of Oceanology, RAS and Faculty of Geography, Moscow (Russian Federation); Hannachi, Abdel A. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2012-02-15

    Gridded monthly evaporation data for 1958-2006 from the Woods Hole Oceanographic Institution data set are used to investigate interannual variability of Mediterranean evaporation during cold and hot seasons and its relation to regional atmospheric dynamics, sea surface temperature and atmospheric elements of the hydrological cycle. The first EOF mode of Mediterranean evaporation, explaining more than 50% of its total variance, is characterized by the monopole pattern both in winter and summer. However, despite structural similarity, the EOF-1 of Mediterranean evaporation is affected by different climate signals in cold and hot seasons. During winter the EOF-1 is associated with the East Atlantic teleconnection pattern. In summer, there is indication of tropical influence on the EOF-1 of Mediterranean evaporation (presumably from Asian monsoon). Both in winter and summer, principal components of EOF-1 demonstrate clear interdecadal signals (with a stronger signature in summer) associated with large sea surface temperature anomalies. The results of a sensitivity analysis suggest that in winter both the meridional wind and the vertical gradient of saturation specific humidity (GSSH) near the sea surface contribute to the interdecadal evaporation signal. In summer, however, it is likely that the signal is more related to GSSH. Our analysis did not reveal significant links between the Mediterranean evaporation and the North Atlantic Oscillation in any season. The EOF-2 of evaporation accounts for 20% (11%) of its total variance in winter (in summer). Both in winter and summer the EOF-2 is characterized by a zonal dipole with opposite variations of evaporation in western and eastern parts of the Mediterranean Sea. This mode is associated presumably with smaller scale (i.e., local) effects of atmospheric dynamics. Seasonality of the leading modes of the Mediterranean evaporation is also clearly seen in the character of their links to atmospheric elements of the regional

  1. Climate Change: Natural Water and Fertilization Effects on Winter Rye (Secale cereale L.) Yield in Monoculture

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    increased 0.6 0C (Hulme et al., 2002; Láng et al., 2004; Jolánkai, 2005; Várallyay, 2005). In the coming decades, global plant production faces the prospect of a changing climate and environment, too the known challenge of continuing to feed the world's population, predicted to double its present level of six billion by about the year 2050. The prospective climate change is global warming with associated changes in hydrological regimes and other climatic variables induced by the increasing concentration of radiatively active greenhouse gases. Climate change could have far-reaching effects on patterns of trade among nations, development, and food security (Rosenzweig et al., 1993). These changes (largely caused by human activities) are likely to affect crop yields differently form region to region across the globe (Márton, 2004., 2005ab., Seth & Jeffrey 2005). Significant issue that becomes apparent from even a cursory summary of existing knowledge is that from the crop's perspective the important point is the net effect of all the environmental changes that occur, or might occur, at any given place and time. Today, plenty of agricultural investigations focused on understanding the relation between mean climate change and crop production (Várallyay, 1992; Rajendra, 2004; JolánkaI, 2005). Few investigations, however, studied the effects of climate variability on agriculture crop yields (Németh, 2004). The response of agricultural crop yield to changes in climate variability were attributed primrily to changes in the frequency of extreme climatic events (EU, 2003). Recent studies demonstrated a greater effect on the frequency of extreme climatic events than changes in the mean climatic response (EM, 2004). Hence, in studying the effects of climatic change on crop production, the changes in the climatic variability and associated weather patterns should be included (Barrow et al., 2000). Changes in weather patterns were observed thoughout Europe (including Hungary) as

  2. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  3. Bunker Cave stalagmites: an archive for central European Holocene climate variability

    Directory of Open Access Journals (Sweden)

    J. Fohlmeister

    2012-10-01

    Full Text Available Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high-resolution records of δ18O, δ13C values and Mg/Ca ratios. Changes in the Mg/Ca ratio are attributed to past meteoric precipitation variability. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation, and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 8 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 and 0.2 ka. The proxy signals in the Bunker Cave stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker Cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the thermohaline circulation.

  4. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  5. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  6. Implications of climate change on winter road networks in Ontario's Far North and northern Manitoba, Canada, based on climate model projections

    Science.gov (United States)

    Hori, Y.; Cheng, V. Y. S.; Gough, W. A.

    2017-12-01

    A network of winter roads in northern Canada connects a number of remote First Nations communities to all-season roads and rails. The extent of the winter road networks depends on the geographic features, socio-economic activities, and the numbers of remote First Nations so that it differs among the provinces. The most extensive winter road networks below the 60th parallel south are located in Ontario and Manitoba, serving 32 and 18 communities respectively. In recent years, a warmer climate has resulted in a shorter winter road season and an increase in unreliable road conditions; thus, limiting access among remote communities. This study focused on examining the future freezing degree-days (FDDs) accumulations during the winter road season at selected locations throughout Ontario's Far North and northern Manitoba using recent climate model projections from the multi-model ensembles of General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) scenarios. First, the non-parametric Mann-Kendall correlation test and the Theil-Sen method were used to identify any statistically significant trends between FDDs and time for the base period (1981-2010). Second, future climate scenarios are developed for the study areas using statistical downscaling methods. This study also examined the lowest threshold of FDDs during the winter road construction in a future period. Our previous study established the lowest threshold of 380 FDDs, which derived from the relationship between the FDDs and the opening dates of James Bay Winter Road near the Hudson-James Bay coast. Thus, this study applied the threshold measure as a conservative estimate of the minimum threshold of FDDs to examine the effects of climate change on the winter road construction period.

  7. Impacts of Changing Climate on Agricultural Variability: Implications for Smallholder Farmers in India

    Science.gov (United States)

    Mondal, P.; Jain, M.; DeFries, R. S.; Galford, G. L.; Small, C.

    2013-12-01

    Agriculture is the largest employment sector in India, where food productivity, and thus food security, is highly dependent on seasonal rainfall and temperature. Projected increase in temperature, along with less frequent but intense rainfall events, will have a negative impact on crop productivity in India in the coming decades. These changes, along with continued ground water depletion, could have serious implications for Indian smallholder farmers, who are among some of the most vulnerable communities to climatic and economic changes. Hence baseline information on agricultural sensitivity to climate variability is important for strategies and policies that promote adaptation to climate variability. This study examines how cropping patterns in different agro-ecological zones in India respond to variations in precipitation and temperature. We specifically examine: a) which climate variables most influence crop cover for monsoon and winter crops? and b) how does the sensitivity of crop cover to climate variability vary in different agro-ecological regions with diverse socio-economic factors? We use remote sensing data (2000-01 - 2012-13) for cropping patterns (developed using MODIS satellite data), climate parameters (derived from MODIS and TRMM satellite data) and agricultural census data. We initially assessed the importance of these climate variables in two agro-ecoregions: a predominantly groundwater irrigated, cash crop region in western India, and a region in central India primarily comprised of rain-fed or surface water irrigated subsistence crops. Seasonal crop cover anomaly varied between -25% and 25% of the 13-year mean in these two regions. Predominantly climate-dependent region in central India showed high anomalies up to 200% of the 13-year crop cover mean, especially during winter season. Winter daytime mean temperature is overwhelmingly the most important climate variable for winter crops irrespective of the varied biophysical and socio

  8. Response of Ponderosa Pine to Variable Scale Climate Influences, Salmon River Canyon, Idaho

    Science.gov (United States)

    Wilkins, D. E.; Kaplan, S. W.; Keim, R.; Grissino-Mayer, H.

    2005-12-01

    Growth of trees in sparse stands on low-productivity sites is often strongly controlled by climate variation. We examined tree rings in cores collected from 73 ponderosa pine trees (Pinus ponderosa) at a dry upland site near the confluence of French Creek and the main fork of the Salmon River. Cores were mounted, processed, and visually and statistically cross-dated following standard dendrochronological methods. Ultimately, 41 tree-ring measurement series with a continuous time span of 278 years were used to create ring-width indices of tree growth for the site. These indices were tested against annual and monthly climatic variables. Simultaneous dating of fires scars from trees and snags at the site enabled reconstruction of a 160-year fire history. There were strong (pring width indices and annual Palmer Drought Severity Index (PDSI) and precipitation, indicating trees grew best in wet years. Strongest correlations with monthly climate variables were for prior-year fall and winter temperature and precipitation, as well as November to April snow water equivalent (SWE). The seasonal variable found most strongly correlated with tree growth was September-January total precipitation, most of which falls as snow at this site, which explained 34 percent of the total variance in annual ring widths. The strong relationship with monthly SWE is corollary to the relationship observed in the fall-winter precipitation, but high correlation with SWE in April and May underscores the positive influence of late season snowpack on current year summer growth. The occurrence of fires was greater during years with low precipitation and high PDSI, but growth responses to climate variables were not affected by fires. Although no significant correlation existed between tree growth and Pacific Decadal Oscillation Index, teleconnections with oceanic climatic influences were present in a positive relationship with the Atlantic Multidecadal Oscillation Index. The AMO was also correlated to

  9. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

    Science.gov (United States)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen

    2018-01-01

    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  10. Influence of winter NAO pattern on variable renewable energies potential in Europe over the 20th century

    Science.gov (United States)

    François, Baptiste; Raynaud, Damien; Hingray, Benoit; Creutin, Jean-Dominique

    2017-04-01

    Integration of Variable Renewable Energy (VRE) sources in the electricity system is a challenge because of temporal and spatial fluctuations of their power generation resulting from their driving weather variables (i.e. solar radiation wind speed, precipitation, and temperature). Very few attention was paid to low frequency variability (i.e. from annual to decades) even though it may have significant impact on energy system and energy market Following the current increase in electricity supplied by VRE generation, one could ask the question about the risk of ending up in a situation in which the level of production of one or more VRE is exceptionally low or exceptionally high for a long period of time and/or over a large area. What would be the risk for an investor if the return on investment has been calculated on a high energy production period? What would be the cost in term of carbon emission whether the system manager needs to turn on coal power plant to satisfy the demand? Such dramatic events would definitely impact future stakeholder decision to invest in a particular energy source or another. Weather low frequency variability is mainly governed by large-scale teleconnection patterns impacting the climate at global scale such as El Niño - Southern Oscillation (ENSO) in the tropics and in North America or the North Atlantic Oscillation (hereafter, NAO) in North America and Europe. Teleconnection pattern's influence on weather variability cascades to VRE variability and ends up by impacting electricity system. The aim of this study is to analysis the impact of the NAO on VRE generation in Europe during the winter season. The analysis is carried out over the twentieth century (i.e. from 1900 to 2010), in order to take into account climate low frequency variability, and for a set of 12 regions covering a large range of climates in Europe. Weather variable time series are obtained by using the ERA20C reanalysis and the SCAMP model (Sequential Constructive

  11. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  12. Growth responses of subalpine fir to climatic variability in the Pacific Northwest

    Science.gov (United States)

    Peterson, D.W.; Peterson, D.L.; Ettl, Gregory J.

    2002-01-01

    We studied regional variation in growth-limiting factors and responses to climatic variability in subalpine forests by analyzing growth patterns for 28 tree-ring growth chronologies from subalpine fir (Abies lasiocarpa (Hook.) Nutt.) stands in the Cascade and Olympic Mountains (Washington and Oregon, U.S.A.). Factor analysis identified four distinct time series of common growth patterns; the dominant growth pattern at any site varied with annual precipitation and temperature (elevation). Throughout much of the region, growth is negatively correlated with winter precipitation and spring snowpack depth, indicating that growth is limited primarily by short growing seasons. On the driest and warmest sites, growth is negatively correlated with previous summer temperature, suggesting that low summer soil moisture limits growth. Growth patterns in two regions were sensitive to climatic variability associated with the Pacific Decadal Oscillation, apparently responding to low-frequency variation in spring snowpack and summer soil moisture (one negatively, one positively). This regional-scale analysis shows that subalpine fir growth in the Cascades and Olympics is limited by different climatic factors in different subregional climates. Climatea??growth relationships are similar to those for a co-occurring species, mountain hemlock (Tsuga mertensiana (Bong.) Carri??re), suggesting broad biogeographic patterns of response to climatic variability and change by subalpine forest ecosystems in the Pacific Northwest.

  13. CLIMATE CHANGE, VARIABILITY AND SUSTAINABLE AGRICULTURE IN ZIMBABWE'S RURAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Gukurume Simbarashe

    2013-02-01

    Full Text Available This article explores the impact of climate change and variability on agricultural productivity in the communal area of Bikita. The article further examines the adaptation and mitigation strategies devised by farmers to deal with the vagaries of climate change and variability. The sustainability of these is also interrogated in this article. This study juxtaposed qualitative and quantitative methodologies albeit with more bias on the former. A total of 40 farmers were sampled for unstructured interviews and focus group discussions. This article argues that the adverse impacts of climate change and variability are felt heavily by the poor communal farmers who are directly dependent on agriculture for livelihood. From the study, some of the widely reported signs of climate variability in Bikita included late and unpredictable rains, high temperatures (heat waves, successive drought, shortening rainfall seasons and seasonal changes in the timing of rainfall. The paper argues that climate change has compounded the vulnerability of peasant farmers in the drought - prone district of Bikita plunging them into food insecurity and abject poverty. It emerged in the study that some of effects of climate variability felt by communal farmers in Bikita included failure of crops, death of livestock and low crop yields, all of which have led to declining agricultural productivity. Findings in this study however established that communal farmers have not been passive victims of the vagaries of climate change and variability. They have rationally responded to it through various adaptation and mitigation strategies both individually and collectively.

  14. Changes in Southern Hemisphere circulation variability in climate change modelling experiments

    International Nuclear Information System (INIS)

    Grainger, Simon; Frederiksen, Carsten; Zheng, Xiaogu

    2007-01-01

    Full text: The seasonal mean of a climate variable can be considered as a statistical random variable, consisting of a signal and noise components (Madden 1976). The noise component consists of internal intraseasonal variability, and is not predictable on time-scales of a season or more ahead. The signal consists of slowly varying external and internal variability, and is potentially predictable on seasonal time-scales. The method of Zheng and Frederiksen (2004) has been applied to monthly time series of 500hPa Geopotential height from models submitted to the Coupled Model Intercomparison Project (CMIP3) experiment to obtain covariance matrices of the intraseasonal and slow components of covariability for summer and winter. The Empirical Orthogonal Functions (EOFs) of the intraseasonal and slow covariance matrices for the second half of the 20th century are compared with those observed by Frederiksen and Zheng (2007). The leading EOF in summer and winter for both the intraseasonal and slow components of covariability is the Southern Annular Mode (see, e.g. Kiladis and Mo 1998). This is generally reproduced by the CMIP3 models, although with different variance amounts. The observed secondary intraseasonal covariability modes of wave 4 patterns in summer and wave 3 or blocking in winter are also generally seen in the models, although the actual spatial pattern is different. For the slow covariabilty, the models are less successful in reproducing the two observed ENSO modes, with generally only one of them being represented among the leading EOFs. However, most models reproduce the observed South Pacific wave pattern. The intraseasonal and slow covariances matrices of 500hPa geopotential height under three climate change scenarios are also analysed and compared with those found for the second half of the 20th century. Through aggregating the results from a number of CMIP3 models, a consensus estimate of the changes in Southern Hemisphere variability, and their

  15. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    Science.gov (United States)

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  16. Frost stress evolution and winter pea ideotype in the context of climate warming at a regional scale

    Directory of Open Access Journals (Sweden)

    Castel Thierry

    2017-01-01

    Full Text Available Pea (Pisum sativum L. is an important crop in temperate regions for its high seed protein concentration that is particularly sensitive to abiotic stresses. The abrupt temperature increase known as the “1987/1988 temperature regime shift” that occurs over Europe is questioning how winter pea will perform in the changing climate. This study assessed the winter frost damage evolution along from 1961 to 2015 in Burgundy-Franche-Comté by using: (1 daily observed and gridded regional temperature data and (2 a validated crop winter frost stress model calibrated for pea. This study shows a global decrease of the frost stress nevertheless resulting from a subtle balance between the decrease in its intensity and the increase of the number of events. The frost stress evolution patterns with warming depend on both plant frost resistance level and acclimation rate and are still sensitive to winter climate fluctuations. This study provides relevant information for breeding performant winter crop ideotypes able to moderate detrimental effects of climate change and offering new cropping opportunities in temperate regions.

  17. Relationships between climate and year-to-year variability in meningitis outbreaks: A case study in Burkina Faso and Niger

    Directory of Open Access Journals (Sweden)

    Janicot Serge

    2008-07-01

    Full Text Available Abstract Background Every year, West Africa is afflicted with Meningococcal Meningitis (MCM disease outbreaks. Although the seasonal and spatial patterns of disease cases have been shown to be linked to climate, the mechanisms responsible for these patterns are still not well identified. Results A statistical analysis of annual incidence of MCM and climatic variables has been performed to highlight the relationships between climate and MCM for two highly afflicted countries: Niger and Burkina Faso. We found that disease resurgence in Niger and in Burkina Faso is likely to be partly controlled by the winter climate through enhanced Harmattan winds. Statistical models based only on climate indexes work well in Niger showing that 25% of the disease variance from year-to-year in this country can be explained by the winter climate but fail to represent accurately the disease dynamics in Burkina Faso. Conclusion This study is an exploratory attempt to predict meningitis incidence by using only climate information. Although it points out significant statistical results it also stresses the difficulty of relating climate to interannual variability in meningitis outbreaks.

  18. Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability

    Science.gov (United States)

    Close, S.; Herbaut, C.; Houssais, M.-N.; Blaizot, A.-C.

    2017-12-01

    The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean-sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.

  19. Two leading modes of the interannual variability in South American surface air temperature during austral winter

    Science.gov (United States)

    Li, Yanjie; Li, Jianping; Kucharski, Fred; Feng, Jin; Zhao, Sen; Zheng, Jiayu

    2017-11-01

    The first two empirical orthogonal function (EOF) modes of the surface air temperature (SAT) interannual variability in the South American (SA) continent have been revealed in several previous studies. This presentation focuses on winter season and furtherly investigates the detailed advection and cloud-radiation processes and teleconnections from tropical sea surface temperature anomalies (SSTA) combining statistical analysis with Rossby wave dynamics and modelling experiments. The EOF1, featured with the anomalous center in the central part, is related to the tropical eastern Pacific SSTA, which may impact on the SA SAT variability through the Walker circulation and a regional Hadley cell. The anomalous center is largely attributed to low-level advection transported by the Hadley cell. The EOF2, as a fluctuation between anomalies in the southeast Brazil and the southern tip, is related to the SSTA surrounding the Maritime Continent, which may generate a barotropic wave train propagating to the SA continent. This wave train can strengthen high latitude westerly flow transporting warm advection to the southern tip, and generate southeast anomalous flow transporting cold advection to the southeast Brazil. Meanwhile, the cloud-radiation processes are also involved to enhance the advection-induced SAT anomalies in both areas.

  20. High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota

    Directory of Open Access Journals (Sweden)

    Núria Cid

    2017-01-01

    Full Text Available Variability in flow as a result of seasonal precipitation patterns is a defining element of streams and rivers in Mediterranean-climate regions of the world and strongly influences the biota of these unique systems. Mediterranean-climate areas include the Mediterranean Basin and parts of Australia, California, Chile, and South Africa. Mediterranean streams and rivers can experience wet winters and consequent floods to severe droughts, when intermittency in otherwise perennial systems can occur. Inter-annual variation in precipitation can include multi-year droughts or consecutive wet years. Spatial variation in patterns of precipitation (rain vs. snow combined with topographic variability lead to spatial variability in hydrologic patterns that influence populations and communities. Mediterranean streams and rivers are global biodiversity hotspots and are particularly vulnerable to human impacts. Biomonitoring, conservation efforts, and management responses to climate change require approaches that account for spatial and temporal variability (including both intra- and inter-annual. The importance of long-term data sets for understanding and managing these systems highlights the need for sustained and coordinated research efforts in Mediterranean-climate streams and rivers.

  1. Modeling Dynamics of South American Rangelands to Climate Variability and Human Impact

    Science.gov (United States)

    Stanimirova, R.; Arevalo, P. A.; Kaufmann, R.; Maus, V.; Lesiv, M.; Havlik, P.; Friedl, M. A.

    2017-12-01

    The combined pressures of climate change and shifting dietary preferences are creating an urgent need to improve understanding of how climate and land management are jointly affecting the sustainability of rangelands. In particular, our ability to effectively manage rangelands in a manner that satisfies increasing demand for meat and dairy while reducing environmental impact depends on the sensitivity of rangelands to perturbations from both climate (e.g., drought) and land use (e.g., grazing). To characterize the sensitivity of rangeland vegetation to variation in climate, we analyzed gridded time series of satellite and climate data at 0.5-degree spatial resolution from 2003 to 2016 for rangeland ecosystems in South America. We used panel regression and canonical correlation to analyze the relationship between time series of enhanced vegetation index (EVI) derived from NASA's Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) and gridded precipitation and air temperature data from the University of East Anglia's Climate Research Unit. To quantify the degree to which livestock management explains geographic variation of EVI, we used global livestock distribution (FAO) and feed requirements data from the Global Biosphere Management Model (GLOBIOM). Because rangeland ecosystems are sensitive to changes in meteorological variables at different time scales, we evaluated the strength of coupling between anomalies in EVI and anomalies in temperature and standardized precipitation index (SPI) data at 1-6 month lags. Our results show statistically significant relationships between EVI and precipitation during summer, fall, and winter in both tropical and subtropical agroecological zones of South America. Further, lagged precipitation effects, which reflect memory in the system, explain significant variance in winter EVI anomalies. While precipitation emerges as the dominant driver of variability in rangeland greenness, we find evidence of a management

  2. Influence of climate variability on large rivers runoff

    Directory of Open Access Journals (Sweden)

    B. Nurtaev

    2015-06-01

    Full Text Available In accordance with IPCC Report the influence of climate change on the water cycle will increase hydrologic variability by means of changing of precipitation patterns, melting of ice and change of runoff. Precipitation has increased in high northern latitudes and decreased in southern latitudes. This study presents an analysis of river runoffs trends in different climatic zones of the world in condition of climate change.

  3. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  4. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  5. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  6. Effect of Flux Adjustments on Temperature Variability in Climate Models

    International Nuclear Information System (INIS)

    Duffy, P.; Bell, J.; Covey, C.; Sloan, L.

    1999-01-01

    It has been suggested that ''flux adjustments'' in climate models suppress simulated temperature variability. If true, this might invalidate the conclusion that at least some of observed temperature increases since 1860 are anthropogenic, since this conclusion is based in part on estimates of natural temperature variability derived from flux-adjusted models. We assess variability of surface air temperatures in 17 simulations of internal temperature variability submitted to the Coupled Model Intercomparison Project. By comparing variability in flux-adjusted vs. non-flux adjusted simulations, we find no evidence that flux adjustments suppress temperature variability in climate models; other, largely unknown, factors are much more important in determining simulated temperature variability. Therefore the conclusion that at least some of observed temperature increases are anthropogenic cannot be questioned on the grounds that it is based in part on results of flux-adjusted models. Also, reducing or eliminating flux adjustments would probably do little to improve simulations of temperature variability

  7. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Administrator

    Climate variability and change have been implicated to have significant impacts on global and regional food production particularly the common stable food crops performance in tropical sub-humid climatic zone. However, the extent and nature of these impacts still remain uncertain. In this study, records of crop yields and ...

  8. Climate variability effects on agriculture land use and soil services

    Science.gov (United States)

    Climate change is occurring around the world and impacts the ability to produce agricultural crops because of changing land use patterns and variation in production among years. Temperature and precipitation are the two climatic variables exerting the largest impact on agriculture production because...

  9. Climate variability and impacts on east African livestock herders: the ...

    African Journals Online (AJOL)

    East African pastoral adaptation and vulnerability to climate variability and climate change is assessed, using data from decision-making processes and ecological data of the Maasai of Ngorongoro Conservation Area as an example. The paper uses integrated modeling, linking PHEWS, a household model, to Savanna, ...

  10. Impacts of climate variability and change on beekeeping productivity ...

    African Journals Online (AJOL)

    This study investigated impacts of climate variability and change on Beekeeping productivity in Sunya, Kijungu and Olgira villages in Kiteto District in Manyara region in Tanzania. Specific objectives of the study were to identify the contribution of honey bees to community livelihoods, to identify climate related factors which ...

  11. Spatiotemporal modes of climatic variability: building blocks of complex networks?

    Czech Academy of Sciences Publication Activity Database

    Vejmelka, Martin; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2012-01-01

    Roč. 14, - (2012), s. 14275 ISSN 1607-7962. [European Geosciences Union General Assembly 2012. 22.04.2012-27.04.2012, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : climate variability * dimensionality reduction * principal component analysis * surrogate data * climate network Subject RIV: BB - Applied Statistics, Operational Research

  12. Cocoa farming households' vulnerability to climate variability in Ekiti ...

    African Journals Online (AJOL)

    Rural livelihoods in south western Nigeria are at risk to climate variability on the short run and climate change on the long run. This subjects agro ecological niches to high sensitivity and exposure thus reducing the adaptive capacity. Vulnerability results and the cocoa farming households, the major contributors to the ...

  13. Cocoa farming households' vulnerability to climate variability in Ekiti ...

    African Journals Online (AJOL)

    BRO OKOJIE

    Rural livelihoods in south western Nigeria are at risk to climate variability on the short run and climate change on the long run. This subjects agro ecological niches to high sensitivity and exposure thus reducing the adaptive capacity. Vulnerability results and the cocoa farming households, the major contributors to.

  14. Climate Change and Variability: Implications for Household Food ...

    African Journals Online (AJOL)

    Ethiopia is one of the most vulnerable countries of the world to the impacts of climate change and variability. The impact is even stronger in pastoral areas of the country. However, studies on the actual climate change dynamics and its effect on food security at local and household levels are limited. The present study took ...

  15. Perceptions and adaptation to climate change and variability by ...

    African Journals Online (AJOL)

    Kenya comprises of 83% arid and semi-arid land mainly suited to extensive livestock production. Communities living in the semi-arid areas have been affected by serious effects of climate change and variability. A study was carried out to evaluate farmer perceptions and adaptation to climate change in Naro Moru and ...

  16. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... Climate change observed over the past decades has been consistently associated with modifications of components of the hydrological systems such as precipitation ...

  17. Climatic variability and the evolution of insect freeze tolerance.

    Science.gov (United States)

    Sinclair, Brent J; Addo-Bediako, A; Chown, Steven L

    2003-05-01

    Insects may survive subzero temperatures by two general strategies: Freeze-tolerant insects withstand the formation of internal ice, while freeze-avoiding insects die upon freezing. While it is widely recognized that these represent alternative strategies to survive low temperatures, and mechanistic understanding of the physical and molecular process of cold tolerance are becoming well elucidated, the reasons why one strategy or the other is adopted remain unclear. Freeze avoidance is clearly basal within the arthropod lineages, and it seems that freeze tolerance has evolved convergently at least six times among the insects (in the Blattaria, Orthoptera, Coleoptera, Hymenoptera, Diptera and Lepidoptera). Of the pterygote insect species whose cold-tolerance strategy has been reported in the literature, 29% (69 of 241 species studied) of those in the Northern Hemisphere, whereas 85 % (11 of 13 species) in the Southern Hemisphere exhibit freeze tolerance. A randomization test indicates that this predominance of freeze tolerance in the Southern Hemisphere is too great to be due to chance, and there is no evidence of a recent publication bias in favour of new reports of freeze-tolerant species. We conclude from this that the specific nature of cold insect habitats in the Southern Hemisphere, which are characterized by oceanic influence and climate variability must lead to strong selection in favour of freeze tolerance in this hemisphere. We envisage two main scenarios where it would prove advantageous for insects to be freeze tolerant. In the first, characteristic of cold continental habitats of the Northern Hemisphere, freeze tolerance allows insects to survive very low temperatures for long periods of time, and to avoid desiccation. These responses tend to be strongly seasonal, and insects in these habitats are only freeze tolerant for the overwintering period. By contrast, in mild and unpredictable environments, characteristic of habitats influenced by the Southern

  18. Effects of climate variability and climate change on crop production in southern Mali

    NARCIS (Netherlands)

    Traore, B.; Corbeels, M.; Wijk, van M.T.; Rufino, M.C.; Giller, K.E.

    2013-01-01

    In West Africa predictions of future changes in climate and especially rainfall are highly uncertain, and up to now no long-term analyses are available of the effects of climate on crop production. This study analyses long-term trends in climate variability at N'Tarla and Sikasso in southern Mali

  19. Human Responses to Climate Variability: The Case of South Africa

    Science.gov (United States)

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.

    2014-12-01

    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  20. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia

    Science.gov (United States)

    Fohlmeister, Jens; Plessen, Birgit; Dudashvili, Alexey Sergeevich; Tjallingii, Rik; Wolff, Christian; Gafurov, Abror; Cheng, Hai

    2017-12-01

    The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of climate changes over the European and western Asian continents throughout the last millennium. For example, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) over Europe have been associated with long-lasting phases with a positive and negative NAO index. Its climatic imprint is especially pronounced in European winter seasons. However, little is known about the influence of NAO with respect to its eastern extent over the Eurasian continent. Here we present speleothem records (δ13C, δ18O and Sr/Ca) from the southern rim of Fergana Basin (Central Asia) revealing annually resolved past climate variations during the last millennium. The age control of the stalagmite relies on radiocarbon dating as large amounts of detrital material inhibit accurate 230Th dating. Present-day calcification of the stalagmite is most effective during spring when the cave atmosphere and elevated water supply by snow melting and high amount of spring precipitation provide optimal conditions. Seasonal precipitation variations cause changes of the stable isotope and Sr/Ca compositions. The simultaneous changes in these geochemical proxies, however, give also evidence for fractionation processes in the cave. By disentangling both processes, we demonstrate that the amount of winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the NAO index but opposite to the higher mountain records of Central Asia. Several events of strongly reduced winter precipitation are observed during the LIA in Central Asia. These dry winter events can be related to phases of a strong negative NAO index and all results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems.

  1. Climate Variability and Migration: Evidence from Tanzania

    OpenAIRE

    Mathilde MAUREL; Zaneta KUBIK

    2014-01-01

    We analyze whether Tanzanian households engage in internal migration as a response to weather-related shocks. Our findings confirm that climate shocks lead to a higher probability of migration by reducing agricultural yields, which in turn induces households to send their members away in order to spatially diversify their income. This effect is, however, low, since a 1% reduction in agricultural income induced by weather shock increases the probability of migration by 3% for an average househ...

  2. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  3. Evaluating the potential nitrogen savings without yield loss using variable nitrogen application strategies in a heterogeneous winter wheat field

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Nyholm; Sørensen, Claus Aage Grøn; Søgaard, Henning Tangen

    During a single growth season, a plot trial was carried out in a selected heterogeneous field in Denmark in an attempt to estimate the optimal variable nitrogen rate applied to winter wheat. 61 Nitrogen/grain yield dose–response curves were estimated using five nitrogen application rates (30, 90,...

  4. Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Casado, M.J.; Pastor, M.A. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain)

    2012-01-15

    This paper analyzes the ability of the multi-model simulations from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) to simulate the main leading modes of variability over the Euro-Atlantic region in winter: the North-Atlantic Oscillation (NAO), the Scandinavian mode (SCAND), the East/Atlantic Oscillation (EA) and the East Atlantic/Western Russia mode (EA/WR). These modes of variability have been evaluated both spatially, by analyzing the intensity and location of their anomaly centres, as well as temporally, by focusing on the probability density functions and e-folding time scales. The choice of variability modes as a tool for climate model assessment can be justified by the fact that modes of variability determine local climatic conditions and their likely change may have important implications for future climate changes. It is found that all the models considered are able to simulate reasonably well these four variability modes, the SCAND being the mode which is best spatially simulated. From a temporal point of view the NAO and SCAND modes are the best simulated. UKMO-HadGEM1 and CGCM3.1(T63) are the models best at reproducing spatial characteristics, whereas CCSM3 and CGCM3.1(T63) are the best ones with regard to the temporal features. GISS-AOM is the model showing the worst performance, in terms of both spatial and temporal features. These results may bring new insight into the selection and use of specific models to simulate Euro-Atlantic climate, with some models being clearly more successful in simulating patterns of temporal and spatial variability than others. (orig.)

  5. Women's role in adapting to climate change and variability

    Science.gov (United States)

    Carvajal-Escobar, Y.; Quintero-Angel, M.; García-Vargas, M.

    2008-04-01

    Given that women are engaged in more climate-related change activities than what is recognized and valued in the community, this article highlights their important role in the adaptation and search for safer communities, which leads them to understand better the causes and consequences of changes in climatic conditions. It is concluded that women have important knowledge and skills for orienting the adaptation processes, a product of their roles in society (productive, reproductive and community); and the importance of gender equity in these processes is recognized. The relationship among climate change, climate variability and the accomplishment of the Millennium Development Goals is considered.

  6. Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966–2010

    International Nuclear Information System (INIS)

    Chernokulsky, Alexander; Mokhov, Igor I; Nikitina, Natalia

    2013-01-01

    This letter presents an assessment of winter cloudiness variability over Northern Eurasia regions related to the Siberian High intensity (SHI) variations during 1966–2010. An analysis of cloud fraction and the occurrence of different cloud types was carried out based on visual observations from almost 500 Russian meteorological stations. The moonlight criterion was implemented to reduce the uncertainty of night observations. The SHI was defined based on sea-level pressure fields from different reanalyses. We found a statistically significant negative correlation of cloud cover with the SHI over central and southern Siberia and the southern Urals with regression coefficients around 3% hPa −1 for total cloud fraction (TCF) for particular stations near the Siberian High center. Cross-wavelet analysis of TCF and SHI revealed a long-term relationship between cloudiness and the Siberian High. Generally, the Siberian High intensification by 1 hPa leads to a replacement of one overcast day with one day without clouds, which is associated mainly with a decrease in precipitating and stratiform clouds. These changes point to a positive feedback between cloudiness and the Siberian High. (letter)

  7. Impact of ENSO events on the interannual variability of Hadley circulation extents in boreal winter

    Directory of Open Access Journals (Sweden)

    Yi-Peng Guo

    2016-03-01

    Full Text Available The interannual variability of the boreal winter Hadley circulation extents during the period of 1979–2014 and its links to El Niño-Southern Oscillation (ENSO were investigated by using reanalysis datasets. Results showed that the El Niño (La Niña events can induce the shrinking (expansion of Hadley circulation extent in the Southern Hemisphere. For the Northern Hemisphere, El Niño (La Niña mainly leads to shrinking (expansion of the Hadley circulation extent in the middle and lower troposphere and expansion (shrinking of the Hadley circulation extent in the upper troposphere. The ENSO associated meridional temperature gradients have close relationship with the Hadley circulation extents in both Hemispheres. But in the Northern Hemisphere, the ENSO associated eddy momentum flux divergence plays more important role in affecting the Hadley circulation extent than the meridional temperature gradient because of the small local Rossby number. In the Southern Hemisphere, as the ENSO induced eddy momentum flux divergence is small, the meridional temperature gradient dominates the change of the Hadley circulation extent.

  8. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate.

    Directory of Open Access Journals (Sweden)

    Jakob Brodersen

    Full Text Available The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus was affected by the physiologically relatively small (2-5 °C changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC, under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.

  9. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate.

    Science.gov (United States)

    Brodersen, Jakob; Rodriguez-Gil, José Luis; Jönsson, Mikael; Hansson, Lars-Anders; Brönmark, Christer; Nilsson, P Anders; Nicolle, Alice; Berglund, Olof

    2011-01-01

    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5 °C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.

  10. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    Science.gov (United States)

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  11. Range expansion through fragmented landscapes under a variable climate

    NARCIS (Netherlands)

    Bennie, J.J.; Hodgson, J.A.; Lawson, C.R.; Holloway, C.T.R.; Roy, D.B.; Brereton, T.; Thomas, C.D.; Wilson, R.J.

    2013-01-01

    Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an

  12. Implication of Climate Variability for Latex Exudates F Rubber Tree ...

    African Journals Online (AJOL)

    Two models were developed and all suggested that variable rubber yield was significantly related to the joint influence of climate elements. The most significant variables identified however were rainfall, temperature and sunshine hours. These three elements had significantly negative effects on rubber yield. Analysis of ...

  13. Temporal relationship between climate variability, Prosopis juliflora ...

    African Journals Online (AJOL)

    Normalized Difference Vegetation Index (NDVI) data derived from moderate resolution imaging spectroradiometer (MODIS) 250 m satellite imageries for 2000 to 2014 were used to determine the temporal dynamics of P. juliflora invasion in the study area. Both temperature and rainfall trends showed marked variability over ...

  14. Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia

    Science.gov (United States)

    Polvani, Lorenzo; Sun, Lantao; Butler, Amy; Richter, Yaga; Deser, Clara

    2017-04-01

    Stratospheric conditions are increasingly being recognized as an important driver of North Atlantic and Eurasian climate variability. Mindful that the observational record is relatively short, and that internal climate variability can be large, we here analyze a new 10-member ensemble of integrations of a stratosphere-resolving, atmospheric general circulation model, forced with the observed evolution of sea surface temperature (SST) during 1952-2003. We confirm previous studies, and show that El Niño conditions enhance the frequency of occurrence of stratospheric sudden warmings (SSWs), whereas La Niña does not appear to affect it. We note, however, large differences among ensemble members, suggesting caution when interpreting the relatively short observational record. More importantly, we emphasize that the majority of SSWs are not caused by anomalous tropical Pacific SSTs. Comparing composites of winters with and without SSWs in each ENSO phase separately, we demonstrate that stratospheric variability gives rise to large and statistically significant anomalies in tropospheric circulation and surface conditions over the North Atlantic and Eurasia. This indicates that, for those regions, climate variability of stratospheric origin is comparable in magnitude to variability originating from tropical Pacific SSTs, so that the occurrence of a single SSW in a given winter is able to completely alter seasonal climate predictions based solely on ENSO conditions

  15. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  16. Data Requirements for Developing Adaptations to Climate Variability and Change

    International Nuclear Information System (INIS)

    Basher, Reid E.

    1999-01-01

    An extensive foundation of high quality data and information on the climate and on the biological, environmental and social systems affected by climate is required in order to understand the climate impact processes involved, to develop new adaptation practices, and to subsequently implement these practices. Experience of the impacts of current and past variability of climate and sea level is a prime source of information. Many practices are in use to reduce climate impacts, for example in engineering design, agricultural risk management and climate prediction services, though their roles as adaptations to climate change are not widely appreciated. While there are good data sets on some factors and in some regions, in many cases the databases are inadequate and there are few data sets on adaptation-specific quantities such as vulnerability, resilience and adaptation effectiveness. Current international action under the United Nations Framework Convention on Climate Change (UNFCCC) pays little attention to adaptation and its information requirements. Furthermore there are trends toward reduced data gathering and to restrictions on access to data sets, especially arising from cost and commercialisation pressures. To effectively respond to the changes in climate that are now inevitable, governments will need to more clearly identify adaptation as a central feature of climate change policy and make a renewed shared commitment to collecting and freely exchanging the necessary data. 12 refs

  17. Thermal barriers constrain microbial elevational range size via climate variability.

    Science.gov (United States)

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Climatic variables and malaria incidence in Dehradun, Uttaranchal, India.

    Science.gov (United States)

    Devi, N Pemola; Jauhari, R K

    2006-03-01

    Mosquito-borne diseases particularly malaria and Japanese encephalitis (JE) are becoming most dreaded health problems in Dehradun district. Keeping in view that the climatic factors particularly temperature and rainfall may alter the distribution of vector species--increasing or decreasing the ranges, depending on weather conditions that are favourable or unfavourable for mosquito breeding, it is aimed to find out the effect of climatic factors on malaria incidence with particular emphasis to capture the essential events as a result of climatic variability. Mosquito sampling and identification was done using WHO entomological methods and follow-up of recognised keys and catalogues. Data on malaria incidence and meteorological information were gathered in a collaborative study with the District Malaria Office, and the Forest Research Institute, Dehradun respectively. Pearson's correlation analysis was applied for establishing relationship between climate variables and malaria transmission. Higher positive correlation of association was found between monthly parasite incidence and climatic variables (temperature, rainfall and humidity). However, highest significant correlation was found between rainfall and malaria incidence (r = 0.718, p Climatic variables that predict the presence or absence of malaria are likely to be the best suited for forecasting the distribution of this disease at the edges of its range.

  19. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  20. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    Science.gov (United States)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  1. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Directory of Open Access Journals (Sweden)

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  2. Interdecadal Variability of Winter Precipitation in Northwest China and Its Association with the North Atlantic SST Change

    Science.gov (United States)

    Liantong, Zhou

    2017-04-01

    Winter precipitation in Northwest China experienced an obvious interdecadal increase around 1987. Consistent increase in winter precipitation occurred in Middle Asia. The present study investigates associated changes in atmospheric circulation and sea surface temperature (SST). Analyses show that winter water vapor flux and atmospheric circulation over the North Atlantic Ocean and Eurasia and SST in the North Atlantic Ocean were very different before and after 1987. During 1987-2008, a significant enhancement of tropospheric moisture convergence and ascending motion was observed over Northwest China and Middle Asia. This contributed to the increase of winter precipitation in Northwest China and Middle Asia. The wind difference field before and after 1986/87 features cyclones over Middle Asia and northern Atlantic Ocean and anticyclones over East Asia and southern Europe-northern Africa, signifying an obvious change in the Eurasian (EU) teleconnection pattern over middle latitudes of Eurasia. The results indicate that the Middle Asia and Northwest China were under the influence of enhanced westerlies from the North Atlantic Ocean that strengthened the water vapor transport to Middle Asia and Northwest China after 1987. Moreover, the interdecadal variability in the EU pattern is associated with the SST increase in the North Atlantic Ocean. Thus, the North Atlantic SST change is likely an important reason for the winter precipitation increase in Middle Asia and Northwest China.

  3. Impacts of climate change and variability on European agriculture

    DEFF Research Database (Denmark)

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef

    2008-01-01

    Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is more...... susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded...... by the European Commission. The main objective of the Action is the evaluation of possible impacts arising from climate change and variability on agriculture and the assessment of critical thresholds for various European areas. The Action will concentrate on four different tasks: agroclimatic indices...

  4. Chaos, dynamical structure and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, H.B. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

    1995-09-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.

  5. Adaptation to climate change and variability in Canadian water resources

    International Nuclear Information System (INIS)

    Nuttle, W.K.

    1993-01-01

    A survey is presented of topics and issues related to the adaptation to climate change in Canadian water resources. These resources are seen as especially sensitive to changes in variability in climate and hydrology. Based on current knowledge of global warming, significant changes in climate and hydrology are plausible within a time period that is significant for water resource management. Global warming will tend to exacerbate existing water resources problems in the southern Prairies and the Great Lakes. The Prairies can expect increased drought during summer, and the Great Lakes can expect a decline in mean lake levels to historic lows. Measures for adapting to climate change include traditional practices (supply management), which stress system reliability. They provide some adaptation to climate change but are limited in their ability to respond to rapid change. Nontraditional and non-management measures stress flexibility and resilience. These measures also address other concerns and can be implemented immediately, before the effects of climate change are evident. Water resources managers require methods of assessing the vulnerability of water resources systems to climate change to help identify when and where adaptive measures should be applied. Adaptation to climate change requires ongoing observation and interpretation of climate, hydrology, and related environmental processes. 29 refs., 1 fig., 3 tabs

  6. Nature Relation Between Climatic Variables and Cotton Production

    OpenAIRE

    Zakaria M. Sawan

    2014-01-01

    This study investigated the effect of climatic variables on flower and boll production and retention in cotton ( Gossypium barbadense ). Also, this study investigated the relationship between climatic factors and production of flowers and bolls obtained during the development periods of the flowering and boll stage, and to determine the most representative period corresponding to the overall crop pattern. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, a...

  7. Climatic Indices and their teleconnections with hydroclimatic variability in the conterminous USA

    Science.gov (United States)

    Betancourt, J. L.; McCabe, G. J.; Pederson, G. T.

    2012-12-01

    Beginning a century ago with the North Atlantic Oscillation (NAO), climate indices derived from synoptic measurements of atmospheric pressure and sea surface temperatures, or their proxies, have been used extensively to investigate ocean/atmosphere teleconnections with hydroclimatological variations and their impacts on land. Here, we address various issues associated with teleconnections between both instrumental and reconstructed climatic indices and USA hydroclimatology, with particular focus on the American West. Modes of ocean variability represented by these indices, and their teleconnections, may or may not operate independently. For example, atmospheric bridging occurs across both the North and tropical Pacific and Atlantic Oceans, and such atmosphere-ocean interactions may amplify and even modulate frequency spectra in interannual modes of variability, including ENSO. The Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO), each defined by basin-wide averages or EOF's, together explain more than half of the decadal-to-multidecadal (D2M) variance in detrended global SST over the 20th century. The Pacific-North American pattern (PNA) and the Northern Annular Mode (NAM)/Arctic Oscillation (AO), particularly dominant in the Northern Hemisphere winter and spring, together explain 30% of all variance in monthly sea level pressure. Independent of global warming, AMO and PDO together explain more than half of the 20th century seasonal temperature and drought variance at D2M timescales in the conterminous USA. PNA and NAM/AO explain much of the variance in winter/spring hydroclimatology, including snowpack, spring onset, and related ecological phenomena. Continental-scale patterns of many of these teleconnections are statistically robust, but regional significance may be limited- e.g., the relationship between combined PDO/ENSO and interannual spring onset variations is truly significant only in the Pacific NW, and then more so for the

  8. Natural climate variability in a coupled model

    International Nuclear Information System (INIS)

    Zebiak, S.E.; Cane, M.A.

    1990-01-01

    Multi-century simulations with a simplified coupled ocean-atmosphere model are described. These simulations reveal an impressive range of variability on decadal and longer time scales, in addition to the dominant interannual el Nino/Southern Oscillation signal that the model originally was designed to simulate. Based on a very large sample of century-long simulations, it is nonetheless possible to identify distinct model parameter sensitivities that are described here in terms of selected indices. Preliminary experiments motivated by general circulation model results for increasing greenhouse gases suggest a definite sensitivity to model global warming. While these results are not definitive, they strongly suggest that coupled air-sea dynamics figure prominently in global change and must be included in models for reliable predictions

  9. Human activity and climate variability project: annual report 2001

    International Nuclear Information System (INIS)

    Harle, K.J.; Heijnis, H.; Henderson-Sellers, A.; Sharmeen, S.; Zahorowski, W.

    2002-01-01

    Knowledge of the state of the Australian environment, including natural climate variability, prior to colonial settlement is vital if we are to define and understand the impact of over two hundred years of post-industrial human activity on our landscape. ANSTO, in conjunction with university partners, is leading a major research effort to provide natural archives of human activity and climate variability over the last 500 years in Australia, utilising a variety of techniques, including lead-210 and radiocarbon dating and analyses of proxy indicators (such as microfossils) as well as direct evidence (such as trace elements) of human activity and climate variability. The other major project objectives were to contribute to the understanding of the impact of human induced and natural aerosols in the East Asian region on climate through analysis and sourcing of fine particles and characterisation of air samples using radon concentrations and to contribute to the improvement of land surface parameterisation schemes and investigate the potential to use stable isotopes to improve global climate models and thus improve our understanding of future climate

  10. Estimating Hydrologic and Ecological Responses to Increased Climate Variability using Water Year Type Classification

    Science.gov (United States)

    Null, S. E.

    2014-12-01

    Water management frameworks that were designed assuming stationary climate conditions will be increasingly difficult to implement in non-stationary climates, presenting a barrier to climate change adaptation and efficient water management for people and ecosystems. Hydrologic indices, or water year classification systems as they are also called, categorize streamflow by year type, such as wet, dry, or normal, compared to historical averages. Numerical thresholds separate water year types, often set by weighted winter and spring runoff volume for rivers. Year type classification is tied to water resources planning, helping to answer the question of whether there is 'enough' water, and water allocations to competing water uses are typically adjusted based on water year type. Hydrologic indices were developed for Utah's Bear, Weber, and Jordan-Provo rivers using long-term reconstructed streamflow from tree-ring data (~1500 to present). Tree-ring data have considerably more variability than measured streamflow from the 20th Century, indicating droughts and wet periods could be longer, more intense, and of greater magnitude than more recent records suggest. Tree-ring reconstructed streamflow is also a promising surrogate to represent increasing future hydroclimatic variability. The Bear, Weber, and Jordan-Provo rivers make up approximately 95% of the streamflow to the Great Salt Lake and supply water to the Salt Lake City, Ogden, and Logan metropolitan areas. The frequency of water year types changes with increased hydroclimatic variability represented in tree-ring reconstructed streamflow when historical year type thresholds or historical year type distributions are maintained. In turn, this affects allocations to urban, agricultural, and environmental water uses, and highlights potential adaptation strategies for watershed-scale water resources management with increased climate variability from climate change.

  11. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  12. Effects of altitude and beehive bottom board type on wintering losses of honeybee colonies under subtropical climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ucak-Koc, A.

    2014-06-01

    The effects of altitude and beehive bottom board types (BBBT) on the wintering performance of honeybee colonies were investigated in the South Aegean Region of Turkey: Experiment I (E-I), with 32 colonies, in 2010-2011, and Experiment II (E-II), with 20 colonies, in 2011-2012. Each lowland (25 m) and highland (797 m) colony was divided randomly into two BBBT subgroups, open screen floor (OSF) and normal bottom floor (NBF), and wintered for about three months. In E-I, the local genotype Aegean ecotype of Anatolian bee (AE) and Italian race (ItR) were used, while in E-II, only the AE genotype was present. In E-I, the effect of wintering altitudes on the number of combs covered with bees (NCCB), and the effects of BBBT on brood area (BA) and the NCCB were found to be statistically significant (p < 0.05), but the effects of genotype on BA and NCCB were statistically insignificant (p > 0.05). In the E-II, the effect of wintering altitude on beehive weight was found to be statistically significant (p < 0.05), while its effect on the NCCB was statistically insignificant (p > 0.05). The wintering losses in the highland and lowland groups in E-I were determined to be 25% and 62.5% respectively. In contrast to this result, no loss was observed in E-II for both altitudes. In E-I, the wintering losses for both OSF and NBF groups were the same (43.75%). In conclusion, under subtropical climatic conditions, due to variations from year to year, honeybee colonies can be wintered more successfully in highland areas with OSF bottom board type. (Author)

  13. Temporal trends of selected POPs and the potential influence of climate variability in a Greenland ringed seal population.

    Science.gov (United States)

    Rigét, Frank; Vorkamp, Katrin; Hobson, Keith A; Muir, Derek C G; Dietz, Rune

    2013-09-01

    Temporal trends of selected POPs (PCB-52 and 153, p,p'-DDE, HCB, α- and β-HCH) in blubber of ringed seals (Pusa hispida) collected from the early 1990s to 2010 from central West Greenland were studied. In this period, the climate of Greenland warmed and the influences of climate indices such as winter sea-ice coverage (November-May), the number of sea-ice days during winter in Disko Bay, water temperature and salinity at Fyllas Banke during the preceding summer and the Arctic Oscillation Index (AOI) during the preceding winter on concentrations of selected POPs were evaluated using multiple regressions and an information-theoretic approach. Biological co-variables such as age, sex and trophic position (as determined by δ(15)N analysis) of seals were also evaluated. Decreasing levels of the selected POPs were found in all cases and with the highest rate for α-HCH (-10.5% annually) and the lowest rate for β-HCH (-1.9% annually). Sex and age were found to have strong predictive power in the case of PCB-52 and trophic position in the case of p,p'-DDE. Among the climate indices the strongest predictive power was found for the number of sea-ice days in the case of PCB-52, the AOI winter index in the case of α-HCH and salinity at Fyllas Banke during the preceding summer in the case of β-HCH. The present study documents the need for including both biological variables and climate variability parameters in temporal trend studies of POPs in Arctic biota.

  14. Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel

    Science.gov (United States)

    Zeng, Ning; Neelin, J. David; Lau, William K.-M.

    1999-01-01

    The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.

  15. The North Atlantic spring-bloom system - where the changing climate meets the winter dark

    Directory of Open Access Journals (Sweden)

    Svein eSundby

    2016-03-01

    Full Text Available The North Atlantic with its spring-bloom ecosystem has its particular responses to climate change, many of them different from the other parts of the world’s oceans. The system is strongly influenced by anthropogenic climate change as well as to strong decadal to multidecadal natural climate variability. In particular, the northernmost part of the system and the Arctic is exposed to higher increase in temperature than any other ocean region. The most pronounced examples of poleward migration of marine species are found in the North Atlantic, and comprise the recent warming phase after the 1970s. The latitudinal asymmetric position of the Arctic Front and its nature of change result in a considerably larger migration distance and migration speed of species in the Northeast Atlantic part of the system. However, we here hypothesize that there is a limit to the future extent of poleward migration of species constrained by the latitudinal region adjacent the Polar Circle. We define this region the critical latitudes. This is because the seasonal light cycle at high latitudes sets particular demands on the life cycle of planktivore species. Presently, boreal planktivore species at high latitudes deposit lipids during the short spring bloom period and overwinter when phytoplankton production is insufficient for feeding. Unless invading temperate species from farther south are able to adapt by developing a similar life cycle future poleward migration of such species will be unlikely.

  16. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  17. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  18. Climate Variability and Phytoplankton in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  19. Climate variability and predictability in Northwest Africa

    Science.gov (United States)

    Baddour, O.; Djellouli, Y.

    2003-04-01

    Northwest Africa defined here as the area including Morocco, Algeria and Tunisia, occupies a large territory in North Africa with an area exceeding 3.5 million km2. The geographical contrast is very important: while most of the southern part is desert, the northern and northwestern parts exhibit a contrasting geography including large flat areas in the western part of Morocco, northern Algeria and eastern part of Tunisia and the formidable Atlas mountains barrier extends from south west of Morocco toward north west of Tunisia crossing central Morocco and north Algeria. Agriculture is one of major socio-economic activities in the region with an extensive cash-crop for exporting to Europe especially from Morocco and Tunisia. The influence of the recurring droughts during the 80s and 90s was very crucial for the economic and societal aspects of the region. In Morocco, severe droughts have caused GDP fluctuation within past 20 years from 10% increase down to negative values in some particular years. Recent studies have investigated seasonal rainfall variability and prediction over MOROCCO in the framework of regional and international collaboration. Results from this work has shown that the main general circulation feature associated with the rainfall variability within Morocco is the North Atlantic Oscillation. The relationship is in fact due to the major role played by the AZORES high pressure with its role in modulating the main position of the active synoptic systems in the north Atlantic area and therefore in modulating the frequency and the intensity of the weather systems that impact the western part of the region. Mediterranean sea plays also major role in the mid of the region. In this paper we applied EOF technique on 500 hPa. The data used are monthly reanalysis NCEP/NCAR analyses for November from 1960 to 1990 climatological time series. Correlation analysis is then performed between EOF time series and global 4x4 degre SST anomalies. The results we

  20. Climatic variability of the column ozone over the Iranian plateau

    Science.gov (United States)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  1. Sensitivity of global terrestrial ecosystems to climate variability

    Science.gov (United States)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  2. Sensitivity of global terrestrial ecosystems to climate variability.

    Science.gov (United States)

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  3. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  4. Antarctic Circumpolar Current Fronts, Winter Sea Ice and Variability: Topographic Influences

    Science.gov (United States)

    Talley, L. D.

    2017-12-01

    The Antarctic winter sea ice edge is closely associated with the southernmost Antarctic Circumpolar Current (ACC) fronts, which are guided northeastward, with their cold waters, by mid-ocean ridges in the Pacific and Atlantic, and Kerguelen Plateau in the Indian. In the Amundsen/Bellingshausen Seas and along Adelie Land, the southern ACC fronts are free from topographic control, and swing southwards towards Antarctica, carrying warmer waters. This suggests poleward Sverdrup transport due to wind-driven upwelling, distorted by the major topographic ridges. Hydrographic observations show stronger penetration of full-depth ACC water into the Amundsen/ Bellingshausen Seas in 2011 compared with 1992, consistent with decreasing sea ice and increasing ice-shelf melt. Winter sea ice increased where the southern ACC is topographically locked into northeastward pathways. The standing eddy pattern of ACC poleward heat flux, strengthening winds, and decadal winter sea ice changes are consistent with strengthening circulation along the southern side of the ACC.

  5. What drove the Pacific and North America climate anomalies in winter 2014/15?

    Science.gov (United States)

    Peng, Peitao; Kumar, Arun; Hu, Zeng-Zhen

    2017-12-01

    In late 2014 and early 2015, the canonical atmospheric response to the El Niño and Southern Oscillation (ENSO) event was not observed in the central and eastern equatorial Pacific, although Niño3.4 index exceeded the threshold for a weak El Niño. In an effort to understand why it was so, this study deconvoluted the observed 2014/15 December-January-February (DJF) mean sea surface temperature (SST), precipitation and 200 hPa stream function anomalies into the leading patterns related to the principal components of DJF SST variability. It is noted that the anomalies of these variables were primarily determined by the patterns related to two SST modes: one is the North Pacific mode (NPM), and the other the ENSO mode. The NPM was responsible for the apparent lack of coupled air-sea relationship in the central equatorial Pacific and the east-west structure of the circulation anomalies over North America, while the ENSO mode linked to SSTs in the central and eastern equatorial Pacific as well as the circulation in the central equatorial Pacific. Further, the ENSO signal in DJF 2014/15 likely evolved from the NPM pattern in winter 2013/14. Its full development, however, was impeded by the easterly anomalies in the central equatorial Pacific that was associated with negative SST anomalies in the southeastern subtropical Pacific. In addition, the analyses also indicates that the SST anomalies in the Niño3.4 region alone were not adequate for capturing the coupling of oceanic and atmospheric anomalies in the tropical Pacific, due to the fact that this index cannot distinguish whether the SST anomaly in the Niño3.4 region is associated with the ENSO mode or NPM, or both.

  6. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods

    Directory of Open Access Journals (Sweden)

    Muhammad Fahim Khokhar

    2016-05-01

    Full Text Available Fog is a meteorological/environmental phenomenon which happens across the Indo-Gangetic Plains (IGP and leads to significant social and economic problems, especially posing significant threats to public health and causing disruptions in air and road traffic. Meteorological stations in Pakistan provide limited information regarding fog episodes as these provide only point observations. Continuous monitoring, as well as a spatially coherent picture of fog distribution, is possible through the use of satellite observations. This study focuses on the 2012–2015 winter fog episodes over the Pakistan region using the Moderate Resolution Image Spectrometer (MODIS, the Ozone Monitoring Instrument and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO products. The main objective of the study was to map the spatial distribution of aerosols, their types, and to identify the aerosol origins during special weather conditions like fog in Pakistan. The study also included ground monitoring of particulate matter (PM concentrations, which were conducted during the 2014–2015 winter period only. Overall, this study is part of a multi-country project supported by the International Centre for Integrated Mountain Development (ICIMOD, started in 2014–2015 winter period, whereby scientists from Bangladesh, India and Nepal have also conducted measurements at their respective sites. A significant correlation between MODIS (AOD and AERONET Station (AOD data from Lahore was identified. Mass concentration of PM10 at all sampling sites within Lahore city exceeded the National Environmental Quality Standards (NEQS levels on most of the occasions. Smoke and absorbing aerosol were found to be major constituents of winter fog in Pakistan. Furthermore, an extended span of winter fog was also observed in Lahore city during the winter of 2014–2015. The Vertical Feature Mask (VFM provided by CALIPSO satellite confirmed the low-lying aerosol

  7. Cholera and shigellosis: different epidemiology but similar responses to climate variability.

    Science.gov (United States)

    Cash, Benjamin A; Rodó, Xavier; Emch, Michael; Yunus, Md; Faruque, Abu S G; Pascual, Mercedes

    2014-01-01

    Comparative studies of the associations between different infectious diseases and climate variability, such as the El Niño-Southern Oscillation, are lacking. Diarrheal illnesses, particularly cholera and shigellosis, provide an important opportunity to apply a comparative approach. Cholera and shigellosis have significant global mortality and morbidity burden, pronounced differences in transmission pathways and pathogen ecologies, and there is an established climate link with cholera. In particular, the specific ecology of Vibrio cholerae is often invoked to explain the sensitivity of that disease to climate. The extensive surveillance data of the International Center for Diarrheal Disease Research, Bangladesh are used here to revisit the known associations between cholera and climate, and to address their similarity to previously unexplored patterns for shigellosis. Monthly case data for both the city of Dhaka and a rural area known as Matlab are analyzed with respect to their association with El Niño and flooding. Linear correlations are examined between flooding and cumulative cases, as well as for flooding and El Niño. Rank-correlation maps are also computed between disease cases in the post-monsoon epidemic season and sea surface temperatures in the Pacific. Similar climate associations are found for both diseases and both locations. Increased cases follow increased monsoon flooding and increased sea surface temperatures in the preceding winter corresponding to an El Niño event. The similarity in association patterns suggests a systemic breakdown in population health with changing environmental conditions, in which climate variability acts primarily through increasing the exposure risk of the human population. We discuss these results in the context of the on-going debate on the relative importance of the environmental reservoir vs. secondary transmission, as well as the implications for the use of El Niño as an early indicator of flooding and enteric

  8. Cholera and shigellosis: different epidemiology but similar responses to climate variability.

    Directory of Open Access Journals (Sweden)

    Benjamin A Cash

    Full Text Available Comparative studies of the associations between different infectious diseases and climate variability, such as the El Niño-Southern Oscillation, are lacking. Diarrheal illnesses, particularly cholera and shigellosis, provide an important opportunity to apply a comparative approach. Cholera and shigellosis have significant global mortality and morbidity burden, pronounced differences in transmission pathways and pathogen ecologies, and there is an established climate link with cholera. In particular, the specific ecology of Vibrio cholerae is often invoked to explain the sensitivity of that disease to climate.The extensive surveillance data of the International Center for Diarrheal Disease Research, Bangladesh are used here to revisit the known associations between cholera and climate, and to address their similarity to previously unexplored patterns for shigellosis. Monthly case data for both the city of Dhaka and a rural area known as Matlab are analyzed with respect to their association with El Niño and flooding. Linear correlations are examined between flooding and cumulative cases, as well as for flooding and El Niño. Rank-correlation maps are also computed between disease cases in the post-monsoon epidemic season and sea surface temperatures in the Pacific. Similar climate associations are found for both diseases and both locations. Increased cases follow increased monsoon flooding and increased sea surface temperatures in the preceding winter corresponding to an El Niño event.The similarity in association patterns suggests a systemic breakdown in population health with changing environmental conditions, in which climate variability acts primarily through increasing the exposure risk of the human population. We discuss these results in the context of the on-going debate on the relative importance of the environmental reservoir vs. secondary transmission, as well as the implications for the use of El Niño as an early indicator of

  9. Cholera and Shigellosis: Different Epidemiology but Similar Responses to Climate Variability

    Science.gov (United States)

    Cash, Benjamin A.; Rodó, Xavier; Emch, Michael; Yunus, Md.; Faruque, Abu S. G.; Pascual, Mercedes

    2014-01-01

    Background Comparative studies of the associations between different infectious diseases and climate variability, such as the El Niño-Southern Oscillation, are lacking. Diarrheal illnesses, particularly cholera and shigellosis, provide an important opportunity to apply a comparative approach. Cholera and shigellosis have significant global mortality and morbidity burden, pronounced differences in transmission pathways and pathogen ecologies, and there is an established climate link with cholera. In particular, the specific ecology of Vibrio cholerae is often invoked to explain the sensitivity of that disease to climate. Methods and Findings The extensive surveillance data of the International Center for Diarrheal Disease Research, Bangladesh are used here to revisit the known associations between cholera and climate, and to address their similarity to previously unexplored patterns for shigellosis. Monthly case data for both the city of Dhaka and a rural area known as Matlab are analyzed with respect to their association with El Niño and flooding. Linear correlations are examined between flooding and cumulative cases, as well as for flooding and El Niño. Rank-correlation maps are also computed between disease cases in the post-monsoon epidemic season and sea surface temperatures in the Pacific. Similar climate associations are found for both diseases and both locations. Increased cases follow increased monsoon flooding and increased sea surface temperatures in the preceding winter corresponding to an El Niño event. Conclusions The similarity in association patterns suggests a systemic breakdown in population health with changing environmental conditions, in which climate variability acts primarily through increasing the exposure risk of the human population. We discuss these results in the context of the on-going debate on the relative importance of the environmental reservoir vs. secondary transmission, as well as the implications for the use of El Niño as an

  10. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation

    Science.gov (United States)

    Chu, Guoqiang; Sun, Qing; Zhu, Qingzeng; Shan, Yabing; Shang, Wenyu; Ling, Yuan; Su, Youliang; Xie, Manman; Wang, Xishen; Liu, Jiaqi

    2017-12-01

    High-resolution temperature records spanning the last deglaciation from low latitudes are scarce; however, they are important for understanding the rapid propagation of abrupt climate events throughout the Northern Hemisphere and the tropics. Here, we present a branched GDGTs-based temperature reconstruction from the sediments of Maar Lake Huguangyan in tropical China. The record reveals that the mean temperature during the Oldest Dryas was 17.8 °C, which was followed by a two-step increase of 2-3 °C to the Bølling-Allerød, a decrease to 19.8 °C during the Younger Dryas, and a rapid warming at the onset of the Holocene. The Oldest Dryas was about 2 °C warmer than the Younger Dryas. The reconstructed temperature was weighted towards the wintertime since the lake is monomictic and the mixing process in winter supplies nutrients from the lake bottom to the entire water column, greatly promoting biological productivity. In addition, the winter-biased temperature changes observed in the study are more distinctive than the summer-biased temperature records from extra-tropical regions of East Asia. This implies that the temperature decreases during abrupt climatic events were mainly a winter phenomenon. Within the limits of the dating uncertainties, the broadly similar pattern of winter-weighted temperature change observed in both tropical Lake Huguangyan and in Greenland ice cores indicates the occurrence of tightly-coupled interactions between high latitude ice sheets and land areas in the tropics. We suggest that the winter monsoon (especially cold surges) could play an important role in the rapid transmission of the temperature signal from the Arctic to the tropics.

  11. Nature Relation Between Climatic Variables and Cotton Production

    Directory of Open Access Journals (Sweden)

    Zakaria M. Sawan

    2014-08-01

    Full Text Available This study investigated the effect of climatic variables on flower and boll production and retention in cotton (Gossypium barbadense. Also, this study investigated the relationship between climatic factors and production of flowers and bolls obtained during the development periods of the flowering and boll stage, and to determine the most representative period corresponding to the overall crop pattern. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 0600 h and minimum temperature. There was a negative correlation between flower and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.

  12. 2500 Years of European Climate Variability and Human Susceptibility

    Science.gov (United States)

    Büntgen, Ulf; Tegel, Willy; Nicolussi, Kurt; McCormick, Michael; Frank, David; Trouet, Valerie; Kaplan, Jed O.; Herzig, Franz; Heussner, Karl-Uwe; Wanner, Heinz; Luterbacher, Jürg; Esper, Jan

    2011-02-01

    Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. Discrimination between environmental and anthropogenic impacts on past civilizations, however, remains difficult because of the paucity of high-resolution paleoclimatic evidence. We present tree ring-based reconstructions of central European summer precipitation and temperature variability over the past 2500 years. Recent warming is unprecedented, but modern hydroclimatic variations may have at times been exceeded in magnitude and duration. Wet and warm summers occurred during periods of Roman and medieval prosperity. Increased climate variability from ~250 to 600 C.E. coincided with the demise of the western Roman Empire and the turmoil of the Migration Period. Such historical data may provide a basis for counteracting the recent political and fiscal reluctance to mitigate projected climate change.

  13. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age

    Science.gov (United States)

    Edwards, Thomas W. D.; Hammarlund, Dan; Newton, Brandi W.; Sjolte, Jesper; Linderson, Hans; Sturm, Christophe; St. Amour, Natalie A.; Bailey, Joscelyn N.-L.; Nilsson, Anders L.

    2017-06-01

    Here we report new reconstructions of winter temperature and summer moisture during the past millennium in southeastern Sweden, based on stable-isotope data from a composite tree-ring sequence, that further enhances our knowledge and understanding of seasonal climate variability in the Northern Hemisphere over the past millennium. Key features of these new climate proxy records include evidence for distinctive fluctuations in winter temperature in SE Sweden, superimposed upon the general pattern of cooling between the so-called Medieval Climate Anomaly (MCA) of the early millennium and the Little Ice Age (LIA) of the late millennium, as well as evidence for sustained summer wetness during the MCA, followed by drier and less variable conditions during the LIA. We also explore these new records within a circumpolar spatial context by employing self-organizing map analysis of meteorological reanalysis data to identify potential modern analogues of mid-tropospheric synoptic circulation types in the Northern Hemisphere extratropics that can reconcile varying seasonal climate states during the MCA and LIA in SE Sweden with less variable conditions in southwestern Canada, as portrayed by paleoclimate records developed in the same manner in an earlier study.

  14. Climate variability and temporal trends of persistent organic pollutants in the arctic: a study of glaucous gulls.

    Science.gov (United States)

    Bustnes, Jan O; Gabrielsen, Geir W; Verreault, Jonathan

    2010-04-15

    The impact of climate variability on temporal trends (1997-2006) of persistent organic pollutants (POPs; polychlorinated biphenyls [PCB], hexachlorobenzene [HCB], and oxychlordane) was assessed in glaucous gulls (Larus hyperboreus) breeding in the Norwegian Arctic (n = 240). The Arctic Oscillation (AO: an index of sea-level pressure variability in the Northern Hemisphere above 20 degrees N) with different time lags was used as a climate proxy. The estimated concentrations of POPs in glaucous gull blood/plasma declined substantially (16-60%) over the time period. Multiple regression analyses showed that the rates of decline for POPs were correlated to climate variation when controlling for potential confounding variables (sex and body condition). More specifically AO in the current winter showed negative associations with POP concentrations, whereas the relationships with AO measurements from the year preceding POP measurements (AO preceding summer and AO preceding winter) were positive. Hence, gulls had relatively higher POP concentrations in breeding seasons following years with high air transport toward the Arctic. Furthermore, the impact of AO appeared to be stronger for HCB, a relatively volatile compound with high transport potential, compared to heavy chlorinated PCB congeners. This study thus suggests that predicted climate change should be considered in assessments of future temporal trends of POPs in Arctic wildlife.

  15. Assessing Perceptions of Climate Variability and Change among ...

    African Journals Online (AJOL)

    The study assed the relationship between perceived and objective climate variability and change in Kyela district, Mbeya Region, Tanzania. The study had two main objectives: one was to assess whether there have occurred any significant shifts in rainfall pattern over the past 47 years. Two was to determine the ...

  16. climate variability and implications for maize production in benin

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    E.K. AGBOSSOU, C. TOUKON, P.B.I. AKPONIKPÈ1 and A. AFOUDA2. Faculté des ... ABSTRACT. To better assess the occurrence of climate variability and change and related effects on crop production for ... 1971-1990, and (iv) that maize crop during its development in Benin is more likely to be subject to dry dekads.

  17. Analysis of ENSO-based climate variability in modulating drought ...

    Indian Academy of Sciences (India)

    This paper investigates the role of El Niño-Southern Oscillation (ENSO)-based climate variability in modulating multivariate drought risks in the drought-prone region of Western Rajasthan in India. Droughts are multivariate phenomenon, often characterized by severity, duration and peak. By using multivariate ENSO index, ...

  18. Impacts of climate change, variability and adaptation strategies on ...

    African Journals Online (AJOL)

    hope&shola

    The overall objective of this study was to understand local communities' perceptions on climate and variability issues and establish its ... The changes have affected crops and livestock in a number of ways resulting in reduced ...... Mbuga soil is darkish in color, sticky, fertile and holds moisture for a long time whereas sandy ...

  19. Long-term trends in geomagnetic and climatic variability

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2002-01-01

    Roč. 27, 6/7 (2002), s. 427-731 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3012806 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic forcing * climatic variability * global warming Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Understanding Farmers' Response to Climate Variability in Nigeria ...

    African Journals Online (AJOL)

    In this study, farmers 'response to climate variability was examined. Primary and secondary data were used. A multi-stage sampling procedure was adopted in the collection of the primary data using structured questionnaires. Four vegetation zones out of seven where farming is mainly carried out were selected for the study.

  1. Impacts of climate change, variability and adaptation strategies on ...

    African Journals Online (AJOL)

    Impacts of climate change, variability and adaptation strategies on agriculture in semi arid areas of Tanzania: The case of Manyoni District in Singida Region, Tanzania. ... The changes have affected crops and livestock in a number of ways resulting in reduced productivity. Empirical analysis of rainfall suggest decreasing ...

  2. Climate change and variability: Smallholder farming communities in ...

    African Journals Online (AJOL)

    Increasing awareness of risks associated with climate change and variability among smallholder farmers is critical in building their capacity to develop the necessary adaptive measures. Using farmer participatory research approaches and formal questionnaire surveys, interaction has been made with >800 farmers in two ...

  3. Climate Variability and Access to and Utilization of Water Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The cartography of the way the settlements are structured will reveal local determinants that aggravate the effects of climate variability on water availability. The team will also rely on participatory geographic information systems (GIS-P) to locate and analyze data on people's attitudes and their effects on water availability.

  4. Climate variability and vulnerability to poverty in Nicaragua

    NARCIS (Netherlands)

    C. Herrera (Carlos); R. Ruben (Ruerd); A.G. Dijkstra (Geske)

    2018-01-01

    textabstractThis study considers the effect of climate variability on vulnerability to poverty in Nicaragua. It discusses how such vulnerability could be measured and which heterogeneous effects can be expected. A multilevel empirical framework is applied, linking per capita consumption

  5. Climate variability and sustainable food production: Insights from ...

    African Journals Online (AJOL)

    between food crop production and climate variability, we used multiple regression and a matrix plot with Locally-Weighted ... Our trend analysis indicates that the production of rice and maize have been showing an increasing trend per hectare ..... of Botany and Zoology, Australian National University, Australia. Devereux, S.

  6. Short term climate trend and variability around Woliso, Oromia ...

    African Journals Online (AJOL)

    Based on the meteorological data of Woliso for the last decade (2004-2013), short-term climate variability was assessed. Computation were made to identify mean monthly, seasonal and annual temperature patterns and deviations, linear trends and R2 values, rainfall coefficient, rainfall intensity, water surplus and deficit, ...

  7. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5–4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2–3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  8. Iranian speleothems: Investigating Quaternary climate variability in semi-arid Western Asia

    Science.gov (United States)

    Carolin, Stacy; Morgan, Jacob; Peckover, Emily; Walker, Richard; Henderson, Gideon; Rowe, Peter; Andrews, Julian; Ersek, Vasile; Sloan, Alastair; Talebian, Morteza; Fattahi, Morteza; Nezamdoust, Javad

    2016-04-01

    Rapid population growth and limited water supply has highlighted the need for vigorous water resource management practices in the semi-arid regions of Western Asia. One significant unknown in this discussion is the future change in rainfall amount due to the consequential effects of today's greenhouse gas forcing on the regional climate system. Currently, there is little paleoclimate proxy data in Western Asia to extend climate records beyond the limits of the instrumental period, leaving scant evidence to investigate the system's response to various climate forcings on different timescales. Here we present a synthesis of speleothem climate records across northern Iran, from the wetter climate of the Alborz and Zagros mountain ranges to the dry northeast, in order to investigate the magnitude of past climate variability and the forcings responsible. The stalagmites collected from the west and north-central mountain ranges, areas with ~200-400mm mean annual precipitation mostly falling within the fall-winter-spring months, all demonstrate growth limited to the interglacial periods of the Quaternary. We present overlapping Holocene stable isotope records with a complementary trace element record to assist in interpreting the isotopic variability. One of the records is sampled at civilizations in areas of the near East. Imposed upon decadal-scale variability, the record reveals a 1,000-yr gradual trend toward enriched stable oxygen isotope values, interpreted as a trend toward drier conditions, which ends with an abrupt 300-yr cessation in growth beginning at 4.3 kyBP, coincident with the so-called 4.2 kyBP drought event. From the northeast Iranian plateau, we present a new stalagmite record that spans the penultimate deglaciation and Stages 5e-5a. This region presently receives limited rain annually (~100-300mm/yr, regularly falling between November and May), and the record presented is one of the first speleothem climate records to span a deglaciation in West Asia

  9. Winter severity and snowiness and their multiannual variability in the Karkonosze Mountains and Jizera Mountains

    Science.gov (United States)

    Urban, Grzegorz; Richterová, Dáša; Kliegrová, Stanislava; Zusková, Ilona; Pawliczek, Piotr

    2017-09-01

    This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wrocław (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type. Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount Śnieżka and Mount Szrenica).

  10. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  11. On Recent Interannual Variability of the Arctic Winter Mesosphere: Implications for Tracer Descent

    National Research Council Canada - National Science Library

    Siskind, David E; Eckermann, Stephen D; Coy, Lawrence; McCormack, John P; Randall, Cora E

    2007-01-01

    ...) experiment on the NASA/Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite show an unusual vertical displacement of the winter Arctic stratopause in 2006 with zonal mean temperatures at 0.01 hPa (̃78 km) exceeding 250 K...

  12. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  13. Revealing Relationships among Relevant Climate Variables with Information Theory

    Science.gov (United States)

    Knuth, Kevin H.; Golera, Anthony; Curry, Charles T.; Huyser, Karen A.; Kevin R. Wheeler; Rossow, William B.

    2005-01-01

    The primary objective of the NASA Earth-Sun Exploration Technology Office is to understand the observed Earth climate variability, thus enabling the determination and prediction of the climate's response to both natural and human-induced forcing. We are currently developing a suite of computational tools that will allow researchers to calculate, from data, a variety of information-theoretic quantities such as mutual information, which can be used to identify relationships among climate variables, and transfer entropy, which indicates the possibility of causal interactions. Our tools estimate these quantities along with their associated error bars, the latter of which is critical for describing the degree of uncertainty in the estimates. This work is based upon optimal binning techniques that we have developed for piecewise-constant, histogram-style models of the underlying density functions. Two useful side benefits have already been discovered. The first allows a researcher to determine whether there exist sufficient data to estimate the underlying probability density. The second permits one to determine an acceptable degree of round-off when compressing data for efficient transfer and storage. We also demonstrate how mutual information and transfer entropy can be applied so as to allow researchers not only to identify relations among climate variables, but also to characterize and quantify their possible causal interactions.

  14. Inter-annual climate variability and zooplankton: applying teleconnection indices to two deep subalpine lakes in Italy

    Directory of Open Access Journals (Sweden)

    Marina Manca

    2014-08-01

    Full Text Available Investigating relation between meteo-climatic indices and between-year variation in Daphnia population density and phenology is crucial for e.g. predicting impact of climate change on lake ecosystem structure and functioning. We tested whether and how two teleconnection indices calculated for the winter period, namely the East Atlantic pattern (EADJF and the Eastern Mediterranean Pattern (EMPDJF were correlated with Daphnia population growth in two Italian subalpine lakes, Garda and Maggiore. We investigated between-lake temporal coherence in: i water temperature within the water layer in which Daphnia is distributed; ii timing of Daphnia initial and spring maximum population density peak and iii the level of Daphnia spring maximum population density peak over an eleven-year period (1998-2008 of unchanged predation pressure by fish and invertebrates, and of common oligotrophy. Between-lake temporal coherence was high for an earlier start, an earlier, and lower, Daphnia population spring density peak after milder winters. Peak density level was coherently, positively correlated with soluble reactive phosphorus (SRP concentration. We hypothesized that Daphnia peak densities were related to atmospheric modes of variability in winter and to the degree of late winter mixing promoting replenishment of algal nutrients into upper water layers and phytoplankton growth, enhancing food availability and Daphnia fecundity, promoting Daphnia peak. 

  15. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  16. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  17. Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies

    Science.gov (United States)

    Stager, J. C.; Mayewski, P. A.; White, J.; Chase, B. M.; Neumann, F. H.; Meadows, M. E.; King, C. D.; Dixon, D. A.

    2012-05-01

    The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward retreat of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been limited to South America and New Zealand, are not fully consistent with each other and may be complicated by influences from other climatic factors. Here we present the first high-resolution diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation in the equatorward margin of the westerly wind belt during the last 1400 yr. Inferred rainfall was relatively high ∼1400-1200 cal yr BP, decreased until ∼950 cal yr BP, and rose notably through the Little Ice Age with pulses centred on ∼600, 530, 470, 330, 200, 90, and 20 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations were linked to changes in the westerlies. Equatorward drift of the westerlies during the wet periods may have influenced Atlantic meridional overturning circulation by restricting marine flow around the tip of Africa. Apparent inconsistencies among some aspects of records from South America, New Zealand and South Africa warn against the simplistic application of single records to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in the austral winter rainfall zones with future warming.

  18. Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies

    Directory of Open Access Journals (Sweden)

    J. C. Stager

    2012-05-01

    Full Text Available The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward retreat of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been limited to South America and New Zealand, are not fully consistent with each other and may be complicated by influences from other climatic factors. Here we present the first high-resolution diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation in the equatorward margin of the westerly wind belt during the last 1400 yr. Inferred rainfall was relatively high ∼1400–1200 cal yr BP, decreased until ∼950 cal yr BP, and rose notably through the Little Ice Age with pulses centred on ∼600, 530, 470, 330, 200, 90, and 20 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations were linked to changes in the westerlies. Equatorward drift of the westerlies during the wet periods may have influenced Atlantic meridional overturning circulation by restricting marine flow around the tip of Africa. Apparent inconsistencies among some aspects of records from South America, New Zealand and South Africa warn against the simplistic application of single records to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in the austral winter rainfall zones with future warming.

  19. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  20. Climate Change Impact Assessment in Pacific North West Using Copula based Coupling of Temperature and Precipitation variables

    Science.gov (United States)

    Qin, Y.; Rana, A.; Moradkhani, H.

    2014-12-01

    The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated

  1. The influence of climate variables on dengue in Singapore.

    Science.gov (United States)

    Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo

    2011-12-01

    In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.

  2. Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates

    Science.gov (United States)

    Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.

    2017-12-01

    Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.

  3. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  4. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay.

    Science.gov (United States)

    Harding, Lawrence W; Mallonee, Michael E; Perry, Elgin S; Miller, W David; Adolf, Jason E; Gallegos, Charles L; Paerl, Hans W

    2016-03-30

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km(2) watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  5. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Sawaid Abbas

    2015-08-01

    Full Text Available Grasslands in the upper Indus basin provide a resource base for nomadic livestock grazing which is one of the major traditional livelihood practices in the area. The study presents climate patterns, grassland phenology, productivity and spatio-temporal climate controls on grassland growth using satellite data over the upper Indus basin of the Himalayan region, Pakistan. Phenology and productivity metrics of the grasses were estimated using a combination of derivative and threshold methods applied on fitted seasonal vegetation indices data over the period of 2001–2011. Satellite based rainfall and land surface temperature data are considered as representative explanatory variables to climate variability. The results showed distinct phenology and productivity patterns across four bioclimatic regions: (i humid subtropical region (HSR—late start and early end of season with short length of season and low productivity (ii temperate region (TR—early start and late end of season with higher length of season and moderate productivity (iii sub alpine region (SAR—late start and late end of season with very high length of season and the most productive grasses, and (iv alpine region (AR—late start and early end of season with small length of season and least productive grasses. Grassland productivity is constrained by temperature in the alpine region and by rainfall in the humid sub-tropical region. Spring temperature, winter and summer rainfall has shown significant and varied impact on phenology across different altitudes. The productivity is being influenced by summer and annual rainfall in humid subtropical regions, spring temperature in alpine and sub-alpine regions and both temperature and rainfall are contributing in temperate regions. The results revealing a strong relationship between grassland dynamics and climate variability put forth strong signals for drawing more scientific management of rangelands in the area.

  6. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation

    International Nuclear Information System (INIS)

    Munoz, J.R.; Sailor, D.J.

    1998-01-01

    A new methodology relating basic climatic variables to hydroelectric generation was developed. The methodology can be implemented in large or small basins with any number of hydro plants. The method was applied to the Sacramento, Eel and Russian river basins in northern California where more than 100 hydroelectric plants are located. The final model predicts the availability of hydroelectric generation for the entire basin provided present and near past climate conditions, with about 90% accuracy. The results can be used for water management purposes or for analyzing the effect of climate variability on hydrogeneration availability in the basin. A wide range of results can be obtained depending on the climate change scenario used. (Author)

  7. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  8. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  9. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  10. Variability of precipitation in Poland under climate change

    Science.gov (United States)

    Szwed, Małgorzata

    2018-02-01

    The surface warming has been widespread over the entire globe. Central Europe, including Poland, is not an exception. Global temperature increases are accompanied by changes in other climatic variables. Climate change in Poland manifests itself also as change in annual sums of precipitation. They have been slightly growing but, what is more important, seasonal and monthly distributions of precipitation have been also changing. The most visible increases have been observed during colder half-year, especially in March. A decreasing contribution of summer precipitation total (June-August) to the annual total is observed. Climate projections for Poland predict further warming and continuation of already observed changes in the quantity of precipitation as well as its spatial and seasonal distribution.

  11. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  12. Climate change or variable weather: Rethinking Danish homeowners' perceptions of floods and climate

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical......Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  13. Quantitative assessment of drivers of recent climate variability

    DEFF Research Database (Denmark)

    Bhaskar, Ankush; Ramesh, Durbha Sai; Vichare, Geeta

    2016-01-01

    Identification and quantification of possible drivers of recent climate variability remain a challenging task. This important issue is addressed adopting a non-parametric information theory technique, the Transfer Entropy and its normalized variant. It distinctly quantifies actual information...... exchanged along with the directional flow of information between any two variables with no bearing on their common history or inputs, unlike correlation, mutual information etc. Measurements of greenhouse gases, CO2, CH4, and N2O; volcanic aerosols; solar activity: UV radiation, total solar irradiance (TSI...... ) and cosmic ray flux (CR); El Nino Southern Oscillation (ENSO) and Global Mean Temperature Anomaly (GMTA) made during 1984-2005 are utilized to distinguish driving and responding climate signals. Estimates of their relative contributions reveal that CO 2 (~24%), CH 4 (~19%) and volcanic aerosols (~23...

  14. Recent Climate Variability in Antarctica from Satellite-derived Temperature Data

    Science.gov (United States)

    Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.

    2004-01-01

    Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

  15. Climate variability impacts on rice crop production in pakistan

    International Nuclear Information System (INIS)

    Shakoor, U.; Saboor, A.; Baig, I.

    2015-01-01

    The climate variability has affected the agriculture production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate changes are believed to have declining effects towards crop production in Pakistan. This study carries an empirical investigation of the effects of climate change on rice crop of Pakistan by employing Vector Auto Regression (VAR) model. Annual seasonal data of the climatic variables from 1980 to 2013 has been used. Results confirmed that rising mean maximum temperature would lead to reduction in rice production while increase in mean minimum temperature would be advantageous towards rice production. Variation in mean minimum temperature brought about seven percent increase in rice productivity as shown by Variance Decomposition. Mean precipitation and mean temperature would increase rice production but simulations scenarios for 2030 confirmed that much increase in rainfall and mean temperature in long run will negatively affect rice production in future. It is therefore important to follow adequate policy action to safeguard crop productions from disastrous effects. Development of varieties resistant to high temperatures as well as droughts will definitely enhance resilience of rice crop in Pakistan. (author)

  16. Variability of Climate In Serbia In The Second Half of The 20thc Entury

    Science.gov (United States)

    Radovanovic, M.; Ducic, V.

    According to data of IPCC, the global surface temperature increased to 0.6 °C in the 20th century. It is claimed that the most studies registered significant changes of climate and that those changes also show that there is a small probability that the registered trend of worming is caused in general by natural factors . Weber quotes that the increase of global temperature in the last 140 years is 0.3 °C, and that there is a trend of cold in the last 60 years in the middle latitudes including Europe, too. Starting from already mentioned perplexities we have tried to perceive the problem of climate variability in Serbia in the second half of the 20th century, when it came to very important increasing of concentration of CO2. With that aim we observed the decade values of average annual temperatures in the system of 20 climatic stations. Until 1990 a decrease of temperature was registered in 13 stations while in other stations an increase that was less than 0.1 °C was registered from 1951. Explorers from Bulgaria and Hungary came to similar results, too. However, if we take in account the last decade the picture is changed and the number of stations with positive changes is enlarged on 15. Stations that have small changes and those with decrease of temperature were localized in the south and south - eastern part of the country and they are mainly coincided with before separated climatic regions. That regional differentiation referred us to search for circulation reasons of temperature change. Using Dzerdzevski division on three main types of circulation in the south hemisphere, we found that the incr ease of temperatures in the last decade is above all caused by change of dominant type of circulation from the meridian south to zonal. An analysis of seasonal changes showed that in the last five decades it came to decrease of winter temperatures in almost half of the stations. On the basis of analogy with warm periods of Holocene that Budiko and Zubakov give it is

  17. Tropical cloud feedbacks and natural variability of climate

    Science.gov (United States)

    Miller, R. L.; Del Genio, A. D.

    1994-01-01

    Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.

  18. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  19. Climate variability, agricultural livelihoods and food security in Semiarid Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia S. Mesquita

    2016-12-01

    Full Text Available Climate change and variability are among the main threats to socio-ecological sustainability in many semi-arid regions of the world and are of special concern to resource-poor family farmers. In the Brazilian semi-arid region, high levels of social vulnerability in addition to predicted climate events can adversely affect subsistence crops and other cultivated areas with serious consequences for rural food security. An extreme drought that started in 2010 left 174 (of 184 municipalities in the northeastern state of Ceará, Brazil, in a situation of emergency in 2012. During the period of drought, we studied household production characteristics, sources of water for domestic consumption, perception of temperature change and the relationship of those variables with perceived food security. Food security was associated to the presence of piped water and to the diversity of livestock owned by the household. In addition to the importance of observing the role of those variables in public policies related to food security and regional development in the semi-arid region of Brazil, we also highlight the need of understanding the local context where those policies are implemented and the types of local adaptations being performed during periods of shock, which will be recurrent in a scenario of climate change.

  20. Effect of Climate Variability on Crop Income in Central Ethiopia

    Directory of Open Access Journals (Sweden)

    Arega Shumetie Ademe

    2017-12-01

    Full Text Available Ethiopian agriculture is a vulnerable sector from effects of climate variability. This study identified how strong is the effect of climate variability on smallholders’ crop income in Central highlands and Arssi grain plough farming systems of the country. The unbalanced panel data (1994-2014 of the study collected for eight rounds analysed through fixed effect regression. The model result shows that successive increment of crop season rainfall keeping the temperature constant has negative and significant effect on households’ crop income in the study area. The crop income responds similarly for temperature increment if the rainfall remains constant. Given this, simultaneous increment of the two climate related inputs has positive and significant effect on crop income. Other variables like flood, frost, storm, and rainfall inconsistency in the onset and cessation time affected households’ crop income negatively and significantly. Similarly, draught power and human labour, which are critical inputs in the crop production of Ethiopian smallholders, have positive and significant effect on crop income as to the model result. Thus, this study recommended that there should be supplementing the rainfall through irrigation, check dam and other activities to have consistent water supply for the crop production that enable smallholders to collect better income. Additionally, negative effect of temperature increment should be curved through adopting long lasting strategies like afforestation.

  1. Climate variability of the tropical Andes since the late Pleistocene

    Directory of Open Access Journals (Sweden)

    A. Bräuning

    2009-10-01

    Full Text Available Available proxy records witnessing palaeoclimate of the tropical Andes are comparably scarce. Major implications of palaeoclimate development in the humid and arid parts of the Andes are briefly summarized. The long-term behaviour of ENSO has general significance for the climatic history of the Andes due to its impact on regional circulation patterns and precipitation regimes, therefore ENSO history derived from non-Andean palaeo-records is highlighted. Methodological constraints of the chronological precision and the palaeoclimatic interpretation of records derived from different natural archives, such as glacier sediments and ice cores, lake sediments and palaeo-wetlands, pollen profiles and tree rings are addressed and complementary results concerning former climatic conditions are discussed in terms of possible implications of former atmospheric circulation patterns and main climatic forcing factors. During the last years, increasing tree-ring information is getting available from the tropical Andes, providing high-resolution climate-sensitive records covering the past centuries for the study of climate variability.

  2. Climate variability of the tropical Andes since the late Pleistocene

    Science.gov (United States)

    Bräuning, A.

    2009-10-01

    Available proxy records witnessing palaeoclimate of the tropical Andes are comparably scarce. Major implications of palaeoclimate development in the humid and arid parts of the Andes are briefly summarized. The long-term behaviour of ENSO has general significance for the climatic history of the Andes due to its impact on regional circulation patterns and precipitation regimes, therefore ENSO history derived from non-Andean palaeo-records is highlighted. Methodological constraints of the chronological precision and the palaeoclimatic interpretation of records derived from different natural archives, such as glacier sediments and ice cores, lake sediments and palaeo-wetlands, pollen profiles and tree rings are addressed and complementary results concerning former climatic conditions are discussed in terms of possible implications of former atmospheric circulation patterns and main climatic forcing factors. During the last years, increasing tree-ring information is getting available from the tropical Andes, providing high-resolution climate-sensitive records covering the past centuries for the study of climate variability.

  3. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1995-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  4. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  5. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  6. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    Science.gov (United States)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2018-04-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  7. Smallholder agriculture in India and adaptation to current and future climate variability and climate change

    Science.gov (United States)

    Murari, K. K.; Jayaraman, T.

    2014-12-01

    Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact

  8. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2015-03-07

    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Methods for assessment of climate variability and climate changes in different time-space scales

    International Nuclear Information System (INIS)

    Lobanov, V.; Lobanova, H.

    2004-01-01

    Main problem of hydrology and design support for water projects connects with modern climate change and its impact on hydrological characteristics as observed as well as designed. There are three main stages of this problem: - how to extract a climate variability and climate change from complex hydrological records; - how to assess the contribution of climate change and its significance for the point and area; - how to use the detected climate change for computation of design hydrological characteristics. Design hydrological characteristic is the main generalized information, which is used for water management and design support. First step of a research is a choice of hydrological characteristic, which can be as a traditional one (annual runoff for assessment of water resources, maxima, minima runoff, etc) as well as a new one, which characterizes an intra-annual function or intra-annual runoff distribution. For this aim a linear model has been developed which has two coefficients connected with an amplitude and level (initial conditions) of seasonal function and one parameter, which characterizes an intensity of synoptic and macro-synoptic fluctuations inside a year. Effective statistical methods have been developed for a separation of climate variability and climate change and extraction of homogeneous components of three time scales from observed long-term time series: intra annual, decadal and centural. The first two are connected with climate variability and the last (centural) with climate change. Efficiency of new methods of decomposition and smoothing has been estimated by stochastic modeling and well as on the synthetic examples. For an assessment of contribution and statistical significance of modern climate change components statistical criteria and methods have been used. Next step has been connected with a generalization of the results of detected climate changes over the area and spatial modeling. For determination of homogeneous region with the same

  10. California Getting Wetter to the North, Drier to the South: Natural Variability or Climate Change?

    Directory of Open Access Journals (Sweden)

    Dan Killam

    2014-08-01

    Full Text Available Current climate change projections anticipate that global warming trends will lead to changes in the distribution and intensity of precipitation at a global level. However, few studies have corroborated these model-based results using historical precipitation records at a regional level, especially in our study region, California. In our analyses of 14 long-term precipitation records representing multiple climates throughout the state, we find northern and central regions increasing in precipitation while southern regions are drying. Winter precipitation is increasing in all regions, while other seasons show mixed results. Rain intensity has not changed since the 1920s. While Sacramento shows over 3 more days of rain per year, Los Angeles has almost 4 less days per year in the last century. Both the El Niño-Southern Oscillation (ENSO and the Pacific Decadal Oscillation (PDO greatly influence the California precipitation record. The climate change signal in the precipitation records remains unclear as annual variability overwhelms the precipitation trends.

  11. Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan

    Science.gov (United States)

    Anjum, Muhammad Naveed; Ding, Yongjian; Shangguan, Donghui; Liu, Junguo; Ahmad, Ijaz; Ijaz, Muhammad Wajid; Khan, Muhammad Imran

    2018-02-01

    The northern part of Hindukush Mountains has a perplexing environment due to the influence of adjacent mountains of Himalaya, Karakoram, and Tibetan Plateau. Although reliable evidences of climate change are available; however, a clear knowledge of snow cover dynamics in the context of climate change is missing for this region. In this study, we used various remotely sensed (TRMM precipitation product, while MODIS temperature and snow cover products) and gauge-based datasets to quantify the spatiotemporal variability of climatic variables and their turn effects over the snow cover area (SCA) and river discharge in the Swat watershed, northern Hindukush Mountains, Pakistan. The Mann-Kendall method and Sen's slope estimator were used to estimate the trends in SCA and hydro-climatic variables, at 5% significant level (P = 0.05). Results show that the winter and springs temperatures have increased (at the rate of 0.079 and 0.059 °C year-1, respectively), while decreasing in the summer and autumn (at the rate of 0.049 and 0.070 °C year-1, respectively). Basin-wide increasing tendency of precipitation was identified with a highest increasing rate of 3.563 mm year-1 in the spring season. A decreasing trend in the winter SCA (at the rate of -0.275% year-1) and increasing trends in other seasons were identified. An increasing tendency of river discharge on annual and seasonal scales was also witnessed. The seasonal variations in discharge showed significant positive and negative relationships with temperature and SCA, respectively. We conclude that the future variations in the temperature and SCA in the higher altitudes of the Swat watershed could substantially affect the seasonality of the river discharge. Moreover, it implies that the effect of ongoing global warming on the SCA in the snowmelt-dominated river basins needs to be considered for sustainable regional planning and management of water resources, hydropower production, and downstream irrigation scheduling.

  12. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    Science.gov (United States)

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Influence of Climate Variability on US Regional Homicide Rates

    Science.gov (United States)

    Harp, R. D.; Karnauskas, K. B.

    2017-12-01

    Recent studies have found consistent evidence of a relationship between temperature and criminal behavior. However, despite agreement in the overall relationship, little progress has been made in distinguishing between two proposed explanatory theories. The General Affective Aggression Model (GAAM) suggests that high temperatures create periods of higher heat stress that enhance individual aggressiveness, whereas the Routine Activities Theory (RAT) theorizes that individuals are more likely to be outdoors interacting with others during periods of pleasant weather with a resulting increase in both interpersonal interactions and victim availability. Further, few studies have considered this relationship within the context of climate change in a quantitative manner. In an effort to distinguish between the two theories, and to examine the statistical relationships on a broader spatial scale than previously, we combined data from the Supplementary Homicide Report (SHR—compiled by the Federal Bureau of Investigation) and the North American Regional Reanalysis (NARR—compiled by the National Centers for Environmental Protection, a branch of the National Oceanic and Atmospheric Administration). US homicide data described by the SHR was compared with seven relevant observed climate variables (temperature, dew point, relative humidity, accumulated precipitation, accumulated snowfall, snow cover, and snow depth) provided by the NARR atmospheric reanalysis. Relationships between homicide rates and climate variables, as well as reveal regional spatial patterns will be presented and discussed, along with the implications due to future climate change. This research lays the groundwork for the refinement of estimates of an oft-overlooked climate change impact, which has previously been estimated to cause an additional 22,000 murders between 2010 and 2099, including providing important constraints for empirical models of future violent crime incidences in the face of global

  14. Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change

    Science.gov (United States)

    Le, Phong V. V.; Kumar, Praveen

    2017-10-01

    Vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behavior in ecologic and hydrologic functions. We hypothesize that microtopographic variability, which are landscape features typically of the length scale of the order of meters, such as topographic depressions, will play an important role in determining this dynamics by altering the persistence and variability of moisture. To investigate these emergent ecohydrologic dynamics, we develop a modeling framework, Dhara, which explicitly incorporates the control of microtopographic variability on vegetation, moisture, and energy dynamics. The intensive computational demand from such a modeling framework that allows coupling of multilayer modeling of the soil-vegetation continuum with 3-D surface-subsurface flow processes is addressed using hybrid CPU-GPU parallel computing framework. The study is performed for different climate change scenarios for an intensively managed agricultural landscape in central Illinois, USA, which is dominated by row-crop agriculture, primarily soybean (Glycine max) and maize (Zea mays). We show that rising CO2 concentration will decrease evapotranspiration, thus increasing soil moisture and surface water ponding in topographic depressions. However, increased atmospheric demand from higher air temperature overcomes this conservative behavior resulting in a net increase of evapotranspiration, leading to reduction in both soil moisture storage and persistence of ponding. These results shed light on the linkage between vegetation acclimation under climate change and microtopography variability controls on ecohydrologic processes.

  15. Internal variability in a regional climate model over West Africa

    Energy Technology Data Exchange (ETDEWEB)

    Vanvyve, Emilie; Ypersele, Jean-Pascal van [Universite catholique de Louvain, Institut d' astronomie et de geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Hall, Nicholas [Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales/Centre National d' Etudes Spatiales, Toulouse Cedex 9 (France); Messager, Christophe [University of Leeds, Institute for Atmospheric Science, Environment, School of Earth and Environment, Leeds (United Kingdom); Leroux, Stephanie [Universite Joseph Fourier, Laboratoire d' etude des Transferts en Hydrologie et Environnement, BP53, Grenoble Cedex 9 (France)

    2008-02-15

    Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales. (orig.)

  16. Impacts of Austrian Climate Variability on Honey Bee Mortality

    Science.gov (United States)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  17. CORRELATIONS BETWEEN CLIMATIC CONDITIONS AND THE DEVELOPMENT OF WINTER TOURISM IN THE ORIENTAL CARPATHIANS. CASE STUDY: HARGHITA MOUNTAINS

    Directory of Open Access Journals (Sweden)

    M. MARIN

    2012-03-01

    Full Text Available The suitability of weather conditions for winter tourism development in the Eastern Carpathians. Case Study: Harghita Mountains. In the context of the ongoing global and regional climate change debates, the present study intends to analyze the impact these changes have on winter tourism development in the Harghita Mountains. With a maximum altitude of 2545 m, a complex structure of the underlying surface responsible fo r local climatic particularities, as well as for a wide range of complex and elementary topoclimates, the Romanian alpine zone has a moderate potential for the development of winter sports. Our objectives consist of making correlations between annual average temperatures and the average thickness of snow, between the years 1961 and 2000, in three resorts (Bãile Tuşnad, Bãile Harghita and Homorod. In certain cases, the ski slopes’ locations were not correlated with site-specific topoclimate conditions - in such a situation, equally affected are both the users and the owners of the establishment and last but not least, the natural ecosystems they overlap. The study aims to draw attention to development opportunities for winter tourism in the Harghita Mountains area, located west of the Eastern Carpathians. At present, the Harghita Mountains are mainly exploited locally, despite having important winter sports-related assets. From November to April, in Bãile Harghita, Bãile Tuşnad and Bãile Homorod, located in the south-east and south-west of this mountainous area, there is a consistent snow cover on numerous slopes of various inclinations and orientations. The methods that were used in this study aim to determine the average dates of occurrence of the first and last layers of snow and therefore the average annual snow cover interval in the study area. The results show that there is untapped natural potential related to the average and maximum levels of snow thickness and to the number of days with snow-covered ground

  18. Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability

    Science.gov (United States)

    Cohn, A.; Bragança, A.; Jeffries, G. R.

    2017-12-01

    An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.

  19. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    Science.gov (United States)

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  20. Vulnerability and adaptation to climate variability and change in smallholder farming systems in Zimbabwe

    NARCIS (Netherlands)

    Rurinda, J.

    2014-01-01

    Keywords: Climate change; Increased climate variability; Vulnerability; Smallholder farmers; Adaptation

    Climate change and increased climate variability are currently seen as the major constraints to the already stressed smallholder farming livelihood system in

  1. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  2. Saharan dust, climate variability, and asthma in Grenada, the Caribbean.

    Science.gov (United States)

    Akpinar-Elci, Muge; Martin, Francis E; Behr, Joshua G; Diaz, Rafael

    2015-11-01

    Saharan dust is transported across the Atlantic and interacts with the Caribbean seasonal climatic conditions, becoming respirable and contributing to asthma presentments at the emergency department. This study investigated the relationships among dust, climatic variables, and asthma-related visits to the emergency room in Grenada. All asthma visits to the emergency room (n = 4411) over 5 years (2001-2005) were compared to the dust cover and climatic variables for the corresponding period. Variation in asthma was associated with change in dust concentration (R(2) = 0.036, p asthma was positively correlated with rainfall (R(2) = 0.055, p asthma visits were inversely related to mean sea level pressure (R(2) = 0.123, p = 0.006) and positively correlated with relative humidity (R(2) = 0.593, p = 0.85). Saharan dust in conjunction with seasonal humidity allows for inhalable particulate matter that exacerbates asthma among residents in the Caribbean island of Grenada. These findings contribute evidence suggesting a broader public health impact from Saharan dust. Thus, this research may inform strategic planning of resource allocation among the Caribbean public health agencies.

  3. Assessing the role of Climate Variability in the recent evolution of coastlines in southern Italy

    Science.gov (United States)

    Di Paola, Gianluigi; Atkinson, David; Rosskopf, Carmen M.; Walker, Ian

    2016-04-01

    During the last century, Climatic Variability (CV) and change effects have generated a discernable impact on the world's coasts, most notably through changes in the frequency and/or magnitude of storm surges, flooding, coastal erosion and sea-level rise. This study explores CV signals and coastal responses along a 36 km stretch of coast in the Molise region of southern Italy on the Central Adriatic Sea. Two dominant signals of CV in the Mediterranean region of Europe are characterized by the North Atlantic Oscillation (NAO) and the East Atlantic-West Russia (EAWR) patterns. The NAO is the leading mode of CV in the North Atlantic region and periods with positive NAO index values are typically associated with above average wind speeds across the mid-latitudes of the Atlantic and western Europe, with anomalously northerly flows across the Mediterranean region and enhanced trade winds over the sub-tropical North Atlantic. Although NAO is one of the most prominent patterns in all seasons, its relative role in regulating the variability of the European climate during non-winter months is not as clear as for the winter season. In contrast, the EAWR exerts strong influence on precipitation in the Mediterranean region such that, during the negative phase of EAWR, wetter conditions prevail across central Europe and the Mediterranean region, with precipitation extremes often occurring during these periods. This study examines the effects of NAO and EAWR on coastline response in the Molise region, which has a microtidal regime (ordinary tidal excursions of 30-40 cm). GIS analysis of shoreline changes from historical aerial photography from 1954-2011 was performed and 20 years (1989-2008) of wave data were analysed from the nearby Ortona buoy to define trends and extreme event occurrence in the wave climate in the study area. Finally, statistical associations between NAO, EAWR, and other CV indices of possible influence (e.g. Arctic Oscillation, Scandinavia Pattern, or the East

  4. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    Science.gov (United States)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  5. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    This presentation discussed a large-scale watershed and reservoir sedimentation model developed to predict potential sedimentation scenarios for a large hydroelectric power project located in the central Appalachians. The geographic information system (GIS) watershed model was calibrated using observed long-term meteorological and hydrological data. Potential development scenarios were then used to construct future watershed land cover scenarios. Future climate change regimes and precipitation and temperature pattern shifts were identified using climatic variability and potential change analyses. Results of the study were then forecast for a period of 50 years and used to develop sediment yield regimes for the project's reservoir. The model was validated using reservoir and fields studies for watershed, river, and reservoir hydrodynamics. The resulting 3-D hydrological sedimentation model was then used to forecast changes in river sedimentation and storage capacity under various future climate scenarios. Results of the study showed the development of unique zones of advancing sediment deltas and temporary storage areas. Warmer and wetter scenarios produced sedimentation impacts similar to scenarios without climatic change. It was concluded that results of the analyses will be used to help reduce future soil losses in the reservoir. tabs., figs

  6. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  7. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century

    OpenAIRE

    Mi, Chunrong; Falk, Huettmann; Guo, Yumin

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suit...

  8. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb climate.

    Directory of Open Access Journals (Sweden)

    Shari L Forbes

    Full Text Available The investigation of volatile organic compounds (VOCs associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L. were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS. The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were

  9. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Thaler, S.; Eitzinger, Josef; Trnka, Miroslav; Dubrovský, Martin

    2012-01-01

    Roč. 150, č. 5 (2012), s. 537-555 ISSN 0021-8596 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : climate change * weather generator * winter wheat * adaptation options * Central Europe Subject RIV: EH - Ecology, Behaviour; DG - Athmosphere Sciences, Meteorology (UFA-U) Impact factor: 2.878, year: 2012 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8678290

  10. The influence of internal climate variability on heatwave frequency trends

    Science.gov (United States)

    E Perkins-Kirkpatrick, S.; Fischer, E. M.; Angélil, O.; Gibson, P. B.

    2017-04-01

    Understanding what drives changes in heatwaves is imperative for all systems impacted by extreme heat. We examine short- (13 yr) and long-term (56 yr) heatwave frequency trends in a 21-member ensemble of a global climate model (Community Earth System Model; CESM), where each member is driven by identical anthropogenic forcings. To estimate changes dominantly due to internal climate variability, trends were calculated in the corresponding pre-industrial control run. We find that short-term trends in heatwave frequency are not robust indicators of long-term change. Additionally, we find that a lack of a long-term trend is possible, although improbable, under historical anthropogenic forcing over many regions. All long-term trends become unprecedented against internal variability when commencing in 2015 or later, and corresponding short-term trends by 2030, while the length of trend required to represent regional long-term changes is dependent on a given realization. Lastly, within ten years of a short-term decline, 95% of regional heatwave frequency trends have reverted to increases. This suggests that observed short-term changes of decreasing heatwave frequency could recover to increasing trends within the next decade. The results of this study are specific to CESM and the ‘business as usual’ scenario, and may differ under other representations of internal variability, or be less striking when a scenario with lower anthropogenic forcing is employed.

  11. Climate change enhances interannual variability of the Nile river flow

    Science.gov (United States)

    Siam, Mohamed S.; Eltahir, Elfatih A. B.

    2017-04-01

    The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.

  12. Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty

    Directory of Open Access Journals (Sweden)

    N. R. Kaye

    2012-02-01

    Full Text Available Maps are a crucial asset in communicating climate science to a diverse audience, and there is a wealth of software available to analyse and visualise climate information. However, this availability makes it easy to create poor maps as users often lack an underlying cartographic knowledge. Unlike traditional cartography, where many known standards allow maps to be interpreted easily, there is no standard mapping approach used to represent uncertainty (in climate or other information. Consequently, a wide range of techniques have been applied for this purpose, and users may spend unnecessary time trying to understand the mapping approach rather than interpreting the information presented. Furthermore, communicating and visualising uncertainties in climate data and climate change projections, using for example ensemble based approaches, presents additional challenges for mapping that require careful consideration. The aim of this paper is to provide background information and guidance on suitable techniques for mapping climate variables, including uncertainty. We assess a range of existing and novel techniques for mapping variables and uncertainties, comparing "intrinsic" approaches that use colour in much the same way as conventional thematic maps with "extrinsic" approaches that incorporate additional geometry such as points or features. Using cartographic knowledge and lessons learned from mapping in different disciplines we propose the following 6 general mapping guidelines to develop a suitable mapping technique that represents both magnitude and uncertainty in climate data:

    – use a sensible sequential or diverging colour scheme;

    – use appropriate colour symbolism if it is applicable;

    – ensure the map is usable by colour blind people;

    – use a data classification scheme that does not misrepresent the data

  13. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia

    Science.gov (United States)

    Cheng, Ying; Liu, Hongyan; Wang, Hongya; Piao, Shilong; Yin, Yi; Ciais, Philippe; Wu, Xiuchen; Luo, Yao; Zhang, Caina; Song, Yaqiong; Gao, Yishen; Qiu, Anan

    2017-08-01

    Alpine timberline is particularly sensitive to global climate change, with the danger of losing essential ecosystem services in high elevational regions. Its evolution is generally linked to annual average thermal regimes, and is regarded as an indicator of climate warming. However, the effect of uneven seasonal climate change stressed by the Hijioka et al. (2014) on alpine timberline dynamics in terms of both position migration and species composition remains unclear. Here, we documented approximately 6000 years of postglacial alpine timberline evolution on Mt. Tabai in the monsoon-dominated East Asian subtropical-temperate transition. We analyzed three high-resolution lacustrine sediment sequences located below, within, and above the current alpine timberline, an ecotone between the forest line and treeline, respectively. The timberline position appears to have varied coincidently with the temperature effect of cold East Asian Winter Monsoon (EAWM), implying that enhanced EAWM shortened the duration of the growing season and reduced forest survival at the alpine timberline. Unlike position migration, however, timberline species composition depends on summer precipitation. We found that drought-tolerant herb and shrub species were much more sensitive to variations in the water-bearing East Asian Summer Monsoon (EASM) than mesophytic trees at the alpine timberline. Our results suggest that prediction of future timberline dynamics should consider uneven seasonal climate changes.

  14. Orbital Forcing driving climate variability on Tropical South Atlantic

    Science.gov (United States)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events

  15. Mapping the climate: guidance on appropriate techniques to map climate variables and their uncertainty

    Science.gov (United States)

    Kaye, N. R.; Hartley, A.; Hemming, D.

    2011-08-01

    Maps are a crucial asset in communicating climate science to a diverse audience, and there is a wealth of software available to analyse and visualise climate information. However, this availability makes it easy to create poor maps as users often lack an underlying cartographic knowledge. Furthermore, communicating and visualising uncertainties in climate data and climate change projections, using for example ensemble based approaches, presents additional challenges for mapping that require careful consideration. This paper assesses a range of techniques for mapping uncertainties, comparing "intrinsic" approaches that use colour in much the same way as conventional thematic maps, and "extrinsic" approaches that incorporate additional geometry such as points or features. We proposes that, unlike traditional cartography, where many known standards allow maps to be interpreted easily, there is no standard mapping approach used to represent uncertainty (in climate or other information). Consequently, a wide range of techniques have been applied for this purpose, and users may spend unnecessary time trying to understand the mapping approach rather than interpreting the information presented. We use cartographic knowledge and lessons learned from mapping other information to propose a suitable mapping technique that represents both magnitude and uncertainty in climate data. This technique adjusts the hue of a small palette of colours to show the mean or median of a climate variable, and the saturation of the colour to illustrate a measure of uncertainty. It is designed to be easy to replicate, visible to colour blind people and intuitive to understand. This technique may be utilised to map a wide range of climate data, and it is proposed that it would provide a consistent approach suitable for mapping information for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5).

  16. Response of the Amazon rainforest to late Pleistocene climate variability

    Science.gov (United States)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  17. A Framework for Benefit-Cost Analysis of Adaptation to Climate Change and Climate Variability

    International Nuclear Information System (INIS)

    Leary, N.A.

    1999-01-01

    The potential damages of climate change and climate variability are dependent upon the responses or adaptations that people make to their changing environment. By adapting the management of resources, the mix and methods of producing goods and services, choices of leisure activities, and other behavior, people can lessen the damages that would otherwise result. A framework for assessing the benefits and costs of adaptation to both climate change and climate variability is described in the paper. The framework is also suitable for evaluating the economic welfare effects of climate change, allowing for autonomous adaptation by private agents. The paper also briefly addresses complications introduced by uncertainty regarding the benefits of adaptation and irreversibility of investments in adaptation. When investment costs are irreversible and there is uncertainty about benefits, the usual net present value criterion for evaluating the investment gives the wrong decision. If delaying an adaptation project is possible, and if delay will permit learning about future benefits of adaptation, it may be preferable to delay the project even if the expected net present value is positive. Implications of this result for adaptation policy are discussed in the paper. 11 refs

  18. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  19. Using climate response functions in analyzing electricity production variables. A case study from Norway.

    Science.gov (United States)

    Tøfte, Lena S.; Martino, Sara; Mo, Birger

    2016-04-01

    This study analyses whether and to which extent today's hydropower system and reservoirs in Mid-Norway are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. We also investigate if the electricity marked model EMPS gives us reasonable results also when run in a multi simulation mode without recalibration. Climate related energy (CRE) is influenced by the weather, the system for energy production and transport, and by market mechanisms. In the region of Mid-Norway, nearly all power demand is generated by hydro-electric facilities. Due to energy deficiency and limitations in the power grid the region experiences a deficit of electricity. The region is likely to experience considerable investments in wind power and small-scale hydropower and the transmission grid within and out of the region will probably be extended, so this situation might change. In addition climate change scenarios for the region agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain instead of snow, as well as we expect slightly higher wind speed and more storms during the winter. Changing temperatures will also change the electricity demand. EMPS is a tool for forecasting and planning in electricity markets, developed for optimization and simulation of hydrothermal power systems with a considerable share of hydro power. It takes into account transport constraints and hydrological differences between major areas or regional subsystems. During optimization the objective is to minimize the expected cost in the whole system subject to all constraints. Incremental water values (marginal costs for hydropower) are computed for each area using stochastic dynamic programming. A heuristic approach is used to treat the interaction between areas. In the simulation part of the model total system costs are minimized week by week for each climate scenario in a linear problem formulation. A detailed

  20. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario

    Science.gov (United States)

    Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.

    2015-10-01

    This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.

  1. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China

    Science.gov (United States)

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  2. Reply to Comment on ``Abandoned Mines, Mountain Sports, and Climate Variability: Implications for the Colorado Tourism Economy''

    Science.gov (United States)

    Todd, Andrew; McKnight, Diane; Wyatt, Lane

    2004-02-01

    Our article focused on the complex interactions among climate variability, hydrology, chemical weathering reactions, and stream ecology that influence water resource availability for recreation in watersheds of the Colorado Rocky Mountains. In responding to our article, our colleagues at Hydrosphere Resource Consultants provide additional detailed information about snow-making approaches at ski resorts. However, they make other assertions that warrant comment and clarification. We disagree with the statement that the ski industry may not be the appropriate tourism sector for illustrating the impacts of climate variations. The success of the ski industry hinges on a variety of climate-related variables (for example, temperature, precipitation quantity, precipitation as snow versus rain) that are expected to change in an uncertain climatic future. A new study launched by the United Nations Environment Programme provides a wide-ranging, international evaluation of the climate change and vulnerability of winter sports issue. Contrary to Hydrosphere Resource Consultants' assertion, we did not suggest that the droughts of 1977 and 2002 were similar or that they have had similar impacts on the Colorado ski industry. As they noted, the timing of the 2002 drought resulted in significant impacts to summer tourist activities, through decreased stream flows and increased fire danger. Rather, we utilized the 1977 event to illustrate that drought occurs frequently in Colorado and has affected the ski industry in the past.

  3. Climatic Effects on the Inter-Annual Variability of Carbon Fluxes for North America and Europe

    Science.gov (United States)

    Tomelleri, E.; Carvalhais, N.; Migliavacca, M.; Reichstein, M.; Fluxnet Lathuille Synthesis Team (Cf. Www. Fluxdata. Org)

    2010-12-01

    The connection between climate variability and global carbon cycle has already been shown to be linked with the North Atlantic Oscillation (NAO) (1). A positive phase of the NAO is associated with more and stronger winter storms crossing the North Atlantic on a more northerly route, causing major anomalies in sea surface temperature, currents and convective activity throughout the North Atlantic. A long-term trend towards very positive values has culminated in the early 1990s, and since then a decreasing trend is happening (1). Identification of the climatic drivers of the net ecosystem fluxes is becoming a rising issue. In particular the effects of year-to-year climate variability on regional budgets and the understanding of the underlying biogeochemical processes are of fundamental importance due to the intensification of extreme climatic events like precipitation (2) and drought events (3). We identified the relations between climatic variability (i.e. NAO) and the regional carbon budgets of North America and Europe over the period from 1989 to 2008. In doing this we kept special focus both on temporal and spatial scale. For this purpose we took advantage of the high-density of FLUXNET measurement sites in these areas. We applied a radiation use efficiency model for gross primary production (4) combined with a semi-empirical total ecosystem respiration model (5). As drivers for the model we used climatic and fraction of absorbed photosynthetically active radiation (FPAR) records. We utilized in-situ calibrated model parameters to estimate the regional ecosystem carbon fluxes. The model was spatially applied according to the similarity in the climatic-phenological space of each grid pixel with the measurement site to which it was calibrated (e.g., 6). We found that for Europe NAO could explain NEE variability in a reasonable way for northern and southern Europe, but for the mid-latitude region this was not the case. For North America the patterns were less clear

  4. Climatic variables in Takotsubo cardiomyopathy: role of temperature.

    Science.gov (United States)

    Novo, Giuseppina; Mariano, Enrica; Giambanco, Salvatore; Bonomo, Vito; Manno, Girolamo; Viele, Annalisa; Evola, Salvatore; Giambanco, Francesco; Assennato, Pasquale; Novo, Salvatore; Romeo, Francesco

    2017-03-01

    Recent studies documented a seasonal (summer) and circadian (morning) temporal distribution of takotsubo cardiomyopathy (TTC). The aim of our study was to investigate whether there is a relationship among season, temperature and the occurrence of TTC. A second aim of our study was the comparison of climatic variables in Takotsubo cardiomyopathy versus acute myocardial infarction (AMI). We enrolled consecutive patients with TTC in three Italian centres and, for comparison consecutive patients with AMI. The frequency of TTC and AMI patients according to month, season and quartiles of temperature (I quartile: 9.8-15°, II quartile: 15-19°, III quartile: 19-25° and IV quartile: 25-38°C) was reported. Climatic variables of TTC and AMI patients were compared. We included in the study 85 patients with TTC and 900 patients with AMI. It was not observed a significant peak in the occurrence of TTC during summer time; however, when compared with AMI, TTC was more frequent in summer. We found an absolute higher frequency of TTC cases with warmer temperatures. TTC cases occurred during warmer temperatures than AMI. Our study does not confirm a summer preference for TTC occurrence, as reported by previous studies, even if, compared with AMI, TTC is more frequent in summer. During warmest days, it was recorded the highest incidence of TTC.

  5. Explaining European fungal fruiting phenology with climate variability.

    Science.gov (United States)

    Andrew, Carrie; Heegaard, Einar; Høiland, Klaus; Senn-Irlet, Beatrice; Kuyper, Thomas W; Krisai-Greilhuber, Irmgard; Kirk, Paul M; Heilmann-Clausen, Jacob; Gange, Alan C; Egli, Simon; Bässler, Claus; Büntgen, Ulf; Boddy, Lynne; Kauserud, Håvard

    2018-04-14

    Here we assess the impact of geographically dependent (latitude, longitude and altitude) changes in bioclimatic (temperature, precipitation and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path-analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 days, primarily with latitude. Altitude affected fruiting by up to 30 days, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic, as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    Science.gov (United States)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool

  7. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    Science.gov (United States)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  8. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction.

    Science.gov (United States)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1%), summer (57.6%), and autumn (64.5%) showed difference compared to winter (73.0%; P infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.

  9. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction

    Science.gov (United States)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim

    2016-01-01

    The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1 %), summer (57.6 %), and autumn (64.5 %) showed difference compared to winter (73.0 %; P epididymal transit) (-0.85; P epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.

  10. Climate variability: Possible changes with climate change and impacts on crop yields

    International Nuclear Information System (INIS)

    Mearns, L.O.

    1991-01-01

    A pilot study was carried out of the sensitivity of the CERES wheat model, a deterministic crop-climate model, to changes in the interannual variability of temperature and precipitation. The study was designed to determine the effect of changed temperature variance on the mean and variance of the simulated yields, to compare the effect with the effect of mean temperature changes, and to determine the interacting effects of changes in mean and variance of temperature. The CERES model was applied to 29 cropping years (1952-1980), using three different soil types and two different management practices (fully irrigated and dryland). The coefficients of variation of the yields for irrigated and dryland conditions are plotted against variance change. It was found that in both management systems, the yield response is usually greater to increases rather than decreases in variance. The combined effect of mean and variance temperature changes are most striking under irrigated conditions, with a dramatic decrease in yield variability in the high mean climate change scenario with decreased temperature variance. This suggests that the variability decrease might mitigate the effect of a mean increase in temperature. This result is not found with the dryland case, where decreased temperature variability has little impact on yield variability. 12 refs., 4 figs

  11. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  12. Time variations of the effects of circulation variability modes on European temperature and precipitation in winter

    Czech Academy of Sciences Publication Activity Database

    Beranová, Romana; Huth, Radan

    2008-01-01

    Roč. 28, č. 2 (2008), s. 139-158 ISSN 0899-8418 R&D Projects: GA ČR GA205/05/2282; GA AV ČR IAA300420506 Institutional research plan: CEZ:AV0Z30420517 Keywords : temperature * precipitation * modes of variability * time variations * Euro-Atlantic sector Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.971, year: 2008

  13. Impact of sensor-controlled variable-rate fungicide application on yield, senescence and disease occurrence in winter wheat fields.

    Science.gov (United States)

    Tackenberg, Maria; Volkmar, Christa; Schirrmann, Michael; Giebel, Antje; Dammer, Karl-Heinz

    2017-12-28

    Field experiments examining target-oriented variable-rate fungicide spraying were performed in 2015 and 2016. The spray volume was adapted in real time to the local green coverage level of winter wheat (Triticum aestivum L.), which was detected using a camera sensor. Depending on the growth heterogeneity in the three strip trials in 2015, fungicide savings in the sensor-sprayed strip compared with the adjacent uniformly sprayed strip were 44%, 45% and 1%. In the 2016 field trial, the saving was 12%. There was no greater level of senescence or disease occurrence, and no higher yield losses in the camera-controlled variable-rate sprayed strips compared with the adjacent uniformly sprayed strips. From an ecological and economical point of view, sensor-controlled variable-rate spraying technology, which uses the level of green crop coverage as the plant parameter to adapt the spray volume locally, can be an alternative to the common practice of uniform spraying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Adaptation to climatic variability and change. Report of the task force on climate adaptation

    International Nuclear Information System (INIS)

    Smit, B.

    1994-01-01

    A critique and interpretation is presented of what is known and available about adaptation to climate changes, not based on any particular climate scenario. It is assumed that variability is a fact of climate and that changes in climatic conditions are possible and are constantly occurring. Emphasis is on adaptation with regard to economic and social activities in Canada. A series of linked objectives are addressed, relating to demonstration of the significance of adaptation, consideration of case studies of adaptation (past and potential future) in Canada, clarification of the meaning of adaptation and the forms it takes, assessment of policy implications, and identification of research priorities. The basic facts on global climate change are reviewed, including long-term temperature variations, and adaptation is discussed as a public policy response. Examples of adaptation in Canada are given in the areas of Great Lakes property, power generation, and transportation; Atlantic Canada communities and fisheries; forestry; the construction industry; the energy industry; recreation and tourism; agriculture; urban areas; and national defense. Recommendations regarding adapation are made to governments, the private sector, and researchers. An inventory of adaptation strategies for agriculture, the Arctic, coastal areas, ecosystems and land use, energy supply, fisheries, forestry, urban infrastructure, and water resources is appended

  15. Climate Variability-Observations, Reconstructions, and Model Simulations for the Atlantic-European and Alpine Region from 1500-2100 AD

    Energy Technology Data Exchange (ETDEWEB)

    Raible, Christoph C. [Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Casty, C.; Luterbacher, J.; Pauling, A.; Wanner, H. [Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern (Switzerland); Esper, J.; Frank, D.C.; Buentgen, U. [Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland); Roesch, A.C.; Tschuck, P.; Wild, M.; Vidale, P.L.; Schaer, C. [Institute for Atmospheric and Climate Science ETH, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)

    2006-11-15

    A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to 'lock' the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.

  16. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  17. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    Science.gov (United States)

    Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to

  18. Anomalous winter climate conditions in the Pacific rim during recent El Nino Modoki and El Nino events

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Hengyi; Behera, Swadhin K. [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan); Yamagata, Toshio [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan)]|[University of Tokyo, Department of Earth and Planetary Science, Graduate School of Sciences, Tokyo (Japan)

    2009-04-15

    Present work compares impacts of El Nino Modoki and El Nino on anomalous climate in the Pacific rim during boreal winters of 1979-2005. El Nino Modoki (El Nino) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple 'boomerangs' of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those 'boomerangs' reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Nino Modoki owing to displacement of the wet 'boomerang' arms more poleward toward east. Discontinuities at outer 'boomerang' arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Nino Modoki, while much of the western USA is wet during El Nino. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Nino Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Nino. The East Asian winter monsoon related anticyclone is over the South China Sea during El Nino Modoki as compared to its position over the Philippine Sea during El Nino, causing opposite precipitation anomalies in the southern East Asia between the two phenomena. (orig.)

  19. A new type of climate network based on probabilistic graphical models: Results of boreal winter versus summer

    Science.gov (United States)

    Ebert-Uphoff, Imme; Deng, Yi

    2012-10-01

    In this paper we introduce a new type of climate network based on temporal probabilistic graphical models. This new method is able to distinguish between direct and indirect connections and thus can eliminate indirect connections in the network. Furthermore, while correlation-based climate networks focus on similarity between nodes, this new method provides an alternative viewpoint by focusing on information flow within the network over time. We build a prototype of this new network utilizing daily values of 500 mb geopotential height over the entire globe during the period 1948 to 2011. The basic network features are presented and compared between boreal winter and summer in terms of intra-location properties that measure local memory at a grid point and inter-location properties that quantify remote impact of a grid point. Results suggest that synoptic-scale, sub-weekly disturbances act as the main information carrier in this network and their intrinsic timescale limits the extent to which a grid point can influence its nearby locations. The frequent passage of these disturbances over storm track regions also uniquely determines the timescale of height fluctuations thus local memory at a grid point. The poleward retreat of synoptic-scale disturbances in boreal summer is largely responsible for a corresponding poleward shift of local maxima in local memory and remote impact, which is most evident in the North Pacific sector. For the NH as a whole, both local memory and remote impact strengthen from winter to summer leading to intensified information flow and more tightly-coupled network nodes during the latter period.

  20. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    Science.gov (United States)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  1. Increasing late winter-early spring fire activity in Northern Spain: climate change or human footprint?

    Science.gov (United States)

    Carracedo Martín, Virginia; García Codron, Juan Carlos; Rasilla Álvarez, Domingo

    2016-04-01

    Most of the fire activity across Spain concentrates during the summer months, but a secondary peak appears also during late winter and early spring (February and March). This peak represents a tiny fraction of the burned surface but in northern Spain becomes the main fire season, representing up to 60 % of the total burned surface. Moreover, the impact of this "unseasonal" fire regime is becoming more relevant; an analysis of the temporal evolution of the burned surface since 2005 shows that the suppression efforts of summer forest fires have apparently succeeded, while the opposite has occurred with late winter-early spring forest fires. For example, during March 2012 more than 22,000 ha were burned in the Spanish provinces of Asturias and Cantabria, while about 14,000 suffers the effects of fires in Northern Portugal. Anthropogenic factor (mostly linked to an extensive cattle farming in the mountains) are the main cause of such fire activity, but atmospheric factors also play a relevant role in the spread of this fires. Consequently, the main aim of this poster is to explore if the recent evolution of forest fires in the study area are consequence of an aggravation of the atmospheric conditions driving to more fire risk conditions, or other factor could also explain the increase in fire activity. Burned surface data obtained from official statistics since 1971 were compared with atmospheric data at two temporal scales: daily fire risk values calculated from synoptic records and long term drought indices (SPI and SPEI). The results show a long term increase in both daily fire risk and drought conditions, but this trend can be related to the background warming of the area, rather to an increase in the frequency and magnitude of the extreme fire weather events. Thus, we consider that the regional atmospheric evolution cannot explain by itself the recent increase in late winter-early spring fire activity. Additional anthropogenic factors, such as recent changes in

  2. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  3. Spatial variability in forest growth—climate relationships in the Olympic Mountains, Washington.

    Science.gov (United States)

    Jill M. Nakawatase; David L. Peterson

    2006-01-01

    For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....

  4. Climate variability and change in southern Mali : Learning from farmer perceptions and on-farm trials

    NARCIS (Netherlands)

    Traore, B.; Wijk, van M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2015-01-01

    Agricultural production in the Sudano–Sahelian zone of west Africa is highly vulnerable to the impacts of climate variability and climate change. The present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options together with farmers,

  5. Spatial and temporal variability in forest growth in the Olympic Mountains, Washington : sensitivity to climatic variability

    Energy Technology Data Exchange (ETDEWEB)

    Holman, M.L. [Washington Univ., Seattle, WA (United States). College of Forest Resources; Peterson, D.L. [United States Dept. of Agriculture Forest Service, Seattle, WA (United States). Pacific Northwest Research Station

    2006-01-15

    Global climatic change may alter tree growth rates in some areas of the Pacific Northwest, which in turn could have a substantial effect on global carbon budgets. Annual basal area increment (BAI) was compared at different spatial scales among size classes and species at various locations in the western and northeastern Olympic Mountains. The aim of the study was to quantify variations in tree growth over the last 54 years and assess the sensitivity of Olympic forests to climate variability and change. Growth patterns for trees spanning a wide range of biophysical environments were examined at multiple spatial scales to determine the scale at which the trees had similar growth responses and the scale at which growth-limiting factors asserted their strongest influence. Mean interseries correlations were used to assess the degree of similarity among individual BAI time series per plot. Weak growth correlations at small spatial scales suggested that trees responded to local growth conditions. However, significant positive growth correlations between geographically adjacent forest types and watersheds indicated that there is a common overarching growth-limiting factor that affected tree growth over large areas. It was noted that the Sitka spruce forest type was the most sensitive to environmental change with the highest mean sensitivity, the highest potential for annual growth change, and the highest growth variability. In addition, this forest type was more likely to exhibit extreme positive growth responses. It was concluded that low elevation coniferous forests are relatively sensitive to changes in growth-limiting factors and may play an important role in storing carbon in a warmer climate. However, the study was limited by an inability to account for the effects of climate change on disturbances and biotic factors. 45 refs., 3 tabs., 5 figs.

  6. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies

    International Nuclear Information System (INIS)

    Fatichi, S.; Rimkus, S.; Burlando, P.; Bordoy, R.

    2014-01-01

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:

  7. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fatichi, S., E-mail: simone.fatichi@ifu.baug.ethz.ch; Rimkus, S.; Burlando, P.; Bordoy, R.

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:

  8. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    Science.gov (United States)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature

  9. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Dr. Christoph Maria Ravesloot

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of

  10. Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs

    NARCIS (Netherlands)

    Montero, J.I.; Stanghellini, C.; Castilla, N.

    2009-01-01

    Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum

  11. Investigation into regional climate variability using tree-ring reconstruction, climate diagnostics and prediction

    Science.gov (United States)

    Barandiaran, Daniel A.

    This document is a summary of research conducted to develop and apply climate analysis tools toward a better understanding of the past and future of hydroclimate variability in the state of Utah. Two pilot studies developed data management and climate analysis tools subsequently applied to our region of interest. The first investigated the role of natural atmospheric forcing in the inter-annual variability of precipitation of the Sahel region in Africa, and found a previously undocumented link with the East Atlantic mode, which explains 29% of variance in regional precipitation. An analysis of output from an operational seasonal climate forecast model revealed a failure in the model to reproduce this linkage, thus highlighting a shortcoming in model performance. The second pilot study studied long-term trends in the strength of the Great Plains low-level jet, an driver of storm development in the region's wet spring season. Our analysis showed that since 1979 the low-level jet has strengthened as shifted the timing of peak activity, resulting in shifts both in time and location for peak precipitation, possibly the result of anthropogenic forcing. Our third study used a unique tree-ring dataset to create a reconstruction of April 1 snow water equivalent, an important measure of water supply in the Intermountain West, for the state of Utah to 1850. Analysis of the reconstruction shows the majority of snowpack variability occurs monotonically over the whole state at decadal to multidecadal frequencies. The final study evaluated decadal prediction performance of climate models participating in the Coupled Model Intercomparison Project 5. We found that the analyzed models exhibit modest skill in prediction of the Pacific Decadal Oscillation and better skill in prediction of global temperature trends post 1960.

  12. Methane isotopic signature of gas bubbles in permafrost winter lake ice: a tool for quantifying variable oxidation levels

    Science.gov (United States)

    Sapart, C. J.; Boereboom, T.; Roeckmann, T.; Tison, J.-L.

    2012-04-01

    Methane (CH4) is a strong greenhouse gas and its atmospheric mixing ratio has strongly increased since pre-industrial times. This increase was primarily due to emissions from anthropogenic sources, but there is growing concern about possible feedbacks of natural sources in a changing climate. Thawing of permafrost areas in the Arctic is considered as an important feedback, since the Arctic region undergoes the fastest climate change and hosts large carbon stocks. Subarctic lakes are considered as "hotspots" for CH4 emissions, but the role of the ice cover during the winter period is not well understood to date. Here, we present measurements of CH4 mixing ratio and δ13C-CH4 in 4 types of bubbles identified in subarctic lake ice covers located in a sporadic or discontinuous permafrost area. Our analysis reveals that different bubble types contain CH4 with different, specific isotopic signatures. The evolution of mixing ratio and δ13C-CH4 suggest that oxidation of dissolved CH4 is the most important process determining the isotopic composition of CH4 in bubbles. This results from gas exsolution occurring during the ice growth process. A first estimate of the CH4 oxidation budget (mean = 0.12 mg CH4 m-2 d-1) enables to quantify the impact of the ice cover on CH4 emissions from subartic lakes. The increased exchange time between gases coming from the sediments and the water column, due to the capping effect of the lake ice cover, reduces the amount of CH4 released "as is" and favours its oxidation into carbon dioxide; the latter being further added to the HCO3- pool through the carbonate equilibration reactions.

  13. Trends and variability in climate parameters of peshawar district

    International Nuclear Information System (INIS)

    Shah, S.A.A.; Nisa, S.; Khan, A.; Rahman, Z.U.

    2012-01-01

    Rain fall pattern, daily minimum and maximum temperatures and humidity are the main factors that constitute the climate of an area. In Pakistan, consecutive positive anomalies have been observed in minimum, maximum and mean temperatures and rainfall since mid 1970s. The objective of the current study was to investigate the recent trends and variability of annual minimum, maximum and mean temperatures, relative humidity and rainfall of Peshawar. Annual meteorological parameters for 30-years (1981-2010) of Peshawar observatory have been analysed to determine indications of variations from long-term averages. Different statistical methods were used to analyse the data. For this purpose, Mann-Kendall test was applied to Meteorological data of Peshawar (1981-2010) to study any trend, which were revealed to be in a mixture. The final results show that rainfall is decreasing, minimum temperature, mean temperature and relative humidity are increasing and maximum temperature has no change. Various factors could be responsible for the contemporary trends in climate like rise in number of vehicles and industries from reviewing available literature, keeping in mind the nature of the study. Trends found may have negative implications for agriculture, health and socioeconomic conditions of the region that require the attention from relevant stakeholders. (author)

  14. Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    Tai M. Maaz

    2017-05-01

    Full Text Available Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among strategies proposed to mitigate and adapt to climate shifts in the inland Pacific Northwest (iPNW. Our objectives were to assess these strategies across iPNW agroecological zones and time for their impacts on (1 winter wheat (WW (Triticum aestivum L. productivity, (2 crop sequence productivity, and (3 N fertilizer use efficiency. Region-wide analysis indicated that WW yields increased with increasing annual precipitation, prior to maximizing at 520 mm yr−1 and subsequently declining when annual precipitation was not adjusted for available soil water holding capacity. While fallow periods were effective at mitigating low nitrogen (N fertilization efficiencies under low precipitation, efficiencies declined as annual precipitation exceeded 500 mm yr−1. Variability in the response of WW yields to annual precipitation and N fertilization among locations and within sites supports precision N management implementation across the region. In years receiving <350 mm precipitation yr−1, WW yields declined when preceded by crops rather than summer fallow. Nevertheless, WW yields were greater when preceded by pulses and oilseeds rather than wheat across a range of yield potentials, and when under conservation tillage practices at low yield potentials. Despite the yield penalty associated with eliminating fallow prior to WW, cropping system level productivity was not affected by intensification, diversification, or conservation tillage. However, increased fertilizer N inputs, lower fertilizer N use efficiencies, and more yield variance may offset and limit the economic feasibility of intensified and diversified cropping systems.

  15. Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean

    Science.gov (United States)

    Estrada, Marta; Latasa, Mikel; Emelianov, Mikhail; Gutiérrez-Rodríguez, Andrés; Fernández-Castro, Bieito; Isern-Fontanet, Jordi; Mouriño-Carballido, Beatriz; Salat, Jordi; Vidal, Montserrat

    2014-12-01

    The phytoplankton bloom in the Liguro-Provençal deep convection region represents one of the main fertilization mechanisms in the Mediterranean. This communication examines nano- and microphytoplankton observations, and measurements of primary production and chlorophyll a concentration (Chl a) in the southwestern part of the deep convection region, where such information is scarce. Data were obtained from four cruises, carried out in 2005 (EFLUBIO project) and 2009 (FAMOSO project), covering the seasonality between mid-March and September in the region. Our aims were to constrain primary production estimates and to ascertain the importance of short-term variability on the photosynthetic response of phytoplankton assemblages during bloom, post-bloom and late-summer stratification periods in the area. Overall, the initial slope of the P-E relationship (αB) increased and the Chl a-normalized photosynthetic rate (PmB) decreased with increasing optical depth of sample origin, but there were exceptions. In general, there were marked seasonal trends, with stratification increasing and Chl a concentration, primary production and dissolved inorganic nitrogen and phosphate fluxes decreasing from winter to late summer. Chl a at 5 m depth reached a maximum of 7 mg m-3 on 25 March 2005, one of the highest values measured in the region. Average surface values (±SD) ranged from respectively 2.4±2.3 mg m-3 and 2±0.7 mg m-3 in the March 2005 and March 2009 cruises to 0.12±0.01 mg m-3 in the September 2009 cruise. Vertically integrated (0-80 m) primary production (PPint) attained 1800 mg C m-2 d-1 in March 2009, with an average of 1024±523 mg C m-2 d-1, and decreased to a mean of 141±0.43 mg C m-2 d-1 in September 2009. Superimposed to the seasonal trends, there was a considerable within-cruise variability of biomass and primary production, especially during the spring-winter bloom and post-bloom periods, when PPint could change more than threefold within a few days. These

  16. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  17. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Science.gov (United States)

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  18. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-03-11

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  20. The acceptability of climate change in agricultural communities: comparing responses across variability and change.

    Science.gov (United States)

    Raymond, Christopher M; Spoehr, John

    2013-01-30

    This study examined how the terms used to describe climate change influence landholder acceptability judgements and attitudes toward climate change at the local scale. Telephone surveys were conducted with landholders from viticultural (n = 97) or cereal growing (n = 195) backgrounds in rural South Australia. A variety of descriptive and inferential statistics were used to examine the influence of human-induced climate change and winter/spring drying trend terms on adaptation responses and uncertainties surrounding climate change science. We found that the terms used to describe climate change leads to significant differences in adaptation response and levels of scepticism surrounding climate change in rural populations. For example, those respondents who accepted human induced climate change as a reality were significantly more likely to invest in technologies to sow crops earlier or increase the amount of water stored or harvested on their properties than respondents who accepted the winter/spring drying trend as a reality. The results have implications for the targeting of climate change science messages to both rural landholders and communities of practice involved in climate change adaptation planning and implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Less sensitive of urban surface to climate variability than rural in Northern China.

    Science.gov (United States)

    Yao, Rui; Wang, Lunche; Huang, Xin; Chen, Jiangping; Li, Jiarui; Niu, Zigeng

    2018-02-14

    In this study, the relationships between interannual variations of surface urban heat islands (SUHIs) and climate variability were studied in 31 cities of China for the period 2001-2016. For cold and dry Northern China, it was found that the interannual variations of SUHI intensity (SUHII, land surface temperature (LST) in urban minus rural) in urban cores was significantly (purban cores (1.141°C for SDs and 2.535°C for WDs) than in rural areas (1.890°C for SDs and 3.377°C for WDs). The standard deviation was further used to reflect the interannual stabilities of LST, enhanced vegetation index (EVI) and white sky albedo (WSA). Interestingly, the standard deviations of LST across 2001-2016 were generally lower in urban cores (0.994°C for SDs and 1.577°C for WDs) than in rural areas (1.431°C for SDs and 2.077°C for WDs). Similar results were observed for EVI and WSA (winter). The results suggested that the urban surface is less sensitive to climate variability than rural areas in Northern China. Comparatively, most findings were less evident in hot and humid Southern China. Despite the whole world would become warmer or colder in future, the insensitivity of urban surface may mitigate its impacts in cold and dry Northern China. However, it does not mean that urbanization is totally good due to its environmental problem. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Impact of climate variability on various Rabi crops over Northwest India

    Science.gov (United States)

    Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.

    2018-01-01

    The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.

  3. Climate variability and change in Ethiopia : exploring impacts and adaptation options for cereal production

    NARCIS (Netherlands)

    Kassie, B.T.

    2014-01-01

    Key words: Climate change, Adaptation, Crop modelling, Uncertainty, Maize (Zea mays), Central Rift Valley.

    Smallholder farmers in Ethiopia have been facing severe climate related hazards, in particular highly variable rainfall and severe droughts that negativelyaffect their

  4. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.

    2004-01-01

    Roč. 77, - (2004), s. 229-249 ISSN 0177-798X R&D Projects: GA ČR GA521/02/0827 Grant - others:Mendel University of Agriculture and Forestry Brno(CZ) J 08/98:432100001 Institutional research plan: CEZ:AV0Z3042911 Keywords : climate change scenarios * wheat yields Subject RIV: GC - Agronomy Impact factor: 0.964, year: 2004

  5. Winter climate and plant productivity predict abundances of small herbivores in central Europe

    Czech Academy of Sciences Publication Activity Database

    Tkadlec, Emil; Zbořil, J.; Losík, J.; Gregor, P.; Lisická, L.

    2006-01-01

    Roč. 32, č. 2 (2006), s. 99-108 ISSN 0936-577X R&D Projects: GA ČR GA206/04/2003 Institutional research plan: CEZ:AV0Z60930519 Keywords : climate effects * common vole * European hare * NAO * plant productivity * crop yield Subject RIV: EH - Ecology, Behaviour Impact factor: 1.519, year: 2006 http://www.int-res.com/articles/cr_oa/c032p099.pdf

  6. Grazing and climatic variability in Sajama National Park, Bolivia

    Directory of Open Access Journals (Sweden)

    Yager, K.

    2008-12-01

    Full Text Available Sajama National Park, the first protected area in Bolivia, includes five indigenous communities with a primary production base of pastoralism. The semi-arid region of the Central Andes is one of the most extreme areas of human occupation at 4200 meters altitude and affected by high climatic variability. This paper studies the relations between climate variability, resilience, biodiversity of pastures and pastoral production in Sajama National Park. We present a botanical study of palatable pasture herbs between two years, one humid (2006 and the other dry (2007. Thirty vascular plants were recorded. The number of species and the cover of iro (Festuca ortophylla peak in areas of intermediate disturbance; areas that are at a medium distance from camelid corrals. On the other hand, the cover of ephemeral plants between tussocks increases in high disturbance areas. This is interpreted as a result of the tradeoff between the damage of grazing and the benefit of the fertilization produced by the herding animals. The local people clearly perceive strong impacts of climate change, combined with changes in management and human pressures. The social dynamics and production management, combined with climate warming, water reduction, and the increasing variability of surface water regimes create potential risks for the local sustainability of pastoralism.

    El Parque Nacional Sajama, la primer área protegida de Bolivia, incluye a cinco comunidades indígenas con una base de producción principalmente de ganadería. Esta región semi-árida de los Andes Centrales es una de las áreas más extremas de ocupación humana a 4200 metros de altura y es afectada por una alta variabilidad climática. Este trabajo considera las relaciones entre la variabilidad climática, resiliencia, biodiversidad de pastos y la producción ganadera en el Parque Nacional Sajama. Presentamos un estudio botánico de las comunidades de hierbas palatables a lo largo de dos a

  7. Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation

    Science.gov (United States)

    Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.

    2003-04-01

    Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.

  8. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  9. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    Science.gov (United States)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  10. Variability in climatic productivity of paddy rice in japan

    OpenAIRE

    Sugihara, Yasuyuki

    1985-01-01

    The regionaliy of climatic productivity was examined from the viewpoints of seasonal variation and temperature characteristics of climatic productivity. The obtained climatic divisions are types A1 (coldest), A2 (cold), A3 (moderate), B (warmtransitional), C (warm), and D (warmest). The long-range changes of climatic productivity for 6 stations representative of each agro-climatic division were obtained. The productivities of Asahikawa, Morioka, and Saga clearly indicate maximum or minimum va...

  11. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  12. Holocene climate variability in the winter rainfall zone of South Africa

    NARCIS (Netherlands)

    Weldeab, S.; Stuut, J.-B.W.; Schneider, R.R.; Siebel, W.

    2013-01-01

    We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and d18O and d13C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records

  13. Relationship between Climate Variability, Wildfire Risk, and Wildfire Occurrence in Wildland-Urban Interface of the Southwestern United States

    Science.gov (United States)

    Kafatos, M.; Kim, S. H.; Jia, S.; Nghiem, S. V.

    2017-12-01

    As housing units in or near wildlands have grown, the wildland-urban interface (WUI) contain at present approximately one-third of all housing in the contiguous US. Wildfires are a part of the natural cycle in the Southwestern United States (SWUS) but the increasing trend of WUI has made wildfires a serious high-risk hazard. The expansion of WUI has elevated wildfire risks by increasing the chance of human caused ignitions and past fire suppression in the area. Previous studies on climate variability have shown that the SWUS region is prone to frequent droughts and has suffered from severe wildfires in the recent decade. Therefore, assessing the increased vulnerability to the wildfire in WUI is crucial for proactive adaptation under climate change. Our previous study has shown that a strong correlation between North Atlantic Oscillation (NAO) and temperature was found during March-June in the SWUS. The abnormally warm and dry spring conditions, combined with suppression of winter precipitation, can cause an early start of a fire season and high fire risk throughout the summer and fall. Therefore, it is crucial to investigate the connections between climate variability and wildfire danger characteristics. This study aims to identify climate variability using multiple climate indices such as NAO, El Niño-Southern Oscillation and the Pacific Decadal Oscillation closely related with droughts in the SWUS region. Correlation between the variability and fire frequency and severity in WUI were examined. Also, we investigated climate variability and its relationship on local wildfire potential using both Keetch-Byram Drought Index (KBDI) and Fire Weather Index (FWI) which have been used to assessing wildfire potential in the U.S.A and Canada, respectively. We examined the long-term variability of the fire potential indices and relationships between the indices and historical occurrence in WUI using multi-decadal reanalysis data sets. Following our analysis, we investigated

  14. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  15. Actual vs. Perceived Climate Variability among Smallholding Rice Farmers

    Science.gov (United States)

    Carrico, A.; Gilligan, J. M.; Truelove, H. B.

    2016-12-01

    It is recognized that those engaged in resource-dependent livelihoods often hold extensive knowledge of their surrounding environment that, in some cases, facilitates sustainable practices and adaptation to environmental shocks. However, there remain significant gaps in our understanding of how actors at this scale perceive, understand, and respond to climate variability, particularly in the absence of good information. There are further unanswered questions about how these perceptions translate into livelihood decisions. In this paper, we use data collected in 2015 from 607 paddy farmers living in 12 villages throughout the heavily agricultural dry zone of Sri Lanka. Farmers were asked to report their perceptions of decadal scale changes in temperature and rainfall along a number of dimensions (e.g., annual rainfall, onset of monsoon rains, frequency of droughts, temperature). These data are compared to local meteorological data collected over the same time period to examine the perceptions of meteorological trends. Furthermore, we examine heterogeneity in perceptions as a function of demographic factors, reliance on irrigation, use of agricultural technology, and other socioeconomic characteristics of the farmer. The impact of perceptions on agricultural practices such as crop selection and water management, and resultant yields, will also be examined. Preliminary results based on five communities suggest a strong negativity bias in perceptions, with widespread agreement that meteorological conditions have become less hospitable for farming. Perceptions of temperature changes largely corresponded to meteorological records; however, perceptions of rainfall changes did not. There was some evidence that length of time spent in a village and the presence of elders in the household was associated with perceptions that more closely corresponded to the observed meteorological data. Updated analyses based on the complete data set will be presented. We will discuss the

  16. Human activity and climate variability project - annual report 2002

    International Nuclear Information System (INIS)

    Chambers, S.; Harle, K.J.; Sharmeen, S.; Zahorowski, W.; Cohen, D.; Heijnis, H.; Henderson-Sellers, A

    2002-01-01

    Work is well underway on identifying the spatial and temporal extent, direction and range of trace element transport across Tasmania through analysis of lake sediments; A follow up investigation of sedimentation and pollution in the Nattai River catchment following the devastating 2001 bushfires in the region has been completed; The project has been extended to include investigations of evidence of human impacts in the highly sensitive and ecologically important Great Lakes of coastal NSW. This has involved the expansion of our collaboration to include Geoscience Australia; Contributions have been made to the IGBP HITE project. Further contributions will be made as the evidence gathered is drawn together and interpreted; Over the coming year, focus will be placed on completion of the investigation of the extent of aerial transport of trace elements across Tasmania over the last 200 years as well as evidence for human activity and impacts on the Great Lakes region of NSW. Further investigation of potential climate signals from sites in northern Australia will also be made. The first 12 months of data for all ACE-Asia radon and fine particle sites is now available with preliminary analyses performed; The seasonal variability of background radon concentration at each of the radon monitoring sites has been characterised for the available data; Major components related to industrial pollution and soil sources in China have been identified and quantified; Regional and seasonal variations and trends in aerosol constituents have been measured and compared across more than 2.8Mk 2 of sampling area; The Hok Tsui and Kosan detectors were visited for general maintenance and recalibration; A grant application to the APN has been submitted in support of regional inventory analyses based on radon time series; Progress on the processing and interpretation of radon data was presented at the Cape Grim Science Meeting (6-7 February 2002) and the 7th Biennial SPERA Conference on

  17. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  18. From Resistance to Receptiveness: Farmer Willingness to Participate in Extension Discussions About Climate Variability and Climate Change

    Directory of Open Access Journals (Sweden)

    David C. Diehl

    2016-10-01

    Full Text Available Identifying what Extension professionals believe are the critical elements of a communication strategy that is most likely to encourage agricultural producers to participate in discussions of climate variability and climate change is pivotal to providing timely solutions to issues facing farmers. The current study involved interviews with 50 Extension professionals from four southeastern states (Alabama, Florida, Georgia, and South Carolina who were engaged in ongoing work related to climate and agriculture. Respondents were asked to assess how best to engage farmers in conversations related to climate variability and climate change. Qualitative analysis showed that Extension professionals recommended avoiding content related to politics, attribution of climate change to human causes, and telling farmers what to do. Respondents recommended emphasizing adaptation strategies, climate variability over climate change, evidence that climate change exists, and the financial benefits for farmers. In addition, Extension professionals proposed several delivery methods they thought would be most effective with farmers, including delivery tailored to the characteristics of the audience, a positive overall tone, and an understanding that engagement should be viewed as a long-term process based on building relationships with farmers. The findings suggest that farmers are a potentially receptive audience on climate issues when properly approached.

  19. Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models

    Science.gov (United States)

    Greene, Arthur M.; Robertson, Andrew W.

    2017-12-01

    An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by "western disturbances" propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.

  20. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Pierce, David W. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Miller, Arthur J. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Somerville, Richard C. J. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Twohy, Cynthia H. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Northwest Research Associates, Redmond Washington USA; Ghan, Steven J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Singh, Balwinder [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Yoon, Jin-Ho [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2015-02-21

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variability may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.

  1. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    Science.gov (United States)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  2. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    Science.gov (United States)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  3. The long-term effect of climate change on productivity of winter wheat in Denmark: a scenario analysis using three crop models

    DEFF Research Database (Denmark)

    Öztürk, Isik; Sharif, Behzad; Baby, Sanmohan

    2017-01-01

    The response of grain yield, grain nitrogen (N), phenological development and evapotranspiration of winter wheat to climate change was analysed over an 80-year period based on climate change predictions of four regional circulation models (RCMs) under the IPCC (International Panel on Climate Change....... The present study suggested that in Denmark, alternative strategies for organic N acquisition of plants must be developed. Statistical analyses showed that while the crop models were the main source of uncertainty in estimating crop performance indicators in response to climate change, the choice of RCM......) A1B emission scenario for the 21st century using three process-based models; A 20-year set (1991–2010) of observed daily climate data from Aarslev, Denmark was used to form the baseline, from which the RCM data were generated. The simulation of crop growth was performed with increasing carbon...

  4. Investigation of temporal and spatial climate variability and aridity of Iran

    Science.gov (United States)

    Ashraf, B.; Yazdani, R.; Mousavi-Baygi, M.; Bannayan, M.

    2014-10-01

    The aim of this research is to study the spatial and temporal variability of aridity in Iran, through analysis of temperature and precipitation trends during the 48-year period of 1961-2008. In this study, four different aridity criteria have been used to investigate the aridity situation. These aridity indexes included Lang's index or rain factor, Budyko index or radiational index of dryness, UNEP aridity index, and Thornthwaite moisture index. The results of the analysis indicated that the highest and lowest mean temperatures occurred in July and January respectively in all locations. Among the study locations, Ahvaz with 37.1 °C and Kermanshah with 20.2 °C has the highest and lowest in July. For January, the highest was 12.4 °C for Ahvaz and the lowest was -4.5 °C for Hamedan and Kermanshah together. The range of monthly mean temperature of study locations indicated that the maximum and minimum difference between day and night temperatures, almost in all study locations, occurred in September and January, respectively, and the highest and lowest fluctuation of temperature was observed in Kerman and Tehran. The temperature anomalies showed that the most significant increasing temperature occurred at the beginning of twenty-first century (2000-2008) in all locations. The long-term mean of monthly rainfall showed that, in most study locations, the maximum and minimum of mean precipitation occurred in winter and summer, respectively. Rasht with 1,355 mm had the highest and Yazd with 55 mm had the lowest of total precipitation compared with other locations. According to precipitation anomalies, all locations experienced dry and wet periods, but generally dry periods occurred more often especially in the beginning of twenty-first century. According to applied different aridity indexes, all the study locations often experienced semi-arid to arid climate, severe water deficit to desert climate, arid to hyperarid climate, and semi-arid climate during the study period.

  5. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  6. Climate change and Greenland White-fronted Geese Anser albifrons flavirostris: shifts in distribution and advancement in spring departure times at Wexford versus elsewhere in the winter range

    DEFF Research Database (Denmark)

    Fox, Anthony David; Merne, Oscar J; Walsh, Alyn J.

    2012-01-01

    Count data have shown that numbers of Greenland White-fronted Geese Anser albifrons flavirostris wintering at their numerically most important site (Wexford Slobs in south east Ireland) have remained more or less constant over 30 years, in contrast to recent declines at their second most important...... site (Islay further north in south west Scotland), and declines in the population as a whole. There was no evidence to suggest a northwards shift in wintering geese as might be predicted under global climate change. Although Greenland White-fronted Geese now depart from Wexford in spring on average 22...... in migration timing. The more rapid advancement of spring migration at Wexford compared to elsewhere in the range and the retention of wintering geese there in contrast to declining trends amongst the population as a whole suggest that local management of the food resource at Wexford may be responsible...

  7. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica

    Directory of Open Access Journals (Sweden)

    F. Schwanck

    2017-07-01

    Full Text Available The Mount Johns (MJ ice core (79°55′ S; 94°23′ W was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers approximately 125 years (1883–2008, showing marked seasonal variability. Trace element concentrations in 2137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations at the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and secondary northeasterly transport in the summer. During summer months, the trajectories present slow-moving (short transport and are more locally influenced than in other seasons. Finally, our reanalysis correlations with trace element suggest that marine-derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies. The results show that seasonal elemental concentration maxima in sea salt elements correlate well with the sea ice concentration winter maxima in the west Amundsen and Ross seas. Lastly, we observed an increased concentration of marine aerosols when sea surface temperature decreased.

  8. Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Directory of Open Access Journals (Sweden)

    E. R. Vivoni

    2009-06-01

    Full Text Available Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year.

  9. Effects of climate change and variability on population dynamics in a long-lived shorebird

    NARCIS (Netherlands)

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the

  10. Climate variability and change in the Central Rift Valley of Ethiopia: challenges for rainfed crop production

    NARCIS (Netherlands)

    Kassie, B.T.; Roetter, R.P.; Hengsdijk, H.; Asseng, S.; Ittersum, van M.K.; Kahiluoto, J.; Keulen, van H.

    2014-01-01

    Ethiopia is one of the countries most vulnerable to the impacts of climate variability and change on agriculture. The present study aims to understand and characterize agro-climatic variability and changes and associated risks with respect to implications for rainfed crop production in the Central

  11. Climate variability and yields of major staple food crops in Northern ...

    African Journals Online (AJOL)

    Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we ...

  12. Past climate variability between 97 and 7 ka reconstructed from a multi proxy speleothem record from Western Cuba

    Science.gov (United States)

    Winterhalder, Sophie; Scholz, Denis; Mangini, Augusto; Spötl, Christoph; Jochum, Klaus Peter; Pajón, Jesús M.

    2016-04-01

    The tropical hydrological cycle plays a key role in regulating global climate, mainly through the export of heat and moisture to higher latitudes, and is highly sensitive to climate change, for instance due to changes in the position of the Intertropical Convergence Zone (ITCZ). Previous work on Caribbean stalagmites suggests a strong connection of precipitation variability to North Atlantic (NA) sea surface temperatures on multidecadal to millenial timescales (Fensterer et al., 2012; Fensterer et al., 2013; Winter et al., 2011). Cold phases in the NA potentially lead to a southward shift of the ITCZ and thus drier conditions in Cuba. On orbital timescales, Cuban stalagmites suggest a relation of speleothem δ18O values with the δ18O value of Caribbean surface waters (Fensterer et al., 2013). Here we present an expansion of the Cuban speleothem record covering the whole last glacial period from the end of MIS5c (97 ka BP) until 7 ka with hiatuses between 93-80 ka, 37-35 ka and 13-10 ka. Stalagmite Cuba medio (CM) has been precisely dated with 60 230Th/U-ages, mainly performed by the MC-ICPMS technique. The δ18O and δ13C records are completed by a continuous, high resolution LA-ICPMS trace element profile. These data allow for the first time to establish a multi-proxy climate reconstruction for the North Western Caribbean at decadal to centennial resolution for this period. The long-term variability of the δ18O values probably reflects rainfall amount in Cuba. The response to some Dansgaard/Oeschger and Heinrich stadials confirms the previously observed correlation between Caribbean and NA climate variability. However, this connection is not clearly imprinted throughout the record. Furthermore, trace elements, such as Mg, do not proof without ambiguity drier conditions in Cuba during NA cold events, such as the Heinrich stadials. This suggests that climate variability in Cuba was more complex during the last 100ka, and that the NA was not the only driving factor

  13. Palaeoenvironmental transfer functions in a bayesian framework with application to holocene climate variability in the near east

    Energy Technology Data Exchange (ETDEWEB)

    Schoelzel, C. [Bonn Univ. (Germany). Meteorologisches Inst.

    2006-07-01

    This thesis presents the development of statistical climatological-botanical transfer functions in order to provide reconstructions of Holocene climate variability in the Near East region. Two classical concepts, the biomisation as well as the indicator taxa approach, are translated into a Bayesian network. Fossil pollen spectra of laminated sediments from the Ein Gedi location at the western shoreline of the Dead Sea and from the crater lake Birkat Ram in the northern Golan serve as proxy data, covering the past 10000 and 6500 years, respectively. The climatological variables are winter temperature, summer temperature, and annual precipitation, obtained from the 0.5 x 0.5 degree climatology CRU TS 1.0. The Bayesian biome model is based on the three main vegetation territories, the Mediterranean, the Irano-Turanian, and the Saharo-Arabian territory, which are digitized on the same grid as the climate data. From their spatial extend, a classification in the phase space is described by estimating the conditional probability for the existence of a certain biome given the climate. These biome specific likelihood functions are modelled by a generalised linear model, including second order monomials of the climate variables. A statistical mixture model is applied to the biome probabilities as estimated by the Ein Gedi data, resulting in a posterior probability density function for the three dimensional climate state vector. The indicator taxa model is based on the distribution of 15 Mediterranean taxa. Their spatial extend allows to estimate the taxon specific likelihood functions. In this case, they are conditional probability density functions for the climate state vector given the existence of a certain taxon. In order to address the general problem of multivariate non-normally distributed populations, multivariate normal Copulas are used, which allow to create distribution functions with gamma as well as normal marginal distributions. Applying the model to the Birkat

  14. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Oude Lansink, A.G.J.M.; Leemans, R.

    2010-01-01

    Climatic conditions and hence climate change influence agriculture. Most studies that addressed the vulnerability of agriculture to climate change have focused on potential impacts without considering adaptation. When adaptation strategies are considered, socio-economic conditions and farm

  15. Atmospheric impacts on climatic variability of surface incident solar radiation

    Directory of Open Access Journals (Sweden)

    K. C. Wang

    2012-10-01

    Full Text Available The Earth's climate is driven by surface incident solar radiation (Rs. Direct measurements have shown that Rs has undergone significant decadal variations. However, a large fraction of the global land surface is not covered by these observations. Satellite-derived Rs has a good global coverage but is of low accuracy in its depiction of decadal variability. This paper shows that daily to decadal variations of Rs, from both aerosols and cloud properties, can be accurately estimated using globally available measurements of Sunshine Duration (SunDu. In particular, SunDu shows that since the late 1980's Rs has brightened over Europe due to decreases in aerosols but dimmed over China due to their increases. We found that variation of cloud cover determines Rs at a monthly scale but that aerosols determine the variability of Rs at a decadal time scale, in particular, over Europe and China. Because of its global availability and long-term history, SunDu can provide an accurate and continuous proxy record of Rs, filling in values for the blank areas that are not covered by direct measurements. Compared to its direct measurement, Rs from SunDu appears to be less sensitive to instrument replacement and calibration, and shows that the widely reported sharp increase in Rs during the early 1990s in China was a result of instrument replacement. By merging direct measurements collected by Global Energy Budget Archive with those derived from SunDu, we obtained a good coverage of Rs over the Northern Hemisphere. From this data, the average increase of Rs from 1982 to 2008 is estimated to be 0.87 W m−2 per decade.

  16. Multi-variable bias correction of RCMs for Climate Change Impact Studies

    Science.gov (United States)

    Yang, Wei; Olsson, Jonas; Bosshard, Thomas; Berg, Peter; Arheimer, Berit

    2014-05-01

    Climate change (CC) may have considerable influence on hydrology, forestry and other environmental management. Therefore, appropriate climate change inputs should be used for impact assessment conducted at regional and local scale. A main source for climate projections at high spatial resolutions is made available through Regional Climate Models (RCMs). However, although RCMs have improved over past years, their remaining systematic biases often constrain their direct use for impact studies. A distribution-based scaling (DBS) approach has been developed as a post-processing tool to adjust systematic biases in multiple variables in climate modelling outputs. The variables to be adjusted include primary hydrological inputs, precipitation and temperature, relative humidity, wind speed, short-wave solar radiation and long-wave solar radiation. The variables statistical properties (i.e. mean and standard deviation) and their distribution (i.e. PDF) are proved to be considerably improved after bias correction. Also, the DBS is found to better preserve the variability of the future climate produced by the RCM. The bias-adjusted variables are subsequently used as inputs to the Forest Weather Index (FWI) system at a number of locations in Sweden. The resulting FWIs show clear outperformance when compared to those calculated using raw climate model outputs in past and present climate, in particular, under extreme climate. The DBS is therefore thought to be helpful to provide realistic climate change inputs to impact modelling in CC impact studies.

  17. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2012-03-01

    Full Text Available Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for determined environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of most productive areas of Italy (i.e. Capitanata, Puglia, using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i a single dataset (50 km x 50 km provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060 and +5°C (centred over 2070-2099, respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG. No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.

  18. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    Science.gov (United States)

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  19. Evaluation of winter food quality and its variability for red deer in forest environment: overwintering enclosures vs. free-ranging areas

    Directory of Open Access Journals (Sweden)

    Holá Michaela

    2016-09-01

    Full Text Available Populations of European ungulates have grown substantially over recent decades, resulting in considerable environmental and socio-economic impacts. Availability and quality of natural and supplemental food sources are among the main factors driving their population dynamics. Detailed knowledge of food quality of management-targeted species is therefore of primary importance for their successful management. The main aim of this study was to evaluate winter food quality and its variability for an important ungulate species in the Czech Republic - i.e. red deer, using faecal indices (faecal nitrogen, faecal acid detergent fibre, faecal neutral detergent fibre and near infrared reflectance spectroscopy. We compared food quality for red deer and its possible differences between overwintering enclosures (i.e. fenced areas where red deer spend harsh winter conditions and neighbouring unfenced free-ranging areas within two study areas. The results obtained showed that winter food quality and its variability for red deer are of different quality and variability in the overwintering enclosure and neighbouring free-ranging area. The observed differences in concentrations and amounts of variation of faecal indices are most probably related to animal densities at individual study areas. Wildlife managers should therefore keep animals in overwintering enclosures at moderate densities and to provide high quality forage to all individuals in order to balance nutrition of both the individuals inside and outside the enclosures. Nevertheless, further studies are needed in order to provide deeper knowledge on red deer food quality and its variability in space and time.

  20. Adapting to climate variability and change in Chile's Maipo basin ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change's impact on Morocco's northeast coast. La Méditerranée est un endroit du monde ou les effets des changements climatiques se font particulièrement sentir. Voir davantageClimate change's impact on Morocco's northeast coast ...

  1. Impacts of climate change and variability, and adaptation strategies ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    13 mai 2011 ... Given this overdependence on rainfed agriculture, farmers are highly vulnerable to climate change. ... evidence of climate-related impacts on crop production, local communities' perceptions of these impacts, and current adaptation strategies in two central Tanzanian villages: Kamenyanga and Kintinku.

  2. Analysis of ENSO-based climate variability in modulating drought ...

    Indian Academy of Sciences (India)

    The first copula model is developed without accounting the climate state infor- mation to obtain joint and conditional return periods of drought characteristics. Then, copula-based models are developed for each climate state to estimate the joint and conditional probabilities of drought characteristics under each ENSO state.

  3. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    Science.gov (United States)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the

  4. Assessment of Variable Planting Date as an Agricultural Adaptation to Climate Variability in Sri Lanka

    Science.gov (United States)

    Rivera, A.; Gunda, T.; Hornberger, G. M.

    2016-12-01

    Agriculture accounts for approximately 70% of global freshwater withdrawals. Changes in precipitation patterns due to climate change as well as increasing demands for water necessitate an increased understanding of the water-­food intersection, notably at a local scale to inform farmer adaptations to improve water productivity, i.e., to get more food with less water. Local assessments of water-food security are particularly important for nations with self-sufficiency policies, which prioritize in-country production of certain resources. An ideal case study is the small island nation of Sri Lanka, which has a self-sufficiency policy for its staple food of rice. Because rice is a water-intensive crop, assessment of irrigation water requirements (IWRs) and the associated changes over time is especially important. Previous studies on IWRs of rice in Sri Lanka have failed to consider the Yala (dry) season, when water is scarcest.The goal of this study is to characterize the role that a human decision, setting the planting date, can play in buffering declines in rice yield against changes in precipitation patterns. Using four meteorological stations in the main rice-growing zones in Sri Lanka, we explore (1) general changes in IWRs over time during the Yala season and (2) the impact of the rice planting date. We use both historical data from meteorological stations as well as future projections from regional climate models. Our results indicate that gains can be achieved using a variable planting date relative to a fixed date, in accordance with a similar conclusion for the Maha (wet) season. This local scale assessment of Sri Lanka IWRs will contribute to the growing global literature on the impacts of water scarcity on agriculture and the role that one adaptation measure can play in mitigating deleterious impacts.

  5. Linking Extreme Weather to Climate Variability and Change

    Science.gov (United States)

    Stott, Peter; Trenberth, Kevin

    2009-05-01

    International Group on Attribution of Climate-Related Events (ACE); Boulder, Colorado, 26 January 2009; Climate change is likely to be manifested on societies around the world mainly through changes in extremes. As a result, the scientific community faces an increasing demand for regularly updated appraisals of evolving climate conditions and extreme weather. Such information would be immensely beneficial for adaptation planning. A group of climate scientists representing the United Kingdom, the United States, Australia, Canada, and South Africa assembled on 26 January 2009 at the National Center for Atmospheric Research (NCAR), in Colorado, to discuss how to meet this challenge. This first meeting of the International Group on Attribution of Climate-Related Events (ACE) was sponsored by the Science and Innovation Network of the U.K. Foreign and Commonwealth Office (FCO) and NCAR and was organized in collaboration with the U.S. National Oceanic and Atmospheric Administration (NOAA), the Met Office Hadley Centre, and the University of Oxford.

  6. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.

    Directory of Open Access Journals (Sweden)

    Frieda Beauregard

    Full Text Available Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839 covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study

  7. Woolly apple aphid Eriosoma lanigerum Hausmann ecology and its relationship with climatic variables and natural enemies in Mediterranean areas.

    Science.gov (United States)

    Lordan, Jaume; Alegre, Simó; Gatius, Ferran; Sarasúa, M José; Alins, Georgina

    2015-02-01

    A multilateral approach that includes both biotic and climatic data was developed to detect the main variables that affect the ecology and population dynamics of woolly apple aphid Eriosoma lanigerum (Hausmann). Crawlers migrated up and down the trunk mainly from spring to autumn and horizontal migration through the canopy was observed from May to August. Winter temperatures did not kill the canopy colonies, and both canopy and root colonies are the source of reinfestations in Mediterranean areas. Thus, control measures should simultaneously address roots and canopy. European earwigs Forficula auricularia (Linnaeus) were found to reduce the survival of overwintering canopy colonies up to June, and this can allow their later control by the parasitoid Aphelinus mali (Haldeman) from summer to fall. Preliminary models to predict canopy infestations were developed.

  8. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    Science.gov (United States)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  9. Long-term natural variability and 20th century climate change

    OpenAIRE

    Swanson, Kyle L.; Sugihara, George; Tsonis, Anastasios A.

    2009-01-01

    Global mean temperature at the Earth's surface responds both to externally imposed forcings, such as those arising from anthropogenic greenhouse gases, as well as to natural modes of variability internal to the climate system. Variability associated with these latter processes, generally referred to as natural long-term climate variability, arises primarily from changes in oceanic circulation. Here we present a technique that objectively identifies the component of inter-decadal global mean s...

  10. Subseasonal climate variability for North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.

    2014-08-01

    Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with

  11. Association of Seasonal Climate Variability and Age-Specific Mortality in Northern Sweden before the Onset of Industrialization

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2014-07-01

    Full Text Available Background and aims: Little is known about health impacts of climate in pre-industrial societies. We used historical data to investigate the association of temperature and precipitation with total and age-specific mortality in Skellefteå, northern Sweden, between 1749 and 1859. Methods: We retrieved digitized aggregated population data of the Skellefteå parish, and monthly temperature and precipitation measures. A generalized linear model was established for year to year variability in deaths by annual and seasonal average temperature and cumulative precipitation using a negative binomial function, accounting for long-term trends in population size. The final full model included temperature and precipitation of all four seasons simultaneously. Relative risks (RR with 95% confidence intervals (CI were calculated for total, sex- and age-specific mortality. Results: In the full model, only autumn precipitation proved statistically significant (RR 1.02; CI 1.00–1.03, per 1cm increase of autumn precipitation, while winter temperature (RR 0.98; CI 0.95–1.00, per 1 °C increase in temperature and spring precipitation (RR 0.98; CI 0.97–1.00 per 1 cm increase in precipitation approached significance. Similar effects were observed for men and women. The impact of climate variability on mortality was strongest in children aged 3–9, and partly also in older children. Infants, on the other hand, appeared to be less affected by unfavourable climate conditions. Conclusions: In this pre-industrial rural region in northern Sweden, higher levels of rain during the autumn increased the annual number of deaths. Harvest quality might be one critical factor in the causal pathway, affecting nutritional status and susceptibility to infectious diseases. Autumn rain probably also contributed to the spread of air-borne diseases in crowded living conditions. Children beyond infancy appeared most vulnerable to climate impacts.

  12. North atlantic multidecadal climate variability: An investigation of dominant time scales and processes

    NARCIS (Netherlands)

    Frankcombe, L.M.|info:eu-repo/dai/nl/304829838; von der Heydt, A.S.|info:eu-repo/dai/nl/245567526; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2010-01-01

    The issue of multidecadal variability in the North Atlantic has been an important topic of late. It is clear that there are multidecadal variations in several climate variables in the North Atlantic, such as sea surface temperature and sea level height. The details of this variability, in particular

  13. New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Krusic, P. J.; Verstege, A.; Sanguesa-Barreda, G.; Wagner, S.; Camarero, J. J.; Ljungqvist, F. C.; Zorita, E.; Oppenheimer, C.; Konter, O.; Tegel, W.; Gärtner, H.; Cherubini, P.; Reinig, F.; Esper, J.

    2017-01-01

    Roč. 30, č. 14 (2017), s. 5295-5318 ISSN 0894-8755 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Europe * Volcanoes * Climate variability * Interannual variability * Multidecadal variability * Trends Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.161, year: 2016

  14. Climate variability and causes: from the perspective of the Tharaka people of eastern Kenya

    Science.gov (United States)

    Recha, Charles W.; Makokha, George L.; Shisanya, Chris A.

    2017-12-01

    The study assessed community understanding of climate variability in semi-arid Tharaka sub-county, Kenya. The study used four focus group discussions (FGD) ( N = 48) and a household survey ( N = 326) to obtain information from four agro-ecological zones (AEZs). The results were synthesized and descriptively presented. People in Tharaka sub-county are familiar with the term climate change and associate it with environmental degradation. There are, however, misconceptions and gaps in understanding the causes of climate change. There was a mismatch between community and individual perception of onset and cessation of rainfall—evidence that analysis of the impact of climate change should take into account the scale of interaction. To improve climate change knowledge, there is a need for climate change education by scientific institutions—to provide information on local climatic conditions and global and regional drivers of climate change to local communities.

  15. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability

    Directory of Open Access Journals (Sweden)

    Chuhan Lu

    2016-01-01

    Full Text Available Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA in the last decade. Here, we define a new coldness intensity (CI index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E. Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.

  16. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?

    Directory of Open Access Journals (Sweden)

    Yasmin Hageer

    2017-06-01

    Full Text Available Background Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear. We evaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM, Maxent. Methods This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant mem