WorldWideScience

Sample records for winter climate areas

  1. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators

    Science.gov (United States)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.

    2012-04-01

    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of

  2. The Effect of Climate Variability on Gray Whales (Eschrichtius robustus) within Their Wintering Areas.

    Science.gov (United States)

    Salvadeo, Christian J; Gómez-Gallardo U, Alejandro; Nájera-Caballero, Mauricio; Urbán-Ramirez, Jorge; Lluch-Belda, Daniel

    2015-01-01

    The environmental conditions of the breeding and feeding grounds of the gray whale (Eschrichtius robustus) fluctuates at inter-annual scales in response to regional and basin climate patterns. Thus, the goals of this study were to assess if there are any relationships between summer sea ice on their feeding ground and counts of gray whale mother-calf (MC) pairs at Ojo de Liebre Lagoon (OLL); and if El Niño Southern Oscillation (ENSO) influences the winter distribution of gray whales MC pairs in the three primary breeding lagoons of OLL, San Ignacio Lagoon (SIL) and Santo Domingo Channel north of Bahia Magdalena (SDCh). Maximum February counts of MC pairs were compared with the length of the open-water season at the Bering Sea during the previous year. Then, an ENSO index and sea surface temperature anomalies outside the primary lagoons was compared with the maximum February counts of MC pairs at these lagoons. Results showed that maximum counts of MC pairs in OLL correlates with sea ice conditions in their feeding grounds from the previous feeding season, and this relationship can be attributed to changes in nutritive condition of females. ENSO-related variability influences distribution of MC pairs in the southern area of SDCh during the warm 1998 El Niño and cold 1999 La Niña. This supports the hypothesis that changes in the whales' distribution related to sea temperature occurs to reduce thermal-stress and optimize energy utilization for newborn whales. Although this last conclusion should be considered in view of the limited data available from all the whales' wintering locations in all the years considered.

  3. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  4. Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs

    NARCIS (Netherlands)

    Montero, J.I.; Stanghellini, C.; Castilla, N.

    2009-01-01

    Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum

  5. Overview of climatic effects of nuclear winter

    International Nuclear Information System (INIS)

    Jones, E.M.; Malone, R.C.

    1985-01-01

    A general description of the climatic effects of a nuclear war are presented. This paper offers a short history of the subject, a discussion of relevant parameters and physical processes, and a description of plausible nuclear winter scenario. 9 refs

  6. Key areas for wintering North American herons

    Science.gov (United States)

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  7. Reindeer (Rangifer tarandus and climate change: Importance of winter forage

    Directory of Open Access Journals (Sweden)

    Thrine Moen Heggberget

    2002-06-01

    Full Text Available As a consequence of increasing greenhouse gas concentrations, climate change is predicted to be particularly pronounced, although regionally variable, in the vast arctic, sub-arctic and alpine tundra areas of the northern hemisphere. Here, we review winter foraging conditions for reindeer and caribou (Rangifer tarandus living in these areas, and consider diet, forage quality and distribution, accessibility due to snow variation, and effects of snow condition on reindeer and caribou populations. Finally, we hypothesise how global warming may affect wild mountain reindeer herds in South Norway. Energy-rich lichens often dominate reindeer and caribou diets. The animals also prefer lichens, and their productivity has been shown to be higher on lichen-rich than on lichen-poor ranges. Nevertheless, this energy source appears to be neither sufficient as winter diet for reindeer or caribou (at least for pregnant females nor necessary. Some reindeer and caribou populations seem to be better adapted to a non-lichen winter diet, e.g. by a larger alimentary tract. Shrubs appear to be the most common alternative winter forage, while some grasses appear to represent a good, nutritionally-balanced winter diet. Reindeer/caribou make good use of a wide variety of plants in winter, including dead and dry parts that are digested more than expected based on their fibre content. The diversity of winter forage is probably important for the mineral content of the diet. A lichen-dominated winter diet may be deficient in essential dietary elements, e.g. minerals. Sodium in particular may be marginal in inland winter ranges. Our review indicates that most Rangifer populations with lichen-dominated winter diets are either periodically or continuously heavily harvested by humans or predators. However, when population size is mainly limited by food, accessible lichen resources are often depleted. Plant studies simulating climatic change indicate that a warmer, wetter

  8. Climatic potential for summer and winter wine production.

    Science.gov (United States)

    de Oliveira Aparecido, Lucas Eduardo; Moreto, Victor Brunini; de Souza Rolim, Glauco; da Silva Cabral de Moraes, José Reinaldo; Valeriano, Taynara Tuany Borges; de Souza, Paulo Sergio

    2018-03-01

    The geoviticultural multicriteria climatic classification (MCC) system provides an efficient guide for assessing the influence of climate on wine varieties. Paraná is one of the three states in southern Brazil that has great potential for the expansion of wine production, mainly due to the conditions that favour two harvests a year. The objective was to apply the geoviticultural MCC system in two production seasons. We used maximum, mean and minimum air temperature and precipitation for 1990-2015 for the state of Paraná. Air temperature and Precipitation were used to calculate the evapotranspiration and water balance. We applied the MCC system to identify potential areas for grapevine production for harvests in both summer and winter and then determined the climatic zones for each geoviticultural climate. Paraná has viticultural climates with conditions favourable for grapevine cultivation for the production of fine wines from summer and winter harvests. The conditions for the winter harvest provided wines with good coloration and high aromatic potential relative to the summer harvest. Chardonnay, Merlot, Pinot Blanc and Müller-Thurgau were suitable for regions with lower air temperatures and water deficits. Pinot Blanc and Müller-Thurgau were typical for the southern region of Paraná. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. India Annual Winter Cropped Area, 2001-2016

    Data.gov (United States)

    National Aeronautics and Space Administration — India Annual Winter Cropped Area, 2001 - 2016 consists of annual winter cropped areas for most of India (except the Northeastern states) from 2000-2001 to 2015-2016....

  10. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.

    Science.gov (United States)

    Roland, Jens; Matter, Stephen F

    2013-01-01

    We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.

  11. Climate and smoke: an appraisal of nuclear winter.

    Science.gov (United States)

    Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C

    1990-01-12

    The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.

  12. Winter climate change, plant traits and nutrient and carbon cycling in cold biomes

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; Makoto, K.

    2014-01-01

    It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation-soil feedbacks. One fruitful avenue for studying such

  13. Winter climate change: a critical factor for temperate vegetation performance.

    Science.gov (United States)

    Kreyling, Juergen

    2010-07-01

    Winter ecological processes are important drivers of vegetation and ecosystem functioning in temperate ecosystems. There, winter conditions are subject to rapid climate change. The potential loss of a longer-lasting snow cover with implications to other plant-related climate parameters and overwintering strategies make the temperate zone particularly vulnerable to winter climate change. A formalized literature search in the ISI Web of Science shows that plant related research on the effects of winter climate change is generally underrepresented. Temperate regions in particular are rarely studied in this respect, although the few existing studies imply strong effects of winter climate change on species ranges, species compositions, phenology, or frost injury. The generally positive effect of warming on plant survival and production may be counteracted by effects such as an increased frost injury of roots and shoots, an increased insect pest risk, or a disrupted synchrony between plants and pollinators. Based on the literature study, gaps in current knowledge are discussed. Understanding the relative effects of interacting climate parameters, as well as a stronger consideration of shortterm events and variability of climatic conditions is urgent. With respect to plant response, it would be particularly worthwhile to account for hidden players such as pathogens, pollinators, herbivores, or fungal partners in mycorrhization.

  14. Winter season mortality: will climate warming bring benefits?

    Science.gov (United States)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  15. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    Science.gov (United States)

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  16. Marine assemblages respond rapidly to winter climate variability.

    Science.gov (United States)

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  17. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  18. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  19. Winter climate change effects on soil C and N cycles in urban grasslands.

    Science.gov (United States)

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost. © 2013 John Wiley & Sons Ltd.

  20. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.

    Science.gov (United States)

    Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten

    2018-03-02

    Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India

    Science.gov (United States)

    Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.

    2015-12-01

    India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts

  2. Experimental log hauling through a traditional caribou wintering area

    Directory of Open Access Journals (Sweden)

    Harold G. Cumming

    1998-03-01

    Full Text Available A 3-year field experiment (fall 1990-spring 1993 showed that woodland caribou (Rangifer tarandus caribou altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

  3. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    Science.gov (United States)

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  4. Mapping urban climate zones and quantifying climate behaviors - An application on Toulouse urban area (France)

    Energy Technology Data Exchange (ETDEWEB)

    Houet, Thomas, E-mail: thomas.houet@univ-tlse2.fr [GEODE UMR 5602 CNRS, Universite de Toulouse, 5 allee Antonio Machado, 31058 Toulouse Cedex (France); Pigeon, Gregoire [Centre National de Recherches Meteorologiques, Meteo-France/CNRM-GAME, 42 avenue Coriolis, 31057 Toulouse Cedex (France)

    2011-08-15

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone-UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. - Highlights: > We proposed a method to map Urban Climate Zones and quantify their climate behaviors. > UCZ is an expert-based classification and is integrated in the WMO guidelines. > We classified 26 sample areas and quantified climate behaviors in winter/summer. > Results enhance urban heat islands and outskirts are surprisingly hottest in summer. > Influence of scale and climate data on UCZ mapping and climate evaluation is discussed. - This paper presents an automated approach to classify sample areas in a UCZ using landscape descriptors and demonstrate that climate behaviors of UCZ differ.

  5. The winter St. Helena climate index and extreme Benguela upwelling

    Science.gov (United States)

    Hagen, Eberhard; Agenbag, Jacobus J.; Feistel, Rainer

    2005-09-01

    Climate changes in the subtropical South-east Atlantic turn out to be well described by the St. Helena Island Climate Index (HIX) and observed fluctuations are in good agreement with inter-decadal variability of the entire South Atlantic Ocean. Year-to-year variations of the averaged austral winter HIX (July-September), representative of the main upwelling season, were compared with (i) corresponding averages of the geostrophic alongshore component of the south-east trade wind (SET) between St. Helena Island in the south-west and Luanda/Angola in the north-east, (ii) the meridional distribution of surface waters colder than 13 °C to characterise intense Benguela upwelling (IBU), and (iii) the meridional position of the Angola-Benguela Frontal Zone (ABFZ) determined by means of sea surface temperature images for offshore distances between 50 and 400 km. Temporal changes of these parameters were investigated and showed that the frequency of consecutive years of strong and relaxed Benguela upwelling is characterised by a quasi-cycle of about 11-14 years. It is proposed that the index of the winter HIX may be used as a 'surveyor's rod' to describe interannual changes in the Benguela upwelling regime as well as those of the embedded marine ecosystem.

  6. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of winter season increased significantly, the trend of chilling and drought decreased, however, the extreme disasters occurred frequently and the risks were higher in winter production areas. It was suggested that the winter planting should be closely integrated with climate resources and the occurrence law of meteorological disasters in growing season.

  7. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  8. Climatic potential for tourism in the Black Forest, Germany--winter season.

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  9. Climatic potential for tourism in the Black Forest, Germany — winter season

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  10. Mapping of QTLs for leaf area and the association with winter ...

    African Journals Online (AJOL)

    Variations in plant architecture are often associated with the ability of plants to survive cold stress during winter. In studies of winter hardiness in lentil, it appeared that small leaf area was associated with improved winter survival. Based on this observation, the inheritance of leaf area and the relationship with winter ...

  11. Ducks change wintering patterns due to changing climate in the important wintering waters of the Odra River Estuary

    Directory of Open Access Journals (Sweden)

    Dominik Marchowski

    2017-07-01

    Full Text Available Some species of birds react to climate change by reducing the distance they travel during migration. The Odra River Estuary in the Baltic Sea is important for wintering waterfowl and is where we investigated how waterbirds respond to freezing surface waters. The most abundant birds here comprise two ecological groups: bottom-feeders and piscivores. Numbers of all bottom-feeders, but not piscivores, were negatively correlated with the presence of ice. With ongoing global warming, this area is increasing in importance for bottom-feeders and decreasing for piscivores. The maximum range of ice cover in the Baltic Sea has a weak and negative effect on both groups of birds. Five of the seven target species are bottom-feeders (Greater Scaup Aythya marila, Tufted Duck A. fuligula, Common Pochard A. ferina, Common Goldeneye Bucephala clangula and Eurasian Coot Fulica atra, and two are piscivores (Smew Mergellus albellus and Goosander Mergus merganser. Local changes at the level of particular species vary for different reasons. A local decline of the Common Pochard may simply be a consequence of its global decline. Climate change is responsible for some of the local changes in the study area, disproportionately favoring some duck species while being detrimental to others.

  12. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    Science.gov (United States)

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  13. Impact of Climate Change on Winter Chilling Trend for Deciduous Fruit Trees (Case Study: Hamadan

    Directory of Open Access Journals (Sweden)

    A.A. sabziparvar

    2016-02-01

    . Therefore, in the context of global warming, the earlier flowering dates of many deciduous tree species is likely leads to increased risk of damage during the late spring frost. For future fruit farm management, decisions can be implemented with deliberation of the likely changes in the winter chilling requirement reported here. There might be some adaptation, at least to some degree, being essential for most production areas in Hamadan and other similar climate conditions within the next 40 years. Reduction in winter chilling, prevents breaking winter dormancy, which finally may lead to serious damage to deciduous fruits.

  14. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2014-09-01

    Full Text Available The long-term trends of the total column ozone (TCO over the Tibetan Plateau (TP and factors responsible for the trends are analysed in this study using various observations and a chemistry–climate model (CCM. The results indicate that the total column ozone low (TOL over the TP during winter and spring is deepening over the recent decade, which is opposite to the recovery signal in annual mean TCO over the TP after mid-1990s. The TOL intensity is increasing at a rate of 1.4 DU/decade and the TOL area is extending with 50,000 km2/decade during winter for the period 1979–2009. The enhanced transport of ozone-poor air into the stratosphere and elevated tropopause due to the rapid and significant warming over the TP during winter reduce ozone concentrations in the upper troposphere and lower stratosphere and hence lead to the deepening of the TOL. Based on the analysis of the multiple regression model, the thermal dynamical processes associated with the TP warming accounts for more than 50% of TCO decline during winter for the period 1979–2009. The solar variations during 1995–2009 further enlarge ozone decreases over the TP in the past decade. According to the CCM simulations, the increases in NOx emissions in East Asia and global tropospheric N2O mixing ratio for the period 1979–2009 contribute to no more than 20% reductions in TCO during this period.

  15. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  16. Impacts of climate change for Swiss winter and summer tourism: a general equilibrium analysis

    OpenAIRE

    Thurm, Boris; Vielle, Marc; Vöhringer, Frank

    2017-01-01

    Tourism could be greatly affected by climate change due to its strong dependence on weather. In Switzerland, the sector represents an appreciable share of the economy. Thus, studying climate effects on tourism is necessary for developing adequate adaptation strategies. While most of the studies focused on winter tourism, we investigate the climate change impacts on both winter and summer tourism in Switzerland. Using a computable general equilibrium (CGE) model, we simulate the impacts of tem...

  17. Implications of climate change on winter road networks in Ontario's Far North and northern Manitoba, Canada, based on climate model projections

    Science.gov (United States)

    Hori, Y.; Cheng, V. Y. S.; Gough, W. A.

    2017-12-01

    A network of winter roads in northern Canada connects a number of remote First Nations communities to all-season roads and rails. The extent of the winter road networks depends on the geographic features, socio-economic activities, and the numbers of remote First Nations so that it differs among the provinces. The most extensive winter road networks below the 60th parallel south are located in Ontario and Manitoba, serving 32 and 18 communities respectively. In recent years, a warmer climate has resulted in a shorter winter road season and an increase in unreliable road conditions; thus, limiting access among remote communities. This study focused on examining the future freezing degree-days (FDDs) accumulations during the winter road season at selected locations throughout Ontario's Far North and northern Manitoba using recent climate model projections from the multi-model ensembles of General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) scenarios. First, the non-parametric Mann-Kendall correlation test and the Theil-Sen method were used to identify any statistically significant trends between FDDs and time for the base period (1981-2010). Second, future climate scenarios are developed for the study areas using statistical downscaling methods. This study also examined the lowest threshold of FDDs during the winter road construction in a future period. Our previous study established the lowest threshold of 380 FDDs, which derived from the relationship between the FDDs and the opening dates of James Bay Winter Road near the Hudson-James Bay coast. Thus, this study applied the threshold measure as a conservative estimate of the minimum threshold of FDDs to examine the effects of climate change on the winter road construction period.

  18. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  19. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  20. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  1. The Year Without a Ski Season: An Analysis of the Winter of 2015 for Three Ski Resorts in Western Canada Using Historical and Simulation Model Forecasted Climate Data

    Science.gov (United States)

    Pidwirny, M. J.; Goode, J. D.; Pedersen, S.

    2015-12-01

    The winter of 2015 will go down as "the year without a ski season" for many ski resorts located close to the west coast of Canada and the USA. During this winter season, a large area of the eastern North Pacific Ocean had extremely high sea surface temperatures. These high sea surface temperatures influenced weather patterns on the west coast of North America producing very mild temperatures inland. Further, in alpine environments precipitation that normally arrives in the form of snow instead fell as rain. This research examines the climate characteristics of the winter of 2015 in greater detail for three ski resorts in British Columbia, Canada: Mount Washington, Cypress Mountain and Hemlock Valley. For these resorts, historical (1901 to 2013) and IPCC AR5 climate model forecasted climate data (RCP8.5 for 2025, 2055, and 2085) was generated for the variable winter degree days climate database ClimateBC. A value for winter degree days climate data at nearby meteorological stations for comparative analysis. For all three resorts, the winter of 2015 proved to be warmer than any individual year in the period 1901 to 2013. Interpolations involving the multi-model ensemble forecast means suggest that the climate associated with winter of 2015 will become the average normal for these resorts in only 35 to 45 years under the RCP8.5 emission scenario.

  2. Mapping urban climate zones and quantifying climate behaviors - An application on Toulouse urban area (France)

    International Nuclear Information System (INIS)

    Houet, Thomas; Pigeon, Gregoire

    2011-01-01

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone-UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. - Highlights: → We proposed a method to map Urban Climate Zones and quantify their climate behaviors. → UCZ is an expert-based classification and is integrated in the WMO guidelines. → We classified 26 sample areas and quantified climate behaviors in winter/summer. → Results enhance urban heat islands and outskirts are surprisingly hottest in summer. → Influence of scale and climate data on UCZ mapping and climate evaluation is discussed. - This paper presents an automated approach to classify sample areas in a UCZ using landscape descriptors and demonstrate that climate behaviors of UCZ differ.

  3. Climate change projections for winter precipitation over Tropical America using statistical downscaling

    Science.gov (United States)

    Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4

  4. Mapping of QTLs for leaf area and the association with winter ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... Variations in plant architecture are often associated with the ability of plants to survive cold stress during winter. In studies of winter hardiness in lentil, it appeared that small leaf area was associated with improved winter survival. Based on this observation, the inheritance of leaf area and the relationship ...

  5. Snow Based Winter Tourism and Kinds of Adaptations to Climate Change

    Science.gov (United States)

    Breiling, M.

    2009-04-01

    Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.

  6. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    Science.gov (United States)

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. © 2014 John Wiley & Sons Ltd.

  7. Climatic change in Mediterranean area

    International Nuclear Information System (INIS)

    Manos, A.

    1991-01-01

    United Nations Environmental Program (UNEP) studies on forecasted greenhouse climatic effects on the Mediterranean coastal and marine ecosystems and regional socio-economic framework have indicated the need for a concerted plan of protective and remedial action. The studies considered rises of 1.5 degrees in ambient temperature and 20 centimeters in sea level occurring before the year 2025. A regional, as opposed to a global area, study approach was adopted since the severity of climatic effects is expected to vary greatly from one part of the world to another. The specific areas investigated were the Po River Delta and Venezia Lagoon in Italy, the Nile Delta, Camargue, the Ebro Delta, the Tunisian National Park area, and the Thermaicos Gulf in Greece. The rise in average temperature is expected to negatively effect Mediterranean agricultural production and the coastal and marine ecosystems due to prolonged periods of drought and exceptional rainfall. It is suggested that a system of dikes be constructed to protect the coastal areas which are heavily dependent on tourism and agriculture

  8. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  9. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    Science.gov (United States)

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  10. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.; Chen, Y.; Wang, Z.

    2015-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  11. Effects of altitude and beehive bottom board type on wintering losses of honeybee colonies under subtropical climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ucak-Koc, A.

    2014-06-01

    The effects of altitude and beehive bottom board types (BBBT) on the wintering performance of honeybee colonies were investigated in the South Aegean Region of Turkey: Experiment I (E-I), with 32 colonies, in 2010-2011, and Experiment II (E-II), with 20 colonies, in 2011-2012. Each lowland (25 m) and highland (797 m) colony was divided randomly into two BBBT subgroups, open screen floor (OSF) and normal bottom floor (NBF), and wintered for about three months. In E-I, the local genotype Aegean ecotype of Anatolian bee (AE) and Italian race (ItR) were used, while in E-II, only the AE genotype was present. In E-I, the effect of wintering altitudes on the number of combs covered with bees (NCCB), and the effects of BBBT on brood area (BA) and the NCCB were found to be statistically significant (p < 0.05), but the effects of genotype on BA and NCCB were statistically insignificant (p > 0.05). In the E-II, the effect of wintering altitude on beehive weight was found to be statistically significant (p < 0.05), while its effect on the NCCB was statistically insignificant (p > 0.05). The wintering losses in the highland and lowland groups in E-I were determined to be 25% and 62.5% respectively. In contrast to this result, no loss was observed in E-II for both altitudes. In E-I, the wintering losses for both OSF and NBF groups were the same (43.75%). In conclusion, under subtropical climatic conditions, due to variations from year to year, honeybee colonies can be wintered more successfully in highland areas with OSF bottom board type. (Author)

  12. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines

    DEFF Research Database (Denmark)

    Barbet-Massin, Morgane; Walther, Bruno A; Thuiller, Wilfried

    2009-01-01

    We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible...... changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian...... Peninsula and major decreases in southern and eastern Africa....

  13. Climate change threatens European conservation areas

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Alagador, Diogo; Cabeza, Mar

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura...... 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring...... in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P...

  14. Mapping urban climate zones and quantifying climate behaviors--an application on Toulouse urban area (France).

    Science.gov (United States)

    Houet, Thomas; Pigeon, Grégoire

    2011-01-01

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone‑UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  16. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  17. Centennial Variability in Winter Climate and Water Column Oxygenation During Mediterranean Sapropel S1

    Science.gov (United States)

    Jilbert, T.; Reichart, G.; Mason, P.; de Lange, G. J.

    2008-12-01

    Eastern Mediterranean sapropels have been intensively studied as part of the oceanographic response to climate variability on orbital timescales, but the potential of laminated sapropel intervals for more highly resolved climate reconstruction remains underexploited. Even the highest resolution discrete sample series have been shown to alias short term variability in bottom water oxygenation, a key tracer of regional winter climate. Here we present trace elemental profiles of a laminated S1 sapropel, measured by Laser Ablation ICP-MS scanning of resin embedded sediment at <100µm resolution. The profiles reveal persistent centennial scale oscillations in the accumulation of V, Mo and U, interpreted to record variable oxygenation of the Eastern Mediterranean water column during S1. The results question existing theories about the stability of the 'sapropel state' and provide a new archive of centennial-scale winter climate variability in the wider European region.

  18. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  19. Climate Change Impacts on Winter and Spring Runoff and Recharge in Wisconsin

    Science.gov (United States)

    Murdock, E. A.; Potter, K. W.

    2011-12-01

    Our research seeks to quantify the impacts of warming winter temperatures and increased winter precipitation on water resources in Wisconsin. We are currently working to calibrate a Precipitation-Runoff Modeling System (PRMS) model of the Black Earth Creek Watershed, and will be using a newly-created frost module to examine the impacts of warming winter temperatures on winter and spring infiltration. As a class 1 trout stream, Black Earth Creek is of particular interest as a sensitive and economically important natural resource. Research carried out over 2010 utilized a one-dimensional soil model (Simultaneous Heat and Water, or SHAW) that simulates heat and water fluxes as well as frost processes. This model was driven by climate data obtained from a set of statistically-downscaled and de-biased General Circulation Model (GCM) data for historic and projected future for the years 2046-2065 and 2081-2100 under the SRES A1B emissions scenario. This research suggested that warming temperatures and reduced snow cover, along with a projected increase in winter precipitation, would lead to decreased soil frost formation and a commensurate increase in winter and spring infiltration and recharge. The one-dimensional structure of the model, however, made it difficult to calibrate at the landscape scale, as it is fundamentally unable to replicate the complex spatial processes that are critically important to hydrologic response. We hope that the PRMS model, driven with the same modeled climatic data, will be able to confirm the results of our SHAW modeling; namely that winter and spring recharge will increase significantly in a warming climate. Such an increase in recharge could have profound impacts on Wisconsin fisheries, agriculture, and development.

  20. Variability of East Asian winter monsoon in Quaternary climatic extremes in North China.

    NARCIS (Netherlands)

    Lu, H.; van Huissteden, J.; Zhou, J.

    2000-01-01

    In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climate extremes, two typical loess-paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the "Upper sand" and "Lower sand" (layers L9 and L15, respectively),

  1. Projected changes in winter climate in Beskids Mountains during 21st century

    Czech Academy of Sciences Publication Activity Database

    Farda, Aleš; Štěpánek, Petr; Zahradníček, Pavel; Skalák, Petr; Meitner, Jan

    2017-01-01

    Roč. 10, 1-2 (2017), s. 123-134 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Keywords : climate change * winter season * Euro-Cordex * Lysá Hora Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences

  2. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  3. Climate and changing winter distribution of alcids in the Northwest Atlantic

    Directory of Open Access Journals (Sweden)

    Richard R. Veit

    2015-04-01

    Full Text Available Population level impacts upon seabirds from changing climate are increasingly evident, and include effects on phenology, migration, dispersal, annual survivorship and reproduction. Most population data on seabirds derive from nesting colonies; documented climate impacts on winter ecology are scarce. We studied interannual variability in winter abundance of six species of alcids (Charadriiformes, Alcidae from a 58-year time series of data collected in Massachusetts 1954-2011. We used counts of birds taken during fall and winter from coastal vantage points. Counts were made by amateur birders, but coverage was consistent in timing and location. We found significant association between winter abundance of all six species of alcids and climate, indexed by North Atlantic Oscillation (NAO, at two temporal scales: 1. Significant linear trends at the 58-year scale of the time series; and 2. Shorter term fluctuations corresponding to the 5-8 year periodicity of NAO. Thus, variation in winter abundance of all six species of alcids was significantly related to the combined short-term and longer-term components of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot peaked during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre peaked during NAO negative years. For Common Murres and Razorbills, southward shifts in winter distribution have been accompanied by southward expansion of breeding range, and increase within the core of the range. The proximate mechanism governing these changes is unclear, but, as for most other species of seabirds whose distributions have changed with climate, seems likely to be through their prey.

  4. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation

    Science.gov (United States)

    Chu, Guoqiang; Sun, Qing; Zhu, Qingzeng; Shan, Yabing; Shang, Wenyu; Ling, Yuan; Su, Youliang; Xie, Manman; Wang, Xishen; Liu, Jiaqi

    2017-12-01

    High-resolution temperature records spanning the last deglaciation from low latitudes are scarce; however, they are important for understanding the rapid propagation of abrupt climate events throughout the Northern Hemisphere and the tropics. Here, we present a branched GDGTs-based temperature reconstruction from the sediments of Maar Lake Huguangyan in tropical China. The record reveals that the mean temperature during the Oldest Dryas was 17.8 °C, which was followed by a two-step increase of 2-3 °C to the Bølling-Allerød, a decrease to 19.8 °C during the Younger Dryas, and a rapid warming at the onset of the Holocene. The Oldest Dryas was about 2 °C warmer than the Younger Dryas. The reconstructed temperature was weighted towards the wintertime since the lake is monomictic and the mixing process in winter supplies nutrients from the lake bottom to the entire water column, greatly promoting biological productivity. In addition, the winter-biased temperature changes observed in the study are more distinctive than the summer-biased temperature records from extra-tropical regions of East Asia. This implies that the temperature decreases during abrupt climatic events were mainly a winter phenomenon. Within the limits of the dating uncertainties, the broadly similar pattern of winter-weighted temperature change observed in both tropical Lake Huguangyan and in Greenland ice cores indicates the occurrence of tightly-coupled interactions between high latitude ice sheets and land areas in the tropics. We suggest that the winter monsoon (especially cold surges) could play an important role in the rapid transmission of the temperature signal from the Arctic to the tropics.

  5. Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird.

    Science.gov (United States)

    Szostek, K Lesley; Becker, Peter H

    2015-07-01

    We estimated annual apparent survival rates, as well as local recruitment rates in different age groups and for different breeding status in the common tern Sterna hirundo using mark-recapture analysis on a long-term individual-based dataset from a breeding colony in Germany. Strong inter-annual variability in survival rates became apparent, especially in prospectors. Local recruitment also varied strongly between years and age groups. To explain these fluctuations, we linked survival and recruitment estimates to several environmental covariates expected to be limiting during the wintering period and migration, including the global climate indices of North Atlantic Oscillation and Southern Oscillation, fish abundance indices, and marine primary productivity in the West African wintering area. Contrary to expectations, global indices did not seem to be linked strongly to vital rates. Results showed that primary productivity had the strongest effect on annual survival, especially in young and inexperienced individuals. Primary productivity in the wintering area was also strongly associated with the probability of recruitment in the following breeding season, indicating that conditions during winter can have carry-over effects on the life cycle of individuals.

  6. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Numerical simulation of nuclear winter ocean upper layer cooling and climate relaxation

    International Nuclear Information System (INIS)

    Ganopol'skij, A.V.; Stenchikov, G.L.

    1987-01-01

    Numerical simulation of 'nuclear winter', based on earlier developed scenario is presented. According to the scenario the total power of explosions will be equal to 6500 Mt. 1500 Mt out of them will be directed to destruction of cities. 'Nuclear winter' will be initiated by the injection of 180 Tg of flue aerosol into the atmosphere in result of city, forest and industrial object fires. The mechanism of fast reconstruction of thermal structure of the upper ocean layer in result of intensification of wind mixing in regions with high temperature gradients is considered. On the average the temperature of ocean surface over the globe decreases by 1.2 deg C due to mixing , and especially during the first month. Calculation of long-term relaxation of climatic system after perturbation, caused by nuclear conflict, was conducted with the use of energy balance climate model. Recovery of perturbated season course of climatic characteristics continues 2-3 years

  8. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  9. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario

    Science.gov (United States)

    Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.

    2015-10-01

    This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.

  10. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    Science.gov (United States)

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  11. Characteristics of the East Asian Winter Climate Associated with the Westerly Jet Stream and ENSO

    Science.gov (United States)

    Yang, Song; Lau, K.-M.; Kim, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this study, the influences of the East Asian jet stream (EAJS) and El Nino/Southern Oscillation (ENSO) on the interannual variability of the East Asian winter climate are examined with a focus on the relative climate impacts of the two phenomena. Although the variations of the East Asian winter monsoon and the temperature and precipitation of China, Japan, and Korea are emphasized, the associated changes in the broad-scale atmospheric circulation patterns over Asia and the Pacific and in the extratropical North Pacific sea surface temperature (SST) are also investigated. It is demonstrated that there is no apparent relationship between ENSO and the interannual variability of EAJS core. The EAJS and ENSO are associated with distinctly different patterns of atmospheric circulation and SST in the Asian-Pacific regions. While ENSO causes major climate signals in the Tropics and over the North Pacific east of the dateline, the EAJS produces significant changes in the atmospheric circulation over East Asia and western Pacific. In particular, the EAJS explains larger variance of the interannual signals of the East Asian trough, the Asian continental high, the Aleutian low, and the East Asian winter monsoon. When the EAJS is strong, all these atmospheric systems intensify significantly. The response of surface temperature and precipitation to EAJS variability and ENSO is more complex. In general, the East Asian winter climate is cold (warm) and dry (wet) when the EAJS is strong (weak) and it is warm during El Nino years. However, different climate signals are found during different La Nina years. In terms of linear correlation, both the temperature and precipitation of northern China, Korea, and central Japan are more significantly associated with the EAJS than with ENSO.

  12. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...... measurements were quality controlled and discarded from the analysis if flagged for errors. Daily values of ET from the reference crop and winter wheat calculated from hourly values were used to calculate the crop coefficients. Average daily crop coefficients were in the 1.1-1.15 range during mid...

  13. The Shifting Climate Portfolio of the Greater Yellowstone Area.

    Directory of Open Access Journals (Sweden)

    Adam J Sepulveda

    Full Text Available Knowledge of climatic variability at small spatial extents (< 50 km is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world's most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948-2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA's physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  14. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  15. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines.

    Science.gov (United States)

    Barbet-Massin, Morgane; Walther, Bruno A; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric

    2009-04-23

    We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is -13 per cent (from -97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500+/-373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa.

  16. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.

    Directory of Open Access Journals (Sweden)

    José L Tellería

    Full Text Available We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs or indirect effects (primary productivity. Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction. Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.

  17. Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.

    Science.gov (United States)

    Tellería, José L; Fernández-López, Javier; Fandos, Guillermo

    2016-01-01

    We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.

  18. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke; Yang, Hongqing

    2017-12-01

    The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of

  19. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    Science.gov (United States)

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low ( < 0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  20. CORRELATIONS BETWEEN CLIMATIC CONDITIONS AND THE DEVELOPMENT OF WINTER TOURISM IN THE ORIENTAL CARPATHIANS. CASE STUDY: HARGHITA MOUNTAINS

    Directory of Open Access Journals (Sweden)

    M. MARIN

    2012-03-01

    Full Text Available The suitability of weather conditions for winter tourism development in the Eastern Carpathians. Case Study: Harghita Mountains. In the context of the ongoing global and regional climate change debates, the present study intends to analyze the impact these changes have on winter tourism development in the Harghita Mountains. With a maximum altitude of 2545 m, a complex structure of the underlying surface responsible fo r local climatic particularities, as well as for a wide range of complex and elementary topoclimates, the Romanian alpine zone has a moderate potential for the development of winter sports. Our objectives consist of making correlations between annual average temperatures and the average thickness of snow, between the years 1961 and 2000, in three resorts (Bãile Tuşnad, Bãile Harghita and Homorod. In certain cases, the ski slopes’ locations were not correlated with site-specific topoclimate conditions - in such a situation, equally affected are both the users and the owners of the establishment and last but not least, the natural ecosystems they overlap. The study aims to draw attention to development opportunities for winter tourism in the Harghita Mountains area, located west of the Eastern Carpathians. At present, the Harghita Mountains are mainly exploited locally, despite having important winter sports-related assets. From November to April, in Bãile Harghita, Bãile Tuşnad and Bãile Homorod, located in the south-east and south-west of this mountainous area, there is a consistent snow cover on numerous slopes of various inclinations and orientations. The methods that were used in this study aim to determine the average dates of occurrence of the first and last layers of snow and therefore the average annual snow cover interval in the study area. The results show that there is untapped natural potential related to the average and maximum levels of snow thickness and to the number of days with snow-covered ground

  1. Robust Projected Weakening of Winter Monsoon Winds Over the Arabian Sea Under Climate Change

    Science.gov (United States)

    Parvathi, V.; Suresh, I.; Lengaigne, M.; Izumo, T.; Vialard, J.

    2017-10-01

    The response of the Indian winter monsoon to climate change has received considerably less attention than that of the summer monsoon. We show here that all Coupled Model Intercomparison Project Phase 5 (CMIP5) models display a consistent reduction (of 6.5% for Representative Concentration Pathways 8.5 and 3.5% for 4.5, on an average) of the winter monsoon winds over the Arabian Sea at the end of 21st century. This projected reduction weakens but remains robust when corrected for overestimated winter Arabian Sea winds in CMIP5. This weakening is driven by a reduction in the interhemispheric sea level pressure gradient resulting from enhanced warming of the dry Arabian Peninsula relative to the southern Indian Ocean. The wind weakening reduces winter oceanic heat losses to the atmosphere and deepening of convective mixed layer in the northern Arabian Sea and hence can potentially inhibit the seasonal chlorophyll bloom that contributes substantially to the Arabian Sea annual productivity.

  2. Baltic Area - a specific region of climate change

    International Nuclear Information System (INIS)

    Shevkunova, Emma; Mescherskaya, Anna; Jaani, Ago

    1999-01-01

    The article points out that the Baltic Sea area has several specific characters of meteorological regime that makes it remarkably different from other regions in the Northen Hemisphere. First of all, it is caused by the geographical situation of the region - on the connecting area of two opposite atmospheric macro-systems - North-Atlantic ocean and Eurasian continental. The specialities of atmospheric circulation create weather situation that often causes a dissonance between climate changes here and general trends in Eastern and Western Europe in the same periods. On the contrary, in the periods of a general warming in Northern Hemisphere, extremely cold winters may occur in Baltic region. On the basis of the analysis of the data from mid-latitudes in the whole Northern Hemisphere, the main result is that the centre of present warming in the hemisphere is located in the eastern part of Baltic area, between Tallinn and St. Petersburg. A 8-year cycle appears in long time series of annual mean temperature. There is no connection between solar activity and the occurrence of extremely warm and extremely cold winter. The warming during the last 11 years (1988-1998) has been the greatest in this century. The reason of warming is growth of intensity of cyclonic activity in the North Atlantic, and especially, a remarkable increase in frequency of deep cyclones

  3. Spatial and temporal variations of winter discharge under climate change: Case study of rivers in European Russia

    Directory of Open Access Journals (Sweden)

    E. A. Telegina

    2015-05-01

    Full Text Available An important problem in hydrology is the re-evaluation of the current resources of surface and underground waters in the context of ongoing climate changes. The main feature of the present-day changes in water regime in the major portion of European Russia (ER is the substantial increase in low-water runoff, especially in winter. In this context, some features of the spatial–temporal variations of runoff values during the winter low-water period are considered. Calculations showed that the winter runoff increased at more than 95% of hydrological gauges. Changes in the minimum and average values of runoff during winter low-water period and other characteristics are evaluated against the background of climate changes in the recent decades. The spatial and temporal variability of winter runoff in European Russia is evaluated for the first time.

  4. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    Science.gov (United States)

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  5. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  6. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle

    Science.gov (United States)

    Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang

    2018-03-01

    Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.

  7. Winter climate extremes and their role for priming SOM decomposition under the snow

    Science.gov (United States)

    Gavazov, Konstantin; Bahn, Michael

    2015-04-01

    The central research question of this project is how soil respiration and soil microbial community composition and activity of subalpine grasslands are affected by extreme winter climate events, such as mid-winter snowmelt and subsequent advanced growing season date. In the scope of this talk, focus will be laid on the assumptions that (1) reduced snow cover leads to intensive freeze-thaw cycles in the soil with larger amplitudes of microbial biomass, DOC and soil CO2 production and efflux over the course of winter, and shifts peak microbial activity to deeper soil layers with limited and recalcitrant substrate; (2) causes a shift in microbial community composition towards decreased fungal/bacterial ratios; and (3) results in a stronger incorporation of labile C in microbial biomass and more pronounced priming effects of soil organic matter turnover. Our findings indicate that snow removal, induces a strong and immediate negative effect on the physiology of soil microbes, impairing them in their capacity for turnover of SOM in the presence of labile substances (priming). This effect however is transient and soil microbes recover within the same winter. The reason for that is that snow removal did not produce any measurable (PLFA) changes in soil microbial community composition. The advanced start of the growing season, as a result of snow removal in mid-winter, granted the bacterial part of the microbial community more active in the uptake of labile substrates and the turnover of SOM than the fungal one. This finding is in line with the concept for a seasonal shift towards bacterial-dominated summer microbial community composition and could bring about implications for the plant-microbe competition for resources at the onset of the growing season.

  8. The role of climatic variables in winter cereal yields: a retrospective analysis.

    Science.gov (United States)

    Luo, Qunying; Wen, Li

    2015-02-01

    This study examined the effects of observed climate including [CO2] on winter cereal [winter wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa)] yields by adopting robust statistical analysis/modelling approaches (i.e. autoregressive fractionally integrated moving average, generalised addition model) based on long time series of historical climate data and cereal yield data at three locations (Moree, Dubbo and Wagga Wagga) in New South Wales, Australia. Research results show that (1) growing season rainfall was significantly, positively and non-linearly correlated with crop yield at all locations considered; (2) [CO2] was significantly, positively and non-linearly correlated with crop yields in all cases except wheat and barley yields at Wagga Wagga; (3) growing season maximum temperature was significantly, negatively and non-linearly correlated with crop yields at Dubbo and Moree (except for barley); and (4) radiation was only significantly correlated with oat yield at Wagga Wagga. This information will help to identify appropriate management adaptation options in dealing with the risk and in taking the opportunities of climate change.

  9. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    Aim Species richness-area theory predicts that more species should be found if one samples a larger area. To avoid biases from comparing species richness in areas of very different sizes, area is often controlled by counting the numbers of co-occupying species in near-equal area grid cells...... affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...

  10. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    Science.gov (United States)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  11. SKI AREAS AND SLOPES IN ROMANIA. REVIEWING CURRENT STATE OF WINTER SPORTS TOURISM UNFOLDING POSSIBILITIES WITHIN CARPATHIAN MOUNTAINS

    Directory of Open Access Journals (Sweden)

    N. CIANGĂ

    2015-06-01

    Full Text Available Ski Areas and Slopes in Romania. Reviewing Current State of Winter Sports Tourism Unfolding Possibilities within Carpathian Mountains. This study is reviewing nowadays Romania’s tourism supply (2015 – laying special emphasis on the North-West Development Region’s situation – in terms of winter sports potential (resources and material and technical base (specific infrastructure. It calls into question a highly discussed topic within the domain of interest of Tourism Geography, whose recursiveness could be justified by countinuous changes that influence the quantitative and qualitative configuration of ski areas, ski tracks and related equipment2. The existence of favourable natural support in terms of relief and climate is an indispensable prerequisite to the development of winter sports tourism within any area. From this point of view, the presence of the Carpathians is a major advantage for Romania, the more so as the proportion of the mountain sector represents 30 percent of the national area (238,391 square kilometres. By occupying different amounts of the territory belonging to 6 development regions and 19 counties, heterogeneous tourism potential values have emerged, causing unequal exploitation opportunities within the mountain area. The purpose of this paper is to provide a general framework of Romanian ski slopes, areas and corresponding facilities for assessing their current state, from regional perspective, with emphasis on North-West’s situation. On this line, the main objectives, starting from identifying and inventorising to classifying regions and ski tracks based on hierarchical categories, also deal with ranking slopes according to surface, length, width, elevation of departure point, difference in elevation, difficulty ratings, capacities of slopes and cable transportation means. In order to achieve these goals, quantitative research methods and techniques mostly refered to observation, analysis, synthesis and

  12. Relationships between NDVI and Leaf Area Index for spring and winter camelina in Northeastern Montana

    Science.gov (United States)

    Jabro, Jay; Allen, Brett; long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim

    2016-04-01

    To our knowledge no research has been reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring and winter camelina. Relationships between NDVI and LAI for winter camelina (Camelina sativa) "Joelle" and spring camelina "CO46" were determined and evaluated in a 3-yr field study conducted in Sidney Montana under dryland conditions. The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of both spring and winter camelina were evaluated throughout 2013, 2014 and 2015 growing seasons. Significant linear relationships between NDVI and LAI were obtained for both spring and winter camelina when all the measurements were pooled across three growing seasons. Coefficients of determination (R2) of linearity were 0.77 and 0.79 for spring and winter camelina, respectively.

  13. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  14. Relationships between the climate change and the grain filling of winter wheat

    International Nuclear Information System (INIS)

    Shang, Z.; Jiang, D.

    2016-01-01

    The present study is based on the material in a grain filling rate experiment of winter wheat and hourly weather data organised by Xinghua city of Jiangsu Province. The aims are to objectively evaluate the possible influences of the temperature, precipitation, sunshine at the different time of the same day on the grain filling rate of winter wheat. The grain filling rate evaluation model of climate change is firstly developed, and then, the model calculation results are compared with the observed data. The along the changes of the microclimate, changes of the grain filling rate of winter wheat, which is not same in the gradual, rapid and slow increase stages. The changes in grain filling rate of winter wheat, which were caused by variations of temperature, precipitation and sunshine duration, showed periodic fluctuation. Variation in temperature resulted in 1.36 g d/sup -1/(10a)/sup -1/ of grain filling rate change; variation in precipitation resulted in -1.35 g d/sup -1/. (10a)/sup -1/ of grain filling rate change; and variation in sunshine duration resulted in 0.07 g d/sup -1/ (10a)/sup -1/ of grain filling rate change. Three samples showed a grain filling rate change of 0.08 g d/sup -1/(10a)/sup -1/. These findings indicate that the increase in temperature and sunshine duration caused the elevation of grain filling rate, whereas the increase in precipitation decreased the grain filling rate. Therefore, monitoring and predication capability of Meteorological disasters, such as drought caused by high temperature, should be strengthened to ensure the favourable weather condition and improve the grain filling rate through scientific methods such as artificial precipitation. (author)

  15. Relationships between climate and winter cereal grain quality in Finland and their potential for forecasting

    Directory of Open Access Journals (Sweden)

    P. D. HOLLINS

    2008-12-01

    Full Text Available Many studies have demonstrated the effects of climate on cereal yield, but there has been little work carried out examining the relationships between climate and cereal grain quality on a national scale. In this study national mean hectolitre weight for both rye and winter wheat in Finland was modelled using monthly gridded accumulated snow depth, precipitation rate, solar radiation and temperature over the period 1971 to 2001. Variables with significant relationships in correlation analysis both before and after difference detrending were further investigated using forward stepwise regression. For rye, March snow depth, and June and July solar radiation accounted for 66% of the year-to-year variance in hectolitre weight, and for winter wheat January snow depth, June solar radiation and August temperature accounted for 62% of the interannual variance in hectolitre weight. Further analysis of national variety trials and weather station data was used to support proposed biological mechanisms. Finally a cross validation technique was used to test forecast models with those variables available by early July by making predictions of above or below the mean hectolitre weight. Analysis of the contingency tables for these predictions indicated that national hectolitre weight forecasts are feasible for both cereals in advance of harvest.;

  16. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  17. Frost stress evolution and winter pea ideotype in the context of climate warming at a regional scale

    OpenAIRE

    Castel Thierry; Lecomte Christophe; Richard Yves; Lejeune-Hénaut Isabelle; Larmure Annabelle

    2017-01-01

    Pea (Pisum sativum L.) is an important crop in temperate regions for its high seed protein concentration that is particularly sensitive to abiotic stresses. The abrupt temperature increase known as the “1987/1988 temperature regime shift” that occurs over Europe is questioning how winter pea will perform in the changing climate. This study assessed the winter frost damage evolution along from 1961 to 2015 in Burgundy-Franche-Comté by using: (1) daily observed and gridded regional temperature ...

  18. The role of human influence on climate in recent UK winter floods and their impacts

    Science.gov (United States)

    Schaller, Nathalie; Yiou, Pascal; Kay, Alison; Lamb, Rob; Massey, Neil; van Oldenborgh, Geert Jan; Otto, Friederike; Sparrow, Sarah; Vautard, Robert; Bowery, Andy; Crooks, Susan; Huntingford, Chris; Ingram, William; Jones, Richard; Legg, Tim; Miller, Jonathan; Skeggs, Jessica; Wallom, David; Wilson, Simon; Allen, Myles

    2015-04-01

    The whole winter of 2013/2014 was characterized by a near-continuous succession of westerly storms. Accumulated rainfall during January 2014 was the largest ever recorded for that month across much of southern England, including the Radcliffe Observatory record in Oxford that begins in 1767. Severe floods resulted, causing major disruption. So far, quantifying any contribution from human influence on climate to such weather events and resulting floods has been difficult due to the large natural variability of winter precipitation in the North Atlantic and European regions. The emerging science of probabilistic event attribution however increasingly allows us to evaluate the extent to which human-induced climate change is affecting localised weather events. Under the project "EUropean CLimate and weather Events: Interpretation and Attribution" (EUCLEIA), an end-to-end attribution study is performed for the first time. An ensemble of 134,354 general circulation model simulations is run using the citizen science project weather@home. We find that the frequency of days in January in zonal flows increases jointly with increases in precipitation as a result of anthropogenic climate change. The best estimate of the change in risk of extreme (1-in-100-year in pre-industrial conditions) precipitation for January in southern England is an increase by around 40%, but the uncertainty range includes no change or an increase by over 150% due to uncertainty in the pattern of anthropogenic warming. A hydrological model driven by the model-simulated precipitation gives similar increases in risk compared to precipitation for 30-day peak river flows for the Thames at Kingston. Given these river flows we estimate that anthropogenic climate change has placed an additional 3,500 properties in the Thames catchment (upstream of the tidal reach through London) at risk of flooding from rivers over a broad range of return-times. Our study provides for the first time an estimate of the scale

  19. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii in China for the 21st century

    Directory of Open Access Journals (Sweden)

    Chunrong Mi

    2016-02-01

    Full Text Available The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii, a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest with two sets of variables (correlated variables removed or not. We used common evaluation methods area under the receiver operating characteristic curves (AUC and the True Skill Statistic (TSS as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs, and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat

  20. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century.

    Science.gov (United States)

    Mi, Chunrong; Falk, Huettmann; Guo, Yumin

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500-2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil

  1. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

    Science.gov (United States)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen

    2018-01-01

    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  2. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2012-03-01

    Full Text Available Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for determined environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of most productive areas of Italy (i.e. Capitanata, Puglia, using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i a single dataset (50 km x 50 km provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060 and +5°C (centred over 2070-2099, respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG. No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.

  3. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    Science.gov (United States)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  4. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    Science.gov (United States)

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  5. Climate Change Projections for African Urban Areas

    Science.gov (United States)

    Simonis, Ingo; Engelbrecht, Francois; Bucchignani, Edoardo; Mercogliano, Paola; Naidoo, Mogesh

    2013-04-01

    Mainly driven by changes in the orbital characteristics of Earth around the sun, the planet's climate has been continuously changing over periods of tens of thousands of years. However, the warming that has been detected in the Earth's atmosphere over the last century is occurring at a rate that cannot be explained by any known natural cycle. Main-stream science has indeed reached consensus that the 'enhanced green house effect', caused by the interplay of incoming short-wave irradiation, outgoing long-wave radiation and the absorption of energy by enhanced levels of CO2 and water vapour in the troposphere, is the main forcing mechanism responsible for the phenomena of global warming. The enhanced greenhouse effect strengthens the 'natural green house effect' that results from the CO2 and water vapour occurring naturally in the atmosphere. The continuous burning of fossil fuels since the industrial revolution and the simultaneous degradation of large forests, are the main reasons for the increase in CO2 concentrations in the atmosphere. The availability of climate change projection data varies considerably for different areas on Earth. Whereas the data centres storing climate change projections for Europe and North America now store petabytes of data, regionally downscaled projections for Africa are rarely available. In the context of the research project CLUVA, (Assessing vulnerability of urban systems, populations and goods in relation to natural and man-made disasters in Africa, co-funded by the European Commission under grant agreement no: 265137), the Council for Industrial and Scientific Research (CSIR) in South Africa and the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) in Italy have produced a large set of projections of climate change over Africa, covering the time period 1950 to 2100. Through the collaboration between CMCC and CSIR, a multi-model ensemble of eight high-resolution simulations of climate change over parts of West and East

  6. Frost stress evolution and winter pea ideotype in the context of climate warming at a regional scale

    Directory of Open Access Journals (Sweden)

    Castel Thierry

    2017-01-01

    Full Text Available Pea (Pisum sativum L. is an important crop in temperate regions for its high seed protein concentration that is particularly sensitive to abiotic stresses. The abrupt temperature increase known as the “1987/1988 temperature regime shift” that occurs over Europe is questioning how winter pea will perform in the changing climate. This study assessed the winter frost damage evolution along from 1961 to 2015 in Burgundy-Franche-Comté by using: (1 daily observed and gridded regional temperature data and (2 a validated crop winter frost stress model calibrated for pea. This study shows a global decrease of the frost stress nevertheless resulting from a subtle balance between the decrease in its intensity and the increase of the number of events. The frost stress evolution patterns with warming depend on both plant frost resistance level and acclimation rate and are still sensitive to winter climate fluctuations. This study provides relevant information for breeding performant winter crop ideotypes able to moderate detrimental effects of climate change and offering new cropping opportunities in temperate regions.

  7. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  8. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  9. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia

    Science.gov (United States)

    Fohlmeister, Jens; Plessen, Birgit; Dudashvili, Alexey Sergeevich; Tjallingii, Rik; Wolff, Christian; Gafurov, Abror; Cheng, Hai

    2017-12-01

    The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of climate changes over the European and western Asian continents throughout the last millennium. For example, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) over Europe have been associated with long-lasting phases with a positive and negative NAO index. Its climatic imprint is especially pronounced in European winter seasons. However, little is known about the influence of NAO with respect to its eastern extent over the Eurasian continent. Here we present speleothem records (δ13C, δ18O and Sr/Ca) from the southern rim of Fergana Basin (Central Asia) revealing annually resolved past climate variations during the last millennium. The age control of the stalagmite relies on radiocarbon dating as large amounts of detrital material inhibit accurate 230Th dating. Present-day calcification of the stalagmite is most effective during spring when the cave atmosphere and elevated water supply by snow melting and high amount of spring precipitation provide optimal conditions. Seasonal precipitation variations cause changes of the stable isotope and Sr/Ca compositions. The simultaneous changes in these geochemical proxies, however, give also evidence for fractionation processes in the cave. By disentangling both processes, we demonstrate that the amount of winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the NAO index but opposite to the higher mountain records of Central Asia. Several events of strongly reduced winter precipitation are observed during the LIA in Central Asia. These dry winter events can be related to phases of a strong negative NAO index and all results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems.

  10. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  11. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate.

    Directory of Open Access Journals (Sweden)

    Jakob Brodersen

    Full Text Available The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus was affected by the physiologically relatively small (2-5 °C changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC, under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.

  12. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate.

    Science.gov (United States)

    Brodersen, Jakob; Rodriguez-Gil, José Luis; Jönsson, Mikael; Hansson, Lars-Anders; Brönmark, Christer; Nilsson, P Anders; Nicolle, Alice; Berglund, Olof

    2011-01-01

    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5 °C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.

  13. Increasing winter conductive heat transfer in the Arctic sea-ice-covered areas: 1979–2014

    Science.gov (United States)

    Fan, Xieyu; Bi, Haibo; Wang, Yunhe; Fu, Min; Zhou, Xuan; Xu, Xiuli; Huang, Haijun

    2017-12-01

    Sea ice is a quite sensitive indicator in response to regional and global climate changes. Based on monthly mean Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) sea ice thickness fields, we computed the conductive heat flux (CHF) in the Arctic Ocean in the four winter months (November-February) for a long period of 36 years (1979-2014). The calculated results for each month manifest the increasing extension of the domain with high CHF values since 1979 till 2014. In 2014, regions of roughly 90% of the central Arctic Ocean have been dominated by the CHF values larger than 18 W m-2 (November-December) and 12 W m-2 (January-February), especially significant in the shelf seas around the Arctic Ocean. Moreover, the population distribution frequency (PDF) patterns of the CHF with time show gradually peak shifting toward increased CHF values. The spatiotemporal patterns in terms of the trends in sea ice thickness and other three geophysical parameters, surface air temperature (SAT), sea ice thickness (SIT), and CHF, are well coupled. This suggests that the thinner sea ice cover preconditions for the more oceanic heat loss into atmosphere (as suggested by increased CHF values), which probably contributes to warmer atmosphere which in turn in the long run will cause thinner ice cover. This represents a positive feedback mechanism of which the overall effects would amplify the Arctic climate changes.

  14. Wintering Waterbirds and Recreationists in Natural Areas: A Sociological Approach to the Awareness of Bird Disturbance

    Science.gov (United States)

    Le Corre, Nicolas; Peuziat, Ingrid; Brigand, Louis; Gélinaud, Guillaume; Meur-Férec, Catherine

    2013-10-01

    Disturbance to wintering birds by human recreational activities has become a major concern for managers of many natural areas. Few studies have examined how recreationists perceive their effects on birds, although this impacts their behavior on natural areas. We surveyed 312 users on two coastal ornithological sites in Brittany, France, to investigate their perception of the effects of human activities on wintering birds. The results show that the awareness of environmental issues and knowledge of bird disturbance depends on the socioeconomic characteristics of each user group, both between the two sites and within each site. Results also indicate that, whatever the site and the user group, the vast majority of the respondents (77.6 %) believed that their own presence had no adverse effects on the local bird population. Various arguments were put forward to justify the users' own harmlessness. Objective information on recreationists' awareness of environmental issues, and particularly on their own impact on birds, is important to guide managers in their choice of the most appropriate visitor educational programs. We recommend developing global but also specific educational information for each type of user to raise awareness of their own impact on birds.

  15. LEAF AREA INDEX IN WINTER WHEAT: RESPONSE ON SEED RATE AND NITROGEN APPLICATION BY DIFFERENT VARIETIES

    Directory of Open Access Journals (Sweden)

    M BAVEC

    2007-12-01

    Full Text Available The most important photosynthesis acceptor – leaf area vary among cultivation measures and it is limited factor for creating exact growth models in common winter wheat. The objective of this study was to investigate changes of leaf area index (LAI affected by agricultural treatments – 4 sowing rates and 9 nitrogen treatments based on fertilising rates, target values based on soil mineral nitrogen and plant sap tests target values including different varieties. Increasing sowing rates from 350 to 800 viable seeds m-2 increased LAI at EC 75 stage from 2.9 to 5.5, where LAI 4.1 at 500 seeds m-2 did not vary between lower and higher rates; also at EC 85 stage LAIs did not differ significantly. At EC 75 stage LAI differed among control and nitrogen treatments from 1.0 to 6.5 and at EC 85 stage from 0.1 to 2.4, with differences in interaction among varieties. Higher nitrogen rates for first and second top dressing increased LAI in both stages compared without dressing treatments. Due to significant differences among LAI as consequence of production system, we suggest to take this into account in every prediction and modelling of growth in winter wheat.

  16. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    Science.gov (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  17. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    Science.gov (United States)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  18. Increasing late winter-early spring fire activity in Northern Spain: climate change or human footprint?

    Science.gov (United States)

    Carracedo Martín, Virginia; García Codron, Juan Carlos; Rasilla Álvarez, Domingo

    2016-04-01

    Most of the fire activity across Spain concentrates during the summer months, but a secondary peak appears also during late winter and early spring (February and March). This peak represents a tiny fraction of the burned surface but in northern Spain becomes the main fire season, representing up to 60 % of the total burned surface. Moreover, the impact of this "unseasonal" fire regime is becoming more relevant; an analysis of the temporal evolution of the burned surface since 2005 shows that the suppression efforts of summer forest fires have apparently succeeded, while the opposite has occurred with late winter-early spring forest fires. For example, during March 2012 more than 22,000 ha were burned in the Spanish provinces of Asturias and Cantabria, while about 14,000 suffers the effects of fires in Northern Portugal. Anthropogenic factor (mostly linked to an extensive cattle farming in the mountains) are the main cause of such fire activity, but atmospheric factors also play a relevant role in the spread of this fires. Consequently, the main aim of this poster is to explore if the recent evolution of forest fires in the study area are consequence of an aggravation of the atmospheric conditions driving to more fire risk conditions, or other factor could also explain the increase in fire activity. Burned surface data obtained from official statistics since 1971 were compared with atmospheric data at two temporal scales: daily fire risk values calculated from synoptic records and long term drought indices (SPI and SPEI). The results show a long term increase in both daily fire risk and drought conditions, but this trend can be related to the background warming of the area, rather to an increase in the frequency and magnitude of the extreme fire weather events. Thus, we consider that the regional atmospheric evolution cannot explain by itself the recent increase in late winter-early spring fire activity. Additional anthropogenic factors, such as recent changes in

  19. 78 FR 63069 - Special Regulations; Areas of the National Park System; Yellowstone National Park; Winter Use

    Science.gov (United States)

    2013-10-23

    ... National Park; Winter Use AGENCY: National Park Service, Interior. ACTION: Final rule. SUMMARY: The... to experience the unique winter resources and values at Yellowstone National Park. This rule includes... cleaner and quieter than what has been allowed during the previous four winter seasons, reward oversnow...

  20. 78 FR 22470 - Special Regulations; Areas of the National Park System; Yellowstone National Park; Winter Use

    Science.gov (United States)

    2013-04-16

    ... National Park; Winter Use AGENCY: National Park Service, Interior. ACTION: Proposed rule. SUMMARY: The... experience the unique winter resources and values at Yellowstone National Park. This rule includes provisions... cleaner and quieter than what has been authorized during the previous four winter seasons, reward oversnow...

  1. Validation of a limited area model over Dome C, Antarctic Plateau, during winter

    Energy Technology Data Exchange (ETDEWEB)

    Gallee, Hubert; Gorodetskaya, Irina V. [Laboratoire de Glaciologie et de Geophysique de l' Environnement, CNRS, 54, rue Moliere, BP. 96, St Martin d' Heres Cedex (France)

    2010-01-15

    The limited area model MAR (Modele Atmospherique Regional) is validated over the Antarctic Plateau for the period 2004-2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux. (orig.)

  2. Sewage-treatment under substantial load variations in winter tourism areas--a full case study.

    Science.gov (United States)

    Winkler, S; Matsché, N; Gamperer, T; Dum, M

    2004-01-01

    The sewage-load variations in winter tourism areas are characterized by sudden increases--in the range of a factor two to three--within only a few days at the start and the end of the tourist season, especially at Christmas. The sudden load increases occur during periods of low wastewater temperatures, which is an additional demanding factor with respect to nitrogen removal. A full case study was carried out at WWTP Saalfelden, which is located near one of Austria's largest skiing resorts. The plant is designed for 80,000 PE and built according to the HYBRID-concept, which is a special two stage activated sludge process for extensive nutrient removal.

  3. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  4. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  5. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  6. Climate change and its impact on the Crn Drim Catchment Area In Macedonia

    International Nuclear Information System (INIS)

    Todorovik, Oliviia; Aleksovska, Nina; Rikaloska, Gorica

    2004-01-01

    In this paper it will be presented the overview of the climate change and climate regimes of the world in general according different scenarios in the latest assessment (the 3d Report published in 2001) of the Intergovernmental Panel on Climate Change (IPCC) and its impact on the Crn Drim catchment area in Macedonia.This analysis and interpretation only provides a preliminary investigation into climate change and how it will affect Ohrid and Prespa lake system as a part of Crn Drim catchment area, which is already attacked by the climate changed. From the climatological aspect two elements: temperature and rainfall, will be' calculated and their expected changes over the century in the same area. Dates used in these analyses are from the Hydro meteorological Service of Republic of Macedonia archives In the graphs are shown changes in average seasonal climate for the period around the 2080s, relative to 1961-1990 climate. Results are shown for the SRES A2 scenario, which assumes a future world of fairly conventional energy development, i.e., continuing dependence on fossil carbon fuels. The projections for average seasonal climate for temperature and precipitation are estimated and shown separately for two seasons: winter and summer. The estimated values are compared with annual mean global worming for the 2080s,-and for the SRES A2 scenario, as calculated by the IPCC (a value of about 3.2 o C). The results show rate of worming greater in summer than in winter for Ohrid Lake as well as for Prespa Lake. Concerning the precipitation, it increases slightly in winter and decreases substantially in summer, by around 30 per cent. As the conclusion it is obviously that the temperature will rise in all Crn Drim catchment area with implications for increasing water temperature and water quality, which would be degraded by higher water temperature. This will increase evaporation and as the results can be expected water level decreasing. Also, higher temperatures and heat

  7. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  8. Climatic change and tourism. Research into the consequences of climatic change on winter tourism in the Swiss alps; Klimaaenderung und Tourismus. Klimafolgenforschung am Beispiel des Wintertourismus in den schweizer Alpen

    Energy Technology Data Exchange (ETDEWEB)

    Abegg, B.

    1996-12-31

    Swiss winter tourism is highly dependent on the ski industry and therefore relies on favourable snow conditions. An investigation of the snow-deficient winters at the end of the 1980`s indicated that lack of snow severely impacts the industry. Climate change (global warming) is a new challenge for Swiss winter tourism. It is demonstrated that a rising snowline would have a wide range of serious consequences. Under current climate conditions, ski fields higher than 1200 m are considered to be snow abundant. Assuming that temperatures increase by about 2{sup o}C, this line of snow-reliability would rise by 300 m up to 1500 m. Today 85% of Swiss ski areas are snow reliable. If climate change occurred as outlined above, the number of snow reliable ski areas would drop to 63%. The number of suitable days for skiing, defined as days with a snow depth of {>=} 30 cm, would also decrease - in Einsiedeln (910 m) for example, from today`s average of 51 days to 24 days in the future. Furthermore it is possible that the frequency and distribution of the weather patterns would change. If the currently observed trends (increasing occurrence of high pressure systems in winter) continue, negative effects on ski tourism have to be expected. A survey undertaken in the canton of Grisons shows that climate change is perceived as a potential problem for tourism. The tourism managers are well aware of the relationships between the snow conditions and their businesses, and they can imagine what the consequences of increasingly poor snow conditions would be. With regard to the projected climate change, tourism managers are not destined to play an inactive role. There is a whole set of strategies, especially in the short term, that can help sustain ski tourism. Best known is the increased use of artificial snow. Others are a better snow management or the development of new facilities in higher areas. In the medium and long term however, more sophisticated strategies need to be taken into

  9. [Climate and ecologic state of urban areas in Eastern Kazakhstan].

    Science.gov (United States)

    Onaev, S T; Grebeneva, O V; Shadetova, A Zh; Kurmangalieva, D S; Balaeva, E A

    2011-01-01

    Ust-Kamenogorsk territory was demonstrated to have climate peculiarities depending on local relief and unfavorable wind conditions of ventilation, that could promote formation of highly chemically loaded zones. Suggested evaluation methods provide qualitative and quantitative assessment of climate parameters for individual areas of residence. Marking areas according to residence comfort for population, based on analysis of geographic position of the studied territory, in accordance with repetition of meteorologic processes, could specify major factors influencing climate on urban territories of modem Kazakhstan cities.

  10. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Jumari Steyn

    2016-10-01

    Full Text Available Several studies have demonstrated the ability of certain viruses to overwinter in arthropod vectors. The over-wintering mechanism of bluetongue virus (BTV is unknown. One hypothesis is over-wintering within adult Culicoides midges (Diptera; Ceratopogonidae that survive mild winters where temperatures seldom drop below 10 °C. The reduced activity of midges and the absence of outbreaks during winter may create the impression that the virus has disappeared from an area. Light traps were used in close association with horses to collect Culicoides midges from July 2010 to September 2011 in the Onderstepoort area, in Gauteng Province, South Africa. More than 500 000 Culicoides midges were collected from 88 collections and sorted to species level, revealing 26 different Culicoides species. Culicoides midges were present throughout the 15 month study. Nine Culicoides species potentially capable of transmitting BTV were present during the winter months. Midges were screened for the presence of BTV ribonucleic acid (RNA with the aid of a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR assay. In total 91.2% of midge pools tested positive for BTV RNA. PCR results were compared with previous virus isolation results (VI that demonstrated the presence of viruses in summer and autumn months. The results indicate that BTV-infected Culicoides vectors are present throughout the year in the study area. Viral RNA-positive midges were also found throughout the year with VI positive midge pools only in summer and early autumn. Midges that survive mild winter temperatures could therefore harbour BTV but with a decreased vector capacity. When the population size, biting rate and viral replication decrease, it could stop BTV transmission. Over-wintering of BTV in the Onderstepoort region could therefore result in re-emergence because of increased vector activity rather than reintroduction from outside the region.

  11. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark

    DEFF Research Database (Denmark)

    Montesino-San Martin, M; Olesen, Jørgen E; Porter, John Roy

    2014-01-01

    in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated......Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower...... latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SRES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes...

  12. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  13. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  14. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  15. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations

    NARCIS (Netherlands)

    Wit, de A.J.W.; Duveiller, G.; Defourny, P.

    2012-01-01

    Here, we describe and test a method for optimising winter wheat green area index (GAI) simulated with the WOFOST crop model using MODIS estimates of GAI in the Walloon region of Belgium. Detailed crop type maps during the period of 2000–2009 were used to derive time series of crop-specific GAI by

  16. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  17. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  18. [Variation of air pollution in new Tangshan industrial area during winter heating period].

    Science.gov (United States)

    Zhou, Rui; Xing, Jin-Yuan; Xing, Li-Ting; Wang, Xiao-Yuan; Feng, Xiao-Xin; Ji, Dong-Sheng; Wang, Yue-Si

    2011-07-01

    To illuminate the air pollution situation of the new Tangshan industrial area in the heating period, the observation of atmospheric pollutants was conducted in Tangshan City, Qianan City and Caofeidian Town from Oct. 2009 to Apr. 2010. The result showed that air pollution was serious in the area in winter. The regional mean concentration of NO, NO2, SO2, CO, PM2.5 and PM10 reached (26 +/- 28), (52 +/- 27), (72 +/- 53), (3 500 +/- 3 600), (82 +/- 65), (164 +/- 121) microg x m(-3) in the heating period, respectively. The concentration of NO and SO2 was 2.5 times in the heating period more than in the non-heating period. The concentration of NO2 and PM10 increased by -30%. The rates that CO and PM10 exceeded the National Ambient Air Quality Standard II were 27% and 40%; and the rate that PM2.5 exceeded the WHO IT1 Standard was 38%. The typical diurnal variations of NO, NO2, SO2, PM2.5 and PM10 were similar with peaking at 08:00 and 18:00, but the diurnal variation of CO was single peak at 08:00 with accumulating in evening. The peaks of NO, CO and SO2 were very high in morning because of the rush hours and the heating, which were 50, 90, and 5100 microg x m(-3), respectively. The peaks of NO2, PM2.5 and PM10 were relatively gentle, which were 56, 105, and 202 microg x m(-3), respectively. The cluster analysis of backward trajectories showed only the northerwinds, the cold airs can wash away the air pollution, while the southerwinds and easternwinds can easily accumulate the pollutants or transport the pollutants to the Beijing-Tianjin region.

  19. Mapping urban climate zones and quantifying climate behaviors - An application on Toulouse urban area (France)

    OpenAIRE

    Houet, Thomas; Pigeon, Grégoire

    2011-01-01

    International audience; Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone--UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meanin...

  20. Climate Change: Natural Water and Fertilization Effects on Winter Rye (Secale cereale L.) Yield in Monoculture

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    . Akad. Tidskr. 139:8. Jolánkai, M., 2005. Effect of climate change on plant cultivation. „AGRO-21" Füzetek. 41. 47-58. Kádár, I., 1992. A növénytáplálás alapelvei és módszerei. MTA TAKI. Budapest. 398 p. Kádár, I., 2005. A rozs (Secale cereale L.) műtrágyázása meszes csernozjom talajon. Növénytermelés. In press Kádár, I., Lásztity, B. & Szemes I., 1982. Az őszi rozs tápanyagfelvételének vizsgálata szabadföldi tartamkísérletben. II. Levélanalízis. Na, Fe, Mn, Zn, Cu felvétele. Agrokémia és Talajtan. 31. 17-28. Kádár, I., Szemes, I. & Lásztity, B., 1984. Relationship between "year effect" and state of nutrition in a long-term winter rye experiment. Növénytermelés. 33. 235-241. Kádár, I. & Szemes, I., 1994. A nyírlugosi tartamkísérlet 30 éve. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. Láng, I., 1973. Műtrágyázási tartamkísérletek homoktalajokon. MTA Doktori Értekezés. MTA TMB. Budapest. Láng, I., 2005. Éghajlat és időjárás: változás-hatás-válaszadás. „AGRO-21" Füzetek. 43. 3-10. Láng, I., Harnos, Zs. & Jolánkai, M., 2004. Alkalmazkodási stratégiák klímaváltozás esetére: nemzetközi tapasztalatok hazai lehetőségek. "AGRO-21" Füzetek. 35. 70-77. Márton, L., 2002. Climate fluctuations and the effects of N fertilizer on the yield of rye (Secale cereale L.). Plant Production. 51. 199-210. Márton, L., 2004. Rainfall and fertilization effects on crops yield in a global climate change. In: Proc. Role of Multipurpose Agriculture in Sustaining Global Environment-AGROENVIRON 2004 (Udine, 20-24. October 2004). Part 3. 451-456. DPVTA. Udine. Márton, L., 2005a. Disasters as drought-, and rainfall excess and artificial fertilization effects on crop yield. In: Proc. International Conference on Energy, Environment and Disasters-INCEED2005 (Charlotte, 24-30. July 2005). 49-50. ISEG. Charlotte. Márton L., 2005b. Artificial fertilizers and climate change impacts on crops yield. In: Proc

  1. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  2. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  3. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    Science.gov (United States)

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  5. Inadvertent weather modification urban areas - lessons for global climate change

    International Nuclear Information System (INIS)

    Changnon, S.A.

    1992-01-01

    Large metropolitan areas in North America, home to 65% of the USA's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multidisciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioural implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally

  6. Seasonal changes in activity levels among nursing care insurance service users in areas with different climates.

    Science.gov (United States)

    Yamasaki, Masaya; Someya, Fujiko

    2015-03-01

    [Purpose] To clarify seasonal changes in activity levels among nursing care insurance service users in areas with different climates using the Life Space Assessment. [Subjects] A total of 72 nursing care insurance service users aged ≥65 years, who were from areas along the Sea of Japan or those around the Inland Sea. [Methods] The subjects were divided into 2 groups according to their home prefecture, and each survey was conducted over two successive seasons (Survey I: fall and winter, n=48, Survey II: winter and spring, n=24). We investigated the subjects' basic information, and determined their FIM, the Life Space Assessment, and Modified Falls Efficacy Scale scores. These scores were subjected to between-group and -season comparisons. [Results] In Survey I, there were no significant differences in any investigation item between the 2 groups, but the Japan Sea group showed decreases in the Life Space Assessment, Independent Life space, and Minimal Life space scores in winter. In Survey II, we did not note any between-group or -season differences. [Conclusion] Our findings suggest that the Life Space Assessment, whose scores are influenced by outdoor environments, may be used as a tool to clarify seasonal changes in activity levels of nursing care insurance service users.

  7. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... in northern Sweden. Both climate and vegetation type were strong interactive controls on ecosystem CO2 production rates during winter. Of all variables tested, soil temperature explained by far the largest amount of variation in respiration rates (41-75%). Our results indicate that vegetation type only...... respiration, suggesting that spatial variations in maximum snowdepth may be a primary determinant of regional patterns of wintertime CO2 release. Together, our results have important implications for predictions of how the distribution of tundra vegetation types and the carbon balances of arctic ecosystems...

  8. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    Science.gov (United States)

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  9. Deep-diving by narwhals Monodon monoceros: differences in foraging behavior between wintering areas?

    DEFF Research Database (Denmark)

    Laidre, K. L.; Heide-Jørgensen, M. P.; Dietz, R.

    2003-01-01

    between summer and winter. Clear differences were observed between 2 wintering grounds. Whales occupying one wintering ground spent most of their time diving to between 200 and 400 m (25 dives per day, SE 3), confirmed by both depth and temperature recording tags. In contrast, narwhals in a separate...... wintering ground spent less time at shallow depths and most of their time diving to at least 800 m (13 to 26 dives per day, SE 1 to 3). A model of occupancy time at depth showed that whales making multiple daily deep dives spent over 3 h at >800 m (SD 0.6) and traveled 13 min (SD 1) per round trip to reach...... this depth. Whales diving to between 200 and 400 m spent approximately 2.5 h (SD 0.4) at this depth, traveling 5 min per round trip. The observed differences in time allocation and dive behavior indicate local variation between the 2 wintering grounds in the Baffin Bay ecosystem....

  10. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  11. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century

    OpenAIRE

    Mi, Chunrong; Falk, Huettmann; Guo, Yumin

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suit...

  12. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb climate.

    Directory of Open Access Journals (Sweden)

    Shari L Forbes

    Full Text Available The investigation of volatile organic compounds (VOCs associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L. were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS. The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were

  13. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Thaler, S.; Eitzinger, Josef; Trnka, Miroslav; Dubrovský, Martin

    2012-01-01

    Roč. 150, č. 5 (2012), s. 537-555 ISSN 0021-8596 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : climate change * weather generator * winter wheat * adaptation options * Central Europe Subject RIV: EH - Ecology, Behaviour; DG - Athmosphere Sciences, Meteorology (UFA-U) Impact factor: 2.878, year: 2012 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8678290

  14. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia

    Science.gov (United States)

    Cheng, Ying; Liu, Hongyan; Wang, Hongya; Piao, Shilong; Yin, Yi; Ciais, Philippe; Wu, Xiuchen; Luo, Yao; Zhang, Caina; Song, Yaqiong; Gao, Yishen; Qiu, Anan

    2017-08-01

    Alpine timberline is particularly sensitive to global climate change, with the danger of losing essential ecosystem services in high elevational regions. Its evolution is generally linked to annual average thermal regimes, and is regarded as an indicator of climate warming. However, the effect of uneven seasonal climate change stressed by the Hijioka et al. (2014) on alpine timberline dynamics in terms of both position migration and species composition remains unclear. Here, we documented approximately 6000 years of postglacial alpine timberline evolution on Mt. Tabai in the monsoon-dominated East Asian subtropical-temperate transition. We analyzed three high-resolution lacustrine sediment sequences located below, within, and above the current alpine timberline, an ecotone between the forest line and treeline, respectively. The timberline position appears to have varied coincidently with the temperature effect of cold East Asian Winter Monsoon (EAWM), implying that enhanced EAWM shortened the duration of the growing season and reduced forest survival at the alpine timberline. Unlike position migration, however, timberline species composition depends on summer precipitation. We found that drought-tolerant herb and shrub species were much more sensitive to variations in the water-bearing East Asian Summer Monsoon (EASM) than mesophytic trees at the alpine timberline. Our results suggest that prediction of future timberline dynamics should consider uneven seasonal climate changes.

  15. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Pengnian Yang

    2016-02-01

    Full Text Available Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People’s Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 m × 3 m and five winter irrigation treatments (1200 m3/ha, 1800 m3/ha, 2400 m3/ha, 3000 m3/ha, and 3600 m3/ha and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800

  16. Drastic shifts in the Levant hydroclimate during the last interglacial indicate changes in the tropical climate and winter storm tracks

    Science.gov (United States)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2017-12-01

    Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion

  17. Responses of wintering geese to the designation of goose foraging areas in The Netherlands

    NARCIS (Netherlands)

    Koffijberg, K; Schekkerman, H.; van der Jeugd, H.P.; Hornman, M.; van Winden, E.

    2017-01-01

    The Netherlands is important for wintering migratory herbivorous geese, numbers of which have rapidly increased, leading to conflict with agriculture. In 2005/2006, a new goose management policy aimed to limit compensation payments to farmers by concentrating foraging geese in 80 000 ha of

  18. Culicoides species abundance and potential over-wintering of African horse sickness virus in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2014-11-01

    Full Text Available In South Africa, outbreaks of African horse sickness (AHS occur in summer; no cases are reported in winter, from July to September. The AHS virus (AHSV is transmitted almost exclusively by Culicoides midges (Diptera: Ceratopogonidae, of which Culicoides imicola is considered to be the most important vector. The over-wintering mechanism of AHSV is unknown. In this study, more than 500 000 Culicoides midges belonging to at least 26 species were collected in 88 light traps at weekly intervals between July 2010 and September 2011 near horses in the Onderstepoort area of South Africa. The dominant species was C. imicola. Despite relatively low temperatures and frost, at least 17 species, including C. imicola, were collected throughout winter (June–August. Although the mean number of midges per night fell from > 50 000 (March to < 100 (July and August, no midge-free periods were found. This study, using virus isolation on cell cultures and a reverse transcriptase polymerase chain reaction (RT-PCR assay, confirmed low infection prevalence in field midges and that the detection of virus correlated to high numbers. Although no virus was detected during this winter period, continuous adult activity indicated that transmission can potentially occur. The absence of AHSV in the midges during winter can be ascribed to the relatively low numbers collected coupled to low infection prevalence, low virus replication rates and low virus titres in the potentially infected midges. Cases of AHS in susceptible animals are likely to start as soon as Culicoides populations reach a critical level.

  19. Tree-ring analysis of winter climate variability and ENSO in Mediterranean California

    International Nuclear Information System (INIS)

    Woodhouse, C.A.; Univ. of Colorado, Boulder

    2006-01-01

    The feasibility of using tree-ring data as a proxy for regional precipitation and ENSO events in the Mediterranean region of California is explored. A transect of moisture-sensitive tree-ring sites, extending from southwestern to north-central California, documents regional patterns of winter precipitation and replicates the regional response to ENSO events in the 20. century. Proxy records of ENSO were used with the tree-ring data to examine precipitation/ENSO patterns in the 18. and 19. centuries. Results suggest some temporal and spatial variability in the regional precipitation response to ENSO over the last three centuries

  20. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  1. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    Directory of Open Access Journals (Sweden)

    Carlos Carroll

    Full Text Available Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by

  2. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  3. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

  4. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  5. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    Science.gov (United States)

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.

  6. Anomalous winter climate conditions in the Pacific rim during recent El Nino Modoki and El Nino events

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Hengyi; Behera, Swadhin K. [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan); Yamagata, Toshio [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan)]|[University of Tokyo, Department of Earth and Planetary Science, Graduate School of Sciences, Tokyo (Japan)

    2009-04-15

    Present work compares impacts of El Nino Modoki and El Nino on anomalous climate in the Pacific rim during boreal winters of 1979-2005. El Nino Modoki (El Nino) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple 'boomerangs' of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those 'boomerangs' reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Nino Modoki owing to displacement of the wet 'boomerang' arms more poleward toward east. Discontinuities at outer 'boomerang' arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Nino Modoki, while much of the western USA is wet during El Nino. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Nino Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Nino. The East Asian winter monsoon related anticyclone is over the South China Sea during El Nino Modoki as compared to its position over the Philippine Sea during El Nino, causing opposite precipitation anomalies in the southern East Asia between the two phenomena. (orig.)

  7. A new type of climate network based on probabilistic graphical models: Results of boreal winter versus summer

    Science.gov (United States)

    Ebert-Uphoff, Imme; Deng, Yi

    2012-10-01

    In this paper we introduce a new type of climate network based on temporal probabilistic graphical models. This new method is able to distinguish between direct and indirect connections and thus can eliminate indirect connections in the network. Furthermore, while correlation-based climate networks focus on similarity between nodes, this new method provides an alternative viewpoint by focusing on information flow within the network over time. We build a prototype of this new network utilizing daily values of 500 mb geopotential height over the entire globe during the period 1948 to 2011. The basic network features are presented and compared between boreal winter and summer in terms of intra-location properties that measure local memory at a grid point and inter-location properties that quantify remote impact of a grid point. Results suggest that synoptic-scale, sub-weekly disturbances act as the main information carrier in this network and their intrinsic timescale limits the extent to which a grid point can influence its nearby locations. The frequent passage of these disturbances over storm track regions also uniquely determines the timescale of height fluctuations thus local memory at a grid point. The poleward retreat of synoptic-scale disturbances in boreal summer is largely responsible for a corresponding poleward shift of local maxima in local memory and remote impact, which is most evident in the North Pacific sector. For the NH as a whole, both local memory and remote impact strengthen from winter to summer leading to intensified information flow and more tightly-coupled network nodes during the latter period.

  8. Pollen-inferred quantitative reconstruction of the Holocene climate in the central Mediterranean area (Italy)

    Science.gov (United States)

    Peyron, O.; Magny, M.; Combourieu-nebout, N.; Goring, S.; Joannin, S.; de Beaulieu, J.-L.; Brugapaglia, E.; Dormoy, I.; Drescher-schneider, R.; Galop, D.; Ortu, E.; Sadori, L.

    2012-04-01

    The Mediterranean area is particularly sensitive to short-term climate change due to its intermediate position between the higher-latitude and lower-latitude climate systems. Consequently, future climate change can be expected to be particularly strong in this region and will likely have a strong impact on terrestrial ecosystems. Therefore a growing interest has been focused on the climate study of the last 15,000 years in the Mediterranean area. This study presents new pollen-based climate reconstructions of Holocene precipitation and temperature for four high-resolution pollen sequences from north to south of Italy: - Lake Ledro, Northern Italy (Magny et al., 2009; Joannin et al, in prep), - Lake Accesa, central-Italy (Magny et al., 2007; Drescher-Schneider et al., 2007; Vannière et al., 2008; Peyron et al., 2011) - Trifoglietti, Southern Italy (Joannin et al., in prep) - Pergusa, Sicily (Sadori and Narcisi, 2001; Magny et al., 2011) We aim to reconstruct quantitatively the climate changes in central Mediterranean during the Holocene and distinguish the patterns, trends and main changes along a latitudinal gradient. We also aim to test the reconstruction of the precipitation seasonality which can be validated by independent proxies obtained for same records, i.e. lake-levels, charcoal/fires (Magny et al., 2011; Vannière et al., 2011). To provide the climatic reconstruction, we use both the Modern Analogues Technique (MAT), and the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM) developed by Goring et al. (2009). Reconstructed annual and winter precipitations show a Holocene optimum at 9000-6000 cal BP for all sites, and an aridification trend starting around 4500 cal BP. The summer signal is different, underlining different patterns from North to South. Summer temperatures were cool during the Early Holocene and show a trend consistent with previous results for Southern Europe (Davis and Brewer, 2009). In order to test

  9. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    Science.gov (United States)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature

  10. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Dr. Christoph Maria Ravesloot

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of

  11. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    Science.gov (United States)

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  12. Observed and Projected Climate Extremities in Chennai Metropolitan Area

    Science.gov (United States)

    Anushiya, j.; Andimuthu, R.

    2013-12-01

    Analyses of observed climate throughout world revealed some significant changes in the extremes. Any change in the frequency or severity of extreme climate events would have profound impacts on the resilience of nature and society. It is thus very important to analyze extreme events to reliably monitor and detect climate change. Chennai is the fourth largest metropolis in India and one of the fastest growing economic and Industrial growth centers in South Asia. Population has grown rapidly in the last 20 years due to its major industrialization and tremendous growth. Already Chennai's day and night time Temperature shows an increasing trend. The past incidence of catastrophic flooding was observed in the city due to heavy rains associated with depressions and cyclonic storm lead floods in major rivers. After 2000, the incidents were reported repeatedly. The effort has made in this study to find the observed climate extremities over the past years and in the future. For observed changes, IMD gridded data set, and station data are used. Future high resolution climate scenarios (0.220x0.220) are developed through RCM using PRECIS. The boundary data have provided by the UK Met office. The selected members are simulated under the A1B scenario (a mid range emission scenario) for a continuous run till 2100. Climate indices listed by Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) by the CLIVAR are considered in this study. The indices were obtained using the software package RClimDex. Kendall's tau based slope estimator has been used to find the significance lavel. The results shows the significant increasing tendency of warm days (TX90P) in the past and in future. The trends in extreme wet days (R99P) are also increased. The growth in population, urban and industrial area, economic activities, depletion of natural resources along with changing climate are forced to develop the infrastructure includes climate friendly policies to adopt and to ensure the

  13. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  14. Climatic features of Ljig municipal and its surrounding area

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Territory of Ljig municipal is located in Podrinje-Colubara region and belongs to the temperate continental climate with continental rain regime. This is hilly- mountainous area with 848 m altitude (Rajac Mountain and 723 m relative height, in which are deeply incised (up to 500 m valleys of Ljig River and its tributaries. These geomorphologic features cause airstreams direction in this territory, and because of that some parts of Ljig municipal have temperate continental climate (like valleys and some of them have severe continental climate (like Rajac Mountain. The peak of precipitation is at the end of spring and beginning of summer - in May and June, and the driest months are February and October. The great influences on climatic changes in Ljig municipal and its area have north low parts of Panonian area, which are open for penetration of damp and cold air streams from north, northwest and west. This mountain area on south part of Ljig municipal is some kind of "dam" for cold air streams from south, so they are considerable colder on this territory. On the base of available data in period 1961-1990 from Meteorological Annuals of Republic Hydrometeorological Institute of Serbia climatologic overview is presented.

  15. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.

    2004-01-01

    Roč. 77, - (2004), s. 229-249 ISSN 0177-798X R&D Projects: GA ČR GA521/02/0827 Grant - others:Mendel University of Agriculture and Forestry Brno(CZ) J 08/98:432100001 Institutional research plan: CEZ:AV0Z3042911 Keywords : climate change scenarios * wheat yields Subject RIV: GC - Agronomy Impact factor: 0.964, year: 2004

  16. Winter climate and plant productivity predict abundances of small herbivores in central Europe

    Czech Academy of Sciences Publication Activity Database

    Tkadlec, Emil; Zbořil, J.; Losík, J.; Gregor, P.; Lisická, L.

    2006-01-01

    Roč. 32, č. 2 (2006), s. 99-108 ISSN 0936-577X R&D Projects: GA ČR GA206/04/2003 Institutional research plan: CEZ:AV0Z60930519 Keywords : climate effects * common vole * European hare * NAO * plant productivity * crop yield Subject RIV: EH - Ecology, Behaviour Impact factor: 1.519, year: 2006 http://www.int-res.com/articles/cr_oa/c032p099.pdf

  17. The North Atlantic spring-bloom system - where the changing climate meets the winter dark

    Directory of Open Access Journals (Sweden)

    Svein eSundby

    2016-03-01

    Full Text Available The North Atlantic with its spring-bloom ecosystem has its particular responses to climate change, many of them different from the other parts of the world’s oceans. The system is strongly influenced by anthropogenic climate change as well as to strong decadal to multidecadal natural climate variability. In particular, the northernmost part of the system and the Arctic is exposed to higher increase in temperature than any other ocean region. The most pronounced examples of poleward migration of marine species are found in the North Atlantic, and comprise the recent warming phase after the 1970s. The latitudinal asymmetric position of the Arctic Front and its nature of change result in a considerably larger migration distance and migration speed of species in the Northeast Atlantic part of the system. However, we here hypothesize that there is a limit to the future extent of poleward migration of species constrained by the latitudinal region adjacent the Polar Circle. We define this region the critical latitudes. This is because the seasonal light cycle at high latitudes sets particular demands on the life cycle of planktivore species. Presently, boreal planktivore species at high latitudes deposit lipids during the short spring bloom period and overwinter when phytoplankton production is insufficient for feeding. Unless invading temperate species from farther south are able to adapt by developing a similar life cycle future poleward migration of such species will be unlikely.

  18. Residuals, bioaccessibility and health risk assessment of PAHs in winter wheat grains from areas influenced by coal combustion in China.

    Science.gov (United States)

    Tian, Kai; Bao, Huanyu; Zhang, Xuechen; Shi, Taoran; Liu, Xueping; Wu, Fuyong

    2018-03-15

    Polycyclic aromatic hydrocarbons (PAHs) contamination in atmospheric and soil was serious, which is mainly due to high level of emission of PAHs in China resulted from the predominating use of coal in energy consumption and continuous development of economy and society for years. However, the status of PAHs in winter wheat grains from the areas influenced by coal combustion in China was still not clear. During harvest season, the winter wheat grains were collected from agricultural fields surrounding coal-fired power plants located in Shaanxi and Henan Provinces. This study found that the mean concentrations of 15 priority PAHs ranged from 69.58 to 557.0μgkg -1 . Three-ring PAHs (acenaphthene, acenaphthylene, fluorene, phenanthrene and anthracene) were dominant in the grains, accounting for approximately 70-81% of the total PAHs. The bioaccessibility of low molecular weight (LMW, 2-3 ring) PAHs (51.1-52.8%), high molecular weight (HMW, 4-6 ring) PAHs (19.8-27.6%) and total PAHs (40.9-48.0%) in the intestinal condition was significantly (pvalues of incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors were all higher than the baseline value (10 -6 ) and some even fell in the range of 10 -5 -10 -4 , which indicated that most grains from the areas affected by coal combustion possessed considerable cancer risk. The present study also indicated that the children were the age group most sensitive to PAHs contamination. The pilot research provided relevant information for the regulation of PAHs in the winter wheat grains and for the safety of the agro-products growing in the PAHs-contaminated areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tourism-climate conditions and their future development in the Polish-Saxon border area

    Directory of Open Access Journals (Sweden)

    Bartłomiej Miszuk

    2016-09-01

    projected for the lower located areas, while a distinct decrease is simulated in summer due to a higher heat stress frequency. In the highest parts of the mountains, an improvement of climate conditions for tourism in the warm season is expected. In the case of winter, worse conditions might be noticed due to an increase in air temperature resulting in a shorter period of snow cover.

  20. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  1. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  2. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both

  3. Managing protected areas under climate change: challenges and priorities.

    Science.gov (United States)

    Rannow, Sven; Macgregor, Nicholas A; Albrecht, Juliane; Crick, Humphrey Q P; Förster, Michael; Heiland, Stefan; Janauer, Georg; Morecroft, Mike D; Neubert, Marco; Sarbu, Anca; Sienkiewicz, Jadwiga

    2014-10-01

    The implementation of adaptation actions in local conservation management is a new and complex task with multiple facets, influenced by factors differing from site to site. A transdisciplinary perspective is therefore required to identify and implement effective solutions. To address this, the International Conference on Managing Protected Areas under Climate Change brought together international scientists, conservation managers, and decision-makers to discuss current experiences with local adaptation of conservation management. This paper summarizes the main issues for implementing adaptation that emerged from the conference. These include a series of conclusions and recommendations on monitoring, sensitivity assessment, current and future management practices, and legal and policy aspects. A range of spatial and temporal scales must be considered in the implementation of climate-adapted management. The adaptation process must be area-specific and consider the ecosystem and the social and economic conditions within and beyond protected area boundaries. However, a strategic overview is also needed: management at each site should be informed by conservation priorities and likely impacts of climate change at regional or even wider scales. Acting across these levels will be a long and continuous process, requiring coordination with actors outside the "traditional" conservation sector. To achieve this, a range of research, communication, and policy/legal actions is required. We identify a series of important actions that need to be taken at different scales to enable managers of protected sites to adapt successfully to a changing climate.

  4. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  5. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    planning of adaptation to the anticipated climatic changes and research to identify optimal strategies. In other areas of the world droughts and/or water resource availability in general will also become increasingly important. As such the water cycle in urban areas will be controlled more extensively......Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost....... There is a need to forecast all the changes that can be foreseen within the technical lifetime of city infrastructure, notably the water system and the impacts on other aspects of urban liveability. Based on the projects in Partnership Water in Urban Areas (www.vandibyer.dk) these drivers will be discussed...

  6. What drove the Pacific and North America climate anomalies in winter 2014/15?

    Science.gov (United States)

    Peng, Peitao; Kumar, Arun; Hu, Zeng-Zhen

    2017-12-01

    In late 2014 and early 2015, the canonical atmospheric response to the El Niño and Southern Oscillation (ENSO) event was not observed in the central and eastern equatorial Pacific, although Niño3.4 index exceeded the threshold for a weak El Niño. In an effort to understand why it was so, this study deconvoluted the observed 2014/15 December-January-February (DJF) mean sea surface temperature (SST), precipitation and 200 hPa stream function anomalies into the leading patterns related to the principal components of DJF SST variability. It is noted that the anomalies of these variables were primarily determined by the patterns related to two SST modes: one is the North Pacific mode (NPM), and the other the ENSO mode. The NPM was responsible for the apparent lack of coupled air-sea relationship in the central equatorial Pacific and the east-west structure of the circulation anomalies over North America, while the ENSO mode linked to SSTs in the central and eastern equatorial Pacific as well as the circulation in the central equatorial Pacific. Further, the ENSO signal in DJF 2014/15 likely evolved from the NPM pattern in winter 2013/14. Its full development, however, was impeded by the easterly anomalies in the central equatorial Pacific that was associated with negative SST anomalies in the southeastern subtropical Pacific. In addition, the analyses also indicates that the SST anomalies in the Niño3.4 region alone were not adequate for capturing the coupling of oceanic and atmospheric anomalies in the tropical Pacific, due to the fact that this index cannot distinguish whether the SST anomaly in the Niño3.4 region is associated with the ENSO mode or NPM, or both.

  7. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab

    2013-10-01

    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  8. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  9. Winter temperatures in the second half of the sixteenth century in the central area of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    T. Bullón

    2008-12-01

    Full Text Available This paper studies the winter temperatures of the second part of the sixteenth century in the central area of the Iberian Peninsula. A large number of historical documents that are stored in many different Spanish archives were consulted in order to carry out this research. The data was first arranged and weighted according to the intensity and significance of the meteorological phenomena described and, subsequently, these values were assigned an ordinal index ranging from +4 to −4. The statistical treatment applied is based on the reconstruction of temperatures equivalent to this ordinal index, expressed as anomalies of the 1961–1990 period, belonging to a reference station located at the approximate geographical center of the area under study. The results show winter thermal conditions different from current ones that, for the most part, stay below the reference average and that occurred with a wide range of variability. The influence that thermal conditions had on the evolution of some environmental aspects are considered based on the forest exploitation problem information and on the wine harvest production.

  10. Evaluation of air temperature distribution using thermal image under conditions of nocturnal radiative cooling in winter season over Shikoku area

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.

    1993-01-01

    Using the thermal images offered by the infra-red thermometer and the LANDSAT, the air temperature distribution over mountainous regions were estimated under conditions of nocturnal radiative cooling in the winter season. The thermal image analyses by using an infra-red thermometer and the micrometeological observation were carried out around Zentsuji Kagawa prefecture. At the same time, the thermal image analyses were carried out by using the LANDSAT data. The LANDSAT data were taken on Dec. 7, 1984 and Dec. 5, 1989. The scenes covered the west part of Shikoku, southwest of Japan.The results were summarized as follows:Values of the surface temperature of trees, which were measured by an infra-red thermometer, were almost equal to the air temperature. On the other hand, DN values detected by LANDSAT over forest area were closely related with air temperature observed by AMeDAS. Therefore, it is possible to evaluate instantaneously a spatial distribution of the nocturnal air temperature from thermal image.The LANDSAT detect a surface temperature over Shikoku area only at 21:30. When radiative cooling was dominant, the thermal belt and the cold air lake were already formed on the mountain slopes at 21:30. Therfore, it is possible to estimate the characteristic of nocturnal temperature distribution by using LANDSAT data.It became clear that the temperature distribution estimated by thermal images offered by the infra-red thermometer and the LANDSAT was useful for the evaluation of rational land use for winter crops

  11. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  12. Short-Term Relationship between Hip Fracture and Weather Conditions in Two Spanish Health Areas with Different Climates

    Directory of Open Access Journals (Sweden)

    José María Tenías

    2015-01-01

    Full Text Available Objective. To evaluate differences in the short-term relationship between weather conditions and the incidence of hip fracture in people aged 65 and over among two regions of Spain. Methods. Hip fracture incidence was calculated for the years 2000–2008 for residents of Health Area 14 in Valencian Community (Mediterranean climate and the “Mancha Centro” Health Area in Castilla-La Mancha (inland climate, Spain. The relationship between hip fracture incidence and weather was analyzed with a case-crossover design and explored in subgroups defined by sex, age, and fracture type. Results. In the inland area, a positive and significant tendency for hip fracture incidence was observed (annual increase: 1.5% whereas in the Mediterranean area a seasonal increase of 9% was noted in autumn and winter with respect to spring. Weather conditions, especially wind, were significantly associated with hip fracture incidence: days with more frequent windy periods and/or a greater wind velocity were associated with an increase in hip fracture incidence of 51% in the Mediterranean area and 44% in the inland area. Conclusions. Hip fracture incidence exhibits seasonal changes that differ between the Mediterranean and inland areas. The short-term relationship with climate, although similar in both areas, may partly explain these seasonal changes.

  13. Management, winter climate and plant–soil feedbacks on ski slopes: a synthesis

    NARCIS (Netherlands)

    Meijer zu Schlochtern, M.P.; Rixen, C.; Wipf, S; Cornelissen, J.H.C.

    2014-01-01

    Owing to the increasing popularity of skiing and the upslope movement of the snow reliability line in mountain regions, more and more alpine environments are being turned into skiing areas, with strong impacts on ecosystem functions and biodiversity. Creation and management of ski slopes cause

  14. The long-term effect of climate change on productivity of winter wheat in Denmark: a scenario analysis using three crop models

    DEFF Research Database (Denmark)

    Öztürk, Isik; Sharif, Behzad; Baby, Sanmohan

    2017-01-01

    The response of grain yield, grain nitrogen (N), phenological development and evapotranspiration of winter wheat to climate change was analysed over an 80-year period based on climate change predictions of four regional circulation models (RCMs) under the IPCC (International Panel on Climate Change....... The present study suggested that in Denmark, alternative strategies for organic N acquisition of plants must be developed. Statistical analyses showed that while the crop models were the main source of uncertainty in estimating crop performance indicators in response to climate change, the choice of RCM......) A1B emission scenario for the 21st century using three process-based models; A 20-year set (1991–2010) of observed daily climate data from Aarslev, Denmark was used to form the baseline, from which the RCM data were generated. The simulation of crop growth was performed with increasing carbon...

  15. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  16. Climate change and Greenland White-fronted Geese Anser albifrons flavirostris: shifts in distribution and advancement in spring departure times at Wexford versus elsewhere in the winter range

    DEFF Research Database (Denmark)

    Fox, Anthony David; Merne, Oscar J; Walsh, Alyn J.

    2012-01-01

    Count data have shown that numbers of Greenland White-fronted Geese Anser albifrons flavirostris wintering at their numerically most important site (Wexford Slobs in south east Ireland) have remained more or less constant over 30 years, in contrast to recent declines at their second most important...... site (Islay further north in south west Scotland), and declines in the population as a whole. There was no evidence to suggest a northwards shift in wintering geese as might be predicted under global climate change. Although Greenland White-fronted Geese now depart from Wexford in spring on average 22...... in migration timing. The more rapid advancement of spring migration at Wexford compared to elsewhere in the range and the retention of wintering geese there in contrast to declining trends amongst the population as a whole suggest that local management of the food resource at Wexford may be responsible...

  17. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    Full Text Available Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1 complex sub-pixel heterogeneity; (2 little to no available calibration data; and (3 high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000–2001 to 2015–2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites. This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods

  18. Climate change, species-area curves and the extinction crisis.

    Science.gov (United States)

    Lewis, Owen T

    2006-01-29

    An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.

  19. The effect of winter length on duration of dormancy and survival of specialized herbivorous Rhagoletis fruit flies from high elevation environments with acyclic climatic variability.

    Science.gov (United States)

    Rull, J; Tadeo, E; Lasa, R; Aluja, M

    2017-09-19

    Dormancy can be defined as a state of suppressed development allowing insects to cope with adverse conditions and plant phenology. Among specialized herbivorous insects exploiting seasonal resources, diapause frequently evolves as a strategy to adjust to predictable plant seasonal cycles. To cope with acyclic and unpredictable climatic events, it has been found for some insects that a proportion of the population undergoes prolonged dormancy. We compared the response of three species in the Rhagoletis cingulata species group exploiting plants differing in fruiting phenology from environments varying in frequency and timing of acyclic climatic catastrophic events (frost during flowering and fruit set) and varying also in the time of the onset of the rainy season. Small proportions (10 months), and large proportions of pupae died without emerging as adults. The number of days elapsed from the end of artificial winter and adult eclosion was longer for R. cingulata exploiting late fruiting Prunus serotina in Northeastern Mexico than for flies recovered from earlier fruiting plants in the central Altiplano. Rhagoletis turpiniae and northeastern R. cingulata pupae suffered high proportions of parasitism. Large proportions of R. cingulata from central Mexico engaging in prolonged dormancy may be explained by the fact that flowering and fruit set for its host, P. serotina var capuli, driven by the timing of maximum precipitation, matches a period of highest probability of frost often resulting in large areas with fruitless trees at unpredictable time intervals. As a consequence of differences in host plant fruiting phenology, central and northeastern Mexican R. cingulata were found to be allochronically isolated. Prolonged dormancy may have resulted in escape from parasitism.

  20. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    Science.gov (United States)

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  1. Combined Study of Snow Depth Determination and Winter Leaf Area Index Retrieval by Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal

    2017-04-01

    A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed

  2. Urban climate in the Tokyo metropolitan area in Japan.

    Science.gov (United States)

    Matsumoto, Jun; Fujibe, Fumiaki; Takahashi, Hideo

    2017-09-01

    Long-term climate changes related with urbanization in Tokyo, Japan, and recent temperature and heavy rainfall distribution in the Tokyo metropolitan area are reviewed. A relatively high temperature increase in annual mean temperature at the rate of 3.0°C/century was detected in Tokyo for the period 1901-2015. Some observational evidence showed the existence of both thermal and mechanical effects of urbanization on recent heavy rainfall occurrences, and modeling studies also support precipitation enhancement. Urban influences were recognized in other climatological elements, such as number of fog days, relative humidity, and wind circulation. Copyright © 2017. Published by Elsevier B.V.

  3. Quantitative Study of Green Area for Climate Sensitive Terraced Housing Area Design in Malaysia

    International Nuclear Information System (INIS)

    Yeo, O T S; Saito, K; Said, I

    2014-01-01

    Neighbourhood plays a significant role in peoples' daily lives. Nowadays, terraced housing is common in Malaysia, and green areas in the neighborhood are not used to their maximum. The aim of the research is to quantify the types of green area that are most efficient for cooling the environment for thermal comfort and mitigation of Urban Heat Island. Spatial and environmental inputs are manipulated for the simulation using Geographic Information System (GIS) integrated with computational microclimate simulation. The outcome of this research is a climate sensitive housing environment model framework on the green area to solve the problem of Urban Heat Island

  4. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing-Tianjin-Hebei area

    Science.gov (United States)

    He, Jianjun; Gong, Sunling; Liu, Hongli; An, Xingqin; Yu, Ye; Zhao, Suping; Wu, Lin; Song, Congbo; Zhou, Chunhong; Wang, Jie; Yin, Chengmei; Yu, Lijuan

    2017-12-01

    To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing-Jin-Ji (JJJ, hereinafter)—in December 2013-16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m-3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013-16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.

  5. Linkage of the king eider population in Northeast Greenland: Migration, moult and discovery of a new offshore wintering area at Spitsbergenbanken

    DEFF Research Database (Denmark)

    Mosbech, Anders; Johansen, Kasper Lambert; Sonne, Christian

    In late July 2009, two female king eiders were caught on the breeding grounds in Myggbukta, Northeast Greenland and equipped with satellite transmitters. Both individuals were tracked for approximately two years. The birds remained in the Myggbukta area until the onset of the autumn migration...... arrival 6 April) where they stayed for some time before returning on the spring migration to Greenland. During a ship-based survey in the offshore winter location at Spitsbergenbanken in April 2013, a previously unknown wintering ground with approximately 10.000 king eiders was discovered. The birds were...... concentrated in a partly ice-covered area 79 km from shore and of about 20 m depth. The number of king eiders indicated that Spitsbergenbanken is a wintering area for both the East Greenland and the Svalbard breeding populations. The discovery has important conservation implications due to the expanding...

  6. Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate

    Science.gov (United States)

    Elders, Akiko; Pegion, Kathy

    2017-12-01

    Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.

  7. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    Science.gov (United States)

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  8. Patient safety climate in 92 US hospitals: differences by work area and discipline.

    Science.gov (United States)

    Singer, Sara J; Gaba, David M; Falwell, Alyson; Lin, Shoutzu; Hayes, Jennifer; Baker, Laurence

    2009-01-01

    Concern about patient safety has promoted efforts to improve safety climate. A better understanding of how patient safety climate differs among distinct work areas and disciplines in hospitals would facilitate the design and implementation of interventions. To understand workers' perceptions of safety climate and ways in which climate varies among hospitals and by work area and discipline. We administered the Patient Safety Climate in Healthcare Organizations survey in 2004-2005 to personnel in a stratified random sample of 92 US hospitals. We sampled 100% of senior managers and physicians and 10% of all other workers. We received 18,361 completed surveys (52% response). The survey measured safety climate perceptions and worker and job characteristics of hospital personnel. We calculated and compared the percent of responses inconsistent with a climate of safety among hospitals, work areas, and disciplines. Overall, 17% of responses were inconsistent with a safety climate. Patient safety climate differed by hospital and among and within work areas and disciplines. Emergency department personnel perceived worse safety climate and personnel in nonclinical areas perceived better safety climate than workers in other areas. Nurses were more negative than physicians regarding their work unit's support and recognition of safety efforts, and physicians showed marginally more fear of shame than nurses. For other dimensions of safety climate, physician-nurse differences depended on their work area. Differences among and within hospitals suggest that strategies for improving safety climate and patient safety should be tailored for work areas and disciplines.

  9. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas

    Directory of Open Access Journals (Sweden)

    A. Laakso

    2017-06-01

    Full Text Available Stratospheric sulfur injections have often been suggested as a cost-effective geoengineering method to prevent or slow down global warming. In geoengineering studies, these injections are commonly targeted to the Equator, where the yearly mean intensity of the solar radiation is the highest and from where the aerosols disperse globally due to the Brewer–Dobson Circulation. However, compensating for greenhouse gas-induced zonal warming by reducing solar radiation would require a relatively larger radiative forcing to the mid- and high latitudes and a lower forcing to the low latitudes than what is achieved by continuous equatorial injections. In this study we employ alternative aerosol injection scenarios to investigate if the resulting radiative forcing can be targeted to be zonally more uniform without decreasing the global the mean radiative forcing of stratospheric sulfur geoengineering. We used a global aerosol–climate model together with an Earth system model to study the radiative and climate effects of stratospheric sulfur injection scenarios with different injection areas. According to our simulations, varying the SO2 injection area seasonally would result in a similar global mean cooling effect as injecting SO2 to the Equator, but with a more uniform zonal distribution of shortwave radiative forcing. Compared to the case of equatorial injections, in the seasonally varying injection scenario where the maximum sulfur production from injected SO2 followed the maximum of solar radiation, the shortwave radiative forcing decreased by 27 % over the Equator (the latitudes between 20° N and 20° S and increased by 15 % over higher latitudes. Compared to the continuous injections to the Equator, in summer months the radiative forcing was increased by 17 and 14 % and in winter months decreased by 14 and 16 % in Northern and Southern hemispheres, respectively. However, these forcings do not translate into as large changes in

  11. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas

    Science.gov (United States)

    Laakso, Anton; Korhonen, Hannele; Romakkaniemi, Sami; Kokkola, Harri

    2017-06-01

    Stratospheric sulfur injections have often been suggested as a cost-effective geoengineering method to prevent or slow down global warming. In geoengineering studies, these injections are commonly targeted to the Equator, where the yearly mean intensity of the solar radiation is the highest and from where the aerosols disperse globally due to the Brewer-Dobson Circulation. However, compensating for greenhouse gas-induced zonal warming by reducing solar radiation would require a relatively larger radiative forcing to the mid- and high latitudes and a lower forcing to the low latitudes than what is achieved by continuous equatorial injections. In this study we employ alternative aerosol injection scenarios to investigate if the resulting radiative forcing can be targeted to be zonally more uniform without decreasing the global the mean radiative forcing of stratospheric sulfur geoengineering. We used a global aerosol-climate model together with an Earth system model to study the radiative and climate effects of stratospheric sulfur injection scenarios with different injection areas. According to our simulations, varying the SO2 injection area seasonally would result in a similar global mean cooling effect as injecting SO2 to the Equator, but with a more uniform zonal distribution of shortwave radiative forcing. Compared to the case of equatorial injections, in the seasonally varying injection scenario where the maximum sulfur production from injected SO2 followed the maximum of solar radiation, the shortwave radiative forcing decreased by 27 % over the Equator (the latitudes between 20° N and 20° S) and increased by 15 % over higher latitudes. Compared to the continuous injections to the Equator, in summer months the radiative forcing was increased by 17 and 14 % and in winter months decreased by 14 and 16 % in Northern and Southern hemispheres, respectively. However, these forcings do not translate into as large changes in temperatures. The changes in forcing

  12. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    cultivation and cattle farming, probably reflecting a change to a more favorable climate for maize cultivation: in the beginning of the study period, northern areas were mostly too cold for maize cultivation, irrespective of cattle density, but this limitation has been diminishing as climate has warmed......It is expected that the ongoing anthropogenic climate change will drive changes in agricultural production and its geographic distribution. Here, we assess the extent to which climate change is already driving spatiotemporal dynamics in maize production in Denmark. We use advanced spatial...... regression modeling with multi-model averaging to assess the extent to which the recent spatiotemporal dynamics of the maize area in Denmark are driven by climate (temperature as represented by maize heating units [MHU] and growing-season precipitation), climate change and non-climatic factors (cattle...

  13. The Textile Industry and Sustainable Development: A Holt–Winters Forecasting Investigation for the Eastern European Area

    Directory of Open Access Journals (Sweden)

    Dorel Paraschiv

    2015-01-01

    Full Text Available To achieve sustainable development, massive changes towards fostering a clean and pollution-reducing industrial sector are quintessential. The textile industry has been one of the main contributors to water pollution all over the world, causing more than 20% of the registered levels of water pollution in countries like Turkey, Indonesia and China (among the G20 group of countries and also in Romania and Bulgaria (in the Eastern European area, with even more than 44% in Macedonia. Given the controversy created by the textile industry’s contribution to pollution at a global level and also the need to diminish pollution in order to promote sustainable development, this paper comparatively investigates the contribution of the textile industry to the water pollution across Central and Eastern European countries, as well as developed countries. In addition, we employ the Holt–Winters model to forecast the trend of the total emissions of organic water pollutants, as well as of the textile industry’s contribution to pollution for the top polluters in Eastern Europe, i.e., Poland and Romania. According to our estimates, both countries are headed towards complete elimination of pollution caused by the textile industry and, hence, toward a more sustainable industrial sector, as Greenpeace intended with the release of its 2011 reports.

  14. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled...... impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N) leaching and grain yields with climate change were quantified. The uncertainty...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  15. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  16. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  17. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  18. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  19. The effects of climatic variables and crop area on maize yield and variability in Ghana

    OpenAIRE

    Acquah, Henry; Kyei, Clement

    2012-01-01

    Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional fo...

  20. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds: Evidence from Some Selected Areas of Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Lucy Faulkner

    2013-04-01

    Full Text Available Most climate related hazards in Bangladesh are linked to water. The climate vulnerable poor—the poorest and most marginalized communities living in remote villages along Bangladesh’s coastal zone that are vulnerable to climate change impacts and who possess low adaptive capacity are most affected by lack of access to safe water sources. Many climate vulnerable poor households depend on small isolated wetlands (ponds for daily drinking water needs and other domestic requirements, including cooking, bathing and washing. Similarly, the livelihoods of many of these households also depend on access to ponds due to activities of small-scale irrigation for rice farming, vegetable farming and home gardening. This is particularly true for those poorest and most marginalized communities living in Satkhira, one of the most vulnerable coastal districts in south-west Bangladesh. These households rely on pond water for vegetable farming and home gardening, especially during winter months. However, these pond water sources are highly vulnerable to climate change induced hazards, including flooding, drought, salinity intrusion, cyclone and storm surges, erratic rainfall patterns and variations in temperature. Cyclone Sidr and Cyclone Aila, which hit Bangladesh in 2007 and 2009 respectively, led to a significant number of such ponds being inundated with saline water. This impacted upon and resulted in wide scale implications for climate vulnerable poor households, including reduced availability of safe drinking water, and safe water for health and hygiene practices and livelihood activities. Those households living in remote areas and who are most affected by these climate impacts are dependent on water being supplied through aid, as well as travelling long distances to collect safe water for drinking purposes.

  1. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    Science.gov (United States)

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    International Nuclear Information System (INIS)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S.

    1999-01-01

    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  3. The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso

    Directory of Open Access Journals (Sweden)

    K. Yoshimura

    2012-02-01

    Full Text Available Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.

  4. Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); Larsen, S. Flores [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); INENCO - Instituto de Investigaciones en Energias No Convencionales, U.N.Sa., CONICET, Avda. Bolivia 5150 - CP 4400, Salta Capital (Argentina); Mercado, V. [LAHV-Laboratorio de Ambienet Humano y Vivienda (INCIHUSA-CCT-CONICET) (Argentina)

    2011-01-15

    This paper analyzes the thermal and energy behaviour of apartments in three-story block buildings located along a NE-SW axis (azimuth = 120 ) in a temperate-cold climate (latitude: 36 57'; longitude: 64 27') in the city of Santa Rosa, La Pampa, central Argentina. Four apartments had been monitored during May and June 2009. Three of them are located in Block 126. Two of these apartments face South: 15 and 23 on the SE end, ground and first floor, respectively; 18 faces N on the second floor. Finally apartment, 12 is located in Block 374, on the first floor, faces N and shows a carpentry-closed balcony. The purpose of this work is - to study the evolution of the indoor temperature in each apartment; to analyze energy consumption and comfort conditions; to study energy potential and energy intervention in order to reduce energy consumption; to analyze bioclimatic alternatives feasibility and the possibility to extrapolate results to all blocks. On the basis of the analysis of natural gas historical consumption records, results showed that regarding heating energy consumption during the period May-June, Apartment 12, facing N, with its only bedroom facing NW and its carpentry-closed, transparent glass balcony, presented a mean temperature of 21.2 C, using a halogen heater for 6 h/day between 9 pm and 2 am (0.16 kWh/day/m{sup 2}). Apartment 15, on the SE end, first floor of the block consumed 22.5 kWh/day (0.43 kWh/day/m{sup 2}) (mean temperature = 22.2 C). Apartment 23, located on the second and top floor (on top of Apartment 15) with higher energy loss, consumed 28 kWh/day (0.54 kWh/day/m{sup 2}) (mean temperature 23.7 C). Apartment 18, also on the second floor and facing N, located in the centre and with its only bedroom facing SE, consumed 18.8 kWh/day (0.48 kWh/day/m{sup 2}) (mean temperature = 22.3 C). Apartment 23, with higher thermal loss through its envelope, but with heat transfer from the apartment located below, is the one that showed the highest

  5. The role of light for fish-zooplankton-phytoplankton interactions during winter in shallow lakes - a climate change perspective

    DEFF Research Database (Denmark)

    Bramm, Mette Elisabeth; Lassen, Majbritt Kjeldahl; Liboriussen, Lone

    2009-01-01

    1. Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities ma...

  6. Winter Weather

    Science.gov (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  7. Evaluation of winter food quality and its variability for red deer in forest environment: overwintering enclosures vs. free-ranging areas

    Directory of Open Access Journals (Sweden)

    Holá Michaela

    2016-09-01

    Full Text Available Populations of European ungulates have grown substantially over recent decades, resulting in considerable environmental and socio-economic impacts. Availability and quality of natural and supplemental food sources are among the main factors driving their population dynamics. Detailed knowledge of food quality of management-targeted species is therefore of primary importance for their successful management. The main aim of this study was to evaluate winter food quality and its variability for an important ungulate species in the Czech Republic - i.e. red deer, using faecal indices (faecal nitrogen, faecal acid detergent fibre, faecal neutral detergent fibre and near infrared reflectance spectroscopy. We compared food quality for red deer and its possible differences between overwintering enclosures (i.e. fenced areas where red deer spend harsh winter conditions and neighbouring unfenced free-ranging areas within two study areas. The results obtained showed that winter food quality and its variability for red deer are of different quality and variability in the overwintering enclosure and neighbouring free-ranging area. The observed differences in concentrations and amounts of variation of faecal indices are most probably related to animal densities at individual study areas. Wildlife managers should therefore keep animals in overwintering enclosures at moderate densities and to provide high quality forage to all individuals in order to balance nutrition of both the individuals inside and outside the enclosures. Nevertheless, further studies are needed in order to provide deeper knowledge on red deer food quality and its variability in space and time.

  8. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen...

  9. Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2017-01-01

    Full Text Available The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the results exhibit considerable spread. Here, we compare results from the two last generations of climate models, CMIP3 and CMIP5, with respect to total and regional Arctic sea ice change. Different characteristics of sea ice area (SIA in March and September have been analysed for the Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA to changes in Northern Hemisphere (NH temperature is investigated and dynamical links between SIA and some atmospheric variability modes are assessed.CMIP3 (SRES A1B and CMIP5 (RCP8.5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle. The spatial patterns of SIC variability improve in CMIP5 ensemble, most noticeably in summer when compared to HadISST1 data. A better simulation of summer SIA in the Entire Arctic by CMIP5 models is accompanied by a slightly increased bias for winter season in comparison to CMIP3 ensemble. SIA in the Barents Sea is strongly overestimated by the majority of CMIP3 and CMIP5 models, and projected SIA changes are characterized by a high uncertainty. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes indicating that a part of inter-ensemble SIA spread comes from different temperature sensitivity to anthropogenic forcing. The results suggest that, in general, a sensitivity of SIA to external forcing is enhanced in CMIP5 models. Arctic SIA interannual variability in the end of the 20th century is on average well simulated by both ensembles. To the end of the 21st century, September

  10. CONVERSION OF THE HYDRO-CLIMATIC RESOURCES IN TOURISM ATTRACTORS IN ROŞIA MONTANĂ-ABRUD MINING AREA

    Directory of Open Access Journals (Sweden)

    JURJ MARIA-ADINA

    2015-03-01

    Full Text Available This paper aims to analyze water and climate resources from Roşia Montană-Abrud mining area and to emphasize the necessity to transform these resources into tourism attractors. The most significant water resources are the antrophogenic lakes called ”tăuri” which represent elements of great originality created for mining purposes. The first man-made lakes were created in order to activate the stamping mills used to grind the auriferous ores and occurred in this area since ancient times. These lakes have had an fundamental role during the millenary mining exploitation until the middle of 20th century, after which they had lost their significance during the industrial process, as a consequence of the 1948 nationalization. Previous research identified traces of a big number of lakes, out of which there are active only 9 in the present. Although these lakes play no role in modern mining, they have a high cultural value which can be capitalized through tourism activities. The mentioned area, due to its altitude, is also appropriate for practising mountain climatic therapy. Given the fact that water and climate resources inherently have a significant role when concerning outdoor activities, Roşia Montană-Abrud area is suitable for recreational nautical tourism, winter sports and mountain cure, but one has to consider that hidro-climatic resources are also important for rural tourism, agritourism, ecotourism etc., for which reason it is imperative to be provided adequate tourism planning and tourism promotion in order to capitalize them properly.

  11. Winter MVC

    OpenAIRE

    Castellón Gadea, Pasqual

    2013-01-01

    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  12. Interannual and long-term changes in the trophic state of a multibasin lake: Effects of morphology, climate, winter aeration, and beaver activity

    Science.gov (United States)

    Robertson, Dale M.; Rose, William; Reneau, Paul C.

    2016-01-01

    Little St. Germain Lake (LSG), a relatively pristine multibasin lake in Wisconsin, USA, was examined to determine how morphologic (internal), climatic (external), anthropogenic (winter aeration), and natural (beaver activity) factors affect the trophic state (phosphorus, P; chlorophyll, CHL; and Secchi depth, SD) of each of its basins. Basins intercepting the main flow and external P sources had highest P and CHL and shallowest SD. Internal loading in shallow, polymictic basins caused P and CHL to increase and SD to decrease as summer progressed. Winter aeration used to eliminate winterkill increased summer internal P loading and decreased water quality, while reductions in upstream beaver impoundments had little effect on water quality. Variations in air temperature and precipitation affected each basin differently. Warmer air temperatures increased productivity throughout the lake and decreased clarity in less eutrophic basins. Increased precipitation increased P in the basins intercepting the main flow but had little effect on the isolated deep West Bay. These relations are used to project effects of future climatic changes on LSG and other temperate lakes.

  13. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  14. Areas of climate stability of species ranges in the Brazilian Cerrado

    DEFF Research Database (Denmark)

    Terribile, Levi Carina; Lima-Ribeiro, Matheus Souza; Bastos Araujo, Miguel

    2012-01-01

    Recognizing the location of climatically stable areas in the future is subjected to uncertainties from ecological niche models, climatic models, variation in species ranges responses, and from the climatic variation through time. Here, we proposed an approach based on hierarchical ANOVA to reduce...

  15. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models

    DEFF Research Database (Denmark)

    Palosuo, Taru; Kersebaum, Kurt Christian; Angulo, Carlos

    2011-01-01

    We compared the performance of eight widely used, easily accessible and well-documented crop growth simulation models (APES, CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS and WOFOST) for winter wheat (Triticum aestivum L.) during 49 growing seasons at eight sites in northwestern, Central and sout......We compared the performance of eight widely used, easily accessible and well-documented crop growth simulation models (APES, CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS and WOFOST) for winter wheat (Triticum aestivum L.) during 49 growing seasons at eight sites in northwestern, Central...... values were lowest (1428 and 1603 kg ha−1) and the index of agreement (0.71 and 0.74) highest. CROPSYST systematically underestimated yields (MBE – 1186 kg ha−1), whereas HERMES, STICS and WOFOST clearly overestimated them (MBE 1174, 1272 and 1213 kg ha−1, respectively). APES, DAISY, HERMES, STICS...

  17. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene

    Science.gov (United States)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.

    2017-03-01

    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  18. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    OpenAIRE

    Lihua Lv; Yanrong Yao; Lihua Zhang; Zhiqiang Dong; Xiuling Jia; Shuangbo Liang; Junjie Ji

    2013-01-01

    Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP). In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L.), grain yield (GY), yield components, and water use efficiency (WUE) were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, i...

  19. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  20. Sowing terms of winter bread wheat variety-innovations (Triticum aestivum L. in the conditions of change of climate

    Directory of Open Access Journals (Sweden)

    О. Л. Дергачов

    2010-10-01

    Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.

  1. Migration routes and stopover sites of the Eurasian Spoonbill (Platalea leucorodia between the Carpathian Basin and wintering areas

    Directory of Open Access Journals (Sweden)

    Pigniczki Csaba

    2016-06-01

    Full Text Available Understanding the migration routes of the Central European Spoonbill population is important for their conservation. Here we analysed movements of 3186 individuals of Eurasian Spoonbills marked with colour rings in the Carpathian Basin (Hungary, Croatia and Serbia between 2003 and 2015, and a satellite tagged individual, which was equipped in Italy in 2013, and later moved to the Carpathian Basin. Migration routes of these Spoonbills predominantly followed the Adriatic Flyway, however, some birds were also found to both east and west from this flyway. We identified 59 stopover sites, 55 of which were located along the Adriatic Flyway. Colourringed juveniles (1cy, on average, spent 4.0±0.9 (SE days on the stopover sites along the Adriatic Flyway during autumn migration, while non-juveniles (> 1cy spent 2.6±1.0 (SE days during autumn and 2.1±0.4 (SE days during spring migration there. These durations were not significantly different. Duration of stops of the satellite tracked individual was between 7 and 15 days during autumn and between 1 and 12 days during spring migration. Our results indicate the existence of two alternative routes of the Adriatic Flyway between the Carpathian Basin and the wintering areas in southern Italy and the central part of coastal North-Africa. The North-Adriatic Flyway includes stopover sites in north-eastern Italy at the river mouth of River Isonzo, Lagunes of Venice and wetlands around River Po. The South Adriatic Flyway leads through the Balkan Peninsula, with stopover sites at the karst lakes of Bosnia and Herzegovina, mouth of the river Neretva (Croatia, Ulcinj Salinas (Montenegro and wetlands in Gulf of Manfredonia (Italy. This hypothesis was also supported by the migration of the satellite tagged individual, the paths of which was described here in detail. The average coordinates of spring and autumn stopover sites were located at different parts of the flyway: it was in south-western Italy during autumn

  2. Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region

    Science.gov (United States)

    Huang, Ruping; Chen, Shangfeng; Chen, Wen; Hu, Peng

    2018-01-01

    This study investigates interannual variability of boreal winter regional Hadley circulation over western Pacific (WPHC) and its climatic impacts. A WPHC intensity index (WPHCI) is defined as the vertical shear of the divergent meridional winds. It shows that WPHCI correlates well with the El Niño-Southern Oscillation (ENSO). To investigate roles of the ENSO-unrelated part of WPHCI (WPHCIres), variables that are linearly related to the Niño-3 index have been removed. It reveals that meridional sea surface temperature gradient over the western Pacific plays an essential role in modulating the WPHCIres. The climatic impacts of WPHCIres are further investigated. Below-normal (above-normal) precipitation appears over south China (North Australia) when WPHCIres is stronger. This is due to the marked convergence (divergence) anomalies at the upper troposphere, divergence (convergence) at the lower troposphere, and the accompanied downward (upward) motion over south China (North Australia), which suppresses (enhances) precipitation there. In addition, a pronounced increase in surface air temperature (SAT) appears over south and central China when WPHCIres is stronger. A temperature diagnostic analysis suggests that the increase in SAT tendency over central China is primarily due to the warm zonal temperature advection and subsidence-induced adiabatic heating. In addition, the increase in SAT tendency over south China is primarily contributed by the warm meridional temperature advection. Further analysis shows that the correlation of WPHCIres with the East Asian winter monsoon (EAWM) is weak. Thus, this study may provide additional sources besides EAWM and ENSO to improve understanding of the Asia-Australia climate variability.

  3. Woolly apple aphid Eriosoma lanigerum Hausmann ecology and its relationship with climatic variables and natural enemies in Mediterranean areas.

    Science.gov (United States)

    Lordan, Jaume; Alegre, Simó; Gatius, Ferran; Sarasúa, M José; Alins, Georgina

    2015-02-01

    A multilateral approach that includes both biotic and climatic data was developed to detect the main variables that affect the ecology and population dynamics of woolly apple aphid Eriosoma lanigerum (Hausmann). Crawlers migrated up and down the trunk mainly from spring to autumn and horizontal migration through the canopy was observed from May to August. Winter temperatures did not kill the canopy colonies, and both canopy and root colonies are the source of reinfestations in Mediterranean areas. Thus, control measures should simultaneously address roots and canopy. European earwigs Forficula auricularia (Linnaeus) were found to reduce the survival of overwintering canopy colonies up to June, and this can allow their later control by the parasitoid Aphelinus mali (Haldeman) from summer to fall. Preliminary models to predict canopy infestations were developed.

  4. A National Guideline for Climate Adaptation Planning : the Climate Stress Test for Urban Areas

    NARCIS (Netherlands)

    van de Ven, F.H.M.; Hoogvliet, M.; Goossen, W.J.

    2016-01-01

    To make urban environments in the Netherlands climate-proof and water-robust the Delta Programme launched guidelines and tools for climate adaptation planning, including a climate stress test. This test builds on new principles and concepts, making spatial adaptation a key element of building

  5. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  6. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    Science.gov (United States)

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  7. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern...... hemisphere. Can climatic conditions alone explain the sizeable difference in reduction in building activity in the construction sector in European countries in the winter months, or are other factors such as technology, economic cycles and schemes for financial compensation influential as well? What...... possibilities exist for reducing seasonal variation in employment? In addition to a literature review related to winter construction, European and national employment and meteorological data were studied. Finally, ministerial acts, ministerial orders or other public policy documents related to winter...

  8. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.

    Science.gov (United States)

    Beale, Colin M; Baker, Neil E; Brewer, Mark J; Lennon, Jack J

    2013-08-01

    The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate-driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate-driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change. © 2013 John Wiley & Sons Ltd/CNRS.

  9. Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide.

    Directory of Open Access Journals (Sweden)

    Kirk R Klausmeyer

    Full Text Available Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21(st century in Chile will range from 129-153% of its current size, while in Australia, it will contract to only 77-49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types, and, depending on the emissions scenario, only 50-60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29-31% of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome.

  10. Simulation of thermal indoor climate in buildings by using human Projected Area Factors

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik

    2009-01-01

    to these large windows on a cold winter day it is recognized that this can cause thermal discomfort. The calculation of this discomfort needs to be taken properly into account in the simulation of the thermal indoor climate and energy consumption of the rooms. The operative temperature can be used as a simple...... measure for thermal environ-ment. The operative temperature is a function of the air temperature, the mean radiant temperature and the relative air velocity. However, in many programs for calculation of energy consumption and thermal indoor climate the model for calculating the mean radiant temperature...... for dynamic building thermal analysis. The method is demonstrated in a newer apartment with windows from floor to ceiling and shows how impotent it is to include the radiant effect from the glass sur-faces and how it influences the indoor thermal climate significantly....

  11. Late Quaternary aridity changes in the winter-rain areas on the Southern Hemisphere: inferences from the marine sediment archive

    Science.gov (United States)

    Stuut, J.-B.; Temmesfeld, F.; Hebbeln, D.; Dedeckker, P.

    2012-04-01

    At present, the Southern Westerlies migrate zonally over the southern hemisphere through the seasons and cause winter rains in the generally dry west coasts of South America, South Africa, and the southern parts of Australia. On a geological time scale this winter-rain causing atmospheric system has shifted zonally as well, with a more equator-ward position during glacial times and a more pole-ward position during interglacial times. These glacial-interglacial changes are recorded in the marine sediment archive where aeolian dust and fluvial mud are deposited depending on the environmental conditions on land. Here we present aridity records from sediment cores off three continents on the southern hemisphere that register changes in runoff on different timescales throughout the late Quaternary. We demonstrate how the zonal movements of the atmospheric frontal systems dominate past environmental conditions and try to put these in a global context. The sediment records were retrieved from the sea floor at about the same latitude offshore the three large austral continents. The two aridity records off South America and South Africa show a pertinent southern-hemisphere signal with relatively wet glacials and dry interglacials, a pattern that is opposite to the general pattern on the northern hemisphere with dry glacials and wet interglacials. The record offshore northwestern Australia does not show the typical southern-hemisphere winter-rain pattern, which we explain by the strong influence of the Australian monsoon.

  12. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain].

    Science.gov (United States)

    Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui

    2015-04-01

    Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.

  13. Testing coastal DRR in current and climate change scenarios - Artificial winter dune system in a highly touristic beach in the Northern Adriatic.

    Science.gov (United States)

    Duo, Enrico; Armaroli, Clara

    2017-04-01

    Artificial dunes are common features built along the coast of the Emilia-Romagna region (Italy) that act as temporary protections during the stormy season in order to prevent damages and inundation to the structures located on the backshore. The RER coast is in fact characterised by low sandy beaches that are exploited for tourism and where beach huts are permanently present on the rear part of the beach. While scientists and regional managers already provided proofs of the capacity of the artificial dunes to lower the hazard component, any study has never investigated their direct impacts in the current (CS) and climate change scenarios (CCS). The RISC-KIT project (www.risckit.eu) provided a methodology for testing DRRs at local level integrating hydro-morphological numerical modelling with a Bayesian Network to assess the consequences of extreme events for different scenarios. The approach was applied at the beach of Lido degli Estensi and Spina (Comacchio, Italy) in the Emilia-Romagna coast. It is a highly touristic area with concessions directly facing the sea, providing sun-and-beach tourism services during summer time, and private residences, commercial activities and hotels at the seafront. The flooding and erosion hazards were analyzed, along with their impacts. A 2DH XBeach model was built and forced with a large number of triangular storms, representative of many different representative combinations of waves' and total water level's ranges observed at regional level. Flooding and erosion results were input into a Bayesian Network which included, as feeding variables categories, deep water boundary conditions (including the CCS trigger), receptors (type and location of assets at the coast), hazard intensity affecting the receptors, impacts and DRR. Therefore, it was possible to integrate a flood damage curve and an erosion potential damage function for the analyzed receptors (beach concessions and residential/commercial buildings), in order to calculate

  14. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

    Science.gov (United States)

    He, S Y; Ge, X Z; Wang, T; Wen, J B; Zong, S X

    2015-08-01

    The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.

  16. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    Science.gov (United States)

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at

  17. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  18. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  19. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  20. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    Science.gov (United States)

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima.

  1. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  2. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  3. Bioclimatic conditions of the winter months in Western Kazakhstan and their dynamics in relation to climate change.

    Science.gov (United States)

    Nyssanbayeva, Aiman S; Cherednichenko, Alexandr V; Cherednichenko, Vladimir S; Abayev, Nurlan N; Madibekov, Azamat S

    2018-03-05

    The territory of West Kazakhstan is an intensively developing region. The main oil and gas fields are concentrated there. In addition, this region is well-known as a region of nomad cattle breeding. Both of industry and agriculture demand a lot of employees, working in the open air in wintertime. Severe winter conditions, primary very low temperatures, and strong winds characterize the region. In this work, we calculated and analyzed the spatial and temporal distributions of effective temperatures in the region and their dynamics due to the global warming in the last decades. To calculate the equivalent temperature (WCET) was used the method of OFCM 2003. Nowadays, it is known as a common method for similar studies. It was shown that in the observed region, WCET is significantly lower than the ambient temperature. Repeatability of WCET, corresponding to «increasing risk», «high risk» is high in the main part of the region. Global warming in the region results in returning extremely high temperatures of the air, decreasing repeatability of the average gradation of WCET approximately on 4%, but there is no any visible changing repeatability of extreme WCET. Obtained results can be used for planning any construction work in the open air and agriculture branches.

  4. Bioclimatic conditions of the winter months in Western Kazakhstan and their dynamics in relation to climate change

    Science.gov (United States)

    Nyssanbayeva, Aiman S.; Cherednichenko, Alexandr V.; Cherednichenko, Vladimir S.; Abayev, Nurlan N.; Madibekov, Azamat S.

    2018-03-01

    The territory of West Kazakhstan is an intensively developing region. The main oil and gas fields are concentrated there. In addition, this region is well-known as a region of nomad cattle breeding. Both of industry and agriculture demand a lot of employees, working in the open air in wintertime. Severe winter conditions, primary very low temperatures, and strong winds characterize the region. In this work, we calculated and analyzed the spatial and temporal distributions of effective temperatures in the region and their dynamics due to the global warming in the last decades. To calculate the equivalent temperature (WCET) was used the method of OFCM 2003. Nowadays, it is known as a common method for similar studies. It was shown that in the observed region, WCET is significantly lower than the ambient temperature. Repeatability of WCET, corresponding to «increasing risk», «high risk» is high in the main part of the region. Global warming in the region results in returning extremely high temperatures of the air, decreasing repeatability of the average gradation of WCET approximately on 4%, but there is no any visible changing repeatability of extreme WCET. Obtained results can be used for planning any construction work in the open air and agriculture branches.

  5. Comparison of two down-scaling methods for climate study and climate change on the mountain areas in France

    International Nuclear Information System (INIS)

    Piazza, Marie; Page, Christian; Sanchez-Gomez, Emilia; Terray, Laurent; Deque, Michel

    2013-01-01

    Mountain regions are highly vulnerable to climate change and are likely to be among the areas most impacted by global warming. But climate projections for the end of the 21. century are developed with general circulation models of climate, which do not present a sufficient horizontal resolution to accurately evaluate the impacts of warming on these regions. Several techniques are then used to perform a spatial down-scaling (on the order of 10 km). There are two categories of down-scaling methods: dynamical methods that require significant computational resources for the achievement of regional climate simulations at high resolution, and statistical methods that require few resources but an observation dataset over a long period and of good quality. In this study, climate simulations of the global atmospheric model ARPEGE projections over France are down-scaled according to a dynamical method, performed with the ALADIN-Climate regional model, and a statistical method performed with the software DSClim developed at CERFACS. The two down-scaling methods are presented and the results on the climate of the French mountains are evaluated for the current climate. Both methods give similar results for average snowfall. However extreme events of total precipitation (droughts, intense precipitation events) are largely underestimated by the statistical method. Then, the results of both methods are compared for two future climate projections, according to the greenhouse gas emissions scenario A1B of IPCC. The two methods agree on fewer frost days, a significant decrease in the amounts of solid precipitation and an average increase in the percentage of dry days of more than 10%. The results obtained on Corsica are more heterogeneous but they are questionable because the reduced spatial domain is probably not very relevant regarding statistical sampling. (authors)

  6. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  7. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Directory of Open Access Journals (Sweden)

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  8. Unusial winter 2011/2012 in Slovakia

    Czech Academy of Sciences Publication Activity Database

    Faško, P.; Lapin, M.; Matejovič, P.; Pecho, Jozef

    2012-01-01

    Roč. 15, č. 1 (2012), s. 19-26 ISSN 1335-339X Institutional support: RVO:68378289 Keywords : winter characteristics * climate variabilit * climate change * global warming Subject RIV: DG - Athmosphere Sciences, Meteorology

  9. Cultivation concepts for energy crops in times of climatic changes. Contribution to the management of the impact of climate changes in the metropolitan area Hanover-Brunswick-Goettingen-Wolfsburg; Anbaukonzepte fuer Energiepflanzen in Zeiten des Klimawandels. Beitrag zum Klimafolgenmanagement in der Metropolregion Hannover-Braunschweig-Goettingen-Wolfsburg

    Energy Technology Data Exchange (ETDEWEB)

    Buttlar, Christine von [Ingenieurgemeinschaft fuer Landwirtschaft und Umwelt (IGLU), Goettingen (Germany); Karpenstein-Machan, Marianne [Goettingen Univ. (Germany). Bereich Erneuerbare Energien; Bauboeck, Roland [Goettingen Univ. (Germany). Lehrstuhl fuer Kartografie, GIS und Fernerkundung

    2013-10-01

    central and southern areas of the metropolitan region. In extreme years with below average precipitation (-10%), the maize yield is more severely reduced than that of winter rye, although with additional irrigation, the yield of maize recovers and exceeds that of rye. Energy crop rotations will be restored by plants from Mediterranean and sub-tropical regions such as Sorghum, Topinambur and Amaranth. Having a wide variety of such cultures brings about a high potential for adaptation. Winter cereals will have better cultivation requirements than summer cereals. The choice of climate-tolerant varieties with high water efficiency can help to avert lower yields in the future. Further measures to adapt to climate change consist in using specialized fertilizer and crop protection methods as well as setting up stronger water-conservation methods in crop cultivation like the practice of a reduced oil preparation. Adequate plant breeding for future climate conditions offers further perspectives to counteract climate change. The environmental impacts of climate change on crop production have to be reassessed. There are increasing risks to be expected for the humus reproduction, nitrate leaching and erosion hazards. Further evidence is given in this research. (orig.)

  10. Climate change leads to decreasing bird migration distances

    NARCIS (Netherlands)

    Visser, M.E.; Perdeck, A.C.; van Balen, J.H.; Both, C.

    2009-01-01

    Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season

  11. Climate change leads to decreasing bird migration distances

    NARCIS (Netherlands)

    Visser, Marcel E.; Perdeck, Albert C.; van Balen, Johan H.; Both, Christiaan

    Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season

  12. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  13. Weeds occurrence in areas submitted to distinct winter crops Ocorrência de plantas daninhas em áreas submetidas a manejos de inverno

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2012-12-01

    Full Text Available In the Western Region of Brazil, it is usual to have two agricultural harvests in the same cropping season. Usually the first crop is soybean, followed by corn. In areas where corn is not planted due to a delayed harvest of soybean, farmers generally do not use winter crops. For these areas, the planting of winter oilseed crops aiming at the production of bio-fuels is one of the best alternatives; in addition, this would help in reducing the occurrence of weed species at the following summer crop. This study aimed to assessing the weed community in distinct winter crops post soybean crop, in terms of species composition, level of infestation and severity of occurrence. The following treatments were evaluated: agriculture under a no-till system with winter fallow, winter oilseed crops (crambe, radish, rapeseed with no-till agriculture in the summer, and agriculture under a conventional tillage system with winter fallow. Phytosociological evaluations of all treatments were carried out 75 DAE of the oilseed crops, and the diversity indexes of Margalef, Menhinick, Simpson, and Shannon-Weiner were determined. Areas were also grouped by cluster analysis based on UPGMA applied at Jaccard's similarity matrix. Among the treatments with winter coverage, radish was the most efficient crop in suppressing the occurrence of weed species. The area with conventional tillage agriculture and winter fallow allowed for a higher occurrence of troublesome weeds. On the other hand, the area under fallow showed the highest absolute level of infestation. Overall, oilseed crops in the winter contribute to lower levels of infestation by weed species in these areas.Na região Centro-Oeste do Brasil, é usual a obtenção de duas colheitas na mesma safra agrícola. Normalmente o primeiro cultivo é de soja, seguida por milho. Em áreas onde o milho não é cultivado devido à colheita tardia da soja, os produtores normalmente não utilizam culturas ou coberturas no per

  14. Incorporating climate change into conservation planning: Identifying priority areas across a species’ range

    Directory of Open Access Journals (Sweden)

    Richard G Pearson

    2012-12-01

    Full Text Available Theoretical and practical approaches associated with conservation biogeography, including ecological niche modeling, have been applied to the difficult task of determining how to incorporate climate change into conservation prioritization methodologies. Most studies have focused on identifying species that are most at risk from climate change, but here we asked, which areas within a species’ range does climate change threaten most? We explored methods for incorporating climate change within a range-wide conservation planning framework, using a case study of jaguars (Panthera onca. We used ecological niche models to estimate exposure to climate change across the range of the jaguar and incorporated these estimates into habitat quality scores for re-prioritization of high-priority areas for jaguar conservation. Methods such as these are needed to guide prioritization of geographically-specific actions for conservation across a species’ range.

  15. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  16. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  17. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  18. Migratory timing, rate, routes and wintering areas of White-crested Elaenia (Elaenia albiceps chilensis, a key seed disperser for Patagonian forest regeneration.

    Directory of Open Access Journals (Sweden)

    Susana Patricia Bravo

    Full Text Available Migratory animals often play key ecological roles within the communities they visit throughout their annual journeys. As a consequence of the links between biomes mediated by migrants, changes in one biome could affect remote areas in unpredictable ways. Migratory routes and timing of most Neotropical austral migrants, which breed at south temperate latitudes of South America and overwinter closer to or within tropical latitudes of South America, have yet to be described in detail. As a result, our understanding about how these birds provide links between South American biomes is almost non-existent. White-crested Elaenia (Elaenia albiceps chilensis is a long-distance austral migrant that breeds in the Patagonian Forest biome and overwinters in tropical South America. Because this small flycatcher plays a key role in the regeneration of this ecosystem, our objective was to describe the annual cycle of White-crested elaenias to evaluate the degree of migratory connectivity between breeding and wintering areas and therefore to determine if there are specific biomes of northern South America linked by elaenias to Patagonian forests. Fifteen individuals were successfully tracked throughout a complete migration cycle using miniature light-level geolocators. All individuals resided and moved through the same general regions. During fall (March-April-May, elaenias were located in the Caatinga and the Atlantic Forest biomes, from Rio de Janeiro to the region near Salvador da Bahia, Brazil. During winter (June-July-Aug., birds were located further inland, within the Cerrado biome. Birds used three different routes during fall migration. Our results indicate that some individuals use a direct route, flying between 500-600 km/day, crossing desert and grasslands, while others took a detour, flying 100-200 km/day through forested areas with refueling opportunities. All birds used the Yunga forest during spring migration, with ten out of 15 individuals

  19. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators.

    Science.gov (United States)

    Delmore, Kira E; Fox, James W; Irwin, Darren E

    2012-11-22

    Migratory divides are contact zones between breeding populations that use divergent migratory routes and have been described in a variety of species. These divides are of major importance to evolution, ecology and conservation but have been identified using limited band recovery data and/or indirect methods. Data from band recoveries and mitochondrial haplotypes suggested that inland and coastal Swainson's thrushes (Catharus ustulatus) form a migratory divide in western North America. We attached light-level geolocators to birds at the edges of this contact zone to provide, to our knowledge, the first direct test of a putative divide using data from individual birds over the entire annual cycle. Coastal thrushes migrated along the west coast to Mexico, Guatemala and Honduras. Some of these birds used multiple wintering sites. Inland thrushes migrated across the Rocky Mountains, through central North America to Columbia and Venezuela. These birds migrated longer distances than coastal birds and performed a loop migration, navigating over the Gulf of Mexico in autumn and around this barrier in spring. These findings support the suggestion that divergent migratory behaviour could contribute to reproductive isolation between migrants, advance our understanding of their non-breeding ecology, and are integral to development of detailed conservation strategies for this group.

  20. The future of winter tourism in Planina pod Golico in the lights of global warming

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2011-12-01

    Full Text Available Warmer winters have brought the ski area Španov vrh near Jesenice in decline. New climate conditions put plans of conventional ski tourism in a different point of a view. The article analysis trends of air temperature and snow conditions in winter months at Planina pod Golico to fnd out if weather conditions assure development of classical winter tourism at ski area Španov vrh. As alternative to conventional way of tourism, the article recommends some new, more sustainable solutions for development of tourism, which could bring renaissance to Planina pod Golico.

  1. Assessing climate change-robustness of protected area management plans-The case of Germany.

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.

  2. International and European law on protected areas and climate change: need for adaptation or implementation?

    Science.gov (United States)

    Cliquet, A

    2014-10-01

    The protection and management of protected areas must be adapted to the effects of climate change. An important question is if the law on protected areas is capable of dealing with the required changes. In general, both international nature conventions and European Union nature conservation law do not contain any specific provisions on climate change and protected areas. Attention has been paid to this link in non-binding decisions and policy documents. In order to adapt the law to increased dynamics from climate change, more flexibility is needed. This flexibility should not be understood as "legal" flexibility, in the sense of the weakening nature conservation provisions. Scientific uncertainties on the effects of climate change might conflict with the need for legal certainties. In order to adapt to the effects of climate change, the two crucial elements are the strengthening of core protected areas and connectivity between the core areas. At the international level, both elements can be found in non-binding documents. International law enables the required adaptation; however, it often lacks concrete obligations. A stronger legal framework can be found at the level of the European Union. The Birds and Habitats Directives contain sufficient tools to deal with the effects of climate change. The Directives have been insufficiently implemented so far. Especially the central goals of reaching a favorable conservation status and connectivity measures need to be addressed much more in the future.

  3. Assessing climate change-robustness of protected area management plans—The case of Germany

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187

  4. Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia)

    Science.gov (United States)

    Aguilera, Fátima; Ruiz, Luis; Fornaciari, Marco; Romano, Bruno; Galán, Carmen; Oteros, Jose; Ben Dhiab, Ali; Msallem, Monji; Orlandi, Fabio

    2014-07-01

    The main characteristics of the heat accumulation period and the possible existence of different types of biological response to the environment in different populations of olive through the Mediterranean region have been evaluated. Chilling curves to determine the start date of the heat accumulation period were constructed and evaluated. The results allow us to conclude that the northern olive populations have the greatest heat requirements for the development of their floral buds, and they need a period of time longer than olives in others areas to completely satisfy their biothermic requirements. The olive trees located in the warmest winter areas have a faster transition from endogenous to exogenous inhibition once the peak of chilling is met, and they show more rapid floral development. The lower heat requirements are due to better adaptation to warmer regions. Both the threshold temperature and the peak of flowering date are closely related to latitude. Different types of biological responses of olives to the environment were found. The adaptive capacity shown by the olive tree should be considered as a useful tool with which to study the effects of global climatic change on agro-ecosystems.

  5. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    Science.gov (United States)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  6. Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    Tai M. Maaz

    2017-05-01

    Full Text Available Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among strategies proposed to mitigate and adapt to climate shifts in the inland Pacific Northwest (iPNW. Our objectives were to assess these strategies across iPNW agroecological zones and time for their impacts on (1 winter wheat (WW (Triticum aestivum L. productivity, (2 crop sequence productivity, and (3 N fertilizer use efficiency. Region-wide analysis indicated that WW yields increased with increasing annual precipitation, prior to maximizing at 520 mm yr−1 and subsequently declining when annual precipitation was not adjusted for available soil water holding capacity. While fallow periods were effective at mitigating low nitrogen (N fertilization efficiencies under low precipitation, efficiencies declined as annual precipitation exceeded 500 mm yr−1. Variability in the response of WW yields to annual precipitation and N fertilization among locations and within sites supports precision N management implementation across the region. In years receiving <350 mm precipitation yr−1, WW yields declined when preceded by crops rather than summer fallow. Nevertheless, WW yields were greater when preceded by pulses and oilseeds rather than wheat across a range of yield potentials, and when under conservation tillage practices at low yield potentials. Despite the yield penalty associated with eliminating fallow prior to WW, cropping system level productivity was not affected by intensification, diversification, or conservation tillage. However, increased fertilizer N inputs, lower fertilizer N use efficiencies, and more yield variance may offset and limit the economic feasibility of intensified and diversified cropping systems.

  7. Hybridization of Southern Hemisphere blue whale subspecies and a sympatric area off Antarctica: impacts of whaling or climate change?

    Science.gov (United States)

    Attard, Catherine R M; Beheregaray, Luciano B; Jenner, K Curt S; Gill, Peter C; Jenner, Micheline-Nicole; Morrice, Margaret G; Robertson, Kelly M; Möller, Luciana M

    2012-12-01

    Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in geographic distribution, morphology, vocalizations and genetics. During the austral summer feeding season, the Antarctic blue whale (B. m. intermedia) is found in polar waters and the pygmy blue whale (B. m. brevicauda) in temperate waters. Here, we genetically analyzed samples collected during the feeding season to report on several cases of hybridization between the two recognized blue whale Southern Hemisphere subspecies in a previously unconfirmed sympatric area off Antarctica. This means the pygmy blue whales using waters off Antarctica may migrate and then breed during the austral winter with the Antarctic subspecies. Alternatively, the subspecies may interbreed off Antarctica outside the expected austral winter breeding season. The genetically estimated recent migration rates from the pygmy to Antarctic subspecies were greater than estimates of evolutionary migration rates and previous estimates based on morphology of whaling catches. This discrepancy may be due to differences in the methods or an increase in the proportion of pygmy blue whales off Antarctica within the last four decades. Potential causes for the latter are whaling, anthropogenic climate change or a combination of these and may have led to hybridization between the subspecies. Our findings challenge the current knowledge about the breeding behaviour of the world's largest animal and provide key information that can be incorporated into management and conservation practices for this endangered species. © 2012 Blackwell Publishing Ltd.

  8. Can we reduce vulnerability and enhance adaptation to climate change and climate variability in urban areas? Lessons from Latin America

    Science.gov (United States)

    Sanchez Rodriguez, R. A.

    2007-05-01

    IPCC 4th Assessment Report has brought renewed attention to climate change and the challenges it creates for societies. The call for action has focused on the reduction of CO2 emissions and other greenhouse gases but has not provided equal attention to identifying the impacts of climate change on societies. This is a critical issue for poor countries where the most dramatic negative consequences of those impacts will occur. The incorrect perception that the consequences will only occur in the medium- to long -term often contributes to the notion that those impacts do not require as much attention as the most immediate urban and environmental problems. Yet, the decisions that urban areas take today with regards to urban growth can dramatically increase their vulnerability to the impacts of climate change and neglect opportunities to better adapt to its negative impacts. This talk presents a series of reflections about the challenges to reduce vulnerability to climate change in urban areas and open opportunities to better adapt to its negative impacts.

  9. Natural areas as a basis for assessing ecosystem vulnerability to climate change

    Science.gov (United States)

    Margaret H. Massie; Todd M. Wilson; Anita T. Morzillo; Emilie B. Henderson

    2016-01-01

    There are more than 580 natural areas in Oregon and Washington managed by 20 federal, state, local, and private agencies and organizations. This natural areas network is unparalleled in its representation of the diverse ecosystems found in the Pacific Northwest, and could prove useful for monitoring long-term ecological responses to climate change. Our objectives were...

  10. Impact of Climate Variability on the Coastal Areas of Argentina and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... department of Colonía on the opposite side of the river. Both areas host coastal fishing communities, wetlands, intense tourism and growing real estate investment. Existing information on the geomorphological, social and economic impact of climate change events is inadequate for evidence-based planning in either area.

  11. Risk to a Changing Climate in the Mexico City Metropolitan Area

    Science.gov (United States)

    Vargas, N. D.

    2016-12-01

    The issue of climate change has dominated the atmospheric sciences agenda in recent decades. The concern about an increase in climate related disasters, mainly in large population centers, has led to ask whether they are mainly due to changes in climate or in vulnerability.The Mexico City Metropolitan Area (MCMA) is an example of megalopolis under high climate risk, where floods, landslides, health problems, high air pollution events, socioeconomic droughts are becoming important environmental and social problems. As urbanization spreads and population increases exposure to natural hazards increases, and so the magnitude of risk to a changing climate and the negative impacts. Since the late nineteenth century, in the MCMA an average maximum temperature could be around 22°C, whereas today it is about 24.5ºC. That is, the increase in the average temperature in Mexico City is around 3°C in a hundred years. But there are areas where an increase in the average temperature is similar in only thirty years. The heating rate of the city can vary depending on the change in land use. Areas that conserve forested regions in the process of urbanization tend to warm less than areas where the transformation into concrete and cement is almost complete. Thus, the climate of the MCMA shows important changes mainly in relation to land use changes. Global warming and natural climate variability were also analyzed as possible forcing factors of the observed warming by comparing low frequency variations in local temperature and indices for natural forcing. The hydrological cycle of the MCMA has also changed with urbanization. The "bubble of hot air" over the urban area has more capacity to hold moisture now than before the UHI. However, the increased risk to floods, heat or drought appears to be related not only to more frequent intense climatic hazards induced by the urbanization effect. This process also induces increased vulnerability to a changing climate. The establishment of

  12. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    A climate-proof cropping system is a system which is able to mitigate the effects of climate change, which often are unpredictable and extreme. The special issue is related to the subject of improving cropping systems in the Mediterranean region, which is one of the regions in the world facing most...... FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts...... of the world, where Mediterranean climate is found, such as Western Australia and Western Chile, and in many dry areas of Africa, Asia, and the Middle East....

  13. Association between climate factors and diarrhoea in a Mekong Delta area

    Science.gov (United States)

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Manh, Cuong Do; Nguyen, Trung Hieu

    2015-09-01

    The Mekong Delta is vulnerable to changes in climate and hydrological events which alter environmental conditions, resulting in increased risk of waterborne diseases. Research exploring the association between climate factors and diarrhoea, the most frequent waterborne disease in Mekong Delta region, is sparse. This study evaluated the climate-diarrhoea association in Can Tho city, a typical Mekong Delta area in Vietnam. Climate data (temperature, relative humidity, and rainfall) were obtained from the Southern Regional Hydro-Meteorological Centre, and weekly counts of diarrhoea visits were obtained from Can Tho Preventive Medicine Centre from 2004 to 2011. Analysis of climate and health variables was carried out using spline function to adjust for seasonal and long-term trends of variables. A distributed lag model was used to investigate possible delayed effects of climate variables on diarrhoea (considering 0-4 week lag periods), then the multivariate Poisson regression was used to examine any potential association between climate factors and diarrhoea. The results indicated that the diarrhoea incidence peaked within the period August-October annually. Significant positive associations were found between increased diarrhoea and high temperature at 4 weeks prior to the date of hospital visits (IRR = 1.07; 95 % CI = 1.04-1.08), high relative humidity (IRR = 1.13; 95 % CI = 1.12-1.15) and high (>90th percentile) cumulative rainfall (IRR = 1.05; 95 % CI = 1.05-1.08). The association between climate factors and diarrhoea was stronger in rural than urban areas. These findings in the context of the projected changes of climate conditions suggest that climate change will have important implications for residential health in Mekong Delta region.

  14. Climate variability and impacts on east African livestock herders: The Maasai of Ngorongoro Conservation Area, Tanzania

    OpenAIRE

    Galvin, K.A.; Thornton, P.K.; Boone, R.B.; Sunderland, J.

    2004-01-01

    Metadata only record East African pastoral adaptation and vulnerability to climate variability and climate change is assessed, using data from decision-making processes and ecological data of the Maasai of Ngorongoro Conservation Area as an example. The paper uses integrated modeling, linking PHEWS, a household model, to SAVANNA, an ecosystem model to look at the effects of drought and a series of wet years on the well-being of Maasai pastoralists. Model results suggest that the ecosystem ...

  15. Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    OpenAIRE

    Keller, Brian D.; Gleason, Daniel F.; McLeod, Elizabeth; Woodley, Christa M.; Airam?, Satie; Causey, Billy D.; Friedlander, Alan M.; Grober-Dunsmore, Rikki; Johnson, Johanna E.; Miller, Steven L.; Steneck, Robert S.

    2009-01-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of s...

  16. Managing for climate change on protected areas: An adaptive management decision making framework.

    Science.gov (United States)

    Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc

    2017-12-15

    Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of Climate Change on Air Quality and Public Health in Urban Areas.

    Science.gov (United States)

    Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham

    2016-03-01

    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. © 2015 APJPH.

  18. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  19. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review

    Directory of Open Access Journals (Sweden)

    Ignacio Palomo

    2017-05-01

    Full Text Available High mountain areas are experiencing some of the earliest and greatest impacts of climate change. However, knowledge on how climate change impacts multiple ecosystem services that benefit different stakeholder groups remains scattered in the literature. This article presents a review of the literature on climate change impacts on ecosystem services benefiting local communities and tourists in high mountain areas. Results show a lack of studies focused on the global South, especially where there are tropical glaciers, which are likely to be the first to disappear. Climate change impacts can be classified as impacts on food and feed, water availability, natural hazards regulation, spirituality and cultural identity, aesthetics, and recreation. In turn, climate change impacts on infrastructure and accessibility also affect ecosystem services. Several of these impacts are a direct threat to the lives of mountain peoples, their livelihoods and their culture. Mountain tourism is experiencing abrupt changes too. The magnitude of impacts make it necessary to strengthen measures to adapt to climate change in high mountain areas.

  20. Identifying Effective Strategies for Climate Change Education: The Coastal Areas Climate Change Education (CACCE) Partnership Audiences and Activities

    Science.gov (United States)

    Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.

    2011-12-01

    Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and

  1. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    Science.gov (United States)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    Coastal areas are highly vulnerable to the impact of climate change and handling is difficult. Adaption to two different situations has to be taken into account. On the one hand, increasing global sea level in combination with increased precipitation and higher storm surge frequency has to be handled. On the other hand, in summer periods due to the increase of temperature, enhanced evapotranspiration and an increase of salty seawater intrusion into groundwater have to be managed. In this study we present different landuse management scenarios on a coastal area in Northwest Germany, East Frisia, and their effect on the hydrological response. Landuse is dominated by dairy farming and intensive crop farming. 30 percent of the area lies below sea level. A dense channel network in combination with several pumping stations allows permeant drainage. The soils are characterised by marsh soils and impermeable layers which prevent an interaction with the confined brackish aquifer. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. The landuse strategies include a scenario that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. Two scenarios use large polder areas in the future as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods, additional usage for nature conservation and as the storage of carbon sequestration or extensive farming are planned. Also, stakeholders have developed a system of several smaller polders in combination with an intensification of the water resource management, and this is

  2. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation

    Science.gov (United States)

    The scale mismatch between remotely sensed observations and crop growth models simulated state variables decreases the reliability of crop yield estimates. To overcome this problem, we used a two-step data assimilation phases: first we generated a complete leaf area index (LAI) time series by combin...

  3. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  4. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change

    Directory of Open Access Journals (Sweden)

    Verónica del Rosario Avalos

    2015-07-01

    Full Text Available In this study we projected the effect of anthropogenic climate change in endemic and restricted-range Andean bird species that spread out from the center of Bolivia to southeastern Peru. We also analyzed the representation of these species in protected areas. The ensemble forecasts from niche-based models indicated that 91–100% of species may reduce their range size under full and no dispersal scenarios, including five species that are currently threatened. The large range reduction (average 63% suggests these mountain species may be threatened by climate change. The strong effects due to range species losses are predicted in the humid mountain forests of Bolivia. The representation of bird species also decreased in protected areas. Partial gap species (94–86% are expected to increase over the present (62%. This suggests climate change and other non-climate stressors should be incorporated in conservations plans for the long-term persistence of these species. This study anticipates the magnitude of shifts in the distribution of endemic birds, and represents in the study area the first exploration of the representation of range-restricted Andean birds in protected areas under climate change.

  5. Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Science.gov (United States)

    Keller, Brian D.; Gleason, Daniel F.; McLeod, Elizabeth; Woodley, Christa M.; Airamé, Satie; Causey, Billy D.; Friedlander, Alan M.; Grober-Dunsmore, Rikki; Johnson, Johanna E.; Miller, Steven L.; Steneck, Robert S.

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  6. Has anthropogenic land-cover change been a significant climate forcing in the past? - An assessment for the Baltic Sea catchment area based on a literature review

    Science.gov (United States)

    Gaillard, Marie-Jose; Kaplan, Jed O.; Kleinen, Thomas; Brigitte Nielsen, Anne; Poska, Anneli; Samuelsson, Patrick; Strandberg, Gustav; Trondman, Anna-Kari

    2015-04-01

    We reviewed the recent published scientific literature on land cover-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-cover change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment area. The conclusions from this review are as follows: i) anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar years before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1°, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is

  7. Disconnects Between Audiences, Resources, and Initiatives: Key Findings of the Coastal Areas Climate Change Education Partnership

    Science.gov (United States)

    Muller-Karger, F. E.; Ryan, J. G.; Feldman, A.; Gilbes, F.; Trotz, M.; McKayle, C.; Stone, D.; Plank, L.; Meisels, G.; Peterson, M.; Reynolds, C. J.

    2012-12-01

    The Coastal Areas Climate Change Education (CACCE) Partnership focused on defining a plan for effective education on climate change and its salient issues in coastal communities Florida and the US Caribbean territories. The approach included assessing perceptions and needs of stakeholders, evaluating the nature of available educational and information resources, and establishing a partnership that includes the public and professional organizations most relevant in planning and in addressing the resiliency of coastal communities. Information gathering activities included surveys among K-12 educators and students on climate change perceptions and current classroom activities in both Florida and the Caribbean territories; surveys of professional urban and land-use planners across Florida regarding their understanding of related in their professional practice; and conducting an inventory of relevant educational materials and information resources. Survey results showed a range of misperceptions about climate change, its causes and its likely impacts. At present, students and teachers in high and middle schools show poor understanding of climate science, and minimal time is spent in instruction on climate change in science courses in Florida and Puerto Rico schools. Also, there has to be professional development efforts and access to rich instructional content in a continuum spanning schools and professional communities including planners (which we surveyed). Architects and engineers are communities that also need to be surveyed and included in future efforts. A major obstacle to efforts at providing continuing education for planners and municipal officials is the lack of consensus on and access to regionally-specific scientific data regarding climate impacts and the relevant instructional content. It is difficult for professionals to prepare for climate change if they cannot define impacts in the Florida-Caribbean region and its coastal urban areas. Across over 1000

  8. General circulation and climate changes in the Mid-European area

    International Nuclear Information System (INIS)

    Schubert, S.; Hupfer, P.

    1992-01-01

    The long-term changes in the frequency distribution of weather patterns ('Grosswetterlage') are closely related to recent climate variations in the investigation area. However, this simple recording of weather pattern frequency changes is not enough for the complete explanation of the climatic changes which took place in our century in central Europe. One of the causes is the large variability of the weather for identical flow directions. In the case of weather situations which are linked to a low cloudiness degree, especially the temperature is strongly dependent on the duration of the 'Grosswetterlage'. Also when viewed from a long-term view, the climatic characteristics of the GWL air masses are by no means constant. If one considers the course of climate elements under identical circulation conditions, it is found that the average weather sometimes varied considerably in the course of the century although the general flow direction was the same. (orig./KW) [de

  9. Sensitivity of the Himalayan orography representation in simulation of winter precipitation using Regional Climate Model (RegCM) nested in a GCM

    Science.gov (United States)

    Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Sinha, P.; Shekhar, M. S.

    2017-12-01

    The role of the Himalayan orography representation in a Regional Climate Model (RegCM4) nested in NCMRWF global spectral model is examined in simulating the winter circulation and associated precipitation over the Northwest India (NWI; 23°-37.5°N and 69°-85°E) region. For this purpose, nine different set of orography representations for nine distinct precipitation years (three years each for wet, normal and dry) have been considered by increasing (decreasing) 5, 10, 15, and 20% from the mean height (CNTRL) of the Himalaya in RegCM4 model. Validation with various observations revealed a good improvement in reproducing the precipitation intensity and distribution with increased model height compared to the results obtained from CNTRL and reduced orography experiments. Further it has been found that, increase in height by 10% (P10) increases seasonal precipitation about 20%, while decrease in height by 10% (M10) results around 28% reduction in seasonal precipitation as compared to CNTRL experiment over NWI region. This improvement in precipitation simulation comes due to better representation of vertical pressure velocity and moisture transport as these factors play an important role in wintertime precipitation processes over NWI region. Furthermore, a comparison of model-simulated precipitation with observed precipitation at 17 station locations has been also carried out. Overall, the results suggest that when the orographic increment of 10% (P10) is applied on RegCM4 model, it has better skill in simulating the precipitation over the NWI region and this model is a useful tool for further regional downscaling studies.

  10. Adaptation to climate change
    Legal challenges for protected areas

    Directory of Open Access Journals (Sweden)

    An Cliquet

    2009-06-01

    Full Text Available Climate change will cause further loss of biodiversity. As negative effects are already taking place, adaptive measures are required to protect biodiversity from the effects of climate change. The EU policy on climate change and biodiversity aims at improving a coherent ecological network in order to have more resilient ecosystems and to provide for connectivity outside core areas. The existing legal framework, the Birds and Habitats Directives, can enable adaptive approaches, by establishing and managing the Natura 2000 network and providing for connectivity measures. However, policy and law so far have mainly been aimed at conserving the status quo of habitats and species within core areas. The question is whether a legal requirement to protect certain species in certain places makes sense when species and even ecosystems are migrating due to climate change. Instead, efforts must be increased to protect ecosystem functions, goods and services from the negative effects of climate change, and to facilitate the ecological restoration of new areas. Even more effort is needed for the implementation of connectivity. If existing legislation proves too weak to face these challenges, a new ‘Ecosystem Framework Directive’ might provide the necessary legal impetus.

  11. Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area

    Science.gov (United States)

    Zoran, Maria A.; Dida, Adrian I.

    2017-10-01

    Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.

  12. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  13. Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar

    Science.gov (United States)

    Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba

    2018-03-01

    The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.

  14. Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar.

    Science.gov (United States)

    Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba

    2018-03-14

    The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.

  15. Effects of climate change on agroclimatic indices in rainfed wheat production areas of Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2009-06-01

    Full Text Available Despite the importance of all climatic parameters for crop growth and productivity, temperature and rainfall are more crucial compared to others and almost all climatic and agroclimatic indices are based on these two variables. Climate change will lead to variation in agroclimatic indices and evaluation of this variation is a key to study crop response to future climatic conditions. Length of growing period (LGP and rainfall deficit index could be used as indictors for assessment of potential impact of climate change of rainfed systems. To study this impact long-term weather data of main rainfed wheat production areas of Iran were collected. UKMO general circulation model was used for perdiction of climatic parameters of selected stations for years 2025 and 2050 based on pre defined scenarios of IPCC for this target years. LGP, length of dry season and rainfall deficit index were calculated from present data and the generated data for target years. The results showed that LGP based on temperature would be increased in all rainfed areas of country. However, including the water availability in the calculation was led to a lowered LGP. Reduction of LGP for the studied stations was in the range of 8-36 and 19-55 days for years 2025 and 2050, respectively. Rainfall deficit index for 2025 and 2050 was varied, respectively at 8.3-17.7 and 21.1-32.3 mm. It was estimated that under climatic condition of years 2025 and 2050 the cultivated areas in the main rainfed production regions of the country would be reduced by 16-25 and 23-33%, respectively.

  16. Estimation of the change in the harmfulness of selected pests in expected climate - European area

    Science.gov (United States)

    Svobodova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Sefrova, H.

    2010-09-01

    CM3, NCAR-PCM, and ECHAM4) and scaled by low and high values of global temperature change. The models provide information about the possible tendency in the species development in the future climate conditions, it can point the areas endangered by the occurrence of higher number of completed generations and with likely increased economic losses. ACKNOWLEDGEMENTS We gratefully acknowledge the support of the FP 7 project "Climate change integrated assessment methodology for cross-sectoral adaptation and vulnerability in Europe" (CLIMSAVE) and of the research plan MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change"

  17. Expansion of Protected Areas under Climate Change: An Example of Mountainous Tree Species in Taiwan

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lin

    2014-11-01

    Full Text Available Tree species in mountainous areas are expected to shift their distribution upward in elevation in response to climate change, calling for a potential redesign of existing protected areas. This study aims to predict whether or not the distributions of two high-mountain tree species, Abies (Abies kawakamii and Tsuga (Tsuga chinensis var. formosana, will significantly shift upward due to temperature change, and whether current protected areas will be suitable for conserving these species. Future temperature change was projected for 15 different future scenarios produced from five global climate models. Shifts in Abies and Tsuga distributions were then predicted through the use of species distribution models (SDMs which included occurrence data of Abies and Tsuga, as well as seasonal temperature, and elevation. The 25 km × 25 km downscaled General Circulation Model (GCMs data for 2020–2039 produced by the Taiwan Climate Change Projection and Information Platform was adopted in this study. Habitat suitability in the study area was calculated using maximum entropy model under different climatic scenarios. A bootstrap method was applied to assess the parameter uncertainty of the maximum entropy model. In comparison to the baseline projection, we found that there are significant differences in suitable habitat distributions for Abies and Tsuga under seven of the 15 scenarios. The results suggest that mountainous ecosystems will be substantially impacted by climate change. We also found that the uncertainty originating from GCMs and the parameters of the SDM contribute most to the overall level of variability in species distributions. Finally, based on the uncertainty analysis and the shift in habitat suitability, we applied systematic conservation planning approaches to identify suitable areas to add to Taiwan’s protected area network.

  18. THE EFFECTS OF CLIMATE CHANGE ON ARID AND SEMI-ARID AREAS OF COLOMBIA

    Directory of Open Access Journals (Sweden)

    Daniel Pabón-Caicedo José

    2016-01-01

    Full Text Available With annual average air temperature and annual precipitation data for the 1971–2000 period and scenarios for the 2011–2040 and 2070–2100 period, in 900 meters of spatial resolution, an aridity index was calculated and the arid and semiarid areas were identified for Colombian territory. By comparing the spatial distributions of the aridity index in different periods, the modification of the coverage of the arid and semiarid areas caused by the climate change were established. It was obtained that climate change will expand the arid and semi-arid areas of the country especially in the Caribbean region, valley of the Magdalena river, the Orinoco and the Amazon, as well as some areas in the Pacific and inter-Andean Nariño and Cauca Valley (Yotoco and Dagua.

  19. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-05-01

    Full Text Available The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs, are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project, which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to

  20. Future climate and wildfire: ecosystem projections of area burned in the western US

    Science.gov (United States)

    Littell, J. S.; Duffy, P.; Battisti, D. S.; McKenzie, D.; Peterson, D. L.

    2010-12-01

    The area burned by fire in ecosystems of the western United States has been closely linked to climate in the paleoecological record and in the modern record. Statistical models of area burned show that the climatic controls on area burned vary with vegetation type (Littell et al. 2009). In more arid or systems (grasslands, shrublands, woodlands), antecedent climatic controls on fire were associated first with the production of fuels and secondarily with drought in the year of fire. These relationships typically manifested as wetter and sometimes cooler conditions in the seasons prior to the fire season. Area burned in forest ecosystems and some woodlands was primarily associated with drought conditions, specifically increased temperature and decreased precipitation in the year of fire and the seasons leading up to the fire season. These climatic controls indicate the role of climate in drying existing fuels. Statistical fire models trained on the late 20th century for ecoprovinces in the West would be useful for projecting area burned, at least until vegetation type conversion driven by climate and disturbance occurs. To that end, we used ~ 2.5 degree gridded future climate fields derived for a multi-GCM ensemble of 1C and 2C temperature increase forcing to develop future ecoprovince monthly and seasonal average temperature and associated precipitation and used these as predictors in statistical fire models of future projected area burned. We also conducted modeling scenarios with the ensemble temperature increase paired with historical precipitation. Most ecoprovinces had increases in area burned, with a range of ~ 67% to over 600% . Ecoprovinces that are primarily sensitive to precipitation changes exhibit smaller increases than those most sensitive to temperature (forest systems). We also developed exceedance probabilities. Some ecoprovinces show large increases in area burned but low exceedance probabilities, suggest that the area burned is concentrated more

  1. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  2. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    Science.gov (United States)

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  3. Regional relationships between climate and wildfire-burned area in the interior West, USA

    Science.gov (United States)

    Brandon M. Collins; Philip N. Omi; Phillip L. Chapman

    2006-01-01

    Recent studies have linked the Atlantic Multtidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) with drought occurrence in the interior United States. This study evaluates the influence of AM0 and PDO phases on interannual relationships between climate and wildfire-burned area during the 20th century. Palmer's Drought Severity Index (PDSI) is...

  4. Climate change impact on fire probability and severity in Mediterranean areas

    Science.gov (United States)

    Bachisio Arca; Grazia Pellizzaro; Pierpaolo Duce; Michele Salis; Valentina Bacciu; Donatella Spano; Alan Ager; Mark Finney

    2010-01-01

    Fire is one of the most significant threats for the Mediterranean forested areas. Global change may increase the wildland fire risk due to the combined effect of air temperature and humidity on fuel status, and the effect of wind speed on fire behaviour. This paper investigated the potential effect of the climate changes predicted for the Mediterranean basin by a...

  5. Climate Change Vulnerability of Freshwater Fishes of the San Francisco Bay Area

    Directory of Open Access Journals (Sweden)

    Rebecca M. Quiñones

    2014-09-01

    Full Text Available Normal 0 false false false EN-US JA X-NONE Rebecca M. Quiñones and Peter B. Moyledoi: http://dx.doi.org/10.15447/sfews.2014v12iss3art3Climate change is expected to progressively shift the freshwater environments of the San Francisco Bay Area (SFBA to states that favor alien fishes over native species. Native species likely will have more limited distributions and some may be extirpated. Stream-dependent species may decline as portions of streams dry or become warmer due to lower flows and increased air temperatures. However, factors other than climate change may pose a more immediate threat to native fishes. Comparison of regional vs. statewide vulnerability (baseline and climate change scores suggests that a higher proportion (56% vs. 50% of SFBA native species, as compared to the state’s entire fish fauna, are vulnerable to existing anthropogenic threats that result in habitat degradation. In comparison, a smaller proportion of SFBA native species are vulnerable to predicted climate change effects (67% vs. 82%. In the SFBA, adverse effects from climate change likely come second to estuarine alteration, agriculture, and dams. However, the relative effect of climate change on species likely will grow in an increasingly warmer and drier California. Maintaining representative assemblages of native fishes may require providing flow regimes downstream from dams that reflect more natural hydrographs, extensive riparian, stream, and estuarine habitat restoration, and other management actions, such as modification of hatchery operations.

  6. Climatic trends in the Amazonian area of Ecuador: Classical and multifractal analyses

    Science.gov (United States)

    Millán, H.; Kalauzi, A.; Llerena, G.; Sucoshañay, J.; Piedra, D.

    The climate evolution and change in the Amazonian area is very important at least at a continental scale involving Latin America where more than 550 million people live. The objective of the present study was to investigate, from an environmental perspective, the climatic trends in the Amazonian area of continental Ecuador. We performed both classical and multifractal analyses of these trends on four climatic variables (maximum and minimum temperature, evaporation and evaporation/precipitation ratio). Data were collected from Puyo meteorological station, Pastaza Province, Ecuador. Data sets covered 31 years (from January 1974 to September 2005). Each time series consisted of 380 months. Piecewise regression analyses with breaking point showed two regimes with a cutoff ranging from t = 80 months (maximum and minimum temperature) to t = 133 months for the evaporation pattern (determination coefficient ≥ 0.979) while the multifractal analyses showed an increasing complexity within each climatic variable. All the considered climatic variables showed an increase since 1974 to approximately 1985. After that some type of smoother increase was observed.

  7. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  8. On the seasonal transition from winter to spring in Europe and the "seasonal feeling" relating to "Fasnacht" in comparison with those in East Asia (Toward an interdisciplinary activity on climate and cultural understanding education)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Hamaki, Tatsuya

    2016-04-01

    As mentioned in the introduction of the EGU2016 abstract (Kato et al., submitted to CL5.06/AS4.9), there are many stages with rapid seasonal transitions in East Asia, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the arts. On the other hand, around Germany located near the western edge of the Eurasian Continent, there are so many music or literature works in which the "May" is treated as the special season (comparison of the climate and songs on "spring" (or "May") between Japan and Germany was tried in a book by Kato, H. and K. Kato, although written in Japanese). The Japanese researchers on German Literature suggested that there are basically two seasons "winter" and "summer" around Germany, with the transitional stages of spring and autumn. The concepts of the battle between winter and summer, and driving winter away, and so on, around Germany seem to show rather different seasonal feelings from that around the Japan Islands (Oshio 1982; Miyashita 1982; Takeda 1980). A traditional event there called "Fasnacht" for driving winter away is held in March or slightly earlier stage (Takeda 1980; Ueda and Ebato 1988). Kato et al. (EGU2016, submitted to CL5.06/AS4.9) will report the synoptic climatological features on the seasonal transition from winter to spring in Europe based on the daily data, by comparing with that in East Asia. In this presentation, we will discuss on the climatological background for the "seasonal feeling" leading to such as the battle between winter and summer, driving winter away, including "Fasnacht", also by referring to some songs (children's songs, etc.). At the same time, the analysis results on the seasonal transition from winter to spring in Europe in comparison with those in East Asia by Kato et al. (EGU2016) will be also referred to. On the other hand, although it is around the end of March when the "wintertime pressure pattern" on the daily surface weather maps in

  9. Climate Risk assessment and management in rainfed agriculture areas in Jordan

    Science.gov (United States)

    Khresat, Saeb

    2017-04-01

    Agricultural production is closely tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. Figures and data from official resources and previous studies demonstrated that most of agricultural areas in Jordan were rainfed which made agriculture in the country more susceptible to climate change. The percentage of harvested to cultivated areas in those areas over the past ten years ranged from 45-55%, indicating a high risk associated with rainfed agriculture in Jordan. The anticipated increase in temperature and decrease in precipitation would adversely affect crops and water availability, critically influencing the patterns of future agricultural production, threatens livelihoods and keeps vulnerable people insecure. The anticipated increase in temperature and decrease in precipitation would result in 15-20% yield reduction for major field crops and vegetable crops by 2050 and 2070. This study was conducted to help in formulating action plans to adapt to climate change by assessing the risk from climate change on rainfed agriculture. The scenarios of climate change were used to assess the impact of climate change on rainfed agriculture. The overall risk level was based on possible land use shifts and crop yield under the most probable climate change scenarios. Accordingly, adaptive measures were proposed to reduce the impacts of climate change on agriculture in Jordan. The adaptation measures included the improvement of soil water storage to maximize plant water availability, the management of crop residue and tillage to conserve soil and water, the selection of drought-tolerant crop varieties, the expansion of water harvesting schemes through encouraging the farmers to adopt and apply the in-situ water harvesting systems (micro-catchment). Finally, the study emphasized the need for capacity building and awareness creation at the levels of farmers and extension staff. This would require the formulation of plans and strategies

  10. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    Science.gov (United States)

    K C, A.

    2016-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. However, there are considerable gaps in research regarding tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. Seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. The empirical data collected at the site are complemented by secondary scientific data on climate and tourism. Correlation, regression, descriptive and graphical analysis was carried out for the presentation and analysis of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. It was also verified by the observed scientific data of temperature and precipitation. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. Till the date, there is positive impact of climate change on tourism sector in the study area. But, unfavorable weather change phenomena, intense rainfall and snowfall, melting of snow, occurrence of hydrological and climatic hazards and increase in temperature may have adverse impact on the tourism and livelihood in the mountainous area. Such type of adverse impact of climate change and tourism is already experienced in the case of Annapurna region and Mt. Everest region as tourist were trapped and affected by unfavorable weather change phenomena. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for

  11. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  12. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1 Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2 Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka, posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  13. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  14. Climate services for the assessment of climate change impacts and risks in coastal areas at the regional scale: the North Adriatic case study (Italy).

    Science.gov (United States)

    Valentina, Gallina; Torresan, Silvia; Giannini, Valentina; Rizzi, Jonathan; Zabeo, Alex; Gualdi, Silvio; Bellucci, Alessio; Giorgi, Filippo; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    At the international level, the interest for climate services is rising due to the social and economic benefits that different stakeholders can achieve to manage climate risks and take advantage of the opportunities associated with climate change impacts. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. Within the CLIM-RUN project (FP7), the case study of the North Adriatic Sea is aimed at analysing the need of climate information and the effectiveness of climate services for the integrated assessment of climate change impacts in coastal zones of the North Adriatic Sea at the regional to local scale. A participative approach was developed and applied to identify relevant stakeholders which have a mandate for coastal zone management and to interact with them in order to elicit their climate information needs. Specifically, the participative approach was carried out by means of two local workshops and trough the administration of a questionnaire related to climate information and services. The results of the process allowed identifying three major themes of interest for local stakeholders (i.e. hydro-climatic regime, coastal and marine environment, agriculture) and their preferences concerning key climate variables (e.g. extreme events, sea-level, wave height), mid-term temporal projections (i.e. for the next 30-40 years) and medium-high spatial resolution (i.e. from 1 to 50 km). Furthermore, the workshops highlighted stakeholder concern about several climate-related impacts (e.g. sea-level rise, storm surge, droughts) and vulnerable receptors (e.g. beaches, wetlands, agricultural areas) to be considered in vulnerability and risk assessment studies for the North Adriatic coastal zones. This information was used by climate and environmental risk experts in order to develop targeted climate information and

  15. European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-Climat model?

    Science.gov (United States)

    Ouzeau, G.; Cattiaux, J.; Douville, H.; Ribes, A.; Saint-Martin, D.

    2011-06-01

    Boreal winter 2009-2010 made headlines for cold anomalies in many countries of the northern mid-latitudes. Northern Europe was severely hit by this harsh winter in line with a record persistence of the negative phase of the North Atlantic Oscillation (NAO). In the present study, we first provide a wider perspective on how unusual this winter was by using the recent 20th Century Reanalysis. A weather regime analysis shows that the frequency of the negative NAO was unprecedented since winter 1939-1940, which is then used as a dynamical analog of winter 2009-2010 to demonstrate that the latter might have been much colder without the background global warming observed during the twentieth century. We then use an original nudging technique in ensembles of global atmospheric simulations driven by observed sea surface temperature (SST) and radiative forcings to highlight the relevance of the stratosphere for understanding if not predicting such anomalous winter seasons. Our results demonstrate that an improved representation of the lower stratosphere is necessary to reproduce not only the seasonal mean negative NAO signal, but also its intraseasonal distribution and the corresponding increased probability of cold waves over northern Europe.

  16. Latitudinal-Related Variation in Wintering Population Trends of Greylag Geese (Anser Anser along the Atlantic Flyway: A Response to Climate Change?

    Directory of Open Access Journals (Sweden)

    Cristina Ramo

    Full Text Available The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.

  17. Air Pollutants, Climate, and the Prevalence of Pediatric Asthma in Urban Areas of China.

    Science.gov (United States)

    Zhang, Juanjuan; Dai, Jihong; Yan, Li; Fu, Wenlong; Yi, Jing; Chen, Yuzhi; Liu, Chuanhe; Xu, Dongqun; Wang, Qiang

    2016-01-01

    Background. Prevalence of childhood asthma varies significantly among regions, while its reasons are not clear yet with only a few studies reporting relevant causes for this variation. Objective. To investigate the potential role of city-average levels of air pollutants and climatic factors in order to distinguish differences in asthma prevalence in China and explain their reasons. Methods. Data pertaining to 10,777 asthmatic patients were obtained from the third nationwide survey of childhood asthma in China's urban areas. Annual mean concentrations of air pollutants and other climatic factors were obtained for the same period from several government departments. Data analysis was implemented with descriptive statistics, Pearson correlation coefficient, and multiple regression analysis. Results. Pearson correlation analysis showed that the situation of childhood asthma was strongly linked with SO2, relative humidity, and hours of sunshine (p climate, at least in terms of children, plays a major role in explaining regional differences in asthma prevalence in China.

  18. On the potential for abrupt Arctic winter sea-ice loss

    NARCIS (Netherlands)

    Bathiany, S.; Notz, Dirk; Mauritsen, T.; Raedel, G.; Brovkin, V.

    2016-01-01

    The authors examine the transition from a seasonally ice-covered Arctic to an Arctic Ocean that is sea ice free all year round under increasing atmospheric CO2 levels. It is shown that in comprehensive climate models, such loss of Arctic winter sea ice area is faster than the preceding loss of

  19. Evaluation of soil contamination risk under climate change scenarios using Pantanal model in a Mediterranean area

    Science.gov (United States)

    Kotb Abd-Elmabod, Sameh; Anaya-Romero, María; Jordán, Antonio; Muñoz-Rojas, Miriam; de la Rosa, Diego

    2013-04-01

    In this research, contamination vulnerability of Mediterranean soils was evaluated, using Andalusia (southern Spain; 87,600 km2) as a pilot area. The following components of the agro-ecological decision support system MicroLEIS DSS have been used: 1) SDBm, soil profile database, 2) CDBm, agroclimate database 3) MDBm, database of agricultural management, and 4) Pantanal model, specific assessment model for the vulnerability of soil contamination focus on nitrogen, phosphorous, heavy metals and pesticides. After the application of the model, results may be grouped into five vulnerability classes: V1-none, V2-low, V3-moderate, V4-high and V5-extreme for each specific contaminant. Physical and chemical data, and morphological description of 62 selected soil profiles from the study area were used in this study. Soil profiles were classified at sub-group level of USDA Soil Taxonomy, resulting in 37 units included in orders Inceptisols (26,9%), Entisols (21.2%), Alfisols (19.8%), Vertisols (17.9%), Mollisols (7.2%), Ultisols (4.3%) and Aridisols (2.8%). The CDBm database contains monthly average values of climate variables: mean temperature, maximum and minimum monthly rainfall, number of days of rain and humidity, collected during a consecutive period of 30 years that represent current climate scenario, and future climate scenarios (2040, 2070 and 2100). These scenarios have been calculated using climate change variation values from the State Meteorological Agency (AEMET, 2011). The MDBm contains information about agricultural use and management of wheat crop. The Pantanal expert model was applied to each soil-unit. Results showed that 9.0%, 11.6%, 29.5% and 50.8% of the total studied area was classified as V1, V2, V3, and V4, respectively, for pesticide contamination under the current climatic scenario. Under the future climate change scenario, 7.7%, 10.0%, 17.7% and 64.6% of the total studied area was classified as V1, V2, V3 and V4, respectively, for pesticide

  20. Report of the wintering party of the 45th Japanese Antarctic Research Expedition, 2004-2005 -Activities at Syowa Station and the coastal area-

    Directory of Open Access Journals (Sweden)

    Hisao Yamagishi

    2006-03-01

    Full Text Available The 45th Japanese Antarctic Research Expedition (JARE-45 wintering party, consisting of 40 members and 2 journalists, conducted the third year program of the VIth five-year plan of JARE at Syowa Station and inland Dome Fuji Station. The program included observations in meteorology, upper atmosphere physics, atmospheric sciences, glaciology, geophysics, biology and medical science, as well as logistic activities to support the observations and maintain the station from February 1, 2004 to January 31, 2005. An Intersat satellite station was installed at Syowa Station in this expedition and started various sevices such as data transfer, internet and TV conference system. Due to the unstable sea ice condition around Syowa Station and Ongul Strait, the start of the field activities on sea ice was delayed until early July. However, many teams were engaged in field work in biology, geophysics and atmospheric sciences in the coastal area of east Lutzow-Holm Bay, as well as aeroplane observations. Two journalists at Syowa Station reported on the nature of Antarctica and various activities of the expedition.

  1. Mesoscale modelling of the summer climate response of Moscow metropolitan area to urban expansion

    Science.gov (United States)

    Varentsov, M. I.; Konstantinov, P. I.; Samsonov, T. E.

    2017-11-01

    In this paper, the experience of applying a regional climate model to simulating the summer climate features of Moscow metropolitan area is examined. Also, an assessment is made of climate response to the implementation of a scenario of twofold city expansion. The model (COSMO-CLM) was adapted to the conditions of the region under investigation, supplemented by specific urban canopy parameterization and equipped with realistic parameters of urban surface. It was possible to successfully simulate the summer meteorological regime of Moscow region and, specifically, the temporal and spatial variability of the Moscow urban heat island (UHI). First results of the simulation for the city expansion show that the new urbanized areas on the periphery of Moscow have a heating impact on its central part, which leads to an increase of the UHI effect, on the average, of 10% (in the central area). In extreme heat events the temperature response to this scenario is much stronger, which may deteriorate human health and increase thermal stress. The simulation results also show that the city of Moscow is characterized by a positive anomaly of summer precipitation (in the city and its leeward side it increases by 10-30%). The scenario of urban expansion enhances this anomaly by 5-10% and increases its area.

  2. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    International Nuclear Information System (INIS)

    Huang, Kuo-Ching; Huang, Thomas C C

    2014-01-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred

  3. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    Science.gov (United States)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  4. Wintering ecology of adult North American ospreys

    Science.gov (United States)

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  5. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E

    2012-04-01

    The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.

  6. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  7. VT Mean Winter Precipitation - 1971-2000

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ClimatePrecip_PRECIPW7100 includes mean winter precipitation data (October through March) for Vermont (1971-2000). It's a raster dataset derived...

  8. Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Qun'ou Jiang

    2015-09-01

    Full Text Available Forestland dynamics can affect the ecological security of a country and even the global environment, and therefore it is of great practical significance to understand the characteristics of temporal and spatial variations of forestland. Taking Jiangxi Province as the study area, this study first explored the driving mechanism of the natural environment and social economy on deforestation and afforestation using a simultaneous equation model. The results indicate that population size, topographic and geomorphologic factors, climate, and location play leading roles in influencing forestland density fluctuations. Specifically, the population size, economic development level, gross value of forestry production, climate conditions, and government policies are key influencing factors of afforestation. Deforestation is mainly influenced by agricultural population, non-agricultural economy, forestry production, forestry density, location, transportation, and climate. In addition, this study simulated the spatial distribution of land use and analyzed the spatial characteristics and variation trends of forestland area and quality under the Representative Concentration Pathways (RCPs climate scenarios from 2010 to 2030 using the Conversion of Land Use and its Effects (CLUE model. The results indicate that forestland declines under the Asia-Pacific integrated model (AIM climate scenario. The environment tends to be heavily damaged under this kind of scenarios, and measures should be taken in order to protect the environment. Although the model for energy supply strategy alternatives and their general environmental impact (MESSAGE scenario is to some extent better than the AIM scenario, destruction of the environment will still occur, and it is necessary to restrain deforestation and convert shrub land into forestland or garden land. These results can provide significant information for environmental protection, forest resource exploitation, and utilization

  9. Protected areas offer refuge from invasive species spreading under climate change

    Czech Academy of Sciences Publication Activity Database

    Gallardo, B.; Aldridge, D.; González-Moreno, P.; Pergl, Jan; Pizarro, M.; Pyšek, Petr; Thuiller, W.; Yesson, C.; Vila, M.

    2017-01-01

    Roč. 23, č. 12 (2017), s. 5331-5343 ISSN 1354-1013 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002; COST(XE) TD1209 Program:Akademická prémie - Praemium Academiae; FA Institutional support: RVO:67985939 Keywords : climate change * protected areas * invasions Subject RIV: EH - Ecology, Behaviour OBOR OECD: Entomology Impact factor: 8.502, year: 2016

  10. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.

    2011-08-01

    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  11. Satellite remotely-sensed land surface parameters and their climatic effects on urban areas

    Science.gov (United States)

    Zoran, M.; Savastru, R.; Savastru, D.; Ciobanu, M.; Tautan, M. N.; Miclos, S.

    2009-04-01

    Rapid urbanization transforms the natural landscape to anthropogenic urban land and changes surface biogeophysical characteristics.Urban growth affects the ecology of cities in a number of ways, such as eliminating and fragmenting native habitats, modifying local climate conditions, and generating anthropogenic pollutants.Urbanization has changed many landscapes throughout the world with serious ecological consequences.To understand the ecology of urban systems, it is necessary to quantify the spatial and temporal patterns of urbanization, which often requires dynamic modeling and spatial analysis. Geospatial information provided by satellite remote sensing sensors and biogeophysical field data are very useful for urban landuse-landcover dynamics and impacts analysis. The spatial and spectral variability of urban environments present fundamental challenges to deriving accurate remote sensing information for urban areas. By integrating high-resolution and medium-resolution satellite imagery with other geospatial information, have been investigated several land surface parameters including impervious surfaces and land surface temperatures for Bucharest metropolitan area in Romania. Percent impervious surface was used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapour content. Land surface temperatures have been analysed for different land use and land cover categories both in urban as well as in periurban areas. Because of the removal of vegetative cover and the reduction in evaporation over urban impervious surfaces, the urban heterogeneity of land surface and associated spatial extents influence surface thermal conditions. In situ meteorological data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape

  12. Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change

    Directory of Open Access Journals (Sweden)

    Moloney Kirk A

    2011-05-01

    Full Text Available Abstract Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the

  13. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    Science.gov (United States)

    K C, A.

    2017-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. It had impact on different sectors of the environment including tourism and livelihood. There are very few researches focused on tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. In this study, the empirical data collected at the field was complemented by secondary data on climate and tourism. For primary data collection, seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. Correlation, regression and graphical analysis was carried out for the presentation of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. Change in usual pattern of temperature and rainfall had affected tourism sector. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for tourism promotional activities in the study area. Also awareness and education related to tourism, gender empowerment of women, advertisement and publicity on tourism promotion, adequate subsidy and training on ecotourism and skill development trainings on handicraft are recommended.

  14. Climate adaptation in NVE's areas of responsibility - Strategy 2010 - 2014; Klimatilpasning innen NVEs ansvarsomraader - Strategi 2010 - 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hamarsland, Arne T. (ed.)

    2010-09-15

    NVE has developed a comprehensive climate change strategies within their areas of responsibility. There is a systematic review of how a future climate change will affect NVE management areas; how to meet challenges, vulnerabilities, opportunities and proposals for adaptation measures. Climate adaptation is a dynamic process. It is therefore necessary to follow up the work continuously and correct direction at regular intervals. Climate change adaptation strategy of adaptation measures is a foundation and a direction sensor in NVE's business planning. (AG)

  15. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  16. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  17. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J; Tzirkalli, Elli; Pamperis, Lazaros N; Halley, John M

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012) and short-term (2011-2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species' elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be devised.

  18. Adapative Management of Protected Areas under Land Use and Climate Changes in Thailand

    Science.gov (United States)

    Trisurat, Yongyut; Kreft, Holger; Klaus, Klaus

    2014-05-01

    The objectives of this research were to assess the potential impacts of future land use and climate change scenarios on mammal distributions in northern Thailand and to priority new protected areas to minimize the predicted impacts. Occurrence data of 17 selected mammals were obtained from a nationwide inventory during 2004-2006. Current and predicted future bioclimatic variables in 2050 were extracted from global datasets. In addition, the maximum entropy model (MaxEnt) was used to generate suitable habitats. In addition, the vulnerability matrix and the gravity model were employed to define risk species and additional protected areas, respectively. The results revealed that future climatic conditions would favor species inhabiting dense habitats. However, most species were predicted to lose suitable habitat if the remaining forest cover declines from the current level of 57% to 50% in 2050. When land use and climate changes were combined, the predicted impacts were more severe. Most species would lose suitable habitats and the average shift in distribution was greater than 40%. Centers of current mammal richness and in the future were predicted in large and contiguous protected forests but the percentage of moderate-very high concentrations would decrease marginally in the future. By increasing additional protected areas of 1,861 km2 from the current plan (from 31.4% to 32.5%) in the vulnerable areas, the predicted impacts on mammal distributions will be significantly decreased. This research demonstrates that spatially explicit models and protected areas are effective means to contribute to conservation planning at current and future dynamic threats.

  19. Climate change and protection: Recent experiences within planning of the area of cultural and natural heritage

    Directory of Open Access Journals (Sweden)

    Crnčević Tijana

    2015-01-01

    Full Text Available The aim of the paper is to provide an insight into the current legal and other regulatory frameworks that introduces problems of climate change into planning practice of natural and cultural heritage, with special emphasis on the situation in the Republic of Serbia. Further, an overview of the selected case studies of natural and cultural heritage from the UNESCO World Heritage List for which were done studies of the impacts of climate change is included. The results indicate that the legal frameworks as well as actual practice are promoting the development of the ecological networks (the network of areas NATURA 2000 and landscape protection. This applies also to the planning practice in Serbia, where the planning of ecological corridors, habitat networking and other measures, provide responses to climate change. One of the conclusions of this paper is pointing out the necessity of increasing the level of protection of natural and cultural heritage within preserving the authenticity and improving flexibility or adaptability to climate change.

  20. Territorial Manifestations of the Economical Influence Areas of Global Warming and Climate Change

    Science.gov (United States)

    Garcia Lopez, Y. G.; Perez-Peraza, J. A.; Velasco Herrera, V. M.

    2007-05-01

    Economic space is structured by the relationship between the anthropogenic and economic factors, with a dynamical evolution defined by the financial flows around the world and technology evolution. The global warming and the climate change are two different processes associated on the planet, due to different etiologies: the global warming is produced principally by anthropogenic effects, whereas the climate change its produced by physics and natural process on global earth system. Both phenomena produce economic impacts and territorial manifestation on the earth surface, which are different at different territorial scales, but with important influence on human activity. In this work, we carry out an holistic research (global impacts to the economy space) about the physical processes and anthropogenic impacts that affect directly on the climate change and global warming respectively, with territorial manifestations using geographic scales. We propose a classification on this territorial manifestations, according with the economical effects by the international trade and production of GHG´s in the world (global warming). The results of this research show that the global warming generates territorial manifestations, according with the three sectors of the world economy. We construct maps of influence areas of economic activity which have been affected in different ways by the Climatic Change and Global warming.

  1. Projecting future climate change impacts on heat-related mortality in large urban areas in China.

    Science.gov (United States)

    Li, Ying; Ren, Ting; Kinney, Patrick L; Joyner, Andrew; Zhang, Wei

    2018-02-12

    Global climate change is anticipated to raise overall temperatures and has the potential to increase future mortality attributable to heat. Urban areas are particularly vulnerable to heat because of high concentrations of susceptible people. As the world's largest developing country, China has experienced noticeable changes in climate, partially evidenced by frequent occurrence of extreme heat in urban areas, which could expose millions of residents to summer heat stress that may result in increased health risk, including mortality. While there is a growing literature on future impacts of extreme temperatures on public health, projecting changes in future health outcomes associated with climate warming remains challenging and underexplored, particularly in developing countries. This is an exploratory study aimed at projecting future heat-related mortality risk in major urban areas in China. We focus on the 51 largest Chinese cities that include about one third of the total population in China, and project the potential changes in heat-related mortality based on 19 different global-scale climate models and three Representative Concentration Pathways (RCPs). City-specific risk estimates for high temperature and all-cause mortality were used to estimate annual heat-related mortality over two future twenty-year time periods. We estimated that for the 20-year period in Mid-21st century (2041-2060) relative to 1970-2000, incidence of excess heat-related mortality in the 51 cities to be approximately 37,800 (95% CI: 31,300-43,500), 31,700 (95% CI: 26,200-36,600) and 25,800 (95% CI: 21,300-29,800) deaths per year under RCP8.5, RCP4.5 and RCP2.6, respectively. Slowing climate change through the most stringent emission control scenario RCP2.6, relative to RCP8.5, was estimated to avoid 12,900 (95% CI: 10,800-14,800) deaths per year in the 51 cities in the 2050s, and 35,100 (95% CI: 29,200-40,100) deaths per year in the 2070s. The highest mortality risk is primarily in cities

  2. Winter Weather: Frostbite

    Science.gov (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  3. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata) and its implications for northward migration in a warming climate

    Science.gov (United States)

    Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...

  4. Slow recovery of lichen on burned caribou winter range in Alaska tundra: potential influences of climate warming and other disturbance factors

    Science.gov (United States)

    Randi Jandt; Kyle Joly; C. Randy Meyers; Charles. Racine

    2008-01-01

    Lichen regeneration timelines are needed to establish sound fire management guidelines for caribou (Rangifer tarandus) winter range. Paired burned and unburned permanent vegetative cover transects were established after 1981, 1977, and 1972 tundra fires in northwestern Alaska to document regrowth of tundra vegetation including caribou forage...

  5. Developing a Climate-Induced Social Vulnerability Index for Urban Areas: A Case Study of East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carvalhaes, Thomaz M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Census American Community Survey 2008-2012 data are used to construct a spatially explicit Climate-Induced Social Vulnerability Index (CSVI) for the East Tennessee area. This CSVI is a combination of a Social Vulnerability Index (SVI) and a Climate Index. A method is replicated and adapted to derive a custom SVI by Census tract for the counties participating in the East Tennessee Index, and a Climate Index is developed for the same area based on indicators for climate hazards. The resulting datasets are exported as a raster to be integrated and combined within the Urban Climate Adaptation Tool (Urban-CAT) to act as an indicator for communities which may be differentially vulnerable to changes in climate. Results for the SVI are mapped separately from the complete CSVI in this document as results for the latter are in development.

  6. Identifying Spatiotemporal Changes In Irrigated Area Across Southwestern Michigan, USA, Using Remote Sensing and Climate Data

    Science.gov (United States)

    Xu, T.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    Irrigation, which has become more common in humid regions, is the largest consumptive water use across the US and the globe. In southwestern Michigan, there has been a dramatic expansion in irrigation water use for row crops (primarily corn and soybean) in the past decade, mostly from groundwater pumping. The rapid expansion of irrigated row crops has potentially profound implications for terrestrial water balances, food production, and local to regional climate. Detailed maps of spatio-temporal changes in irrigation are essential to better understand irrigation impacts. However, accurate monitoring of irrigation area can be difficult in humid regions using remotely sensed methods due to the similarity in greenness between non-irrigated and irrigated areas in most years. Here, we use remote sensing to create annual, 30m-resolution maps of irrigated cropland by integrating Landsat and MODIS satellite products along with the PRISM climate dataset. From these data we developed spatial time series of vegetation and extreme weather indices, including novel indices we developed specifically to maximize detection of irrigation. Using these input data, machine learning classification was then performed over the region to identify irrigated crop area for each year. The resulting annual irrigation maps suggest that total irrigated area in southwestern Michigan increased by 160% from 2000 to 2017. The accuracy of the maps is assessed relative to maps created for an arid region using the same method. The maps can be integrated into hydrologic models to quantify irrigation impacts and support water resources management.

  7. Application of Social Vulnerability Indicators to Climate Change for the Southwest Coastal Areas of Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Wu

    2016-12-01

    Full Text Available The impact of climate change on the coastal zones of Taiwan not only affects the marine environment, ecology, and human communities whose economies rely heavily on marine activities, but also the sustainable development of national economics. The southwest coast is known as the area most vulnerable to climate change; therefore, this study aims to develop indicators to assess social vulnerability in this area of Taiwan using the three dimensions of susceptibility, resistance, and resilience. The modified Delphi method was used to develop nine criteria and 26 indexes in the evaluation, and the analytic hierarchy process method was employed to evaluate the weight of each indicator based on the perspectives of experts collected through questionnaire surveys. The results provide important information pertaining to the vulnerability of the most susceptive regions, the lowest-resistance areas, and the least resilient townships on the southwest coast. The most socially vulnerable areas are plotted based on the present analysis. Experts can consider the vulnerability map provided here when developing adaptation policies. It should be kept in mind that improving the capacities of resistance and resilience is more important than reducing susceptibility in Taiwan.

  8. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas

    2018-01-01

    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  9. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  10. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction

    Science.gov (United States)

    Sun, Jian; Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Wu, Tingting; Zhang, Qian; Yin, Xiuli; Lei, Yali; Huang, Yu; Huang, R.-J.; Liu, Suixin; Han, Yongming; Xu, Hongmei; Zheng, Chunli; Liu, Pingping

    2017-02-01

    Maize straw smoldering in "Heated Kang" is the traditional way for heating in winter in rural areas of Guanzhong Plain. This smolder procedure produced large quantities of pollutants and got more and more concern from both public and researchers. In this study, on-site measurements of straw smoldering in a residence with a Chinese 'Heated Kang' (Scenario 1) were done to determine the emissions factors (EFs) for pollutants. Moreover, EFs of pollutants from an advanced stove fired with maize straw (Scenario 2) and maize-straw pellet (Scenario 3) had been conducted in a laboratory to find the new measure to reduce the pollution emissions. The results showed that the EFs of PM2.5 for three scenarios were 38.26 ± 13.94 g·kg- 1, 17.50 ± 8.29 g·kg- 1 and 2.95 ± 0.71 g·kg- 1, respectively. Comparing EFs of pollutants from 3 scenarios indicates that both briquetting of straw and advanced stove with air distribution system could efficiently reduce pollutants emission especially for Scenario 3. In detail, EFs of PM2.5, OC, EC and water soluble ions all have over 90% reduction between Scenarios 1 and 3. All particle-size distributions were unimodal, and all peaked in particle sizes size groups. Converting to pellets and advanced stoves for residential heating could reduce PM2.5 emission from 48.3 Gg to 3.59 Gg, OC from 19.0 Gg to 0.91 Gg, EC from 1.7 Gg to 0.17 Gg and over 90% reduction on total water soluble ions in the whole region. A box model simulation for the Guanzhong Plain indicated that this conversion would lead to a 7.7% reduction in PM2.5 (from 130 to 120 μg·m- 3) in normal conditions and a 14.2% reduction (from 350 to 300 μg·m- 3) in hazy conditions. The results highlighted that the straw pellets burning in advanced stove can effectively reduce pollutants emitted and improve the energy use efficiency in comparison with maize straw smoldering in "Heated Kang". The study supplies an effective measure to reduce the rural biomass burning emission, and this

  11. The Neolithization of Northern Black Sea area in the context of climate changes

    Directory of Open Access Journals (Sweden)

    Nadezhda Kotova

    2009-12-01

    Full Text Available The neolithisation of the Pontic steppe was a long process, with four stages which were associated with climate changes. It began c. 7500 calBC, with early animal husbandry in the western Azov Sea area. The beginning of the second stage was connected with an arid climate (7000–6900 calBC and the origin of the Rakushechny Yar culture in the Lower Don region. The third stage (6500–6300 calBC occurred during a humid period. Besides animal husbandry, the steppe population borrowed the first pottery from the Rakushechny Yar culture. The fourth phase (6300–6000 calBC was connected with extreme aridity and the neolithisation of the modern forest-steppe and forest zones of Ukraine and Russia.

  12. Study of climate change related to deforestation in the Xishuangbanna area, Yunnan, China

    International Nuclear Information System (INIS)

    Chungcheng Li; Cong Lai

    1991-01-01

    The analysis of the results of deforestation and the meteorological data of the Xinshuangbanna region of China shows that there are possible relations between the deforestation and climate change. With the forest area decreased by 33% during the past 30 years, the climate of this region has also been changed. The annual mean temperature has been increased by 0.7C, of which the increase is 0.97C in the dry season and 0.53C in the wet season. Together with the annual temperature increase the temperature variations have also been increased, which has resulted in more frequent low temperature damage to the local plantation agriculture. The relative humidity decreased by 3% annually; and the annual precipitation also decreased, with a decrease in the wet season of 6.8% and an increase in the dry season of 20.8%

  13. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas

    Directory of Open Access Journals (Sweden)

    Yvonne Andersson-Sköld

    2015-01-01

    Full Text Available The urban environment is a complex structure with interlinked social, ecological and technical structures. Global warming is expected to have a broad variety of impacts, which will add to the complexity. Climate changes will force adaptation, to reduce climate-related risks. Adaptation measures can address one aspect at the time, or aim for a holistic approach to avoid maladaptation. This paper presents a systematic, integrated approach for assessing alternatives for reducing the risks of heat waves, flooding and air pollution in urban settings, with the aim of reducing the risk of maladaptation. The study includes strategies covering different spatial scales, and both the current climate situation and the climate predicted under climate change scenarios. The adaptation strategies investigated included increasing vegetation; selecting density, height and colour of buildings; and retreat or resist (defend against sea-level rise. Their effectiveness was assessed with regard to not only flooding, heat stress and air quality but also with regard to resource use, emissions to air (incl. GHG, soil and water, and people’s perceptions and vulnerability. The effectiveness of the strategies were ranked on a common scale (from −3 to 3 in an integrated assessment. Integrated assessments are recommended, as they help identify the most sustainable solutions, but to reduce the risk of maladaptation they require experts from a variety of disciplines. The most generally applicable recommendation, derived from the integrated assessment here, taking into account both expertise from different municipal departments, literature surveys, life cycle assessments and publics perceptions, is to increase the urban greenery, as it contributes to several positive aspects such as heat stress mitigation, air quality improvement, effective storm-water and flood-risk management, and it has several positive social impacts. The most favourable alternative was compact, mid

  14. Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site

    Science.gov (United States)

    Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.

    2017-12-01

    Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.

  15. Protected areas offer refuge from invasive species spreading under climate change.

    Science.gov (United States)

    Gallardo, Belinda; Aldridge, David C; González-Moreno, Pablo; Pergl, Jan; Pizarro, Manuel; Pyšek, Petr; Thuiller, Wilfried; Yesson, Christopher; Vilà, Montserrat

    2017-12-01

    Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%-18% significantly lower inside PAs than outside them. Invasive species are rare in long-established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14-55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native

  16. Gaz de France first quarter 2007 sales: an 11 per cent drop due to an exceptionally warm winter: a 1.3 per cent increase on an average-climate basis. Non-audited IFRS data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Paris, May 14 2007 - For the first quarter 2007, Gaz de France Group posted euro 9,053 million in consolidated sales. This 11 per cent decrease on the same period in 2006 is a direct result of the extremely warm weather conditions in France and Europe this winter. In contrast, under average climate conditions sales improved by 1.3 per cent. In France, where the winter of 2006/2007 was the warmest in fifty years, sales were impacted by 18 billion kWh in the quarter compared to a quarter with average-climate conditions and 32 billion kWh compared to the first quarter 2006 which, in contrast, was colder than normal. The impact of the weather had similar effects on sales outside France. The highly unusual weather conditions also had an indirect impact on the market and, consequently, on both gas production and the arbitrage activities. Not withstanding these effects, the Group continued to consolidate its position in foreign markets, with sales outside France reaching euro 3,341 million. The share of sales outside France increased by 3 points in the first quarter of 2007 versus first quarter 2006 to 37 per cent as at end March 2007. The group reiterates the 2007 financial objective as presented at the full year 2006 results: '2007 will be a year of consolidation and the EBITDA should be in line with that of 2006'.

  17. Gaz de France first quarter 2007 sales: an 11 per cent drop due to an exceptionally warm winter: a 1.3 per cent increase on an average-climate basis. Non-audited IFRS data

    International Nuclear Information System (INIS)

    2007-01-01

    Paris, May 14 2007 - For the first quarter 2007, Gaz de France Group posted euro 9,053 million in consolidated sales. This 11 per cent decrease on the same period in 2006 is a direct result of the extremely warm weather conditions in France and Europe this winter. In contrast, under average climate conditions sales improved by 1.3 per cent. In France, where the winter of 2006/2007 was the warmest in fifty years, sales were impacted by 18 billion kWh in the quarter compared to a quarter with average-climate conditions and 32 billion kWh compared to the first quarter 2006 which, in contrast, was colder than normal. The impact of the weather had similar effects on sales outside France. The highly unusual weather conditions also had an indirect impact on the market and, consequently, on both gas production and the arbitrage activities. Not withstanding these effects, the Group continued to consolidate its position in foreign markets, with sales outside France reaching euro 3,341 million. The share of sales outside France increased by 3 points in the first quarter of 2007 versus first quarter 2006 to 37 per cent as at end March 2007. The group reiterates the 2007 financial objective as presented at the full year 2006 results: '2007 will be a year of consolidation and the EBITDA should be in line with that of 2006'

  18. Determinants of climate change adaptation strategies used by fish farmers in Epe Local Government Area of Lagos State, Nigeria.

    Science.gov (United States)

    Arimi, Kayode S

    2014-05-01

    Undesirable impacts of climate change have been a common occurrence that has made fish farmers in developing countries adopt some climate-change adaptation strategies. However, little is known about determinants of climate-change adaptation strategies used by these fish farmers. This study, therefore, articulates novelties on adaptation to climate change, as well ascertains determinants of adaptation strategies used by fish farmers in Epe, Lagos State, Nigeria. Climate change adaptation strategies mostly used by fish farmers include frequent seeking for early warning information about climate change (76.7%) and avoidance of areas susceptible to flooding (60.0%). Climate-change adaptation strategies used by fish farmers were significantly influenced by access to early warning information (β = 7.21), knowledge of farmers about climate change adaptation strategies (β = 8.86), access to capital (β = 28.25), and participation in workshop and conferences (β = 37.19) but were reduced by number of fish stocking (β = -2.06). The adaptation strategies used by fish farmers were autonomous and mostly determined by the access to credit facilities and information. Development policy should focus on carbon capture and storage technology in order to reduce adverse impacts of climate change, as well as making early warning information on climate change available to fish farmers. These will enhance adaptation to climate change. © 2013 Society of Chemical Industry.

  19. Impacts of climate change and anthropization on groundwater resources in the Nouakchott urban area (coastal Mauritania)

    OpenAIRE

    Mohamed, A. S.; Leduc, Christian; Marlin, C.; Wague, O.; Cheikh, M. A. S.

    2017-01-01

    Declining groundwater resources in semi-arid areas are often cited because of anthropization and climate change. This is not the case in Nouakchott (Mauritania) where the water level has risen by 1 to 2 m over the last 40 years in parallel with urban expansion (+1 million inhabitants in 60 years). Using former and new data, primarily water table measurements and chemical indicators (major ions, bromide, O-18, H-2), we show that the groundwater level rise is mainly a consequence of the rapid p...

  20. NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from the NOAA Climate Data...

  1. Is rainfall erosivity influenced by climate change?. A case study in a Mediterranean Climate area of North East Spain

    Science.gov (United States)

    Ramos, Maria C.

    2014-05-01

    One of the main characteristics of the Mediterranean climate is the high intensity rainfall events usually recorded in autumn and spring. Those events usually concentrate a high percentage of annual rainfall. Different studies carried out in the Mediterranean countries suggest that notable changes in seasonal precipitation regimes have occurred during the second half of the 20th century. In addition, precipitation extremes seem to increase in association with global warming, which may favour erosion processes. Under this hypothesis one question arise: is the rainfall erosivity increasing influenced by climate change? In this work rainfall erosivity and its variability in the last two decades was analysed in an area located NE Spain, where erosion processes of high magnitude are recorded. The main land use in that area is grape vines, which due to the scarce soil cover is usually associated with the highest erosion rates. The study area was located in the Penedès depression (North East Spain). Hourly data from four observatories Els Hostalets de Pierola (UTM X: 400664, Y: 4598608m, elv: 326m ), La Granada ( X:393758; Y:4580393), Sant Martí Sarroca (X: 385556; Y:4581486, elv: 257m) and Font_Rubi (X: 385118, Y:4587935. elev: 415 m ) belonging to the period 1997-2013 were used in the analysis together with a tipping bucket rainfall series recorded at one minute intervals (10 years within the period 1996-2012). Rainfall erosivity was quantified by the index rainfall kinetic energy multiplied by the maximum intensity in 30minute periods (E*Imax30). The Imax30 was estimated from the relationship between hourly and 30 minute data obtained for the tipping bucket series using the Marquard algoritme. In order to analsye changes in rainfall erosivity, the annual and monthly number of erosive events were analysed for each observatory and in each year, the events were classified into intervals according to their erosivity. The intervals used were: 0-100; 100-200; 200-300; 300

  2. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minn...

  3. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    Science.gov (United States)

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  4. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    Science.gov (United States)

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  5. Effect of landscape density in a residential area on thermal performance in a tropical climate

    Directory of Open Access Journals (Sweden)

    Kamarulzaman Noorazlina

    2016-01-01

    Full Text Available It is a well-documented that the urban air temperature is gradually growing in all cities due to the rapid development of buildings, roads and other infrastructure, human activities and also decreasing in vegetated areas. In a tropical climate, outdoor environment is clearly warmer than indoor environment due to higher air temperatures, particularly in dry seasons. Since the indoor environment is influenced by its surroundings, this situation indirectly contributes to the discomfort indoor environment in the building. Thus, it generates to the dependence on mechanical ventilation and increase the energy consumption in buildings. Many research studies have proof that plants not only beauty a city, but also improve the urban environmental condition by reducing the transferring of heat flux on buildings and increasing the reflection of radiation and shading. Therefore strategically placed vegetation around a building could decrease the energy consumption in buildings by reducing the adverse impact of some climate elements. Overall, this paper focuses on the results of a preliminary pilot study of two Semi-Detached houses with different landscape density in Seri Iskandar, Perak. Three climatic parameters, building configuration, and landscape design measured and analyze in this paper.

  6. Air Pollutants, Climate, and the Prevalence of Pediatric Asthma in Urban Areas of China

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhang

    2016-01-01

    Full Text Available Background. Prevalence of childhood asthma varies significantly among regions, while its reasons are not clear yet with only a few studies reporting relevant causes for this variation. Objective. To investigate the potential role of city-average levels of air pollutants and climatic factors in order to distinguish differences in asthma prevalence in China and explain their reasons. Methods. Data pertaining to 10,777 asthmatic patients were obtained from the third nationwide survey of childhood asthma in China’s urban areas. Annual mean concentrations of air pollutants and other climatic factors were obtained for the same period from several government departments. Data analysis was implemented with descriptive statistics, Pearson correlation coefficient, and multiple regression analysis. Results. Pearson correlation analysis showed that the situation of childhood asthma was strongly linked with SO2, relative humidity, and hours of sunshine (p<0.05. Multiple regression analysis indicated that, among the predictor variables in the final step, SO2 was found to be the most powerful predictor variable amongst all (β=-19.572, p < 0.05. Furthermore, results had shown that hours of sunshine (β = -0.014, p < 0.05 was a significant component summary predictor variable. Conclusion. The findings of this study do not suggest that air pollutants or climate, at least in terms of children, plays a major role in explaining regional differences in asthma prevalence in China.

  7. Study of Climate Change to Hydrologic Processes in a Snow-dominant Area

    Science.gov (United States)

    Chen, C.; Ahmad, S.; Mejia, J.; Volk, J. M.; Kalra, A.

    2015-12-01

    The focus of this study is to identify a representative climate change models in Coupled Model Intercomparison Project phase 5 (CMIP5) for regional hydrologic study in Lehman Creek watershed, a typical snow-dominated area located in Great Basin National Park, eastern Nevada for a period of 55 years i.e. 1950 to 2005. Features of three variables: precipitation, maximum temperature and minimum temperature were analyzed and compared with the available 21 CMIP5 model ensembles. Results identified a subset of 6 climate models among the CMIP5 ensembles that showed statistical consistency in features of trend and variability with the chosen variables. For a validation, a physically- based distributed hydrologic model was developed using Precipitation-Runoff Modeling System (PRMS) in Lehman Creek watershed. Runoff simulations were obtained by driving PRMS model with the products of these identified climate models, and were well validated with observed data. However, the magnitudes of CMIP5 precipitation were too low and could not adequately represent to the observed annual precipitation. Adjustment of precipitation will be needed and extra caution should be paid if these 6 model products are used in regional hydrologic processes simulation in future as well as water resources planning.

  8. Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors

    Science.gov (United States)

    Yu, Qiangyi; van Vliet, Jasper; Verburg, Peter H.; You, Liangzhi; Yang, Peng; Wu, Wenbin

    2018-04-01

    Previous analyses have shown that cropland in China is intensifying, leading to an increase in crop production. However, these output measures leave the potential for further intensification largely unassessed. This study uses the harvested area gap (HAG), which expresses the amount of harvested area that can be gained if all existing cropland is harvested as frequently as possible, according to their potential limit for multi-cropping. Specifically, we calculate the HAG and changes in the HAG in China between 1981 and 2010. We further assess how climatic and land management factors affect these changes. We find that in China the HAG decreases between the 1980s and the 1990s, and subsequently increases between the 1990s and the 2000s, resulting in a small net increase for the entire study period. The initial decrease in the HAG is the result of an increase in the average multi-cropping index throughout the country, which is larger than the increase in the potential multi-cropping index as a result of the changed climatic factors. The subsequent increase in the HAG is the result of a decrease in average multi-cropping index throughout the country, in combination with a stagnant potential. Despite the overall increase in harvested area in China, many regions, e.g. Northeast and Lower Yangtze, are characterized by an increased HAG, indicating their potential for further increasing the multi-cropping index. The study demonstrates the application of the HAG as a method to identify areas where the harvested area can increase to increase crop production, which is currently underexplored in scientific literature.

  9. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    Science.gov (United States)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue

  10. The effects of a winter upwelling on biogeochemical and planktonic components in an area close to the Galician Upwelling Core: The Sound of Corcubión (NW Spain)

    Science.gov (United States)

    Varela, Manuel; Álvarez-Ossorio, Ma Teresa; Bode, Antonio; Prego, Ricardo; Bernárdez, Patricia; Garcia-Soto, Carlos

    2010-10-01

    To study the biogeochemical response and the coupling plankton-benthos to an unusual winter upwelling event a cruise was carried out in February 2005 in the Sound of Corcubión, near Cape Finisterre (NW Iberian Peninsula), the Galician upwelling core. This area represents the northern boundary of the Eastern North Atlantic Upwelling System (ENAUS). The spatial distribution of plankton assemblages (phytoplankton and zooplankton), chlorophyll, physical and chemical parameters as well as diatom distribution in surface sediments, were studied in a total of 17 stations in the Sound. The upwelling processes caused an important accumulation of water in the inner Sound and near the Cape. This accumulation zone must be persistent through the upwelling events in the area, including those of summer, as indicated by the diatoms' distribution in the sediment. Unlike the summer upwelling events, the main effect of winter upwelling in the area is the increase in solar radiation due to the persistent clear skies. In this season nutrient supply is not critical due to water column mixing. The meteorological conditions were equivalent to those of early spring. As a result, both phyto- and zooplankton species assemblages were typical of spring blooms in Galician coasts. The bloom lasted for up to 6 days, as estimated from the availability and uptake of nitrogen forms. Winter blooms represented ca. 20% of total annual phytoplankton biomass, and 30% of the average biomass during summer upwelling, in the period 1997-2007, as estimated from the analysis of both, in situ and satellite derived chlorophyll.

  11. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  12. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Ciais, P.; Wang, T.; Piao, S.L.; Ottlé, C.; Brender, P.; Moors, E.J.

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the

  13. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  14. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Viola, F., E-mail: francesco.viola77@unipa.it; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-02-15

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  15. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Directory of Open Access Journals (Sweden)

    T. Wang

    2011-07-01

    Full Text Available Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m−2 d−1, when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m−2 d−1. Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m−2 d−1 of 0.70(±0.33, 0.60(±0.38, 0.62(±0.43, 0.49(±0.22 and 0.27(±0.08, respectively. Our cross site analysis showed that winter air (Tair and soil (Tsoil temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands. Besides temperature, the seasonal amplitude of the leaf area index (LAI, inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (

  16. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  17. Performance of ALADIN-Climate/CZ over the area of the Czech Republic in comparison with ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Crhová, L.; Holtanova, E.; Kalvová, J.; Farda, Aleš

    2014-01-01

    Roč. 58, č. 1 (2014), s. 148-169 ISSN 0039-3169 R&D Projects: GA MŽP(CZ) SP/1A6/108/07 Institutional support: RVO:67179843 Keywords : regional climate model * climate model performance * Taylor diagram * skill score Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.806, year: 2014

  18. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  19. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  20. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    Science.gov (United States)

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land

  1. Spatiotemporal Variations of Extreme Precipitation under a Changing Climate in the Three Gorges Reservoir Area (TGRA

    Directory of Open Access Journals (Sweden)

    Mingquan Lü

    2018-01-01

    Full Text Available The Three Gorges Dam (TGD is one of the largest hydroelectric projects in the world. Monitoring the spatiotemporal distribution of extreme precipitation offers valuable information for adaptation and mitigation strategies and reservoir management schemes. This study examined variations in extreme precipitation over the Three Gorges Reservoir area (TGRA in China to investigate the potential role of climate warming and Three Gorges Reservoir (TGR. The trends in extreme precipitation over the TGRA were investigated using the iterative-based Mann–Kendall (MK test and Sen’s slope estimator, based on weather station daily data series and TRMM (Tropical Rainfall Measuring Mission data series. The mean and density distribution of extreme precipitation indices between pre-dam and post-dam, pre-1985 and post-1985, and near and distant reservoir area were assessed by the Mann–Whitney test and the Kolmogorov–Smirnov test. The ratio of extreme precipitation to non-extreme precipitation became larger. The precipitation was characterized by increases in heavy precipitation as well as decreases in light and moderate rain. Comparing extreme precipitation indices between pre-1985 (cooling and post-1985 (warming indicated extreme precipitation has changed to become heavier. Under climate warming, the precipitation amount corresponding to more than the 95th percentile increased at the rate of 6.48%/°C. Results from comparing extreme precipitation for the pre- and post-dam, near reservoir area (NRA and away from the reservoir area (ARA imply an insignificant role of the TGR on rainfall extremes over the TGRA. Moreover, the impoundment of TGR did not exert detectable impacts on the surface relative humidity (RH and water vapor pressure (WP.

  2. Influence of climatic change on hydrological processes on coastal areas, a model study

    Science.gov (United States)

    Graeff, T.; Baroni, G.; Bronstert, A.; Hohlbein, A.; Oswald, S.

    2012-04-01

    Coastal areas will more strongly suffer from the influence of climatic change than other areas. In addition to sea level rise itself, the probability of occurrence of storm tides, heavy rains and possibly drought events will increase. Therefore, rising salt input via saltwater intrusion and by overtopping of coastal defences can be expected. These changing conditions will have a large effect on natural vegetation and agriculture. The land use management in those regions has to react to the new situation either by adapting the coastal protection (e.g. expanding the system of dikes, ditches and pumping stations), by a conversion of existing landuse (e.g. changing to an extensive usage) or by a mix of the two mentioned actions. To understand the development of coastal areas in respect to discharge behaviour, salinisation, water balance, and feedbacks between hydrology and vegetation, two representative study sites at the German North Sea (Leybucht/Greetsiel) and Baltic Sea (Hüttelmoor/Heiliger See) were selected. The area at the North Sea is laying to 75% below sea level with an intensive agricultural land use and has a typical geological structure. The Baltic Sea area with a long investigation record has been undergoing a change from an intensively used grassland site to an inundated extensively usage and is about to be returned to a natural development, including salinisation and vegetation change, by locally discontinuing coastal protection measures. We apply the physically based model HydroGeosphere to simulate the two areas, while focusing on the North Sea area. Down scaled time series from the ECHAM5 model of different climatic emission scenarios (A1B, A2, B1) were used to outline the change in the hydrological system. Hereby the following landuse scenarios were established: holding the status quo with an adapted coastal defence and drainage network; extensivication of landuse to wetland management and carbon sequestration; and conversion of landuse to bio fuel

  3. Assessing vulnerable and expanding vegetation stands and species in the San Francisco Bay Area for conservation management under climate change

    Science.gov (United States)

    Morueta-Holme, N.; Heller, N. E.; McLaughlin, B.; Weiss, S. B.; Ackerly, D.

    2015-12-01

    The distribution of suitable climatic areas for species and vegetation types is expected to shift due to ongoing climate change. While the pace at which current distributions will shift is hard to quantify, predictions of where climatically suitable areas will be in the future can allow us to map 1) areas currently occupied by a species or vegetation type unlikely to persist through the end of this century (vulnerable stands), 2) areas likely to do better in the future and serve as nuclei for population expansion (expanding stands), and 3) areas likely to act as climate refugia (persisting stands). We quantified the vulnerability of 27 individual plant species and 27 vegetation types in the San Francisco Bay Area as well as the conservation importance, vulnerability, and resilience of selected management sites for climate change resilient conservation. To this end, we developed California-wide models of species and vegetation distributions using climate data from the 2014 California Basin Characterization Model at a 270 m resolution, projected to 18 different end-of century climate change scenarios. Combining these distribution models with high resolution maps of current vegetation, we were able to map projected vulnerable, expanding, and persisting stands within the Bay Area. We show that vegetation and species are expected to shift considerably within the study region over the next decades; although we also identify refugia potentially able to offset some of the negative impacts of climate change. We discuss the implications for managers that wish to incorporate climate change in conservation decisions, in particular related to choosing species for restoration, identifying areas to collect seeds for restoration, and preparing for expected major vegetation changes. Our evaluation of individual management sites highlights the need for stronger coordination of efforts across sites to prioritize monitoring and protection of species whose ranges are contracting

  4. Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Giuseppina A. Giorgio

    2017-05-01

    Full Text Available The Urban Heat Island (UHI phenomenon prevalently concerns industrialized countries. It consists of a significant increase in temperatures, especially in industrialized and urbanized areas, in particular, during extreme warm periods like summer. This paper explores the climate variability of temperatures in two stations located in Matera city (Southern Italy, evaluating the increase in temperatures from 1988 to 2015. Moreover, the Corine Land Covers (1990–2000–2006–2012 were used in order to investigate the effect of land use on temperatures. The results obtained confirm the prevalence of UHI phenomena for industrialized areas, highlighting the proposal that the spreading of settlements may further drive these effects on the microclimate. In particular, the presence of industrial structures, even in rural areas, shows a clear increase in summer maximum temperatures. This does not occur in the period before 2000, probably due to the absence of the industrial settlement. On the contrary, from 2000 to 2015, changes are not relevant, but the maximum temperatures have always been higher than in the suburban area (station localized in green zone during daylight hours.

  5. The closed city as a strategy to reduce vulnerability of urban areas for climate change.

    Science.gov (United States)

    de Graaf, R E; van de Giesen, N C; van de Ven, F H M

    2007-01-01

    Urbanization, land subsidence and sea level rise will increase vulnerability to droughts in the urbanized low-lying areas in the western part of the Netherlands. In this paper a possibility is explored to decrease vulnerability of urban areas by implementing an alternative water supply option. A four component vulnerability framework is presented that includes threshold capacity, coping capacity, recovery capacity and adaptive capacity. By using the vulnerability framework it is elaborated that current water supply strategies in the Netherlands mainly focus on increasing threshold capacity by constructing improved water storage and delivery infrastructure. A complete vulnerability decreasing strategy requires measures that include all four components. Adaptive capacity can be developed by starting experiments with new modes of water supply. A concept which is symbolically called 'the closed city' uses local urban rainfall as the only source of water supply. The 'closed city' can decrease the water dependence of urban areas on (1) the surrounding rural areas that are diminishing in size and that are increasingly under strain and (2) river water resources that will probably be less constant and reliable as a result of climate change.

  6. The Guayas Estuary and sea level corrections to calculate flooding areas for climate change scenarios

    Science.gov (United States)

    Moreano, H. R.; Paredes, N.

    2011-12-01

    The Guayas estuary is the inner area of the Gulf of Guayaquil, it holds a water body of around 5000 km2 and the Puna island divides the water flow in two main streams : El Morro and Estero Salado Channel (length: 90 Km.) and Jambeli and Rio Guayas Channel (length: 125km.). The geometry of the estuarine system with the behavior of the tidal wave (semidiurnal) makes tidal amplitude higher at the head than at the mouth, whereas the wave crest at the head is delayed from one and a half to two hours from that at the mouth and sea level recorded by gages along the estuary are all different because of the wave propagation and mean sea level (msl) calculated for each gage show differences with that of La Libertad which is the base line for all altitudes on land (zero level). A leveling and calculations were made to correct such differences in a way that all gages (msl) records were linked to La Libertad and this in turn allowed a better estimates of flooding areas and draw them on topographic maps where zero level corresponds to the mean sea level at La Libertad. The procedure and mathematical formulation could be applied to any estuary or coastal area and it is a useful tool to calculate such areas especially when impacts are on people or capital goods and related to climate change scenarios.

  7. Present and future assessment of growing degree days over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Matzarakis, Andreas

    2017-10-01

    The determination of heat requirements in the first developing phases of plants has been expressed as Growing Degree Days (GDD). The current study focuses on three selected study areas in Greece that are characterised by different climatic conditions due to their location and aims to assess the future variation and spatial distribution of Growing Degree Days (GDD) and how these can affect the main cultivations in the study areas. Future temperature data were obtained and analysed by the ENSEMBLES project. The analysis was performed for the future periods 2021-2050 and 2071-2100 with the A1B and B1 scenarios. Spatial distribution was performed using a combination of dynamical and statistical downscaling technique through ArcGIS 10.2.1. The results indicated that for all the future periods and scenarios, the GDD are expected to increase. Furthermore, the increase in the Sperchios River basin will be the highest, followed by the Ardas and the Geropotamos River basins. Moreover, the cultivation period will be shifted from April-October to April-September which will have social, economical and environmental benefits. Additionally, the spatial distribution indicated that in the upcoming years the existing cultivations can find favourable conditions and can be expanded in mountainous areas as well. On the other hand, due to the rough topography that exists in the study areas, the wide expansion of the existing cultivations into higher altitudes is unaffordable. Nevertheless, new more profitable cultivations can be introduced which can find propitious conditions in terms of GDD.

  8. Water erosion on areas planted to potato in Tucumán by climate change.

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  9. Projecting environmental suitable areas for malaria transmission in China under climate change scenarios.

    Science.gov (United States)

    Hundessa, Samuel; Li, Shanshan; Liu, De Li; Guo, Jinpeng; Guo, Yuming; Zhang, Wenyi; Williams, Gail

    2018-04-01

    The proportion of imported malaria cases in China has increased over recent years, and has presented challenges for the malaria elimination program in China. However, little is known about the geographic distribution and environmental suitability for malaria transmission under projected climate change scenarios. Using the MaxEnt model based on malaria presence-only records, we produced environmental suitability maps and examined the relative contribution of topographic, demographic, and environmental risk factors for P. vivax and P. falciparum malaria in China. The MaxEnt model estimated that environmental suitability areas (ESAs) for malaria cover the central, south, southwest, east and northern regions, with a slightly wider range of ESAs extending to the northeast region for P. falciparum. There was spatial agreement between the location of imported cases and area environmentally suitable for malaria transmission. The ESAs of P. vivax and P. falciparum are projected to increase in some parts of southwest, south, central, north and northeast regions in the 2030s, 2050s, and 2080s, by a greater amount for P. falciparum under the RCP8.5 scenario. Temperature and NDVI values were the most influential in defining the ESAs for P. vivax, and temperature and precipitation the most influential for P. falciparum malaria. This study estimated that the ESA for malaria transmission in China will increase with climate change and highlights the potential establishment of further local transmission. This model should be used to support malaria control by targeting areas where interventions on malaria transmission need to be enhanced. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Crossing-scale hydrological impacts of urbanization and climate variability in the Greater Chicago Area

    Science.gov (United States)

    Rougé, Charles; Cai, Ximing

    2014-09-01

    This paper uses past hydrological records in Northeastern Illinois to disentangle the combined effects of urban development and climatic variability at different spatial scales in the Greater Chicago Area. A step increase in annual precipitation occurred in Northeastern Illinois during 1965-1972 according to climate records. Urbanization has occurred as a gradual process over the entire Greater Chicago Area, both before and after the abrupt annual precipitation increase. The analysis of streamflow trends at each gaging station is supplemented by the comparison of the evolution of streamflow indicators in a group of urban and agricultural watersheds, thanks to an original use of the Mann-Whitney test. Results suggest that urban expansion in the Greater Chicago Area has led to widespread increases in a wide variety of streamflow metrics, with the exceptions being spring flows and some of the peak flow indicators. The increases detected in small (urban watersheds are mitigated in large (>200 km2) ones, over which the changes in streamflow are relatively homogeneous. While the impacts of land-use change are identified across a wide range of flow indicators and spatial scales, there are indications that some of these effects are mitigated or made negligible by other factors. For example, while impervious surfaces are found to increase flooding, stormwater management facilities, an adaptation to increased flooding, mitigate their impacts at a wide range of scales. While impervious surfaces are known to reduce infiltration and baseflow, a low flow increase was triggered by water withdrawals from Lake Michigan, as a response to a rising water demand which made on-site groundwater extraction unsustainable. Our analysis thus highlights the impacts of adaptive planning and management of water resources on urban hydrology.

  11. Modeling the Impacts of Urbanization on Regional Climate Change: A Case Study in the Beijing-Tianjin-Tangshan Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Jinyan Zhan

    2013-01-01

    Full Text Available China has experienced rapid urbanization since 1978, and the dramatic change in land cover is expected to have significant impacts on the climate change. Some models have been used to simulate the relationship between land use and land cover change and climate change; however, there is still no sufficient evidence for the impacts of urbanization on the regional climate. This study aims to identify the impact of urban land use change on regional temperature and precipitation in summer in the Beijing-Tianjin-Tangshan Metropolitan area during 2030–2040 based on the analysis of the simulation results of WRF model. Firstly, we analyzed the land use change and climate change during 1995–2005 in the study area. The impacts of future urbanization on regional climate change were then simulated. The results indicate that urbanization in this area has affected the regional climate and has the potential to increase temperature and precipitation in the summer of 2030–2040. These research results can offer decision-making support information related to future planning strategies in urban environments in consideration of regional climate change.

  12. [Winter surveillance of cold exposure effects on health among the homeless population in the Paris area: data from the Coordinated Health Surveillance of Emergency Department network (Organisation de la surveillance coordonnée des urgences [Oscour(®)])].

    Science.gov (United States)

    Rouquette, A; Mandereau-Bruno, L; Baffert, E; Laaidi, K; Josseran, L; Isnard, H

    2011-12-01

    A program for helping homeless individuals in winter is implemented from November 1(st) to March 31(st) each year in France. Its aim is to prevent morbidity and mortality in this population during cold spells and periods of severe cold. A health surveillance system of the homeless population in the Paris area has been proposed to evaluate the effectiveness of the program and to alert decision-makers if an unusual increase in cold-weather effects is observed. The goal of this study was the creation of an indicator for the proposed surveillance system based on emergency department activity in the Paris area (Oscour(®) Network - Organisation de la surveillance coordonnée des urgences). The winter 2007-2008 computer medical files of 11 emergency departments in the Paris area were examined to confirm diagnosis and ascertain patient-homelessness for each patient visit which was selected from the Oscour(®) database by the patient chief-complaint or diagnosis code referring to hypothermia or frostbites. The proposed indicator is based on the maximization of three criteria: the positive predictive value, the proportion of people identified as being homeless and the number of emergency department visits. A Shewhart control chart was applied to the indicator for the four winters between 2005 and 2009 in the Paris area. Values beyond the statistical threshold would indicate a need for an adjustment to the program strategy. Two hundred and sixteen medical files were analyzed. An indicator was created, "number of emergency department visits of 15 to 69-years-old persons with chief-complaint or diagnosis code referring to hypothermia". It had a positive predictive value estimated near 85 % and identified 61.7 % people as being homeless. In the winter of 2008-2009, the statistical threshold was reached in December during the first cold spell, and again at the beginning of January during a period of severe cold. Our results support the use of this health indicator

  13. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-03-01

    The assessment of future precipitation variations prevailing in an area is essential for the research regarding climate and climate change. The current paper focuses on 3 selected areas in Greece that present different climatic characteristics due to their location and aims to assess and compare the future variation of annual and seasonal precipitation. Future precipitation data from the ENSEMBLES anthropogenic climate-change (ACC) global simulations and the Climate version of the Local Model (CLM) were obtained and analyzed. The climate simulations were performed for the future periods 2021-2050 and 2071-2100 under the A1B and B1 scenarios. Mann-Kendall test was applied to investigate possible trends. Spatial distribution of precipitation was performed using a combination of dynamic and statistical downscaling techniques and Kriging method within ArcGIS 10.2.1. The results indicated that for both scenarios, reference periods and study areas, precipitation is expected to be critically decreased. Additionally, Mann-Kendall test application showed a strong downward trend for every study area. Furthermore, the decrease in precipitation for the Ardas River basin characterized by the continental climate will be tempered, while in the Sperchios River basin it will be smoother due to the influence of some minor climatic variations in the basins' springs in the highlands where milder conditions occur. Precipitation decrease in the Geropotamos River basin which is characterized by Mediterranean climate will be more vigorous. B1 scenario appeared more optimistic for the Ardas and Sperchios River basins, while in the Geropotamos River basin, both applied scenarios brought similar results, in terms of future precipitation response.

  14. Validation Framework for USGS Landsat-derived Essential Climate Variables: the Burned Area Product Example

    Science.gov (United States)

    Mladinich, C. S.; Brunner, N. M.; Beal, Y. G.

    2013-12-01

    The U.S. Geological Survey (USGS) is generating a suite of Essential Climate Variables (ECVs), as defined by the Global Climate Observing System program, from the Landsat data archive. The Landsat archive will provide high spatial resolution (30 m) and long-term (1972 to present) global land products, meeting the needs of climate and ecological studies at global, national, and regional scales. Validation protocols for these products are being established, paralleling the Committee on Earth Observing Satellites (CEOS) Calibration/Validation Working Groups' best practice guidelines, but also being modified to account for the unique characteristics of the Landsat data. The USGS validation plan is unique in that it incorporates protocols that span not only the breadth of ecoregions but the timespan of the ECV products and Landsat satellite sensors (MSS, TM, TM+, and OLI). To achieve these goals, the incorporation of existing data bases is essential. Protocols are being developed to perform a CEOS Working Group on Calibration/Validation Stage 2 validation with plans on performing a full Stage 4 validation ensuring the spatial and temporal consistency of the ECV products. A Stage 2 validation reports product accuracies over a large number of locations and time periods by comparison with in situ or other suitable reference data. The Stage 3 validation reports product uncertainties in a statistically robust way over multiple locations and time periods representing global conditions. Validation at this stage reports on the accuracies and confidence of products for the user communities as well as to the algorithm developers. The Stage 4 validation calls for continual assessments as new product versions of the algorithms are released. This presentation will report on the validation protocols used for the Burned Area ECV product. The burned area ECV product is unique from other ECV products such as land cover or LAI because of the transitory nature of fires. In the United

  15. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research.

    Directory of Open Access Journals (Sweden)

    Sebastian Scheuer

    Full Text Available Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts.

  16. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research.

    Science.gov (United States)

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2017-01-01

    Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts.

  17. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research

    Science.gov (United States)

    Haase, Dagmar; Volk, Martin

    2017-01-01

    Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts. PMID:29232695

  18. Coming to grips with nuclear winter

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1985-01-01

    This editorial examines the politics related to the concept of nuclear winter which is a term used to describe temperature changes brought on by the injection of smoke into the atmosphere by the massive fires set off by nuclear explosions. The climate change alone could cause crop failures and lead to massive starvation. The author suggests that the prospect of a nuclear winter should be a deterrent to any nuclear exchange

  19. Representing winter wheat in the Community Land Model (version 4.5)

    Science.gov (United States)

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.

    2017-05-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.

  20. Regional Climate Simulation of the Anomalous Events of 1998 using a Stretched-Grid GCM with Multiple Areas of Interest

    Science.gov (United States)

    Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The GEOS (Goddard Earth Observing System) stretched-grid (SG) GCM developed and thoroughly tested over the last few years, is used for simulating the major anomalous regional climate events of 1998. The anomalous regional climate events are simulated simultaneously during the 13 months long (November-1997 - December-1998) SG-GCM simulation due to using the new SG-design with multiple (four) areas of interest. The following areas/regions of interest (one at each global quadrant) are implemented: U.S./Northern Mexico, the El-Nino/Brazil area, India-China, and Eastern Indian Ocean/Australia.

  1. [Climatic aspects in hantavirus transmission areas in São Paulo State, Brazil].

    Science.gov (United States)

    Donalisio, Maria Rita; Vasconcelos, Cíntia Honório; Pereira, Luiz Eloy; Avila, Ana Maria H; Katz, Giselda

    2008-05-01

    The objective of this study was to investigate the spatial distribution of reported hantavirus cases in São Paulo State, Brazil (n = 80), from 1993 to 2005 and identify local climatic patterns during this period. Kernel point estimation of density was used to show the highest concentrations in Ribeirão Preto, São Carlos, Franca, Tupi Paulista, and Greater São Paulo. Increase in the number of cases during this period suggests disease dissemination even when considering increased diagnostic capacity and higher sensitivity of the health services. There was a marked seasonal variation in hantavirus in the cerrado (savannah) areas; the common pattern is a higher incidence in drier months as compared to mean levels in the last 40 years. These coincide with periods of high rodent food source levels in grains, sugarcane, and other crops. Harvesting and storing grains increases human exposure to rodents. Climatic indicators together with ecological variables can be local transmission risk markers and should receive more attention in epidemiological monitoring and control of the disease.

  2. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    Science.gov (United States)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  3. Volcanos and el Nino - signal separation in Winter

    International Nuclear Information System (INIS)

    Kirchner, I.; Graf, H.F.

    1993-01-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  4. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  5. Impacts of climate change and anthropization on groundwater resources in the Nouakchott urban area (coastal Mauritania)

    Science.gov (United States)

    Mohamed, Ahmed-Salem; Leduc, Christian; Marlin, Christelle; Wagué, Oumar; Sidi Cheikh, Mohamed-Ahmed

    2017-10-01

    Declining groundwater resources in semi-arid areas are often cited because of anthropization and climate change. This is not the case in Nouakchott (Mauritania) where the water level has risen by 1 to 2 m over the last 40 years in parallel with urban expansion (+1 million inhabitants in 60 years). Using former and new data, primarily water table measurements and chemical indicators (major ions, bromide, 18O, 2H), we show that the groundwater level rise is mainly a consequence of the rapid population growth in the Nouakchott area, while the global sea level rise only has a limited impact. The increased supply of domestic water (currently 120,000 m3/day) and the lack of waste water networks have added large amounts of water to the Quaternary aquifer. In this metropolis where 60% of the total area is at an elevation of less than 1 m asl, the rise in the groundwater level has dramatic consequences, including the abandonment of flooded districts, and the emergence of new diseases.

  6. Impact of change in winter strategy of one parasitoid species on the diversity and function of a guild of parasitoids.

    Science.gov (United States)

    Andrade, Thiago Oliveira; Krespi, Liliane; Bonnardot, Valérie; van Baaren, Joan; Outreman, Yannick

    2016-03-01

    The rise of temperatures may enable species to increase their activities during winter periods and to occupy new areas. In winter, resource density is low for most species and an increased number of active consumers during this season may produce heightened competitive pressure. In Western France, the aphid parasitoid species Aphidius avenae Haliday has been known to adopt a winter diapausing strategy adjacent to newly sown cereal crops, until recent reports of active winter populations in cereal crops. We investigate how the addition of this species to the winter guild of parasitoids may change the structure of the aphid-parasitoid food web and the host-exploitation strategies of previously occurring parasitoids. We showed that in winter, Aphidius avenae was mostly associated with two aphid species, Sitobion avenae Fabricius and Metopolophium dirhodum Walker, while the generalist species Aphidius rhopalosiphi was restricted to the aphid species Rhopalosiphum padi L. in the presence of Aphidius avenae. Due to this new competition, winter food webs present a higher degree of compartmentalization and lower proportional similarity index values than spring ones. Parasitoid and aphid abundances responded significantly to changes in daily high temperatures, suggesting that the host-parasitoid community structure can be partly predicted by climate. This study demonstrates how a change in the winter strategy of one species of a guild can modify complex interspecific relationships in host-parasitoid systems.

  7. Assessing the impacts of future climate change on protected area networks: a method to simulate individual species' responses.

    Science.gov (United States)

    Willis, Stephen G; Hole, Dave G; Collingham, Yvonne C; Hilton, Geoff; Rahbek, Carsten; Huntley, Brian

    2009-05-01

    Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species' occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.

  8. Environmental problems related to winter traffic safety conditions

    OpenAIRE

    Hääl, Maire-Liis; Sürje, Peep

    2006-01-01

    The changeable Nordic climate has added problems to road maintenance and the environment to ensure traffic safety under winter conditions. The widespread use of salt (NaCl) for snow and ice removal from roads has resulted in environmental impacts in many areas. Some of the problems associated with the use of NaCl are the corrosion of bridges, road surfaces and vehicles and damage to roadside vegetation and aquatic system that are affected by water from de-iced roads. Accumulation of hard meta...

  9. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health ... Although there are no guarantees of safety during winter weather emergencies, you can take actions to protect ...

  10. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  11. Determination of areas with the most significant shift in persistence of pests in Europe under climate change.

    Science.gov (United States)

    Svobodová, Eva; Trnka, Miroslav; Dubrovský, Martin; Semerádová, Daniela; Eitzinger, Josef; Stěpánek, Petr; Zalud, Zdeněk

    2014-05-01

    This study aimed to estimate the impact of climate change on the ranges of crop pest species in Europe. The organisms included in the study were species from the family Tortricidae (Cydia pomonella, Lobesia botrana) and the family Pyralidae (Ostrinia nubilalis), Chrysomelidae beetles (Leptinotarsa decemlineata, Oulema melanopus) and species from the family Aphididae (Ropalosiphum padi, Sitobion avenae). Climate conditions in the year 2055 were simulated using a subset of five representative global circulation models. Model simulations using these climate change scenarios showed significant shifts in the climatic niches of the species in this study. For Central Europe, the models predicted a shift in the ranges of pest species to higher altitudes and increases in the number of generations (NG) of the pests. In contrast, in the southern regions of Europe, the NG is likely to decrease owing to insufficient humidity. The ranges of species are likely to shift to the north. Based on the ensemble-scenario mean for 2055, a climate-driven northward shift of between 3° N (O. nubilalis) and 11° N (L. botrana) is expected. The areas that are most sensitive to experiencing a significant increase in climate suitability for future pest persistence were identified. These areas include Central Europe, the higher altitudes of the Alps and Carpathians and areas above 55° N. © 2013 Society of Chemical Industry.

  12. The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

    Science.gov (United States)

    Foley, Bradford J.

    2015-10-01

    The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.

  13. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Winter activities. 1002.19... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing.... (c) Failure to abide by area designations or activity restrictions established under this section is...

  14. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate

    OpenAIRE

    FORRESTER DAVID; TACHAUER ELOISE; ANNIGHOEFER PETER; BARBEITO IGNACIO; PRETZSCH HANS; RUIZ-PEINADO RICARDO; STARK HENDRIK; VACCHIANO GIORGIO; ZLATANOV TZVETAN; CHAKRABORTY TAMALIKA; SAHA SOMID; SILESHI GUDETA W.

    2017-01-01

    Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced ...

  15. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  16. Climate Change Anticipation on Supporting Capacity of Fishing Environment in the Coastal Area of Tanjungmas Semarang City

    Science.gov (United States)

    Sari, Indah Kurniasih Wahyu; Hadi, Sudharto P.

    2018-02-01

    Climate change is no longer a debate about its existence but already a problem shared between communities, between agencies, between countries even global for handling serious because so many aspects of life and the environment is affected, especially for communities in coastal environments This climate change is a threat to the Earth, because it can affect all aspects of life and will damage the balance of life of Earth Climate change happens slowly in a fairly long period of time and it is a change that is hard to avoid. These Phenomena will give effect to the various facets of life. Semarang as areas located to Java and bordering the Java Sea are at high risk exposed to the impacts of climate change Also not a few residents of the city of Semarang who settled in the northern part of the city of Semarang and also have a livelihood as farmers/peasants and fishermen Many industrial centers or attractions that are prone to impacted by climate change. Thus, the anticipation of climate change on resources support neighborhood of fishermen in the coastal area of Tanjungmas Semarang interesting for further review. This study aims to find out more the influence of climate change on the environment of fishing identify potential danger due to the impacts of climate change on coastal areas of Tanjungmas Semarang The research was conducted through surveys, interviews and field observation without a list of questions to obtain primary and secondary data As for the analysis undertaken, namely the analysis of climate change on the coastal environment, the analysis of productivity of fishermen as well as the analysis of the likelihood of disaster risk at the coast due to climate change. From the results of the study the occurrence of sea rise as one of the indicators of climate change in the coastal City of Semarang to reach 0.8 mm/year and average soil degradation that ranged between 5 - 12 cm/year cause most coastal communities as well as the social life of the agricultural

  17. Geomorphic interaction among climate, sea levels and karst groundwater: the Taranto area (South of Italy)

    Science.gov (United States)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Argentiero, Ilenia; Pellicani, Roberta; Parisi, Alessandro; Di Modugno, Antonella

    2017-04-01

    The area of Taranto (Apulia region, Italy) has an extraordinary environmental and landscape value, which derives from its specific geological, geomorphological and hydrogeological conditions: they represent the effect of a complex mechanism of interaction in the geological time among the sea, its level variations and stands driven by climate changes, karst groundwater and the geo lithological frame. The knowledge of this interaction spans over two very different time duration: the first is subsequent to the sedimentary pleistocenic deposition and diagenesis and lasts until the late Holocene; the second spans over a more limited time durations, from the LIA until today, and its knowledge is mainly based on hystorical topographic records and reports. The general geological and stratigraphical setting is represented by marine deposits, which fill the Bradanic Trough, shaped in the upper part as marine terraces bordering the W and SW side of the Murgian carbonate platform (Apulia, South of Italy) as well. This latter constitutes an important karst hydro-structure, fed by precipitation, bordered on the opposite side of the Bradanic Trough by the Adriatic Sea. Fresh groundwater hosted in the huge coastal aquifer freely flows towards the Adriatic coast, while on the opposite W-NW side, the continuous confinement by the impermeable filling of the trough, forces the underground drainage of the aquifer towards the Ionian Sea just in the Taranto area. The overall flow rate of the groundwater through submarine and subaerial coastal springs, according to the current sea level, is significant and currently estimated in about 18 m3/sec. Climate changes have forced over geological time, but also in shorter periods, sea level changes and stands, consequently correlated to groundwater levels. This allowed genesis of selected karst levels, of regional extension, both at the surface or underground, which arise as typical forms, namely polje and karst plane inland, terraces on the sea

  18. Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea.

    Science.gov (United States)

    Kim, Hyunsu; Kim, Yoo-Keun; Song, Sang-Keun; Lee, Hwa Woon

    2016-11-15

    The influence of changes in future urban growth (e.g., land use changes) on the future climate variability in the Seoul metropolitan area (SMA), Korea was evaluated using the WRF model and an urban growth model (SLEUTH). The land use changes in the study area were simulated using the SLEUTH model under three different urban growth scenarios: (1) current development trends scenario (SC 1), (2) managed development scenario (SC 2) and (3) ecological development scenario (SC 3). The maximum difference in the ratio of urban growth between SC 1 and SC 3 (SC 1 - SC 3) for 50years (2000-2050) was approximately 6.72%, leading to the largest differences (0.01°C and 0.03ms(-1), respectively) in the mean air temperature at 2m (T2) and wind speed at 10m (WS10). From WRF-SLEUTH modeling, the effects of future urban growth (or future land use changes) in the SMA are expected to result in increases in the spatial mean T2 and WS10 of up to 1.15°C and 0.03ms(-1), respectively, possibly due to thermal circulation caused by the thermal differences between urban and rural regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Coefficient of variation for use in crop area classification across multiple climates

    Science.gov (United States)

    Whelen, Tracy; Siqueira, Paul

    2018-05-01

    In this study, the coefficient of variation (CV) is introduced as a unitless statistical measurement for the classification of croplands using synthetic aperture radar (SAR) data. As a measurement of change, the CV is able to capture changing backscatter responses caused by cycles of planting, growing, and harvesting, and thus is able to differentiate these areas from a more static forest or urban area. Pixels with CV values above a given threshold are classified as crops, and below the threshold are non-crops. This paper uses cross-polarized L-band SAR data from the ALOS PALSAR satellite to classify eleven regions across the United States, covering a wide range of major crops and climates. Two separate sets of classification were done, with the first targeting the optimum classification thresholds for each dataset, and the second using a generalized threshold for all datasets to simulate a large-scale operationalized situation. Overall accuracies for the first phase of classification ranged from 66%-81%, and 62%-84% for the second phase. Visual inspection of the results shows numerous possibilities for improving the classifications while still using the same classification method, including increasing the number and temporal frequency of input images in order to better capture phenological events and mitigate the effects of major precipitation events, as well as more accurate ground truth data. These improvements would make the CV method a viable tool for monitoring agriculture throughout the year on a global scale.

  20. Climate change impacts on the fluvial regime in a Mediterranean mountainous area.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    The water flow regime in Mediterranean basins is greatly influenced by the high variability of the meteorological patterns, with recurrent drought periods, and the heterogeneity of both terrain physical properties and land uses. These aspects together with the simultaneous demands of water resources for human consumption, irrigation and energy production make it crucial to have a continuous flow series on control points along the river network. In the current context of Global Warming, mountainous semiarid watersheds, where Mediterranean and alpine climates coexist, constitute singular places to evaluate its effects on the river flow regime. Sierra Nevada Mountain area (SN) (southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is a clear example of snow regions in a semiarid environment. Due to its special climate conditions, SN is part of the global climate change observatories network. The aim of this work is to estimate the influence of climate change on the flow regime over several control points along the main channel of the Guadalfeo River (in the South face of SN), by means of analysing the observed trends and focusing in the occurrence of drought period and extreme flood events. For this, the flow regime at three selected points in the river was simulated by using WiMMed, a physically-based hydrological model developed for Mediterranean regions, which includes flow routing calculations. The model was calibrated and validated from observations at a gauge station point, from which the flow series were obtained at upstream. Precipitation and temperature datasets from the reference period (1960-2000) and two different scenarios (A2, B1) for a future period (2046-2100) proposed by the Fourth Assessment Report of IPCC (Intergovernmental Panel on Climate Change) were used as forcing meteorological variables. The comparison was performed over different flow indicator variables: 1) annual mean daily flow; 2) annual maximum daily flow; 3) annual number

  1. The Use of Woodland Products to Cope with Climate Variability in Communal Areas in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Lotte S. Woittiez

    2013-12-01

    Full Text Available Common lands provide smallholder farmers in Africa with firewood, timber, and feed for livestock, and they are used to complement human diets through the collection of edible nontimber forest products (NTFPs. Farmers have developed coping mechanisms, which they deploy at times of climatic shocks. We aimed to analyze the importance of NTFPs in times of drought and to identify options that could increase the capacity to adapt to climate change. We used participatory techniques, livelihood analysis, observations, and measurements to quantify the use of NTFPs. Communities recognized NTFPs as a mechanism to cope with crop failure. We estimated that indigenous fruits contributed to approximately 20% of the energy intake of wealthier farmers and to approximately 40% of the energy intake of poor farmers in years of inadequate rainfall. Farmers needed to invest a considerable share of their time to collect wild fruits from deforested areas. They recognized that the effectiveness of NTFPs as an adaptation option had become threatened by severe deforestation and by illegal harvesting of fruits by urban traders. Farmers indicated the need to plan future land use to (1 intensify crop production, (2 cultivate trees for firewood, (3 keep orchards of indigenous fruit trees, and (4 improve the quality of grazing lands. Farmers were willing to cultivate trees and to organize communal conservation of indigenous fruits trees. Through participatory exercises, farmers elaborated maps, which were used during land use discussions. The process led to prioritization of pressing land use problems and identification of the support needed: fast-growing trees for firewood, inputs for crop production, knowledge on the cultivation of indigenous fruit trees, and clear regulations and compliance with rules for extraction of NTFPs. Important issues that remain to be addressed are best practices for regeneration and conservation, access rules and implementation, and the

  2. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  3. Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets.

    Science.gov (United States)

    Lee, Jung-Seok; Carabali, Mabel; Lim, Jacqueline K; Herrera, Victor M; Park, Il-Yeon; Villar, Luis; Farlow, Andrew

    2017-07-10

    Dengue has been prevalent in Colombia with high risk of outbreaks in various locations. While the prediction of dengue epidemics will bring significant benefits to the society, accurate forecasts have been a challenge. Given competing health demands in Colombia, it is critical to consider the effective use of the limited healthcare resources by identifying high risk areas for dengue fever. The Climate Risk Factor (CRF) index was constructed based upon temperature, precipitation, and humidity. Considering the conditions necessary for vector survival and transmission behavior, elevation and population density were taken into account. An Early Warning Signal (EWS) model was developed by estimating the elasticity of the climate risk factor function to detect dengue epidemics. The climate risk factor index was further estimated at the smaller geographical unit (5 km by 5 km resolution) to identify populations at high risk. From January 2007 to December 2015, the Early Warning Signal model successfully detected 75% of the total number of outbreaks 1 ~ 5 months ahead of time, 12.5% in the same month, and missed 12.5% of all outbreaks. The climate risk factors showed that populations at high risk are concentrated in the Western part of Colombia where more suitable climate conditions for vector mosquitoes and the high population level were observed compared to the East. This study concludes that it is possible to detect dengue outbreaks ahead of time and identify populations at high risk for various disease prevention activities based upon observed climate and non-climate information. The study outcomes can be used to minimize potential societal losses by prioritizing limited healthcare services and resources, as well as by conducting vector control activities prior to experiencing epidemics.

  4. Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact

    Directory of Open Access Journals (Sweden)

    Hamid Goharnejad

    2013-08-01

    Full Text Available Recent investigations have demonstrated global sea level rise as being due to climate change impact. Probable changes in sea level rise need to be evaluated so that appropriate adaptive strategies can be implemented. This study evaluates the impact of climate change on sea level rise along the Iranian south coast. Climatic data simulated by a GCM (General Circulation Model named CGCM3 under two-climate change scenarios A1b and A2 are used to investigate the impact of climate change. Among the different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves are selected for predicting sea level rise by using stepwise regression. Two Discrete Wavelet artificial Neural Network (DWNN models and a Discrete Wavelet Adaptive Neuro-Fuzzy Inference system (DWANFIS are developed to explore the relationship between selected climatic variables and sea level changes. In these models, wavelets are used to disaggregate the time series of input and output data into different components. ANFIS/ANN are then used to relate the disaggregated components of predictors and predictand (sea level to each other. The results show a significant rise in sea level in the study region under climate change impact, which should be incorporated into coastal area management.

  5. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    Science.gov (United States)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  6. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois.

    Science.gov (United States)

    Wilson, Cyril O; Weng, Qihao

    2011-09-15

    Modeling the effects of past and current land use composition and climatic patterns on surface water quality provides valuable information for environmental and land planning. This study predicts the future impacts of urban land use and climate changes on surface water quality within Des Plaines River watershed, Illinois, between 2010 and 2030. Land Change Modeler (LCM) was used to characterize three future land use/planning scenarios. Each scenario encourages low density residential growth, normal urban growth, and commercial growth, respectively. Future climate patterns examined include the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenario (SRES) B1 and A1B groups. The Soil and Water Assessment Tool (SWAT) was employed to estimate total suspended solids and phosphorus concentration generated at a 10 year interval. The predicted results indicate that for a large portion of the watershed, the concentration of total suspended solids (TSS) would be higher under B1 and A1B climate scenarios during late winter and early spring compared to the same period in 2010; while the summer period largely demonstrates a reverse trend. Model results further suggest that by 2020, phosphorus concentration would be higher during the summer under B1 climate scenario compared to 2010, and is expected to wane by 2030. The projected phosphorus concentrations during the late winter and early spring periods vary across climate and land use scenarios. The analysis also denotes that middle and high density residential development can reduce excess TSS concentration, while the establishment of dense commercial and industrial development might help ameliorate high phosphorus levels. The combined land use and climate change analysis revealed land use development schemes that can be adopted to mitigate potential future water quality impairment. This research provides important insights into possible adverse consequences on surface water quality and resources

  7. Changes in winter warming events in the Nordic Arctic Region

    Science.gov (United States)

    Vikhamar-Schuler, Dagrun; Isaksen, Ketil; Haugen, Jan Erik; Bjerke, Jarle Werner; Tømmervik, Hans

    2015-04-01

    In recent years winter warming events are frequently reported from Arctic areas. Extraordinarily warm weather episodes, occasionally combined with intense rainfall, cause severe ecological disturbance and great challenges for Arctic infrastructure. For example, the formation of ground ice due to winter rain or melting prevents reindeer from grazing, leads to vegetation browning, and impacts soil temperatures. The infrastructure may be affected by avalanches and floods resulting from intense snowmelt. The aim of our analysis is to study changes in warm spells during winter in the Nordic Arctic Region, here defined as the regions in Norway, Sweden and Finland north of the Arctic circle (66.5°N), including the Arctic islands Svalbard and Jan Mayen. Within this study area we have selected the longest available high quality observation series with daily temperature and precipitation. For studying future climate we use available regionally downscaled scenarios. We analyse three time periods: 1) the past 50-100 years, 2) the present (last 15 years, 2000-2014) and 3) the future (next 50-100 years). We define an extended winter season (October-April) and further divide it into three subseasons: 1) Early winter (October and November), 2) Mid-winter (December, January and February) and 3) Late-winter (March and April). We identify warm spells using two different classification criteria: a) days with temperature above 0°C (the melting temperature); and b) days with temperature in excess of the 90th percentile of the 1985-2014 temperature for each subseason. Both wet and dry warm spells are analysed. We compare the results for the mainland stations (maritime and inland stations) with the Arctic islands. All stations have very high frequency of warm weather events in the period 1930-1940s and for the last 15 years (2000-2014). For the most recent period the largest increase in number of warm spells are observed at the northernmost stations. We also find a continuation of this

  8. Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region

    International Nuclear Information System (INIS)

    Cartalis, C.; Synodinou, A.; Proedrou, M.; Tsangrassoulis, A.; Santamouris, M.

    2001-01-01

    The impact of climate changes on the urban environment may be assessed by calculating the modifications in energy production and consumption for such daily operations as heating and cooling. In this study climate changes in the southeastern Mediterranean (the area of Greece) were simulated for the year 2030 on the basis of specially constructed climatic scenarios which describe potential reductions in the emissions of greenhouse gases, and were, thereafter, used to calculate the heating and cooling degree days for the same year. The results show that the cumulative amount of heating and cooling degree days will decrease and increase, respectively, as compared to the respective amounts for the year 1990. In terms of the cooling degree days, it was found that the areas most affected were the Attica and central Macedonia regions, the Aegean islands and Crete, whereas in terms of the heating degree days, it was found that a large part of the country will require less energy for heating. (author)

  9. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania.

    Directory of Open Access Journals (Sweden)

    Clement N Mweya

    Full Text Available Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania.We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050.Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A collaborative approach is

  10. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania.

    Science.gov (United States)

    Mweya, Clement N; Kimera, Sharadhuli I; Stanley, Grades; Misinzo, Gerald; Mboera, Leonard E G

    Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania. We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050. Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A collaborative approach is recommended to develop and

  11. FLOOD RISK FACTORS IN SUBURBAN AREA IN THE CONTEXT OF CLIMATE CHANGE ADAPTATION POLICIES – CASE STUDY OF WROCLAW, POLAND

    Directory of Open Access Journals (Sweden)

    Szymon Szewrański

    2015-02-01

    Full Text Available The uncontrolled sprawl of urban development exerts environmental impact in rural areas. The aim of this study is to identify areas vulnerable to climate change in the context of implementation of policies adapting to climate change at the local level. Such areas can be defined as those where the negative implication of flesh flood overlapping with soil sealing is observed. The study areas composed of municipalities which are influenced by the urban sprawl process of the city o