WorldWideScience

Sample records for winter climate areas

  1. Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators

    Science.gov (United States)

    Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.

    2012-04-01

    Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of

  2. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  3. Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs

    NARCIS (Netherlands)

    Montero, J.I.; Stanghellini, C.; Castilla, N.

    2009-01-01

    Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum

  4. Overview of climatic effects of nuclear winter

    International Nuclear Information System (INIS)

    Jones, E.M.; Malone, R.C.

    1985-01-01

    A general description of the climatic effects of a nuclear war are presented. This paper offers a short history of the subject, a discussion of relevant parameters and physical processes, and a description of plausible nuclear winter scenario. 9 refs

  5. Winter mortality in relation to climate

    NARCIS (Netherlands)

    Keatinge, W. R.; Donaldson, G. C.; Bucher, K.; Jendritzky, G.; Cordioli, E.; Martinelli, M.; Katsouyanni, K.; Kunst, A. E.; McDonald, C.; Näyhä, S.; Vuori, I.

    2000-01-01

    We report further details of the Eurowinter survey of cold related mortalities and protective measures against cold in seven regions of Europe, and review these with other evidence on the relationship of winter mortality to climate. Data for the oldest subject group studied, aged 65-74, showed that

  6. Reindeer (Rangifer tarandus and climate change: Importance of winter forage

    Directory of Open Access Journals (Sweden)

    Thrine Moen Heggberget

    2002-06-01

    Full Text Available As a consequence of increasing greenhouse gas concentrations, climate change is predicted to be particularly pronounced, although regionally variable, in the vast arctic, sub-arctic and alpine tundra areas of the northern hemisphere. Here, we review winter foraging conditions for reindeer and caribou (Rangifer tarandus living in these areas, and consider diet, forage quality and distribution, accessibility due to snow variation, and effects of snow condition on reindeer and caribou populations. Finally, we hypothesise how global warming may affect wild mountain reindeer herds in South Norway. Energy-rich lichens often dominate reindeer and caribou diets. The animals also prefer lichens, and their productivity has been shown to be higher on lichen-rich than on lichen-poor ranges. Nevertheless, this energy source appears to be neither sufficient as winter diet for reindeer or caribou (at least for pregnant females nor necessary. Some reindeer and caribou populations seem to be better adapted to a non-lichen winter diet, e.g. by a larger alimentary tract. Shrubs appear to be the most common alternative winter forage, while some grasses appear to represent a good, nutritionally-balanced winter diet. Reindeer/caribou make good use of a wide variety of plants in winter, including dead and dry parts that are digested more than expected based on their fibre content. The diversity of winter forage is probably important for the mineral content of the diet. A lichen-dominated winter diet may be deficient in essential dietary elements, e.g. minerals. Sodium in particular may be marginal in inland winter ranges. Our review indicates that most Rangifer populations with lichen-dominated winter diets are either periodically or continuously heavily harvested by humans or predators. However, when population size is mainly limited by food, accessible lichen resources are often depleted. Plant studies simulating climatic change indicate that a warmer, wetter

  7. Winter climate limits subantarctic low forest growth and establishment.

    Directory of Open Access Journals (Sweden)

    Melanie A Harsch

    Full Text Available Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E is oceanic (Conrad Index of Continentality  =  -5 with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C, dry winters (total winter precipitation <400 mm. Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  8. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    Science.gov (United States)

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  9. Winter climate limits subantarctic low forest growth and establishment.

    Science.gov (United States)

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  10. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  11. Marine assemblages respond rapidly to winter climate variability.

    Science.gov (United States)

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  12. A Climatic Classification for Citrus Winter Survival in China.

    Science.gov (United States)

    Shou, Bo Huang

    1991-05-01

    The citrus tree is susceptible to frost damage. Winter injury to citrus from freezing weather is the major meteorological problem in the northern pail of citrus growing regions in China. Based on meteorological data collected at 120 stations in southern China and on the extent of citrus freezing injury, five climatic regions for citrus winter survival in China were developed. They were: 1) no citrus tree injury. 2) light injury to mandarins (citrus reticulate) or moderate injury to oranges (citrus sinensis), 3) moderate injury to mandarins or heavy injury to oranges, 4) heavy injury to mandarins, and 5) impossible citrus tree growth. This citrus climatic classification was an attempt to provide guidelines for regulation of citrus production, to effectively utilize land and climatic resources, to chose suitable citrus varieties, and to develop methods to prevent injury by freezing.

  13. Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India

    Science.gov (United States)

    Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.

    2015-12-01

    India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts

  14. Representation of Northern Hemisphere winter storm tracks in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Greeves, C.Z.; Pope, V.D.; Stratton, R.A.; Martin, G.M. [Met Office Hadley Centre for Climate Prediction and Research, Exeter (United Kingdom)

    2007-06-15

    Northern Hemisphere winter storm tracks are a key element of the winter weather and climate at mid-latitudes. Before projections of climate change are made for these regions, it is necessary to be sure that climate models are able to reproduce the main features of observed storm tracks. The simulated storm tracks are assessed for a variety of Hadley Centre models and are shown to be well modelled on the whole. The atmosphere-only model with the semi-Lagrangian dynamical core produces generally more realistic storm tracks than the model with the Eulerian dynamical core, provided the horizontal resolution is high enough. The two models respond in different ways to changes in horizontal resolution: the model with the semi-Lagrangian dynamical core has much reduced frequency and strength of cyclonic features at lower resolution due to reduced transient eddy kinetic energy. The model with Eulerian dynamical core displays much smaller changes in frequency and strength of features with changes in horizontal resolution, but the location of the storm tracks as well as secondary development are sensitive to resolution. Coupling the atmosphere-only model (with semi-Lagrangian dynamical core) to an ocean model seems to affect the storm tracks largely via errors in the tropical representation. For instance a cold SST bias in the Pacific and a lack of ENSO variability lead to large changes in the Pacific storm track. Extratropical SST biases appear to have a more localised effect on the storm tracks. (orig.)

  15. Experimental log hauling through a traditional caribou wintering area

    Directory of Open Access Journals (Sweden)

    Harold G. Cumming

    1998-03-01

    Full Text Available A 3-year field experiment (fall 1990-spring 1993 showed that woodland caribou (Rangifer tarandus caribou altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

  16. Mapping urban climate zones and quantifying climate behaviors - An application on Toulouse urban area (France)

    Energy Technology Data Exchange (ETDEWEB)

    Houet, Thomas, E-mail: thomas.houet@univ-tlse2.fr [GEODE UMR 5602 CNRS, Universite de Toulouse, 5 allee Antonio Machado, 31058 Toulouse Cedex (France); Pigeon, Gregoire [Centre National de Recherches Meteorologiques, Meteo-France/CNRM-GAME, 42 avenue Coriolis, 31057 Toulouse Cedex (France)

    2011-08-15

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone-UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. - Highlights: > We proposed a method to map Urban Climate Zones and quantify their climate behaviors. > UCZ is an expert-based classification and is integrated in the WMO guidelines. > We classified 26 sample areas and quantified climate behaviors in winter/summer. > Results enhance urban heat islands and outskirts are surprisingly hottest in summer. > Influence of scale and climate data on UCZ mapping and climate evaluation is discussed. - This paper presents an automated approach to classify sample areas in a UCZ using landscape descriptors and demonstrate that climate behaviors of UCZ differ.

  17. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  18. Climatic potential for tourism in the Black Forest, Germany — winter season

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  19. Mapping of QTLs for leaf area and the association with winter ...

    African Journals Online (AJOL)

    Variations in plant architecture are often associated with the ability of plants to survive cold stress during winter. In studies of winter hardiness in lentil, it appeared that small leaf area was associated with improved winter survival. Based on this observation, the inheritance of leaf area and the relationship with winter ...

  20. Ducks change wintering patterns due to changing climate in the important wintering waters of the Odra River Estuary

    Directory of Open Access Journals (Sweden)

    Dominik Marchowski

    2017-07-01

    Full Text Available Some species of birds react to climate change by reducing the distance they travel during migration. The Odra River Estuary in the Baltic Sea is important for wintering waterfowl and is where we investigated how waterbirds respond to freezing surface waters. The most abundant birds here comprise two ecological groups: bottom-feeders and piscivores. Numbers of all bottom-feeders, but not piscivores, were negatively correlated with the presence of ice. With ongoing global warming, this area is increasing in importance for bottom-feeders and decreasing for piscivores. The maximum range of ice cover in the Baltic Sea has a weak and negative effect on both groups of birds. Five of the seven target species are bottom-feeders (Greater Scaup Aythya marila, Tufted Duck A. fuligula, Common Pochard A. ferina, Common Goldeneye Bucephala clangula and Eurasian Coot Fulica atra, and two are piscivores (Smew Mergellus albellus and Goosander Mergus merganser. Local changes at the level of particular species vary for different reasons. A local decline of the Common Pochard may simply be a consequence of its global decline. Climate change is responsible for some of the local changes in the study area, disproportionately favoring some duck species while being detrimental to others.

  1. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  2. Analysis of winter climate simulations performed with ARPEGE-Climat (T63) in the framework of PROVOST

    Energy Technology Data Exchange (ETDEWEB)

    Parey, S.; Dichampt-Martineu, Ch.; Caneill, J.Y. [Electricite de France, 78 - Chatou (France). Research Branch, Environment

    1997-12-01

    The interest of EDF for seasonal forecasting is a consequence of the high sensitivity of electricity consumption to temperature, especially during the winter season. That is why the Research branch of EDF is involved in the PROVOST project (PRediction Of climate Variations On Seasonal and inter-annual Timescales). Two sets of simulations are studied. The first one was calculated apart from the PROVOST experiments with the LMD model covering the 1970 to 1992 winters with eleven simulations per winter. The second one was calculated at EDF in the framework of PROVOST with ARPEGE-Climat model, covering the 1979 to 1994 winters (nine simulations per winter). The probabilistic formulation of climatic scenarios in function of the seasonal simulations with ARPEGE-Climat gives good results if the monthly mean temperature is taken into account. (R.P.) 3 refs.

  3. Impacts of climate change for Swiss winter and summer tourism: a general equilibrium analysis

    OpenAIRE

    Thurm, Boris; Vielle, Marc; Vöhringer, Frank

    2017-01-01

    Tourism could be greatly affected by climate change due to its strong dependence on weather. In Switzerland, the sector represents an appreciable share of the economy. Thus, studying climate effects on tourism is necessary for developing adequate adaptation strategies. While most of the studies focused on winter tourism, we investigate the climate change impacts on both winter and summer tourism in Switzerland. Using a computable general equilibrium (CGE) model, we simulate the impacts of tem...

  4. Implications of climate change on winter road networks in Ontario's Far North and northern Manitoba, Canada, based on climate model projections

    Science.gov (United States)

    Hori, Y.; Cheng, V. Y. S.; Gough, W. A.

    2017-12-01

    A network of winter roads in northern Canada connects a number of remote First Nations communities to all-season roads and rails. The extent of the winter road networks depends on the geographic features, socio-economic activities, and the numbers of remote First Nations so that it differs among the provinces. The most extensive winter road networks below the 60th parallel south are located in Ontario and Manitoba, serving 32 and 18 communities respectively. In recent years, a warmer climate has resulted in a shorter winter road season and an increase in unreliable road conditions; thus, limiting access among remote communities. This study focused on examining the future freezing degree-days (FDDs) accumulations during the winter road season at selected locations throughout Ontario's Far North and northern Manitoba using recent climate model projections from the multi-model ensembles of General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) scenarios. First, the non-parametric Mann-Kendall correlation test and the Theil-Sen method were used to identify any statistically significant trends between FDDs and time for the base period (1981-2010). Second, future climate scenarios are developed for the study areas using statistical downscaling methods. This study also examined the lowest threshold of FDDs during the winter road construction in a future period. Our previous study established the lowest threshold of 380 FDDs, which derived from the relationship between the FDDs and the opening dates of James Bay Winter Road near the Hudson-James Bay coast. Thus, this study applied the threshold measure as a conservative estimate of the minimum threshold of FDDs to examine the effects of climate change on the winter road construction period.

  5. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  6. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  7. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  8. The Year Without a Ski Season: An Analysis of the Winter of 2015 for Three Ski Resorts in Western Canada Using Historical and Simulation Model Forecasted Climate Data

    Science.gov (United States)

    Pidwirny, M. J.; Goode, J. D.; Pedersen, S.

    2015-12-01

    The winter of 2015 will go down as "the year without a ski season" for many ski resorts located close to the west coast of Canada and the USA. During this winter season, a large area of the eastern North Pacific Ocean had extremely high sea surface temperatures. These high sea surface temperatures influenced weather patterns on the west coast of North America producing very mild temperatures inland. Further, in alpine environments precipitation that normally arrives in the form of snow instead fell as rain. This research examines the climate characteristics of the winter of 2015 in greater detail for three ski resorts in British Columbia, Canada: Mount Washington, Cypress Mountain and Hemlock Valley. For these resorts, historical (1901 to 2013) and IPCC AR5 climate model forecasted climate data (RCP8.5 for 2025, 2055, and 2085) was generated for the variable winter degree days climate database ClimateBC. A value for winter degree days climate data at nearby meteorological stations for comparative analysis. For all three resorts, the winter of 2015 proved to be warmer than any individual year in the period 1901 to 2013. Interpolations involving the multi-model ensemble forecast means suggest that the climate associated with winter of 2015 will become the average normal for these resorts in only 35 to 45 years under the RCP8.5 emission scenario.

  9. Snow Based Winter Tourism and Kinds of Adaptations to Climate Change

    Science.gov (United States)

    Breiling, M.

    2009-04-01

    Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.

  10. Projecting the impact of climate change on phenology of winter wheat in northern Lithuania.

    Science.gov (United States)

    Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė

    2017-10-01

    Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.

  11. Climatic change in Mediterranean area

    International Nuclear Information System (INIS)

    Manos, A.

    1991-01-01

    United Nations Environmental Program (UNEP) studies on forecasted greenhouse climatic effects on the Mediterranean coastal and marine ecosystems and regional socio-economic framework have indicated the need for a concerted plan of protective and remedial action. The studies considered rises of 1.5 degrees in ambient temperature and 20 centimeters in sea level occurring before the year 2025. A regional, as opposed to a global area, study approach was adopted since the severity of climatic effects is expected to vary greatly from one part of the world to another. The specific areas investigated were the Po River Delta and Venezia Lagoon in Italy, the Nile Delta, Camargue, the Ebro Delta, the Tunisian National Park area, and the Thermaicos Gulf in Greece. The rise in average temperature is expected to negatively effect Mediterranean agricultural production and the coastal and marine ecosystems due to prolonged periods of drought and exceptional rainfall. It is suggested that a system of dikes be constructed to protect the coastal areas which are heavily dependent on tourism and agriculture

  12. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    Science.gov (United States)

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  13. Climate change affects winter chill for temperate fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  14. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.

    2017-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  15. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    Science.gov (United States)

    Smith, Kurt T.; Beck, Jeffrey L.; Pratt, Aaron C.

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse ( Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  16. Effects of altitude and beehive bottom board type on wintering losses of honeybee colonies under subtropical climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ucak-Koc, A.

    2014-06-01

    The effects of altitude and beehive bottom board types (BBBT) on the wintering performance of honeybee colonies were investigated in the South Aegean Region of Turkey: Experiment I (E-I), with 32 colonies, in 2010-2011, and Experiment II (E-II), with 20 colonies, in 2011-2012. Each lowland (25 m) and highland (797 m) colony was divided randomly into two BBBT subgroups, open screen floor (OSF) and normal bottom floor (NBF), and wintered for about three months. In E-I, the local genotype Aegean ecotype of Anatolian bee (AE) and Italian race (ItR) were used, while in E-II, only the AE genotype was present. In E-I, the effect of wintering altitudes on the number of combs covered with bees (NCCB), and the effects of BBBT on brood area (BA) and the NCCB were found to be statistically significant (p < 0.05), but the effects of genotype on BA and NCCB were statistically insignificant (p > 0.05). In the E-II, the effect of wintering altitude on beehive weight was found to be statistically significant (p < 0.05), while its effect on the NCCB was statistically insignificant (p > 0.05). The wintering losses in the highland and lowland groups in E-I were determined to be 25% and 62.5% respectively. In contrast to this result, no loss was observed in E-II for both altitudes. In E-I, the wintering losses for both OSF and NBF groups were the same (43.75%). In conclusion, under subtropical climatic conditions, due to variations from year to year, honeybee colonies can be wintered more successfully in highland areas with OSF bottom board type. (Author)

  17. Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines

    DEFF Research Database (Denmark)

    Barbet-Massin, Morgane; Walther, Bruno A; Thuiller, Wilfried

    2009-01-01

    We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible...... changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian...... Peninsula and major decreases in southern and eastern Africa....

  18. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate.

    Science.gov (United States)

    Switanek, Matthew; Crailsheim, Karl; Truhetz, Heimo; Brodschneider, Robert

    2017-02-01

    Insect pollinators are essential to global food production. For this reason, it is alarming that honey bee (Apis mellifera) populations across the world have recently seen increased rates of mortality. These changes in colony mortality are often ascribed to one or more factors including parasites, diseases, pesticides, nutrition, habitat dynamics, weather and/or climate. However, the effect of climate on colony mortality has never been demonstrated. Therefore, in this study, we focus on longer-term weather conditions and/or climate's influence on honey bee winter mortality rates across Austria. Statistical correlations between monthly climate variables and winter mortality rates were investigated. Our results indicate that warmer and drier weather conditions in the preceding year were accompanied by increased winter mortality. We subsequently built a statistical model to predict colony mortality using temperature and precipitation data as predictors. Our model reduces the mean absolute error between predicted and observed colony mortalities by 9% and is statistically significant at the 99.9% confidence level. This is the first study to show clear evidence of a link between climate variability and honey bee winter mortality. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  19. Climate change threatens European conservation areas

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Alagador, Diogo; Cabeza, Mar

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura...... 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring...

  20. Research on the climatic effects of nuclear winter: Final report

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project

  1. Research on the climatic effects of nuclear winter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.

    1986-12-03

    The National Center for Atmospheric Research (NCAR) has undertaken a series of research efforts to develop and implement improvements to the Community Climate Model (CCM) needed to make the model more applicable to studies of the climatic effects of nuclear war. The development of the model improvements has reached a stage where implementation may proceed, and several of the developed routines are being incorporated into the next approved version of the CCM (CCM1). Formal documentation is being completed describing the specific model improvements that have been successfully implemented. This final report includes the series of annual proposals and progress reports that have guided the project.

  2. Winter forest soil respiration controlled by climate and microbial community composition.

    Science.gov (United States)

    Monson, Russell K; Lipson, David L; Burns, Sean P; Turnipseed, Andrew A; Delany, Anthony C; Williams, Mark W; Schmidt, Steven K

    2006-02-09

    Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.

  3. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  4. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum.

    Science.gov (United States)

    Archibald, S Bruce; Morse, Geoffrey E; Greenwood, David R; Mathewes, Rolf W

    2014-06-03

    Eocene climate and associated biotic patterns provide an analog system to understand their modern interactions. The relationship between mean annual temperatures and winter temperatures-temperature seasonality-may be an important factor in this dynamic. Fossils of frost-intolerant palms imply low Eocene temperature seasonality into high latitudes, constraining average winter temperatures there to >8 °C. However, their presence in a paleocommunity may be obscured by taphonomic and identification factors for macrofossils and pollen. We circumvented these problems by establishing the presence of obligate palm-feeding beetles (Chrysomelidae: Pachymerina) at three localities (a fourth, tentatively) in microthermal to lower mesothermal Early Eocene upland communities in Washington and British Columbia. This provides support for warmer winter Eocene climates extending northward into cooler Canadian uplands.

  5. Projected changes in winter climate in Beskids Mountains during 21st century

    Czech Academy of Sciences Publication Activity Database

    Farda, Aleš; Štěpánek, Petr; Zahradníček, Pavel; Skalák, Petr; Meitner, Jan

    2017-01-01

    Roč. 10, 1-2 (2017), s. 123-134 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Keywords : climate change * winter season * Euro-Cordex * Lysá Hora Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences

  6. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  7. Potential Impact of Climate Change on Porous Asphalt with a Focus on Winter Damage

    NARCIS (Netherlands)

    Kwiatkowski, Kyle; Stipanovic, Irina; Hartmann, Andreas; Ter Maat, Han

    2016-01-01

    This chapter investigates the impact and adaptation options of climate change on porous asphalt (PA) roads, specifically for the case of winter weather (freeze-thaw cycles) and road damage in the Netherlands. Changes in weather patterns pose a threat to the serviceability and long-term performance

  8. Potential impact of climate change on porous asphalt with a focus on winter damage

    NARCIS (Netherlands)

    Kwiatkowski, K.P.; Stipanovic Oslakovic, I.; Hartmann, A.; Maat, ter H.W.

    2016-01-01

    This chapter investigates the impact and adaptation options of climate change on porous asphalt
    (PA) roads, specifically for the case of winter weather (freeze–thaw cycles) and road damage in
    the Netherlands. Changes in weather patterns pose a threat to the serviceability and

  9. Mapping urban climate zones and quantifying climate behaviors--an application on Toulouse urban area (France).

    Science.gov (United States)

    Houet, Thomas; Pigeon, Grégoire

    2011-01-01

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone‑UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Climate and changing winter distribution of alcids in the Northwest Atlantic

    Directory of Open Access Journals (Sweden)

    Richard R. Veit

    2015-04-01

    Full Text Available Population level impacts upon seabirds from changing climate are increasingly evident, and include effects on phenology, migration, dispersal, annual survivorship and reproduction. Most population data on seabirds derive from nesting colonies; documented climate impacts on winter ecology are scarce. We studied interannual variability in winter abundance of six species of alcids (Charadriiformes, Alcidae from a 58-year time series of data collected in Massachusetts 1954-2011. We used counts of birds taken during fall and winter from coastal vantage points. Counts were made by amateur birders, but coverage was consistent in timing and location. We found significant association between winter abundance of all six species of alcids and climate, indexed by North Atlantic Oscillation (NAO, at two temporal scales: 1. Significant linear trends at the 58-year scale of the time series; and 2. Shorter term fluctuations corresponding to the 5-8 year periodicity of NAO. Thus, variation in winter abundance of all six species of alcids was significantly related to the combined short-term and longer-term components of variation in NAO. Two low-Arctic species (Atlantic Puffin and Black Guillemot peaked during NAO positive years, while two high Arctic species (Dovekie and Thick-billed Murre peaked during NAO negative years. For Common Murres and Razorbills, southward shifts in winter distribution have been accompanied by southward expansion of breeding range, and increase within the core of the range. The proximate mechanism governing these changes is unclear, but, as for most other species of seabirds whose distributions have changed with climate, seems likely to be through their prey.

  11. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation

    Science.gov (United States)

    Chu, Guoqiang; Sun, Qing; Zhu, Qingzeng; Shan, Yabing; Shang, Wenyu; Ling, Yuan; Su, Youliang; Xie, Manman; Wang, Xishen; Liu, Jiaqi

    2017-12-01

    High-resolution temperature records spanning the last deglaciation from low latitudes are scarce; however, they are important for understanding the rapid propagation of abrupt climate events throughout the Northern Hemisphere and the tropics. Here, we present a branched GDGTs-based temperature reconstruction from the sediments of Maar Lake Huguangyan in tropical China. The record reveals that the mean temperature during the Oldest Dryas was 17.8 °C, which was followed by a two-step increase of 2-3 °C to the Bølling-Allerød, a decrease to 19.8 °C during the Younger Dryas, and a rapid warming at the onset of the Holocene. The Oldest Dryas was about 2 °C warmer than the Younger Dryas. The reconstructed temperature was weighted towards the wintertime since the lake is monomictic and the mixing process in winter supplies nutrients from the lake bottom to the entire water column, greatly promoting biological productivity. In addition, the winter-biased temperature changes observed in the study are more distinctive than the summer-biased temperature records from extra-tropical regions of East Asia. This implies that the temperature decreases during abrupt climatic events were mainly a winter phenomenon. Within the limits of the dating uncertainties, the broadly similar pattern of winter-weighted temperature change observed in both tropical Lake Huguangyan and in Greenland ice cores indicates the occurrence of tightly-coupled interactions between high latitude ice sheets and land areas in the tropics. We suggest that the winter monsoon (especially cold surges) could play an important role in the rapid transmission of the temperature signal from the Arctic to the tropics.

  12. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2007-11-01

    Full Text Available Future climate projections show higher/lower winter (Dec-Jan-Feb precipitation in the northern/southern Mediterranean region than in present climate conditions. This paper analyzes the results of regional model simulations of the A2 and B2 scenarios, which confirm this opposite precipitation change and link it to the change of cyclone activity. The increase of the winter cyclone activity in future climate scenarios over western Europe is responsible for the larger precipitation at the northern coast of the basin, though the bulk of the change is located outside the Mediterranean region. The reduction of cyclone activity inside the Mediterranean region in future scenarios is responsible for the lower precipitation at the southern and eastern Mediterranean coast.

  14. Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats

    Science.gov (United States)

    Thogmartin, Wayne E.; McKann, Patrick C.

    2014-01-01

    Power laws describe the functional relationship between 2 quantities, such as the frequency of a group as the multiplicative power of group size. We examined whether the annual size of well-surveyed wintering populations of endangered Indiana bats (Myotis sodalis) followed a power law, and then leveraged this relationship to predict whether the aggregation of Indiana bats in winter was influenced by global climate processes. We determined that Indiana bat wintering populations were distributed according to a power law (mean scaling coefficient α = −0.44 [95% confidence interval {95% CI} = −0.61, −0.28). The antilog of these annual scaling coefficients ranged between 0.67 and 0.81, coincident with the three-fourths power found in many other biological phenomena. We associated temporal patterns in the annual (1983–2011) scaling coefficient with the North Atlantic Oscillation (NAO) index in August (βNAOAugust = −0.017 [90% CI = −0.032, −0.002]), when Indiana bats are deciding when and where to hibernate. After accounting for the strong effect of philopatry to habitual wintering locations, Indiana bats aggregated in larger wintering populations during periods of severe winter and in smaller populations in milder winters. The association with August values of the NAO indicates that bats anticipate future winter weather conditions when deciding where to roost, a heretofore unrecognized role for prehibernation swarming behavior. Future research is needed to understand whether the three-fourths–scaling patterns we observed are related to scaling in metabolism.

  15. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  16. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  17. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  18. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  19. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke; Yang, Hongqing

    2017-12-01

    The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of

  20. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry.

    Science.gov (United States)

    Ely, Craig R; Franson, J Christian

    2014-04-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (<0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  1. Climate projections in the Hornsund area, Southern Spitsbergen

    Directory of Open Access Journals (Sweden)

    Osuch Marzena

    2016-09-01

    Full Text Available The aim of this study was to provide an estimation of climate variability in the Hornsund area in Southern Spitsbergen in the period 1976-2100. The climatic variables were obtained from the Polar-CORDEX initiative in the form of time series of daily air temperature and precipitation derived from four global circulation models (GCMs following representative concentration pathways (RCP RCP 4.5 and RCP 8.5 emission scenarios. In the first stage of the analysis, simulations for the reference period from 1979 to 2005 were compared with observations at the Polish Polar Station Hornsund from the same period of time. In the second step, climatic projections were derived and monthly and annual means/sums were analysed as climatic indices. Following the standard methods of trend analysis, the changes of these indices over three time periods - the reference period 1976-2005, the near-future period 2021-2050, and far-future period 2071-2100 - were examined. The projections of air temperature were consistent. All analysed climate models simulated an increase of air temperature with time. Analyses of changes at a monthly scale indicated that the largest increases were estimated for winter months (more than 11°C for the far future using the RCP 8.5 scenario. The analyses of monthly and annual sums of precipitation also indicated increasing tendencies for changes with time, with the differences between mean monthly sums of precipitation for the near future and the reference period similar for each months. In the case of changes between far future and reference periods, the highest increases were projected for the winter months.

  2. Characteristics of Urban Natural Areas Influencing Winter Bird Use in Southern Ontario, Canada

    Science.gov (United States)

    Smith, Paul G. R.

    2007-03-01

    Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.

  3. Spatial and temporal variations of winter discharge under climate change: Case study of rivers in European Russia

    Directory of Open Access Journals (Sweden)

    E. A. Telegina

    2015-05-01

    Full Text Available An important problem in hydrology is the re-evaluation of the current resources of surface and underground waters in the context of ongoing climate changes. The main feature of the present-day changes in water regime in the major portion of European Russia (ER is the substantial increase in low-water runoff, especially in winter. In this context, some features of the spatial–temporal variations of runoff values during the winter low-water period are considered. Calculations showed that the winter runoff increased at more than 95% of hydrological gauges. Changes in the minimum and average values of runoff during winter low-water period and other characteristics are evaluated against the background of climate changes in the recent decades. The spatial and temporal variability of winter runoff in European Russia is evaluated for the first time.

  4. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    Estimations of evapotranspiration (ET) from natural surfaces are used in a large number of applications such as agricultural water management and water resources planning. Lack of reliable, cheap and easy-to-use instruments, associated with the chaotic and varying nature of the meteorological...... coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...

  5. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    Science.gov (United States)

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  6. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  7. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle

    Science.gov (United States)

    Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang

    2018-03-01

    Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.

  8. Helsinki Metropolitan Area Climate Change Adaptation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Helsinki Metropolitan Area Climate Change Adaptation Strategy has been prepared in close cooperation with the four cities of the metropolitan area (Helsinki, Espoo, Vantaa and Kauniainen), the Helsinki Region Environmental Services Authority HSY and other municipal, regional and state level organisations. In the strategy, strategic starting points and policies with which the metropolitan area prepares for the consequences of climate change, are compiled. The Helsinki Metropolitan Area adaptation strategy concentrates on the adaptation of the built and urban environment to the changing climate. The vision of the strategy is climate proof city - the future is built now. The strategy aims to (1) assess the impacts of climate change in the area, (2) prepare for the impacts of climate change and to extreme weather events and (3) to reduce the vulnerabilities of the area to climate variability and change. The target is to secure the well-being of the citizens and the functioning of the cities also in the changing climate conditions. The preparation of the adaptation strategy started in 2009 by producing the background studies. They include the regional climate and sea level scenarios, modelling of river floods in climate change conditions and a survey of climate change impacts in the region. Also, existing programmes, legislation, research and studies concerning adaptation were collected. The background studies are published in a report titled 'The Helsinki metropolitan area climate is changing - Adaptation strategy background studies' (in Finnish) (HSY 2010). HSY coordinated the strategy preparation. The work was carried out is close cooperation with the experts of the metropolitan area cities, regional emergency services, Ministry of the Environment, Helsinki Region Transport Authority and other regional organisations. The strategy work has had a steering group that consists of representatives of the cities and other central cooperation partners. The

  9. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    Science.gov (United States)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  10. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of

  11. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  12. The influence of climatic conditions changes on grain yield in Winter Triticale (X Triticosecale Wittm.

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2017-05-01

    Full Text Available The aim of this paper is making out the influence of climatic changes on grain yield of winter triticale in relation with applied fertilizer. The influence of environmental conditions on growing and development of triticale plants depends of grow stages and their duration. During five experimental years (2010-2015 the climatic conditions were different year to year, with an accentuated heating trend, influencing plant phenology, accelerating or slowing down some important processes disturbing grain yield formation. The influence of drought is more accentuated by heating stress and prolonging of these conditions during the main phenological processes have a negative influence on plant growth or development with effect on the grain yield formation process.

  13. Relationships between the climate change and the grain filling of winter wheat

    International Nuclear Information System (INIS)

    Shang, Z.; Jiang, D.

    2016-01-01

    The present study is based on the material in a grain filling rate experiment of winter wheat and hourly weather data organised by Xinghua city of Jiangsu Province. The aims are to objectively evaluate the possible influences of the temperature, precipitation, sunshine at the different time of the same day on the grain filling rate of winter wheat. The grain filling rate evaluation model of climate change is firstly developed, and then, the model calculation results are compared with the observed data. The along the changes of the microclimate, changes of the grain filling rate of winter wheat, which is not same in the gradual, rapid and slow increase stages. The changes in grain filling rate of winter wheat, which were caused by variations of temperature, precipitation and sunshine duration, showed periodic fluctuation. Variation in temperature resulted in 1.36 g d/sup -1/(10a)/sup -1/ of grain filling rate change; variation in precipitation resulted in -1.35 g d/sup -1/. (10a)/sup -1/ of grain filling rate change; and variation in sunshine duration resulted in 0.07 g d/sup -1/ (10a)/sup -1/ of grain filling rate change. Three samples showed a grain filling rate change of 0.08 g d/sup -1/(10a)/sup -1/. These findings indicate that the increase in temperature and sunshine duration caused the elevation of grain filling rate, whereas the increase in precipitation decreased the grain filling rate. Therefore, monitoring and predication capability of Meteorological disasters, such as drought caused by high temperature, should be strengthened to ensure the favourable weather condition and improve the grain filling rate through scientific methods such as artificial precipitation. (author)

  14. Climate model assessment of changes in winter-spring streamflow timing over North America

    Science.gov (United States)

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  15. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  16. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...... support the assumption that variation in near-equal area cells may be of second-order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent...

  17. Habitat selection by female northern pintails wintering in the Grassland Ecological Area, California

    Science.gov (United States)

    Fleskes, Joseph P.; Gilmer, David S.; Jarvis, Robert L.

    2004-01-01

    To determine relative importance of habitats available in the Grassland Ecological Area (GEA) to wintering female northern pintails, Anas acuta, we studied habitat use relative to availability (i.e., habitat selection) in the GEA during September through March, 1991-94 for 196 Hatch-Year (HY) and 221 After-Hatch-Year (AHY) female pintails that were radio tagged during August-early October in the GEA (n = 239), other San Joaquin Valley areas (n = 132), or other Central Valley areas (n = 46). Habitat availability and use varied among seasons and years, but pintails always selected shallow and, except on hunting days, open habitats. Swamp timothy, Heleochloa schoenoides, marsh was the most available, used, and selected habitat. Watergrass, Echinochloa crusgalli, marsh in the GEA was used less than available at night in contrast to previous studies in other SJV areas. Preferred late-winter habitats were apparently lacking in the GEA, at least relative to in the Sacramento Valley and Delta where most pintails moved to in December each year. Impacts on pintails of the increasing practice of managing marshes for increased emergent vegetation to attract other species should be monitored. Shallow, open habitats that produce seeds and invertebrates available to pintails in late winter would help maintain pintail abundance in the GEA.

  18. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate

    Science.gov (United States)

    Cheung, Hoffman H. N.; Keenlyside, Noel; Omrani, Nour-Eddine; Zhou, Wen

    2018-01-01

    We identify that the projected uncertainty of the pan-Arctic sea-ice concentration (SIC) is strongly coupled with the Eurasian circulation in the boreal winter (December-March; DJFM), based on a singular value decomposition (SVD) analysis of the forced response of 11 CMIP5 models. In the models showing a stronger sea-ice decline, the Polar cell becomes weaker and there is an anomalous increase in the sea level pressure (SLP) along 60°N, including the Urals-Siberia region and the Iceland low region. There is an accompanying weakening of both the midlatitude westerly winds and the Ferrell cell, where the SVD signals are also related to anomalous sea surface temperature warming in the midlatitude North Atlantic. In the Mediterranean region, the anomalous circulation response shows a decreasing SLP and increasing precipitation. The anomalous SLP responses over the Euro-Atlantic region project on to the negative North Atlantic Oscillation-like pattern. Altogether, pan-Arctic SIC decline could strongly impact the winter Eurasian climate, but we should be cautious about the causality of their linkage.

  19. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2012-03-01

    Full Text Available Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for determined environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of most productive areas of Italy (i.e. Capitanata, Puglia, using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i a single dataset (50 km x 50 km provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060 and +5°C (centred over 2070-2099, respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG. No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.

  20. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    Science.gov (United States)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  1. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  2. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    Science.gov (United States)

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  3. Effect of urbanization on the winter precipitation distribution in Beijing area

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the urbanization extent of Beijing area, and with 1980 as a turning point, the duration from 1961 to 2000 is divided into two periods: one is defined as the slow urbanization period from 1961 to 1980, and other one as the fast urbanization period from 1981 to 2000. Based on the 40-year’s precipi-tation data of 14 standard weather stations in Beijing area, the effect of urbanization on precipitation distribution is studied. It is found that there has been a noticeable and systematic change of winter precipitation distribution pattern between these two periods in Beijing area: in the slow urbanization period, the precipitation in the southern part of Beijing is more than that in the northern part; but in the fast urbanization period, the precipitation distribution pattern is reverse, i.e. the precipitation in the southern part is less than that in the northern part; But in other seasons, the precipitation distribution pattern did not change remarkably in general. The possible cause resulting in the change of winter precipitation distribution pattern, might be that with urban area extension, the effects of "urban heat island" and "urban dry island" become more and more intensified, and increase hydrometeors evapo-ration below precipitable cloud, and then cause less precipitation received on the ground surface in the downtown and the southern part. It is also noteworthy to further research why the precipitation distri-bution pattern does not change systematically in other seasons except winter after intense urbaniza-tion in Beijing area.

  4. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  5. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran

    Directory of Open Access Journals (Sweden)

    Marta S. Lopes

    2018-05-01

    Full Text Available Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years and by defining a probabilistic range of trait variations [phenology and plant height (PH] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions. Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading. Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots was tested against monoculture (if only a single genotype grown in the same area and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny

  6. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of climate resources and the occurrence law of meteorological disasters in growing season.

  7. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  8. Saptial and Temporal in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder Otoliths From Selected Nursery Areas

    Science.gov (United States)

    Winter flounder (Pseudopleuronectes americanus) populations have supported large commercial and recreational fisheries along the coast of New England. In recent years, however, the population of this important species has declined precipitously in some areas, especially Narragan...

  9. Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos taurus) in response to climate change.

    Science.gov (United States)

    Burthe, Sarah; Butler, Adam; Searle, Kate R; Hall, Stephen J G; Thackeray, Stephen J; Wanless, Sarah

    2011-11-01

    1. Studies examining changes in the scheduling of breeding in response to climate change have focused on species with well-defined breeding seasons. Species exhibiting year-round breeding have received little attention and the magnitudes of any responses are unknown. 2. We investigated phenological data for an enclosed feral population of cattle (Bos taurus L.) in northern England exhibiting year-round breeding. This population is relatively free of human interference. 3. We assessed whether the timing of births had changed over the last 60 years, in response to increasing winter and spring temperatures, changes in herd density, and a regime of lime fertilisation. 4. Median birth date became earlier by 1·0 days per year. Analyses of the seasonal distribution of calving dates showed that significantly fewer calves were born in summer (decline from 44% of total births to 20%) and significantly more in winter (increase from 12% to 30%) over the study period. The most pronounced changes occurred in winter, with significant increases in both the proportion and number of births. Winter births arise from conceptions in the previous spring, and we considered models that investigated climate and weather variables associated with the winter preceding and the spring of conceptions. 5. The proportion of winter births was higher when the onset of the plant growing season was earlier during the spring of conceptions. This relationship was much weaker during years when the site had been fertilised with lime, suggesting that increased forage biomass was over-riding the impacts of changing plant phenology. When the onset of the growing season was late, winter births increased with female density. 6. Recruitment estimates from a stage-structured state-space population model were significantly negatively correlated with the proportion of births in the preceding winter, suggesting that calves born in winter are less likely to survive than those born in other seasons. 7.

  10. Relative abundance of small mammals in nest core areas and burned wintering areas of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Science.gov (United States)

    Joseph L. Ganey; Sean C. Kyle; Todd A. Rawlinson; Darrell L. Apprill; James P Ward

    2014-01-01

    Mexican Spotted Owls (Strix occidentalis lucida) are common in older forests within their range but also persist in many areas burned by wildfire and may selectively forage in these areas. One hypothesis explaining this pattern postulates that prey abundance increases in burned areas following wildfire. We observed movement to wintering areas within areas burned by...

  11. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    Science.gov (United States)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  12. Wintering Waterbirds and Recreationists in Natural Areas: A Sociological Approach to the Awareness of Bird Disturbance

    Science.gov (United States)

    Le Corre, Nicolas; Peuziat, Ingrid; Brigand, Louis; Gélinaud, Guillaume; Meur-Férec, Catherine

    2013-10-01

    Disturbance to wintering birds by human recreational activities has become a major concern for managers of many natural areas. Few studies have examined how recreationists perceive their effects on birds, although this impacts their behavior on natural areas. We surveyed 312 users on two coastal ornithological sites in Brittany, France, to investigate their perception of the effects of human activities on wintering birds. The results show that the awareness of environmental issues and knowledge of bird disturbance depends on the socioeconomic characteristics of each user group, both between the two sites and within each site. Results also indicate that, whatever the site and the user group, the vast majority of the respondents (77.6 %) believed that their own presence had no adverse effects on the local bird population. Various arguments were put forward to justify the users' own harmlessness. Objective information on recreationists' awareness of environmental issues, and particularly on their own impact on birds, is important to guide managers in their choice of the most appropriate visitor educational programs. We recommend developing global but also specific educational information for each type of user to raise awareness of their own impact on birds.

  13. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    Science.gov (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  14. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    Science.gov (United States)

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better

  15. Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate.

    Science.gov (United States)

    Pankiw, Tanya; Sagili, Ramesh R; Metz, Bradley N

    2008-12-01

    Fatty acid esters extractable from the surface of honey bee, Apis mellifera L. (Hymenoptera: Apidae), larvae, called brood pheromone, significantly increase rate of colony growth in the spring and summer when flowering plant pollen is available in the foraging environment. Increased colony growth rate occurs as a consequence of increased pollen intake through mechanisms such as increasing number of pollen foragers and pollen load weights returned. Here, we tested the hypothesis that addition of brood pheromone during the winter pollen dearth period of a humid subtropical climate increases rate of colony growth in colonies provisioned with a protein supplement. Experiments were conducted in late winter (9 February-9 March 2004) and mid-winter (19 January-8 February 2005). In both years, increased brood area, number of bees, and amount of protein supplement consumption were significantly greater in colonies receiving daily treatments of brood pheromone versus control colonies. Amount of extractable protein from hypopharyngeal glands measured in 2005 was significantly greater in bees from pheromone-treated colonies. These results suggest that brood pheromone may be used as a tool to stimulate colony growth in the southern subtropical areas of the United States where the package bee industry is centered and a large proportion of migratory colonies are overwintered.

  16. Validation of a limited area model over Dome C, Antarctic Plateau, during winter

    Energy Technology Data Exchange (ETDEWEB)

    Gallee, Hubert; Gorodetskaya, Irina V. [Laboratoire de Glaciologie et de Geophysique de l' Environnement, CNRS, 54, rue Moliere, BP. 96, St Martin d' Heres Cedex (France)

    2010-01-15

    The limited area model MAR (Modele Atmospherique Regional) is validated over the Antarctic Plateau for the period 2004-2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux. (orig.)

  17. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  18. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  19. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  20. Sewage-treatment under substantial load variations in winter tourism areas--a full case study.

    Science.gov (United States)

    Winkler, S; Matsché, N; Gamperer, T; Dum, M

    2004-01-01

    The sewage-load variations in winter tourism areas are characterized by sudden increases--in the range of a factor two to three--within only a few days at the start and the end of the tourist season, especially at Christmas. The sudden load increases occur during periods of low wastewater temperatures, which is an additional demanding factor with respect to nitrogen removal. A full case study was carried out at WWTP Saalfelden, which is located near one of Austria's largest skiing resorts. The plant is designed for 80,000 PE and built according to the HYBRID-concept, which is a special two stage activated sludge process for extensive nutrient removal.

  1. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  2. Climatic change and tourism. Research into the consequences of climatic change on winter tourism in the Swiss alps; Klimaaenderung und Tourismus. Klimafolgenforschung am Beispiel des Wintertourismus in den schweizer Alpen

    Energy Technology Data Exchange (ETDEWEB)

    Abegg, B.

    1996-12-31

    Swiss winter tourism is highly dependent on the ski industry and therefore relies on favourable snow conditions. An investigation of the snow-deficient winters at the end of the 1980`s indicated that lack of snow severely impacts the industry. Climate change (global warming) is a new challenge for Swiss winter tourism. It is demonstrated that a rising snowline would have a wide range of serious consequences. Under current climate conditions, ski fields higher than 1200 m are considered to be snow abundant. Assuming that temperatures increase by about 2{sup o}C, this line of snow-reliability would rise by 300 m up to 1500 m. Today 85% of Swiss ski areas are snow reliable. If climate change occurred as outlined above, the number of snow reliable ski areas would drop to 63%. The number of suitable days for skiing, defined as days with a snow depth of {>=} 30 cm, would also decrease - in Einsiedeln (910 m) for example, from today`s average of 51 days to 24 days in the future. Furthermore it is possible that the frequency and distribution of the weather patterns would change. If the currently observed trends (increasing occurrence of high pressure systems in winter) continue, negative effects on ski tourism have to be expected. A survey undertaken in the canton of Grisons shows that climate change is perceived as a potential problem for tourism. The tourism managers are well aware of the relationships between the snow conditions and their businesses, and they can imagine what the consequences of increasingly poor snow conditions would be. With regard to the projected climate change, tourism managers are not destined to play an inactive role. There is a whole set of strategies, especially in the short term, that can help sustain ski tourism. Best known is the increased use of artificial snow. Others are a better snow management or the development of new facilities in higher areas. In the medium and long term however, more sophisticated strategies need to be taken into

  3. Climate change and its impact on the Crn Drim Catchment Area In Macedonia

    International Nuclear Information System (INIS)

    Todorovik, Oliviia; Aleksovska, Nina; Rikaloska, Gorica

    2004-01-01

    In this paper it will be presented the overview of the climate change and climate regimes of the world in general according different scenarios in the latest assessment (the 3d Report published in 2001) of the Intergovernmental Panel on Climate Change (IPCC) and its impact on the Crn Drim catchment area in Macedonia.This analysis and interpretation only provides a preliminary investigation into climate change and how it will affect Ohrid and Prespa lake system as a part of Crn Drim catchment area, which is already attacked by the climate changed. From the climatological aspect two elements: temperature and rainfall, will be' calculated and their expected changes over the century in the same area. Dates used in these analyses are from the Hydro meteorological Service of Republic of Macedonia archives In the graphs are shown changes in average seasonal climate for the period around the 2080s, relative to 1961-1990 climate. Results are shown for the SRES A2 scenario, which assumes a future world of fairly conventional energy development, i.e., continuing dependence on fossil carbon fuels. The projections for average seasonal climate for temperature and precipitation are estimated and shown separately for two seasons: winter and summer. The estimated values are compared with annual mean global worming for the 2080s,-and for the SRES A2 scenario, as calculated by the IPCC (a value of about 3.2 o C). The results show rate of worming greater in summer than in winter for Ohrid Lake as well as for Prespa Lake. Concerning the precipitation, it increases slightly in winter and decreases substantially in summer, by around 30 per cent. As the conclusion it is obviously that the temperature will rise in all Crn Drim catchment area with implications for increasing water temperature and water quality, which would be degraded by higher water temperature. This will increase evaporation and as the results can be expected water level decreasing. Also, higher temperatures and heat

  4. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Jumari Steyn

    2016-10-01

    Full Text Available Several studies have demonstrated the ability of certain viruses to overwinter in arthropod vectors. The over-wintering mechanism of bluetongue virus (BTV is unknown. One hypothesis is over-wintering within adult Culicoides midges (Diptera; Ceratopogonidae that survive mild winters where temperatures seldom drop below 10 °C. The reduced activity of midges and the absence of outbreaks during winter may create the impression that the virus has disappeared from an area. Light traps were used in close association with horses to collect Culicoides midges from July 2010 to September 2011 in the Onderstepoort area, in Gauteng Province, South Africa. More than 500 000 Culicoides midges were collected from 88 collections and sorted to species level, revealing 26 different Culicoides species. Culicoides midges were present throughout the 15 month study. Nine Culicoides species potentially capable of transmitting BTV were present during the winter months. Midges were screened for the presence of BTV ribonucleic acid (RNA with the aid of a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR assay. In total 91.2% of midge pools tested positive for BTV RNA. PCR results were compared with previous virus isolation results (VI that demonstrated the presence of viruses in summer and autumn months. The results indicate that BTV-infected Culicoides vectors are present throughout the year in the study area. Viral RNA-positive midges were also found throughout the year with VI positive midge pools only in summer and early autumn. Midges that survive mild winter temperatures could therefore harbour BTV but with a decreased vector capacity. When the population size, biting rate and viral replication decrease, it could stop BTV transmission. Over-wintering of BTV in the Onderstepoort region could therefore result in re-emergence because of increased vector activity rather than reintroduction from outside the region.

  5. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  6. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  7. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2018-06-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  8. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  9. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  10. Climate Change: Natural Water and Fertilization Effects on Winter Rye (Secale cereale L.) Yield in Monoculture

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    . Akad. Tidskr. 139:8. Jolánkai, M., 2005. Effect of climate change on plant cultivation. „AGRO-21" Füzetek. 41. 47-58. Kádár, I., 1992. A növénytáplálás alapelvei és módszerei. MTA TAKI. Budapest. 398 p. Kádár, I., 2005. A rozs (Secale cereale L.) műtrágyázása meszes csernozjom talajon. Növénytermelés. In press Kádár, I., Lásztity, B. & Szemes I., 1982. Az őszi rozs tápanyagfelvételének vizsgálata szabadföldi tartamkísérletben. II. Levélanalízis. Na, Fe, Mn, Zn, Cu felvétele. Agrokémia és Talajtan. 31. 17-28. Kádár, I., Szemes, I. & Lásztity, B., 1984. Relationship between "year effect" and state of nutrition in a long-term winter rye experiment. Növénytermelés. 33. 235-241. Kádár, I. & Szemes, I., 1994. A nyírlugosi tartamkísérlet 30 éve. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. Láng, I., 1973. Műtrágyázási tartamkísérletek homoktalajokon. MTA Doktori Értekezés. MTA TMB. Budapest. Láng, I., 2005. Éghajlat és időjárás: változás-hatás-válaszadás. „AGRO-21" Füzetek. 43. 3-10. Láng, I., Harnos, Zs. & Jolánkai, M., 2004. Alkalmazkodási stratégiák klímaváltozás esetére: nemzetközi tapasztalatok hazai lehetőségek. "AGRO-21" Füzetek. 35. 70-77. Márton, L., 2002. Climate fluctuations and the effects of N fertilizer on the yield of rye (Secale cereale L.). Plant Production. 51. 199-210. Márton, L., 2004. Rainfall and fertilization effects on crops yield in a global climate change. In: Proc. Role of Multipurpose Agriculture in Sustaining Global Environment-AGROENVIRON 2004 (Udine, 20-24. October 2004). Part 3. 451-456. DPVTA. Udine. Márton, L., 2005a. Disasters as drought-, and rainfall excess and artificial fertilization effects on crop yield. In: Proc. International Conference on Energy, Environment and Disasters-INCEED2005 (Charlotte, 24-30. July 2005). 49-50. ISEG. Charlotte. Márton L., 2005b. Artificial fertilizers and climate change impacts on crops yield. In: Proc

  11. Black-tailed Godwits in West African winter staging areas : habitat use and hunting-related mortality

    NARCIS (Netherlands)

    Kleijn, D.; Kamp, van der J.; Monteiro, H.; Ndiaye, I.; Wymenga, E.; Zwarts, L.

    2010-01-01

    The persistence of the Dutch Black-tailed Godwit population depends largely on high adult survival. Adult survival may be influenced by hunting pressure and land use change in the wintering area, the West African coastal zone. Here we examine hunting pressure on and habitat use of Black-tailed

  12. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  13. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  14. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  15. Effects of climatic changes upon the variability of some productivity characters in winter triticale (X Triticosecale Wittm.

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2017-05-01

    Full Text Available The global acceleration warm conditions determine an additional stress for plant growth and development stages with a high impact on plant grain yield performances. During five experimental years the climatic conditions varied quite a lot so that the main productivity elements: the number of grains/spike, weight of grains per spike and number of spikes per square meter had different values which influencing final grain yield. Analyzing the relationship between rainfall/temperature and grain yield, including its components, can be observed a strong relation between those especially in the first growth stages (from plant emergence and vegetative restarting in early spring. Climatic conditions have manifested an important influence also in the last phenophases of winter triticale plant with a negative influence on grain yield. Being a process of long duration, grain yield formation is strongly affected by temperature (r=0.89 and rainfall conditions (r=0.45.

  16. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    Science.gov (United States)

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  17. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  18. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predi...... will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling....... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  19. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb climate.

    Directory of Open Access Journals (Sweden)

    Shari L Forbes

    Full Text Available The investigation of volatile organic compounds (VOCs associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L. were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS. The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were

  20. Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Thaler, S.; Eitzinger, Josef; Trnka, Miroslav; Dubrovský, Martin

    2012-01-01

    Roč. 150, č. 5 (2012), s. 537-555 ISSN 0021-8596 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : climate change * weather generator * winter wheat * adaptation options * Central Europe Subject RIV: EH - Ecology, Behaviour; DG - Athmosphere Sciences, Meteorology (UFA-U) Impact factor: 2.878, year: 2012 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8678290

  1. Inadvertent weather modification urban areas - lessons for global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Changnon, S A [Illinois State Water Survey, Champaign, IL (USA)

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the USA's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multidisciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioural implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  2. Inadvertent weather modification urban areas - lessons for global climate change

    International Nuclear Information System (INIS)

    Changnon, S.A.

    1992-01-01

    Large metropolitan areas in North America, home to 65% of the USA's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multidisciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioural implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally

  3. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  4. Influence of winter season climate variability on snow-precipitation ratio in the western United States

    Science.gov (United States)

    Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin

    2015-01-01

    In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...

  5. Drastic shifts in the Levant hydroclimate during the last interglacial indicate changes in the tropical climate and winter storm tracks

    Science.gov (United States)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2017-12-01

    Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion

  6. Winter Storm Jupiter of January 2017: Meteorological Drivers, Synoptic Evolution, and Climate Change Considerations in Portland, Oregon

    Science.gov (United States)

    Dean, S.; Loikith, P. C.

    2017-12-01

    Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with

  7. Winter storm intensity, hazards, and property losses in the New York tristate area.

    Science.gov (United States)

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  8. Tree-ring analysis of winter climate variability and ENSO in Mediterranean California

    International Nuclear Information System (INIS)

    Woodhouse, C.A.; Univ. of Colorado, Boulder

    2006-01-01

    The feasibility of using tree-ring data as a proxy for regional precipitation and ENSO events in the Mediterranean region of California is explored. A transect of moisture-sensitive tree-ring sites, extending from southwestern to north-central California, documents regional patterns of winter precipitation and replicates the regional response to ENSO events in the 20. century. Proxy records of ENSO were used with the tree-ring data to examine precipitation/ENSO patterns in the 18. and 19. centuries. Results suggest some temporal and spatial variability in the regional precipitation response to ENSO over the last three centuries

  9. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation

    Science.gov (United States)

    Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.

    2017-11-01

    A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.

  10. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  11. Wintering area DDE source to migratory white-faced ibis revealed by satellite telemetry and prey sampling

    Science.gov (United States)

    Yates, M.A.; Fuller, M.R.; Henny, C.J.; Seegar, W.S.; Garcia, Jorge H.

    2010-01-01

    Locations of contaminant exposure for nesting migratory species are difficult to fully understand because of possible additional sources encountered during migration or on the wintering grounds. A portion of the migratory white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada continues to be exposed to dichloro-diphenyldichloro-ethylene (DDE) with no change, which is unusual, observed in egg concentrations between 1985 and 2000. About 45-63% of the earliest nesting segment shows reduced reproductive success correlated with elevated egg concentrations of >4 ??g/g wet weight (ww). Local prey (primarily earthworms) near nests contained little DDE so we tracked the migration and wintering movements of 20 adult males during 2000-2004 to determine the possible source. At various wintering sites, we found a correlation (r 2 = 0.518, P = 0.0125, N = 11) between DDE in earthworm composites and DDE in blood plasma of white-faced ibis wintering there, although the plasma was collected on their breeding grounds soon after arrival. The main source of DDE was wintering areas in the Mexicali Valley of Baja California Norte, Mexico, and probably the adjacent Imperial Valley, California, USA. This unusual continuing DDE problem for white-faced ibis is associated with: the long-term persistence in soil of DDE; the earthworms' ability to bioconcentrate DDE from soil; the proclivity of white-faced ibis to feed on earthworms in agricultural fields; the species's extreme sensitivity to DDE in their eggs; and perhaps its life history strategy of being a "capital breeder". We suggest surveying and sampling white-faced ibis eggs at nesting colonies, especially at Carson Lake, to monitor the continuing influence of DDE. ?? 2009 Springer Science+Business Media, LLC.

  12. Wintering area DDE source to migratory white-faced ibis revealed by satellite telemetry and prey sampling.

    Science.gov (United States)

    Yates, Michael A; Fuller, Mark R; Henny, Charles J; Seegar, William S; Garcia, Jaqueline

    2010-01-01

    Locations of contaminant exposure for nesting migratory species are difficult to fully understand because of possible additional sources encountered during migration or on the wintering grounds. A portion of the migratory white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada continues to be exposed to dichloro-diphenyldichloro-ethylene (DDE) with no change, which is unusual, observed in egg concentrations between 1985 and 2000. About 45-63% of the earliest nesting segment shows reduced reproductive success correlated with elevated egg concentrations of >4 microg/g wet weight (ww). Local prey (primarily earthworms) near nests contained little DDE so we tracked the migration and wintering movements of 20 adult males during 2000-2004 to determine the possible source. At various wintering sites, we found a correlation (r (2) = 0.518, P = 0.0125, N = 11) between DDE in earthworm composites and DDE in blood plasma of white-faced ibis wintering there, although the plasma was collected on their breeding grounds soon after arrival. The main source of DDE was wintering areas in the Mexicali Valley of Baja California Norte, Mexico, and probably the adjacent Imperial Valley, California, USA. This unusual continuing DDE problem for white-faced ibis is associated with: the long-term persistence in soil of DDE; the earthworms' ability to bioconcentrate DDE from soil; the proclivity of white-faced ibis to feed on earthworms in agricultural fields; the species's extreme sensitivity to DDE in their eggs; and perhaps its life history strategy of being a "capital breeder". We suggest surveying and sampling white-faced ibis eggs at nesting colonies, especially at Carson Lake, to monitor the continuing influence of DDE.

  13. Culicoides species abundance and potential over-wintering of African horse sickness virus in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2014-11-01

    Full Text Available In South Africa, outbreaks of African horse sickness (AHS occur in summer; no cases are reported in winter, from July to September. The AHS virus (AHSV is transmitted almost exclusively by Culicoides midges (Diptera: Ceratopogonidae, of which Culicoides imicola is considered to be the most important vector. The over-wintering mechanism of AHSV is unknown. In this study, more than 500 000 Culicoides midges belonging to at least 26 species were collected in 88 light traps at weekly intervals between July 2010 and September 2011 near horses in the Onderstepoort area of South Africa. The dominant species was C. imicola. Despite relatively low temperatures and frost, at least 17 species, including C. imicola, were collected throughout winter (June–August. Although the mean number of midges per night fell from > 50 000 (March to < 100 (July and August, no midge-free periods were found. This study, using virus isolation on cell cultures and a reverse transcriptase polymerase chain reaction (RT-PCR assay, confirmed low infection prevalence in field midges and that the detection of virus correlated to high numbers. Although no virus was detected during this winter period, continuous adult activity indicated that transmission can potentially occur. The absence of AHSV in the midges during winter can be ascribed to the relatively low numbers collected coupled to low infection prevalence, low virus replication rates and low virus titres in the potentially infected midges. Cases of AHS in susceptible animals are likely to start as soon as Culicoides populations reach a critical level.

  14. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  15. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  16. Anomalous winter climate conditions in the Pacific rim during recent El Nino Modoki and El Nino events

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Hengyi; Behera, Swadhin K. [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan); Yamagata, Toshio [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan)]|[University of Tokyo, Department of Earth and Planetary Science, Graduate School of Sciences, Tokyo (Japan)

    2009-04-15

    Present work compares impacts of El Nino Modoki and El Nino on anomalous climate in the Pacific rim during boreal winters of 1979-2005. El Nino Modoki (El Nino) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple 'boomerangs' of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those 'boomerangs' reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Nino Modoki owing to displacement of the wet 'boomerang' arms more poleward toward east. Discontinuities at outer 'boomerang' arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Nino Modoki, while much of the western USA is wet during El Nino. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Nino Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Nino. The East Asian winter monsoon related anticyclone is over the South China Sea during El Nino Modoki as compared to its position over the Philippine Sea during El Nino, causing opposite precipitation anomalies in the southern East Asia between the two phenomena. (orig.)

  17. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  18. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Dr. Christoph Maria Ravesloot

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of

  19. Detection of damaged areas caused by the oil extraction in a steppe region using winter landsat imagery

    Science.gov (United States)

    Mjachina, Ksenya; Hu, Zhiyong; Chibilyev, Alexander

    2018-01-01

    Oil production in a steppe region disturbs the landscape and damages the steppe ecosystem. The objective of this research was to detect areas damaged by oil production in an oil field within the Russian Volga-Ural steppe region using winter Landsat imagery. We developed a practicable and effective approach using winter snow season multispectral Landsat satellite imagery. To this end, we applied seven algorithms of spectral or texture-based transformation: K-means, maximum likelihood estimation, topsoil grain size index, soil brightness, normalized differential snow index, tasselled cap, and co-occurrence measures. The co-occurrence texture measure variance shows the optimal result of identifying damaged areas. The unique feature of our method is that it can differentiate damaged areas from the bare soil of cropland within a cold steppe region where the area damaged by oil production is mixed with bare (fallow) croplands that have a polygonal shape similar to well pads. Such similarities can lead to confusion in object-based classification. Using the co-occurrence measures, we found that from 1988 to 2015, damaged area is nearly three times as big in the peak period of the oil field development (2001 and 2009) as in 1988. Landscape fragmentation also peaked in 2001 and 2009. Our approach for this project is useful and cost effective regular monitoring of damages from oil production for both the Volga-Ural steppe region and other cold steppe regions.

  20. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watersheds using SWAT model

    Science.gov (United States)

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrat...

  1. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.

    2004-01-01

    Roč. 77, - (2004), s. 229-249 ISSN 0177-798X R&D Projects: GA ČR GA521/02/0827 Grant - others:Mendel University of Agriculture and Forestry Brno(CZ) J 08/98:432100001 Institutional research plan: CEZ:AV0Z3042911 Keywords : climate change scenarios * wheat yields Subject RIV: GC - Agronomy Impact factor: 0.964, year: 2004

  2. Winter climate and plant productivity predict abundances of small herbivores in central Europe

    Czech Academy of Sciences Publication Activity Database

    Tkadlec, Emil; Zbořil, J.; Losík, J.; Gregor, P.; Lisická, L.

    2006-01-01

    Roč. 32, č. 2 (2006), s. 99-108 ISSN 0936-577X R&D Projects: GA ČR GA206/04/2003 Institutional research plan: CEZ:AV0Z60930519 Keywords : climate effects * common vole * European hare * NAO * plant productivity * crop yield Subject RIV: EH - Ecology, Behaviour Impact factor: 1.519, year: 2006 http://www.int-res.com/articles/cr_oa/c032p099.pdf

  3. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    Science.gov (United States)

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  4. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  5. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  6. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  7. Simulation of Relationship between ENSO and winter precipitation over Western Himalayas: Application of Regional climate model (RegT-Band)

    Science.gov (United States)

    Tiwari, P. R.; Mohanty, U. C.; Dey, S.; Acharaya, N.; Sinha, P.

    2012-12-01

    Precipitation over the Western Himalayas region during winter is mainly associated with the passage of midlatitude synoptic systems known as western disturbances (WDs). Recently, many observational and modeling studies reported that the relationship of the Indian southwest monsoon rainfall with El Niño- Southern Oscillation (ENSO) has weakened since around 1980. But, in contrast, only very few observational studies are reported so far to examine the relationship between ENSO and the winter precipitation over the Western Himalayas region from December to February (DJF). But there is a huge gap of modeling this phenomenon. So keeping in view of the absence of modeling studies, an attempt is made to simulate the relationship between wintertime precipitations associated with large scale global forcing of ENSO over the Western Himalayas. In the present study, RegT-Band, a tropical band version of the regional climate model RegCM4 is integrated for a set of 5 El Niño (1986-87, 1991-92, 1997-98, 2002-03, 2009-10) and 4 La Niña (1984-85, 1988-89, 1999-2000, 2007-08) years with the observed sea-surface temperature and lateral boundary condition. The domain extends from 50° S to 50° N and covers the entire tropics at a grid spacing of about 45 km, i.e. it includes lateral boundary forcing only at the southern and northern boundaries. The performance evaluation of the model in capturing the large scale fields followed by ENSO response with wintertime precipitation over the Western Himalayas region has been carried out by using National Center for Environmental Prediction (NCEP)-Department of Energy (DOE) reanalysis 2 (NNRP2) data (2.5° x 2.5°) and Aphrodite precipitation data (0.25° x 0.25°). The model is able to delineate the mean circulation associated with ENSO over the region during DJF reasonably well and shows strong southwesterly to northwesterly wind flow, which is there in verification analysis also. The vertical structure of the low as well as upper level

  8. Climate change and protected area policy and planning in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D. [Canada Research Chairs, Ottawa, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Geography; Lemieux, C. [Waterloo Univ., ON (Canada). Dept. of Geography

    2005-10-01

    Challenges concerning climate change for agencies involved the management of Canada's protected areas were reviewed. Most protected areas have been designed to represent specific natural features, species and ecological communities, and are the most common and most important strategy for biodiversity conservation. It remains undecided whether adaptation should be a matter of responding to climate change as it manifests, or whether initiatives should be taken in advance to anticipate the potential effects of climate change. There are growing concerns that emergency adaptation will be less effective and more costly than anticipatory or precautionary adaptation over the long-term. Species extinction could result. It was noted that the northward shift of species from the United States will meet Parks Canada's existing definition of alien species in need of management interventions. The conservation objectives of individual protected areas would also be affected by projected biome and species changes, particularly as each of Canada's national parks is responsible for protecting ecosystems representative of the natural region within which it is located. All 6 vegetation change scenarios examined in a recent study projected the eventual loss of boreal forest in the Prince Albert National Park, suggesting that the park's current mandate to protect the ecological integrity of the area would no longer be viable. An overview of the policy and planning implications of climate change for protected areas in Canada was presented using examples from national and provincial park systems. A portfolio of climate change adaptation options in conservation literature was reviewed. Recommended strategies included system planning and policy development; active, adaptive ecosystem management; research and monitoring; and capacity building and awareness. It was concluded that governments will need to make major new investments in protected area establishment, personnel

  9. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab

    2013-10-01

    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  10. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  11. Transient eddies and low frequency variability in the Northern Hemisphere winter climates of two GCMs

    International Nuclear Information System (INIS)

    Hansen, T.; Sutera, A.

    1994-01-01

    An aspect of the climate change problem that is also important to our understanding of the general circulation is the relative roles and interactions between baroclinic-scale transient eddies and the larger scale, lower frequency variability of the flow in midlatitudes. A question may be raised as to how a reduced (or enhanced) level of high-frequency transient eddy activity may influence the character of the large-scale flow. If the transient eddies play an important role in determining the large-scale flow patterns in the atmosphere, then we might expect a profound impact from a changed level of high frequency transient eddy activity on the large-scale flow. An opportunity to address this question is presented by the intercomparison of two general circulation models, the differences in whose formulations lie primarily in their physical parameterizations

  12. The roles of natural areas in a changing climate

    International Nuclear Information System (INIS)

    Pollard, D.F.W.

    1991-01-01

    Natural areas are protected sites which are integral parts of a systematic network representing the diversity of natural environments. They are relatively undisturbed by man, selected according to ecological criteria, have assured permanency, are set aside mainly for scientific and educational purposes, and harbor genetic materials of value to society. In the Pacific Northwest, natural areas have been established by the United States Forest Service and the British Columbia Ministry of the Environment and include national parks, wilderness areas, wildlife refuges, and wild rivers. A change in climate will undoubtedly create a mismatch between climatic regions and vegetation and wildlife occupying them. The distribution of plant and animal species will change. Species and communities that will be most affected by climatic change include those at the contracting periphery of the species range, genetically impoverished or highly sensitive species, annual plants, and Arctic and coastal communities. Most species will disperse from existing locations, with variable and unpredictable results. It is conceivable that natural areas will evolve from their current role as refuges to a new role as centers of diversity from which genes migrate into a changing world. Natural areas also serve as a base for biomonitoring of long-term environmental changes and for assessing effects of interventions such as acid precipitation. 32 refs

  13. Changes in observed climate extremes in global urban areas

    International Nuclear Information System (INIS)

    Mishra, Vimal; Ganguly, Auroop R; Nijssen, Bart; Lettenmaier, Dennis P

    2015-01-01

    Climate extremes have profound implications for urban infrastructure and human society, but studies of observed changes in climate extremes over the global urban areas are few, even though more than half of the global population now resides in urban areas. Here, using observed station data for 217 urban areas across the globe, we show that these urban areas have experienced significant increases (p-value <0.05) in the number of heat waves during the period 1973–2012, while the frequency of cold waves has declined. Almost half of the urban areas experienced significant increases in the number of extreme hot days, while almost 2/3 showed significant increases in the frequency of extreme hot nights. Extreme windy days declined substantially during the last four decades with statistically significant declines in about 60% in the urban areas. Significant increases (p-value <0.05) in the frequency of daily precipitation extremes and in annual maximum precipitation occurred at smaller fractions (17 and 10% respectively) of the total urban areas, with about half as many urban areas showing statistically significant downtrends as uptrends. Changes in temperature and wind extremes, estimated as the result of a 40 year linear trend, differed for urban and non-urban pairs, while changes in indices of extreme precipitation showed no clear differentiation for urban and selected non-urban stations. (letter)

  14. Winter temperatures in the second half of the sixteenth century in the central area of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    T. Bullón

    2008-12-01

    Full Text Available This paper studies the winter temperatures of the second part of the sixteenth century in the central area of the Iberian Peninsula. A large number of historical documents that are stored in many different Spanish archives were consulted in order to carry out this research. The data was first arranged and weighted according to the intensity and significance of the meteorological phenomena described and, subsequently, these values were assigned an ordinal index ranging from +4 to −4. The statistical treatment applied is based on the reconstruction of temperatures equivalent to this ordinal index, expressed as anomalies of the 1961–1990 period, belonging to a reference station located at the approximate geographical center of the area under study. The results show winter thermal conditions different from current ones that, for the most part, stay below the reference average and that occurred with a wide range of variability. The influence that thermal conditions had on the evolution of some environmental aspects are considered based on the forest exploitation problem information and on the wine harvest production.

  15. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  16. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  17. Climate change and Greenland White-fronted Geese Anser albifrons flavirostris: shifts in distribution and advancement in spring departure times at Wexford versus elsewhere in the winter range

    DEFF Research Database (Denmark)

    Fox, Anthony David; Merne, Oscar J; Walsh, Alyn J.

    2012-01-01

    Count data have shown that numbers of Greenland White-fronted Geese Anser albifrons flavirostris wintering at their numerically most important site (Wexford Slobs in south east Ireland) have remained more or less constant over 30 years, in contrast to recent declines at their second most important...... site (Islay further north in south west Scotland), and declines in the population as a whole. There was no evidence to suggest a northwards shift in wintering geese as might be predicted under global climate change. Although Greenland White-fronted Geese now depart from Wexford in spring on average 22...... in migration timing. The more rapid advancement of spring migration at Wexford compared to elsewhere in the range and the retention of wintering geese there in contrast to declining trends amongst the population as a whole suggest that local management of the food resource at Wexford may be responsible...

  18. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  19. The winter of 1827-1828 over eastern North America. A season of extraordinary climatic anomalies, societal impacts, and false spring

    Energy Technology Data Exchange (ETDEWEB)

    Mock, C.J.; McWaters, M. [Department of Geography, University of South Carolina, Columbia, SC, 29208 (United States); Mojzisek, J. [Department of Geography, University of Otago, P.O. Box 56, Dunedin, (New Zealand); Chenoweth, M. [Independent Scholar, 6816 Ducketts Lane, Elkridge, MD, 21075 (United States); Stahle, D.W. [Department of Geosciences, University of Arkansas, Fayetteville, AR, 72701 (United States)

    2007-07-15

    This study reconstructed the weather and its impacts on society for the winter of 1827-1828, focusing on the eastern United States. Data comprise of daily and monthly instrumental records, diaries with both daily and seasonal resolution, newspapers, fur trapper accounts, and tree-rings. Temperature anomalies were calculated and mapped based on the means during the 1820-1840 period to account for different fixed observation times. Precipitation frequencies provided direct comparisons of the 1827-1828 weather with modern climatic normals. Daily plots of temperature also reveal weather variations at daily timeframes. Results indicate that the eastern United States experienced strong positive temperature anomalies that are among the most extreme known in the historical record, particularly its large spatial extent. In contrast, historical evidence reveals strong negative temperature anomalies over northwestern North America, and positive temperature anomalies are evident for coastal Alaska. These temperature anomaly patterns sharply contrast to what is normally experienced during a warm El Nino event. Furthermore, results clearly describe remarkable climatic impacts in the Southeast U.S., including widespread blossoming of fruit trees in mid-winter (false spring) that led to a widespread severe killing frost in early April of 1828. Widespread positive precipitation frequency anomalies are also evident for much of the Southeast U.S., which also played a prominent role on winter vegetation growth. Other weather events and impacts include unusual opening of river traffic in winter in New England, severe flooding in the Mississippi River Valley, and heavy snowfall in northwestern North America.

  20. The climate and flood risk potential of northern areas of Pakistan

    International Nuclear Information System (INIS)

    Awan, S.A.

    2002-01-01

    The extreme floods in northern parts of Pakistan are caused by glacier lake outbursts and Dam-Breaks following landslides, which block river valleys. Geographically glacier dams in mountain rivers and valleys have occurred from the east-western and west-western Karakuram ranges and in the lesser Karakuram range floods which arise from Karakuram precipitation and temperature of various region pose greater problem, as these floods are neither homogeneous nor stationary. These floods arise from various generating mechanisms i. e. generated by melting of snow and glacier and those generated from the monsoon rainfall and dam-breaks following landslide into the river and out burst of glacier lake. The estimation of present and future risk of flooding at sites in northern Pakistan requires an understanding, of the climate, which provides, the generating mechanism of floods. Climates are extremely variable and depend op broad global circulation patterns and local topographic influences. The variables of the climate are studied using available data, with emphasis on temperature and precipitation Spatial Co-relation in northern area stations have been conducted to find Co-relation Co-efficient, using regression analysis. This is spread over intra seasonal and inter station comparison. The time series analysis of the climatic variables has been conducted to examine geographically and statistically the trend in their behaviour. This may be reflected in the hydrological regime of glaciers and rivers and it can cause non linear flood series through changes in any one of the flood generating mechanism. The climate feed-back mechanism has been discussed, which are practically important because they assist seasonal prediction of climate and flow in the Indus. Additionally if climate warming is causing an upward Trend in winter and spring temperature and reduction in snowfall, the effect might be felt more widely over the region. The non-linear changes with elevation and differences

  1. Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor.

    Science.gov (United States)

    Marchin, Renée M; Dunn, Robert R; Hoffmann, William A

    2014-12-01

    In the eastern United States, winter temperature has been increasing nearly twice as fast as summer temperature, but studies of warming effects on plants have focused on species that are photosynthetically active in summer. The terrestrial orchid Tipularia discolor is leafless in summer and acquires C primarily in winter. The optimum temperature for photosynthesis in T. discolor is higher than the maximum temperature throughout most of its growing season, and therefore growth can be expected to increase with warming. Contrary to this hypothesis, experimental warming negatively affected reproductive fitness (number of flowering stalks, flowers, fruits) and growth (change in leaf area from 2010 to 2012) in T. discolor. Temperature in June-July was critical for flowering, and mean July temperature greater than 29 °C (i.e., 2.5 °C above ambient) eliminated reproduction. Warming of 1.2 °C delayed flowering by an average of 10 days and fruiting by an average of 5 days. Warming of 4.4 °C reduced relative growth rates by about 60%, which may have been partially caused by the direct effects of temperature on photosynthesis and respiration. Warming indirectly increased vapor pressure deficit (VPD) by 0.2-0.5 kPa, and leaf-to-air VPD over 1.3 kPa restricted stomatal conductance of T. discolor to 10-40% of maximum conductance. These results highlight the need to account for changes in VPD when estimating temperature responses of plant species under future warming scenarios. Increasing temperature in the future will likely be an important limiting factor to the distribution of T. discolor, especially along the southern edge of its range.

  2. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    Full Text Available Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1 complex sub-pixel heterogeneity; (2 little to no available calibration data; and (3 high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000–2001 to 2015–2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites. This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods

  3. Climate change, species-area curves and the extinction crisis.

    Science.gov (United States)

    Lewis, Owen T

    2006-01-29

    An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.

  4. Response of winter North Atlantic storm track to climate change in the CNRM-CM5 simulations

    Science.gov (United States)

    Chauvin, Fabrice; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    Climate variability in Europe in winter is largely controlled by North Atlantic storm tracks. These are associated with transport of energy, momentum, and water vapour, between the equator and mid latitudes. Extratropical cyclones have caused severe damages over some regions in north-western Europe, since they can combine extreme precipitation and strong winds. This is why it is relevant to study the impact of climate change on the extratropical cyclones, principally on their intensity, position or lifespan. Indeed, several recent studies have focused on this subject by using atmospheric reanalysis and general circulation models (GCMs). The main conclusions from the CMIP3 simulations showed a decreasing of the total number of cyclones and a poleward shift of their tracks in response to global warming. In the recent CMIP5 exercise, the consensus is not so clear, probably due to more complex feedbacks acting in the different models. Thus, the question of changes in North Atlantic storm-tracks with warming remains open. The main goal of this work is to explore the changes in the North Atlantic storm-tracks in the past and future decades and to analyze the contributions of the different external forcings (natural and anthropogenic) versus the internal variability. On this purpose, we use the Detection and Attribution (D&A) simulations performed with the coupled model CNRM-CM5. To characterize the extratropical cyclones and their tracks, a tracking scheme based on the detection of maximum of relative vorticity at 850 hPa is conducted. We show that the coupled model fairly well reproduces the storm genesis locations as well as the tracks pathways comparing to several atmospheric reanalysis products. In the recent historical period (1950-2005), the model shows a decrease in the number of storms in the southern North-Atlantic, when all the forcings (anthropogenic and natural) are prescribed. Even if the role of internal variability is important in the last decades (the

  5. Climate change considerations for the Port Hope area initiative

    International Nuclear Information System (INIS)

    Kirklady, J.; Morassutti, M.; Tamm, J.; Coutts, P.; Chambers, D.

    2006-01-01

    The Port Hope Area Initiative (PHAI) is a community-based program intended to develop a safe and long-term (approximately 500 years) solution for the management of historic low-level radioactive waste (LLRW) that has been present in the Port Hope area for many years. The PHAI undertakings involve the construction and management of two Long-Term Low-Level Radioactive Waste Management Facilities (referred to as the LTWMFs) in Port Hope and in Port Granby. These undertakings are currently undergoing detailed examination through the Environmental Screening process under the Canadian Environmental Assessment Act. The purpose of the study described in this paper was to provide information necessary to satisfy the requirements of the Scope of Environmental Assessment for the Port Hope and Port Granby Projects. In particular, the purpose of the study was to satisfy the requirements to evaluate greenhouse gas (GHG) emissions from the proposed PHAI initiatives and to evaluate the potential effect of climate change parameters on the two Projects. The Port Hope and Port Granby Projects will contribute to Ontario's GHG emission inventory due to vehicle exhaust from excavation equipment and haul trucks during the construction phase of the LTWMFs. The construction phase of the Projects is of relatively short duration, and the contribution of GHGs from each Project was determined to be insignificant compared to Ontario's GHG emissions from the Construction and Transportations sectors. The proposed project elements associated with the Port Hope and Port Granby Projects were each evaluated with respect to potential sensitivities to future change in climate parameters. Considering the potential changes to climate, a screening analysis of each element of the LTWMFs was undertaken. Because it is considered likely that the current design level storms will be exceeded within the next 500 years, it was determined that the storm water management system was potentially sensitive to changes

  6. Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes

    Science.gov (United States)

    Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin

    2013-04-01

    The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been

  7. Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate

    Science.gov (United States)

    Elders, Akiko; Pegion, Kathy

    2017-12-01

    Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.

  8. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing-Tianjin-Hebei area

    Science.gov (United States)

    He, Jianjun; Gong, Sunling; Liu, Hongli; An, Xingqin; Yu, Ye; Zhao, Suping; Wu, Lin; Song, Congbo; Zhou, Chunhong; Wang, Jie; Yin, Chengmei; Yu, Lijuan

    2017-12-01

    To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing-Jin-Ji (JJJ, hereinafter)—in December 2013-16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m-3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013-16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.

  9. Linkage of the king eider population in Northeast Greenland: Migration, moult and discovery of a new offshore wintering area at Spitsbergenbanken

    DEFF Research Database (Denmark)

    Mosbech, Anders; Johansen, Kasper Lambert; Sonne, Christian

    In late July 2009, two female king eiders were caught on the breeding grounds in Myggbukta, Northeast Greenland and equipped with satellite transmitters. Both individuals were tracked for approximately two years. The birds remained in the Myggbukta area until the onset of the autumn migration...... arrival 6 April) where they stayed for some time before returning on the spring migration to Greenland. During a ship-based survey in the offshore winter location at Spitsbergenbanken in April 2013, a previously unknown wintering ground with approximately 10.000 king eiders was discovered. The birds were...... concentrated in a partly ice-covered area 79 km from shore and of about 20 m depth. The number of king eiders indicated that Spitsbergenbanken is a wintering area for both the East Greenland and the Svalbard breeding populations. The discovery has important conservation implications due to the expanding...

  10. Quantitative Study of Green Area for Climate Sensitive Terraced Housing Area Design in Malaysia

    International Nuclear Information System (INIS)

    Yeo, O T S; Saito, K; Said, I

    2014-01-01

    Neighbourhood plays a significant role in peoples' daily lives. Nowadays, terraced housing is common in Malaysia, and green areas in the neighborhood are not used to their maximum. The aim of the research is to quantify the types of green area that are most efficient for cooling the environment for thermal comfort and mitigation of Urban Heat Island. Spatial and environmental inputs are manipulated for the simulation using Geographic Information System (GIS) integrated with computational microclimate simulation. The outcome of this research is a climate sensitive housing environment model framework on the green area to solve the problem of Urban Heat Island

  11. Seasonal variation in specific leaf area, epicuticular wax and pigments in 15 woody species from northeastern mexico during summer and winter

    International Nuclear Information System (INIS)

    Rodriguez, H.G.; Maiti, R.; Kumari, A.

    2017-01-01

    The present study has been undertaken on the variability in specific leaf area, epicuticular wax and pigment content of 15 native woody species in northeastern Mexico. The species showed considerable variability in responses of these leaf traits. Majority of the species showed a decline in specific leaf area and epicuticular wax content. With respect to pigments, only few species showed a decrease, but some species showed an increase in pigments (chlorophyll a, b and total chlorophyll (a+b)) showing mechanism of adaptation to winter season.However, in few species there was a decline in pigment contents showing susceptibility to winter. (author)

  12. Remotely Estimating Aerial N Uptake in Winter Wheat Using Red-Edge Area Index From Multi-Angular Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bin-Bin Guo

    2018-05-01

    Full Text Available Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat nitrogen (N nutrient status. In the paper, we examined the relationships of canopy multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L. across different growing seasons, locations, years, wheat varieties, and N application rates. Seventeen vegetation indices (VIs selected from the literature were measured for the stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs in the solar principal plane (SPP. In total, the back-scatter angles showed better VI behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial N uptake increased with decreasing VZAs. The best linear relationship was integrated with the optimized common indices DIDA and DDn to examine dynamic changes in aerial N uptake; this led to coefficients of determination (R2 of 0.769 and 0.760 at the −10° viewing angle. Our novel area index, designed the modified right-side peak area index (mRPA, was developed in accordance with exploration of the spectral area calculation and red-edge feature using the equation: mRPA = (R760/R6001/2 × (R760-R718. Investigating the predictive accuracy of mRPA for aerial N uptake across VZAs demonstrated that the best performance was at −10° [R2 = 0.804, p < 0.001, root mean square error (RMSE = 3.615] and that the effect was relatively similar between −20° to +10° (R2 = 0.782, p < 0.001, RMSE = 3.805. This leads us to construct a simple model under wide-angle combinations so as to improve the field operation simplicity and applicability. Fitting independent datasets to the models resulted in relative error (RE, % values of 12.6, 14.1, and 14.9% between estimated and measured aerial N uptake for mRPA, DIDA, and DDn across the range of −20° to +10°, respectively, further confirming the superior test performance of the mRPA index. These results illustrate that the novel index

  13. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Sergi [Queen' s University, PEARL, Department of Biology, Kingston, ON (Canada); Catalan, Jordi [CSIC, CSIC-UB Limnology Group, Centre for Advanced Studies of Blanes (CEAB), Blanes (Spain)

    2005-02-01

    In the last decade, much effort was dedicated to the reconstruction of past climate at high temporal resolution. Here, we show the suitability of chrysophyte cysts from lake sediments for revealing continental climate variability when used in sensitive sites, such as those in high mountains. We demonstrate that altitude is a main factor influencing the present distribution of chrysophytes and develop a transfer function to evaluate the local ''altitude anomaly'' on a lake site throughout time. Based on our knowledge of chrysophyte ecology, the altitude anomalies are interpreted as winter/spring climate signatures. The method was applied to a Holocene record from a lake in the Pyrenees showing submillennial climatic variability in this northwestern Mediterranean zone. A warming trend was present from the early Holocene to 4 kyear BP. Comparison with pollen-based reconstructions of summer temperatures denoted a contrasting decrease in continentality between the two parts of the Holocene. Oscillations of 1 cycle per ca. 2,000 years appeared throughout the record. The warmest Holocene winters were recorded during the Medieval Warm Period at ca. AD900 and 450 and the Roman Warm Period (2.7-2.4 kyear BP). Winters in the period AD1,050-1,175 were inferred to be as cold as in the Little Ice Age. The period between 3 and 7 kyear BPshowed lower intensity in the fluctuations than in early and late Holocene. The cold event, 8,200 years ago, appeared embedded in a warm fluctuation. Another cold fluctuation was recorded around 9 kyear BP, which is in agreement with Irish and Greenland records. (orig.)

  14. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  15. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    Science.gov (United States)

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  16. Climate influences the leaf area/sapwood area ratio in Scots pine.

    Science.gov (United States)

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  17. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  19. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    It is expected that the ongoing anthropogenic climate change will drive changes in agricultural production and its geographic distribution. Here, we assess the extent to which climate change is already driving spatiotemporal dynamics in maize production in Denmark. We use advanced spatial...... regression modeling with multi-model averaging to assess the extent to which the recent spatiotemporal dynamics of the maize area in Denmark are driven by climate (temperature as represented by maize heating units [MHU] and growing-season precipitation), climate change and non-climatic factors (cattle...... cultivation and cattle farming, probably reflecting a change to a more favorable climate for maize cultivation: in the beginning of the study period, northern areas were mostly too cold for maize cultivation, irrespective of cattle density, but this limitation has been diminishing as climate has warmed...

  20. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  1. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  2. San Francisco Bay Area Rapid Transit District (BART) climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-12-01

    The objective of this pilot study was to evaluate the impacts of climate change on the San Francisco Bay Area Rapid Transit District : (BART) infrastructure and to develop and implement adaptation strategies against those impacts. Climate change haza...

  3. Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); Larsen, S. Flores [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); INENCO - Instituto de Investigaciones en Energias No Convencionales, U.N.Sa., CONICET, Avda. Bolivia 5150 - CP 4400, Salta Capital (Argentina); Mercado, V. [LAHV-Laboratorio de Ambienet Humano y Vivienda (INCIHUSA-CCT-CONICET) (Argentina)

    2011-01-15

    This paper analyzes the thermal and energy behaviour of apartments in three-story block buildings located along a NE-SW axis (azimuth = 120 ) in a temperate-cold climate (latitude: 36 57'; longitude: 64 27') in the city of Santa Rosa, La Pampa, central Argentina. Four apartments had been monitored during May and June 2009. Three of them are located in Block 126. Two of these apartments face South: 15 and 23 on the SE end, ground and first floor, respectively; 18 faces N on the second floor. Finally apartment, 12 is located in Block 374, on the first floor, faces N and shows a carpentry-closed balcony. The purpose of this work is - to study the evolution of the indoor temperature in each apartment; to analyze energy consumption and comfort conditions; to study energy potential and energy intervention in order to reduce energy consumption; to analyze bioclimatic alternatives feasibility and the possibility to extrapolate results to all blocks. On the basis of the analysis of natural gas historical consumption records, results showed that regarding heating energy consumption during the period May-June, Apartment 12, facing N, with its only bedroom facing NW and its carpentry-closed, transparent glass balcony, presented a mean temperature of 21.2 C, using a halogen heater for 6 h/day between 9 pm and 2 am (0.16 kWh/day/m{sup 2}). Apartment 15, on the SE end, first floor of the block consumed 22.5 kWh/day (0.43 kWh/day/m{sup 2}) (mean temperature = 22.2 C). Apartment 23, located on the second and top floor (on top of Apartment 15) with higher energy loss, consumed 28 kWh/day (0.54 kWh/day/m{sup 2}) (mean temperature 23.7 C). Apartment 18, also on the second floor and facing N, located in the centre and with its only bedroom facing SE, consumed 18.8 kWh/day (0.48 kWh/day/m{sup 2}) (mean temperature = 22.3 C). Apartment 23, with higher thermal loss through its envelope, but with heat transfer from the apartment located below, is the one that showed the highest

  4. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds: Evidence from Some Selected Areas of Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Lucy Faulkner

    2013-04-01

    Full Text Available Most climate related hazards in Bangladesh are linked to water. The climate vulnerable poor—the poorest and most marginalized communities living in remote villages along Bangladesh’s coastal zone that are vulnerable to climate change impacts and who possess low adaptive capacity are most affected by lack of access to safe water sources. Many climate vulnerable poor households depend on small isolated wetlands (ponds for daily drinking water needs and other domestic requirements, including cooking, bathing and washing. Similarly, the livelihoods of many of these households also depend on access to ponds due to activities of small-scale irrigation for rice farming, vegetable farming and home gardening. This is particularly true for those poorest and most marginalized communities living in Satkhira, one of the most vulnerable coastal districts in south-west Bangladesh. These households rely on pond water for vegetable farming and home gardening, especially during winter months. However, these pond water sources are highly vulnerable to climate change induced hazards, including flooding, drought, salinity intrusion, cyclone and storm surges, erratic rainfall patterns and variations in temperature. Cyclone Sidr and Cyclone Aila, which hit Bangladesh in 2007 and 2009 respectively, led to a significant number of such ponds being inundated with saline water. This impacted upon and resulted in wide scale implications for climate vulnerable poor households, including reduced availability of safe drinking water, and safe water for health and hygiene practices and livelihood activities. Those households living in remote areas and who are most affected by these climate impacts are dependent on water being supplied through aid, as well as travelling long distances to collect safe water for drinking purposes.

  5. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  6. The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso

    Directory of Open Access Journals (Sweden)

    K. Yoshimura

    2012-02-01

    Full Text Available Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.

  7. Interannual and long-term changes in the trophic state of a multibasin lake: Effects of morphology, climate, winter aeration, and beaver activity

    Science.gov (United States)

    Robertson, Dale M.; Rose, William; Reneau, Paul C.

    2016-01-01

    Little St. Germain Lake (LSG), a relatively pristine multibasin lake in Wisconsin, USA, was examined to determine how morphologic (internal), climatic (external), anthropogenic (winter aeration), and natural (beaver activity) factors affect the trophic state (phosphorus, P; chlorophyll, CHL; and Secchi depth, SD) of each of its basins. Basins intercepting the main flow and external P sources had highest P and CHL and shallowest SD. Internal loading in shallow, polymictic basins caused P and CHL to increase and SD to decrease as summer progressed. Winter aeration used to eliminate winterkill increased summer internal P loading and decreased water quality, while reductions in upstream beaver impoundments had little effect on water quality. Variations in air temperature and precipitation affected each basin differently. Warmer air temperatures increased productivity throughout the lake and decreased clarity in less eutrophic basins. Increased precipitation increased P in the basins intercepting the main flow but had little effect on the isolated deep West Bay. These relations are used to project effects of future climatic changes on LSG and other temperate lakes.

  8. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    International Nuclear Information System (INIS)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S.

    1999-01-01

    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  9. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  10. Winter precipitation and fire in the Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.F.; Vint, M.K.

    1987-01-01

    Historical fire and climate records from the Arizona Upland portion of the Tonto National forest were used to test the hypothesis that fires burn larger areas in the Sonoran Desert after two wet winters than after one. We found that many more hectares burn in years following two winters that are wetter than normal, than during any other years. We agree with other ecologists, that desert fire occurrence is probably related to increased production of winter annual plants, and we suggest ways that the relationship may be clarified.

  11. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2017-01-01

    Full Text Available The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the results exhibit considerable spread. Here, we compare results from the two last generations of climate models, CMIP3 and CMIP5, with respect to total and regional Arctic sea ice change. Different characteristics of sea ice area (SIA in March and September have been analysed for the Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA to changes in Northern Hemisphere (NH temperature is investigated and dynamical links between SIA and some atmospheric variability modes are assessed.CMIP3 (SRES A1B and CMIP5 (RCP8.5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle. The spatial patterns of SIC variability improve in CMIP5 ensemble, most noticeably in summer when compared to HadISST1 data. A better simulation of summer SIA in the Entire Arctic by CMIP5 models is accompanied by a slightly increased bias for winter season in comparison to CMIP3 ensemble. SIA in the Barents Sea is strongly overestimated by the majority of CMIP3 and CMIP5 models, and projected SIA changes are characterized by a high uncertainty. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes indicating that a part of inter-ensemble SIA spread comes from different temperature sensitivity to anthropogenic forcing. The results suggest that, in general, a sensitivity of SIA to external forcing is enhanced in CMIP5 models. Arctic SIA interannual variability in the end of the 20th century is on average well simulated by both ensembles. To the end of the 21st century, September

  13. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene

    Science.gov (United States)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.

    2017-03-01

    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  14. Sowing terms of winter bread wheat variety-innovations (Triticum aestivum L. in the conditions of change of climate

    Directory of Open Access Journals (Sweden)

    О. Л. Дергачов

    2010-10-01

    Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.

  15. Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region

    Science.gov (United States)

    Huang, Ruping; Chen, Shangfeng; Chen, Wen; Hu, Peng

    2018-01-01

    This study investigates interannual variability of boreal winter regional Hadley circulation over western Pacific (WPHC) and its climatic impacts. A WPHC intensity index (WPHCI) is defined as the vertical shear of the divergent meridional winds. It shows that WPHCI correlates well with the El Niño-Southern Oscillation (ENSO). To investigate roles of the ENSO-unrelated part of WPHCI (WPHCIres), variables that are linearly related to the Niño-3 index have been removed. It reveals that meridional sea surface temperature gradient over the western Pacific plays an essential role in modulating the WPHCIres. The climatic impacts of WPHCIres are further investigated. Below-normal (above-normal) precipitation appears over south China (North Australia) when WPHCIres is stronger. This is due to the marked convergence (divergence) anomalies at the upper troposphere, divergence (convergence) at the lower troposphere, and the accompanied downward (upward) motion over south China (North Australia), which suppresses (enhances) precipitation there. In addition, a pronounced increase in surface air temperature (SAT) appears over south and central China when WPHCIres is stronger. A temperature diagnostic analysis suggests that the increase in SAT tendency over central China is primarily due to the warm zonal temperature advection and subsidence-induced adiabatic heating. In addition, the increase in SAT tendency over south China is primarily contributed by the warm meridional temperature advection. Further analysis shows that the correlation of WPHCIres with the East Asian winter monsoon (EAWM) is weak. Thus, this study may provide additional sources besides EAWM and ENSO to improve understanding of the Asia-Australia climate variability.

  16. Migration routes and stopover sites of the Eurasian Spoonbill (Platalea leucorodia between the Carpathian Basin and wintering areas

    Directory of Open Access Journals (Sweden)

    Pigniczki Csaba

    2016-06-01

    Full Text Available Understanding the migration routes of the Central European Spoonbill population is important for their conservation. Here we analysed movements of 3186 individuals of Eurasian Spoonbills marked with colour rings in the Carpathian Basin (Hungary, Croatia and Serbia between 2003 and 2015, and a satellite tagged individual, which was equipped in Italy in 2013, and later moved to the Carpathian Basin. Migration routes of these Spoonbills predominantly followed the Adriatic Flyway, however, some birds were also found to both east and west from this flyway. We identified 59 stopover sites, 55 of which were located along the Adriatic Flyway. Colourringed juveniles (1cy, on average, spent 4.0±0.9 (SE days on the stopover sites along the Adriatic Flyway during autumn migration, while non-juveniles (> 1cy spent 2.6±1.0 (SE days during autumn and 2.1±0.4 (SE days during spring migration there. These durations were not significantly different. Duration of stops of the satellite tracked individual was between 7 and 15 days during autumn and between 1 and 12 days during spring migration. Our results indicate the existence of two alternative routes of the Adriatic Flyway between the Carpathian Basin and the wintering areas in southern Italy and the central part of coastal North-Africa. The North-Adriatic Flyway includes stopover sites in north-eastern Italy at the river mouth of River Isonzo, Lagunes of Venice and wetlands around River Po. The South Adriatic Flyway leads through the Balkan Peninsula, with stopover sites at the karst lakes of Bosnia and Herzegovina, mouth of the river Neretva (Croatia, Ulcinj Salinas (Montenegro and wetlands in Gulf of Manfredonia (Italy. This hypothesis was also supported by the migration of the satellite tagged individual, the paths of which was described here in detail. The average coordinates of spring and autumn stopover sites were located at different parts of the flyway: it was in south-western Italy during autumn

  17. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  18. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Baethgen, W.E. [International Fertilizer Development Center, Muscle Shoals, AL (United States); Magrin, G.O. [Inst. Nacional de Tecnologia Agropecuaria Castelar, Buenos Aires (Argentina). Inst. de Clima y Agua

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  19. The role of light for fish-zooplankton-phytoplankton interactions during winter in shallow lakes - a climate change perspective

    DEFF Research Database (Denmark)

    Bramm, Mette Elisabeth; Lassen, Majbritt Kjeldahl; Liboriussen, Lone

    2009-01-01

    in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish. 4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers...... in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century...

  20. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern hemisp...... of contracts for workers is more likely to explain differences in seasonal activity than climatic or technological factors....

  1. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios.

    Science.gov (United States)

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2018-04-26

    Deep water convection (DC) in winter is one of the major processes driving open-ocean primary productivity in the Northwestern Mediterranean Sea. DC is highly variable in time, depending on the specific conditions (stratification, circulation and ocean-atmosphere interactions) of each specific winter. This variability also drives the interannual oscillations of open-ocean primary productivity in this important region for many commercially-important fish species. We use a coupled model system to 1) understand to what extent DC impacts phytoplankton seasonality in the present-day and 2) to explore potential changes in future scenarios (~2030). Our model represents quite accurately the present-day characteristics of DC and its importance for open-ocean phytoplankton blooms. However, for the future scenarios the importance of deep nutrients in fertilizing the euphotic layer of the NW Mediterranean decreases. The model simulates changes in surface density and on the levels of kinetic energy that make mesoscale activity associated with horizontal currents to become a more important fertilization mechanism, inducing subsequently phenological changes in seasonal plankton cycles. Because of our focus on the open-sea, an exact quantification of the impact of those changes on the overall biological production of the NW Mediterranean cannot be made at the moment.

  2. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    Science.gov (United States)

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  3. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Areas of climate stability of species ranges in the Brazilian Cerrado

    DEFF Research Database (Denmark)

    Terribile, Levi Carina; Lima-Ribeiro, Matheus Souza; Bastos Araujo, Miguel

    2012-01-01

    uncertainties and to identify climatically stable areas, working with Cerrado tree species as a model organism. Ecological niche models were generated for 18 Cerrado tree species and their potential distributions were projected into past and future. Analyses of the sources of uncertainties in ensembles...... continuous climatically stable area was identified, which should be considered as a potential improvement for spatial prioritization for conservation....

  5. Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide.

    Directory of Open Access Journals (Sweden)

    Kirk R Klausmeyer

    Full Text Available Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21(st century in Chile will range from 129-153% of its current size, while in Australia, it will contract to only 77-49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types, and, depending on the emissions scenario, only 50-60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29-31% of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome.

  6. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.

    Science.gov (United States)

    Beale, Colin M; Baker, Neil E; Brewer, Mark J; Lennon, Jack J

    2013-08-01

    The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate-driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate-driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania.

    Science.gov (United States)

    Mweya, Clement N; Mboera, Leonard E G; Kimera, Sharadhuli I

    2017-07-01

    Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.

  8. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  9. Late Quaternary climatic changes in the Ross Sea area, Antarctica

    International Nuclear Information System (INIS)

    Brambati, A.; Melis, R.; Quaia, T.; Salvi, G.

    2002-01-01

    Ten cores from the Ross Sea continental margin were investigated to detect Late Quaternary climatic changes. Two main climatic cycles over the last 300,000 yr (isotope stages 1-8) were recognised in cores from the continental slope, whereas minor fluctuations over the last 30,000 yr were found in cores from the continental shelf. The occurrence of calcareous taxa within the Last Glacial interval and their subsequent disappearance reveal a general raising of the CCD during the last climatic cycle. In addition, periodical trends of c. 400, c. 700, and c. 1400 yr determined on calcareous foraminifers from sediments of the Joides Basin, indicate fluctuations of the Ross Ice Shelf between 15 and 30 ka BP. (author). 24 refs., 5 figs

  10. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  11. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    Science.gov (United States)

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at

  12. Evaluation of climate comfort based on the relationship between the structure and behavior ofablock spacein a winter city

    Institute of Scientific and Technical Information of China (English)

    LENG Hong; SUN Yu

    2016-01-01

    Thispaper focuses on climate comfort degreeevaluated fromrelationshipsbetweenspatial characteristicsand behaviorsof awinter city.It is demonstrated that the influences ofclimatic factorsonhumancomfortare remarkably differentfor different spatial characteristicsand functions of the sites.An evaluationmethodof climatic comfortis propsed, inwhich attaining comfort is an adaptation process,andthe dynamic changesin the processareaccording to the user’s subjective tendency to the variations of the spatial characteristicsandfunctionsof the space.The evaluation criteria are based onbothphysical and psychologicalhierarchy needs ofa person, whichincludethe spatial form for microclimatic conditions as well as the spatial social-economic characteristics ofasite.To improve the local environment ofawintercity by planning measurements,theHarbin Central Pedestrian Streetis takenas an examplein the application ofthe evaluation method,and different planning optimizing strategies are proposed accordingly.The resultsshow thatthe pattern ofclimatecomfort is characterized byreflecting the social-economic value and individual behavior characteristics.

  13. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  14. Adaptation to climate change in urban areas: climate-greening London, Rotterdam, and Toronto

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.

    2011-01-01

    This article aims to gain insight into the governance capacity of cities to adapt to climate change through urban green planning, which we will refer to as climate-greening. The use of green space is considered a no-regrets adaptation strategy, since it not only absorbs rainfall and

  15. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  16. Northern protected areas will become important refuges for biodiversity tracking suitable climates.

    Science.gov (United States)

    Berteaux, Dominique; Ricard, Marylène; St-Laurent, Martin-Hugues; Casajus, Nicolas; Périé, Catherine; Beauregard, Frieda; de Blois, Sylvie

    2018-03-15

    The Northern Biodiversity Paradox predicts that, despite its globally negative effects on biodiversity, climate change will increase biodiversity in northern regions where many species are limited by low temperatures. We assessed the potential impacts of climate change on the biodiversity of a northern network of 1,749 protected areas spread over >600,000 km 2 in Quebec, Canada. Using ecological niche modeling, we calculated potential changes in the probability of occurrence of 529 species to evaluate the potential impacts of climate change on (1) species gain, loss, turnover, and richness in protected areas, (2) representativity of protected areas, and (3) extent of species ranges located in protected areas. We predict a major species turnover over time, with 49% of total protected land area potentially experiencing a species turnover >80%. We also predict increases in regional species richness, representativity of protected areas, and species protection provided by protected areas. Although we did not model the likelihood of species colonising habitats that become suitable as a result of climate change, northern protected areas should ultimately become important refuges for species tracking climate northward. This is the first study to examine in such details the potential effects of climate change on a northern protected area network.

  17. Bioclimatic conditions of the winter months in Western Kazakhstan and their dynamics in relation to climate change

    Science.gov (United States)

    Nyssanbayeva, Aiman S.; Cherednichenko, Alexandr V.; Cherednichenko, Vladimir S.; Abayev, Nurlan N.; Madibekov, Azamat S.

    2018-03-01

    The territory of West Kazakhstan is an intensively developing region. The main oil and gas fields are concentrated there. In addition, this region is well-known as a region of nomad cattle breeding. Both of industry and agriculture demand a lot of employees, working in the open air in wintertime. Severe winter conditions, primary very low temperatures, and strong winds characterize the region. In this work, we calculated and analyzed the spatial and temporal distributions of effective temperatures in the region and their dynamics due to the global warming in the last decades. To calculate the equivalent temperature (WCET) was used the method of OFCM 2003. Nowadays, it is known as a common method for similar studies. It was shown that in the observed region, WCET is significantly lower than the ambient temperature. Repeatability of WCET, corresponding to «increasing risk», «high risk» is high in the main part of the region. Global warming in the region results in returning extremely high temperatures of the air, decreasing repeatability of the average gradation of WCET approximately on 4%, but there is no any visible changing repeatability of extreme WCET. Obtained results can be used for planning any construction work in the open air and agriculture branches.

  18. Ecoclimatic indicators to study climate suitability of areas for the cultivation of specific crops

    Science.gov (United States)

    Caubel, J.; Garcia de Cortazar Atauri, I.; Cufi, J.; Huard, F.; Launay, M.; Ripoche, D.; Graux, A.; deNoblet, N.

    2013-12-01

    Climatic conditions play a fundamental role in the suitability of geographical areas for cropping. In the context of climate change, we could expect changes in overall climatic conditions and so, on the suitability for cropping. Therefore, assessing the future climate suitability of areas for cropping is decisive for anticipating agriculture in a given area. Moreover, it is crucial to have access to the split up information concerning the effect of climate on the achievement of the main ecophysiological processes and cultural practices taking place during the crop cycle. In this way, stakeholders can envisage land use adaptations under climate change conditions, such as changes in cultural practices or development of new varieties for example. We proposed an aggregation tool of ecoclimatic indicators to design evaluation trees of climate suitability of areas for cropping, GETARI (Generic Evaluation Tool of Ecoclimatic Indicators). It calculates an overall climate suitability index at the annual scale, from a designed evaluation tree. This aggregation tool allows to characterize climate suitability according to crop ecophysiology, grain/fruit quality or crop management. GETARI proposes the major ecophysiological processes and cultural practices taking place during phenological periods, together with the climatic effects that are known to affect their achievement. The climatic effects on the ecophysiological processes (or cultural practices) during phenological periods are captured by the ecoclimatic indicators, which are agroclimatic indicators calculated over phenological periods. They give information about crop response to climate through ecophysiological or agronomic thresholds. Those indices of suitability are normalized and aggregated according to aggregation rules in order to compute an overall climate index. In order to illustrate how GETARI can be used, we designed evaluation trees in order to study the climate suitability for maize cropping regarding

  19. An analysis of wildfire frequency and burned area relationships with human pressure and climate gradients in the context of fire regime

    Science.gov (United States)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Understanding fire regime is a crucial step towards achieving a better knowledge of the wildfire phenomenon. This study proposes a method for the analysis of fire regime based on multidimensional scatterplots (MDS). MDS are a visual approach that allows direct comparison among several variables and fire regime features so that we are able to unravel spatial patterns and relationships within the region of analysis. Our analysis is conducted in Spain, one of the most fire-affected areas within the Mediterranean region. Specifically, the Spanish territory has been split into three regions - Northwest, Hinterland and Mediterranean - considered as representative fire regime zones according to MAGRAMA (Spanish Ministry of Agriculture, Environment and Food). The main goal is to identify key relationships between fire frequency and burnt area, two of the most common fire regime features, with socioeconomic activity and climate. In this way we will be able to better characterize fire activity within each fire region. Fire data along the period 1974-2010 was retrieved from the General Statistics Forest Fires database (EGIF). Specifically, fire frequency and burnt area size was examined for each region and fire season (summer and winter). Socioeconomic activity was defined in terms of human pressure on wildlands, i.e. the presence and intensity of anthropogenic activity near wildland or forest areas. Human pressure was built from GIS spatial information about land use (wildland-agriculture and wildland-urban interface) and demographic potential. Climate variables (average maximum temperature and annual precipitation) were extracted from MOTEDAS (Monthly Temperature Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset of Spain) datasets and later reclassified into ten categories. All these data were resampled to fit the 10x10 Km grid used as spatial reference for fire data. Climate and socioeconomic variables were then explored by means of MDS to find the extent to

  20. Winter barley mutants created in the Ukraine

    International Nuclear Information System (INIS)

    Zayats, O.M.

    2001-01-01

    Full text: Increasing fodder and protein production is one of the objectives of the development of agriculture in Ukraine. Higher productivity of fodder crops, due to new highly productive varieties, is the means to meet this aim. Winter barley is an important crop for fodder purposes. The climate of the Ukraine is favourable for growing this crop. The areas used for the growth of winter barley are however, small (500,000-550,000 ha) and there is a shortage of good quality varieties. The main aim of the work was therefore to create new varieties of highly productive winter barley, of good quality. The new varieties and mutation lines of winter barley were created under the influence of water solutions of N-nitroso-N-methylurea (NMH - 0,012, 0,005%), N-nitroso-N-ethylurea (NEH - 0,05; 0.025; 0,012%) ethyleneimine (EI - 0,02; 0,01; 0,005%) on winter barley seeds of the varieties of local and foreign selections. On the basis of many years of investigations (1984-94) the following mutations were described: hard-grained, winter-hardiness, earliness, middle-maturity, late-maturity, wide and large leaves, narrow leaves, multinodal, great number of leaves, great number of flowers, strong stem (lodging resistant), tallness, semi-dwarfness, dwarfness, and high productivity. Particularly valuable are mutants with high productivity of green bulk. Their potential yield is 70 t/ha. As a result of the work two varieties of winter barley 'Shyrokolysty' and 'Kormovy' were released into the State register of plant varieties of the Ukraine. The other valuable mutant genotypes are used in cross breeding programmes. (author)

  1. Trans-equatorial migration routes, staging sites and wintering areas of a high-Arctic avian predator: the long-tailed Skua (Stercorarius longicaudus).

    Science.gov (United States)

    Gilg, Olivier; Moe, Børge; Hanssen, Sveinn Are; Schmidt, Niels Martin; Sittler, Benoît; Hansen, Jannik; Reneerkens, Jeroen; Sabard, Brigitte; Chastel, Olivier; Moreau, Jérôme; Phillips, Richard A; Oudman, Thomas; Biersma, Elisabeth M; Fenstad, Anette A; Lang, Johannes; Bollache, Loïc

    2013-01-01

    The Long-tailed Skua, a small (summer, but little is known about its migration and winter distribution. We used light-level geolocators to track the annual movements of eight adult birds breeding in north-east Greenland (n = 3) and Svalbard (n = 5). All birds wintered in the Southern Hemisphere (mean arrival-departure dates on wintering grounds: 24 October-21 March): five along the south-west coast of Africa (0-40°S, 0-15°E), in the productive Benguela upwelling, and three further south (30-40°S, 0-50°E), in an area extending into the south-west Indian Ocean. Different migratory routes and rates of travel were documented during post-breeding (345 km d(-1) in late August-early September) and spring migrations (235 km d(-1) in late April) when most birds used a more westerly flyway. Among the different staging areas, a large region off the Grand Banks of Newfoundland appears to be the most important. It was used in autumn by all but one of the tracked birds (from a few days to three weeks) and in spring by five out of eight birds (from one to more than six weeks). Two other staging sites, off the Iberian coast and near the Azores, were used by two birds in spring for five to six weeks. Over one year, individuals travelled between 43,900 and 54,200 km (36,600-45,700 when excluding staging periods) and went as far as 10,500-13,700 km (mean 12,800 km) from their breeding sites. This study has revealed important marine areas in both the south and north Atlantic Ocean. Sustainable management of these ocean basins will benefit Long-tailed Skuas as well as other trans-equatorial migrants from the Arctic.

  2. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost of indiv......Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost...... of individual very extreme events (e.g. more than 100 years) of approximately 70 % and a 900 % increase in the expected annual losses due to floods. Other case studies in Denmark show smaller impacts, but still very significant increased annual costs compared to the present state. This calls for systematic...

  3. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  4. Unusial winter 2011/2012 in Slovakia

    Czech Academy of Sciences Publication Activity Database

    Faško, P.; Lapin, M.; Matejovič, P.; Pecho, Jozef

    2012-01-01

    Roč. 15, č. 1 (2012), s. 19-26 ISSN 1335-339X Institutional support: RVO:68378289 Keywords : winter characteristics * climate variabilit * climate change * global warming Subject RIV: DG - Athmosphere Sciences, Meteorology

  5. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  6. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    Science.gov (United States)

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima.

  7. Climate change leads to decreasing bird migration distances

    NARCIS (Netherlands)

    Visser, M.E.; Perdeck, A.C.; van Balen, J.H.; Both, C.

    2009-01-01

    Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season

  8. Climate change leads to decreasing bird migration distances

    NARCIS (Netherlands)

    Visser, Marcel E.; Perdeck, Albert C.; van Balen, Johan H.; Both, Christiaan

    Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season

  9. Cultivation concepts for energy crops in times of climatic changes. Contribution to the management of the impact of climate changes in the metropolitan area Hanover-Brunswick-Goettingen-Wolfsburg; Anbaukonzepte fuer Energiepflanzen in Zeiten des Klimawandels. Beitrag zum Klimafolgenmanagement in der Metropolregion Hannover-Braunschweig-Goettingen-Wolfsburg

    Energy Technology Data Exchange (ETDEWEB)

    Buttlar, Christine von [Ingenieurgemeinschaft fuer Landwirtschaft und Umwelt (IGLU), Goettingen (Germany); Karpenstein-Machan, Marianne [Goettingen Univ. (Germany). Bereich Erneuerbare Energien; Bauboeck, Roland [Goettingen Univ. (Germany). Lehrstuhl fuer Kartografie, GIS und Fernerkundung

    2013-10-01

    central and southern areas of the metropolitan region. In extreme years with below average precipitation (-10%), the maize yield is more severely reduced than that of winter rye, although with additional irrigation, the yield of maize recovers and exceeds that of rye. Energy crop rotations will be restored by plants from Mediterranean and sub-tropical regions such as Sorghum, Topinambur and Amaranth. Having a wide variety of such cultures brings about a high potential for adaptation. Winter cereals will have better cultivation requirements than summer cereals. The choice of climate-tolerant varieties with high water efficiency can help to avert lower yields in the future. Further measures to adapt to climate change consist in using specialized fertilizer and crop protection methods as well as setting up stronger water-conservation methods in crop cultivation like the practice of a reduced oil preparation. Adequate plant breeding for future climate conditions offers further perspectives to counteract climate change. The environmental impacts of climate change on crop production have to be reassessed. There are increasing risks to be expected for the humus reproduction, nitrate leaching and erosion hazards. Further evidence is given in this research. (orig.)

  10. Comparison of two down-scaling methods for climate study and climate change on the mountain areas in France

    International Nuclear Information System (INIS)

    Piazza, Marie; Page, Christian; Sanchez-Gomez, Emilia; Terray, Laurent; Deque, Michel

    2013-01-01

    Mountain regions are highly vulnerable to climate change and are likely to be among the areas most impacted by global warming. But climate projections for the end of the 21. century are developed with general circulation models of climate, which do not present a sufficient horizontal resolution to accurately evaluate the impacts of warming on these regions. Several techniques are then used to perform a spatial down-scaling (on the order of 10 km). There are two categories of down-scaling methods: dynamical methods that require significant computational resources for the achievement of regional climate simulations at high resolution, and statistical methods that require few resources but an observation dataset over a long period and of good quality. In this study, climate simulations of the global atmospheric model ARPEGE projections over France are down-scaled according to a dynamical method, performed with the ALADIN-Climate regional model, and a statistical method performed with the software DSClim developed at CERFACS. The two down-scaling methods are presented and the results on the climate of the French mountains are evaluated for the current climate. Both methods give similar results for average snowfall. However extreme events of total precipitation (droughts, intense precipitation events) are largely underestimated by the statistical method. Then, the results of both methods are compared for two future climate projections, according to the greenhouse gas emissions scenario A1B of IPCC. The two methods agree on fewer frost days, a significant decrease in the amounts of solid precipitation and an average increase in the percentage of dry days of more than 10%. The results obtained on Corsica are more heterogeneous but they are questionable because the reduced spatial domain is probably not very relevant regarding statistical sampling. (authors)

  11. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  12. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Directory of Open Access Journals (Sweden)

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  13. Weeds occurrence in areas submitted to distinct winter crops Ocorrência de plantas daninhas em áreas submetidas a manejos de inverno

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2012-12-01

    Full Text Available In the Western Region of Brazil, it is usual to have two agricultural harvests in the same cropping season. Usually the first crop is soybean, followed by corn. In areas where corn is not planted due to a delayed harvest of soybean, farmers generally do not use winter crops. For these areas, the planting of winter oilseed crops aiming at the production of bio-fuels is one of the best alternatives; in addition, this would help in reducing the occurrence of weed species at the following summer crop. This study aimed to assessing the weed community in distinct winter crops post soybean crop, in terms of species composition, level of infestation and severity of occurrence. The following treatments were evaluated: agriculture under a no-till system with winter fallow, winter oilseed crops (crambe, radish, rapeseed with no-till agriculture in the summer, and agriculture under a conventional tillage system with winter fallow. Phytosociological evaluations of all treatments were carried out 75 DAE of the oilseed crops, and the diversity indexes of Margalef, Menhinick, Simpson, and Shannon-Weiner were determined. Areas were also grouped by cluster analysis based on UPGMA applied at Jaccard's similarity matrix. Among the treatments with winter coverage, radish was the most efficient crop in suppressing the occurrence of weed species. The area with conventional tillage agriculture and winter fallow allowed for a higher occurrence of troublesome weeds. On the other hand, the area under fallow showed the highest absolute level of infestation. Overall, oilseed crops in the winter contribute to lower levels of infestation by weed species in these areas.Na região Centro-Oeste do Brasil, é usual a obtenção de duas colheitas na mesma safra agrícola. Normalmente o primeiro cultivo é de soja, seguida por milho. Em áreas onde o milho não é cultivado devido à colheita tardia da soja, os produtores normalmente não utilizam culturas ou coberturas no per

  14. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter – Exploratory study

    International Nuclear Information System (INIS)

    Viippola, Viljami; Rantalainen, Anna-Lea; Yli-Pelkonen, Vesa; Tervo, Peatta; Setälä, Heikki

    2016-01-01

    While the potential of plants to uptake polycyclic aromatic hydrocarbons (PAHs) is widely acknowledged, empirical evidence of the effects of this process on local atmospheric PAH concentrations and human health is tenuous. We measured gaseous PAH concentrations using passive samplers in urban tree-covered areas and adjacent open, treeless areas in a near-road environment in Finland to gain information on the ability of urban vegetation to improve air quality. The ability of urban, mostly deciduous, vegetation to affect PAHs was season dependent: during summer, concentrations were significantly higher in tree-covered areas, while in the fall, concentrations in open areas exceeded those in tree-covered areas. During winter, concentrations in tree-covered areas were either lower or did not differ from those in open areas. Results of this study imply that the commonly believed notion that trees unequivocally improve air quality does not apply to PAHs studied here. - Highlights: • Urban tree-cover increases gaseous PAH concentrations during summertime. • Elevated PAH concentrations do not clearly correspond with vegetation properties. • Tree-cover attenuates seasonal PAH concentration fluctuation. - Higher ambient gaseous PAH concentrations were detected within urban tree cover as compared to open areas during summertime.

  15. Changing Climate, Challenging Choices: Identifying and Evaluating Climate Change Adaptation Options for Protected Areas Management in Ontario, Canada

    Science.gov (United States)

    Lemieux, Christopher J.; Scott, Daniel J.

    2011-10-01

    Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility. While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically, only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity conservation and other protected area management objectives in an era of rapid climate change.

  16. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    OpenAIRE

    Lundgren, Karin; Kjellström, Tord

    2013-01-01

    Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly elect...

  17. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  18. Projected impacts of climate change on a continent-wide protected area network

    DEFF Research Database (Denmark)

    Hole, David G; Willis, Stephen G; Pain, Deborah J

    2009-01-01

    Despite widespread concern, the continuing effectiveness of networks of protected areas under projected 21st century climate change is uncertain. Shifts in species' distributions could mean these resources will cease to afford protection to those species for which they were originally established...... species). Persistence of suitable climate space across the network as a whole, however, is notably high, with 88-92% of priority species retaining suitable climate space in >or= 1 IBA(s) in which they are currently found. Only 7-8 priority species lose climatic representation from the network. Hence......, despite the likelihood of significant community disruption, we demonstrate that rigorously defined networks of protected areas can play a key role in mitigating the worst impacts of climate change on biodiversity....

  19. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  20. Migratory timing, rate, routes and wintering areas of White-crested Elaenia (Elaenia albiceps chilensis, a key seed disperser for Patagonian forest regeneration.

    Directory of Open Access Journals (Sweden)

    Susana Patricia Bravo

    Full Text Available Migratory animals often play key ecological roles within the communities they visit throughout their annual journeys. As a consequence of the links between biomes mediated by migrants, changes in one biome could affect remote areas in unpredictable ways. Migratory routes and timing of most Neotropical austral migrants, which breed at south temperate latitudes of South America and overwinter closer to or within tropical latitudes of South America, have yet to be described in detail. As a result, our understanding about how these birds provide links between South American biomes is almost non-existent. White-crested Elaenia (Elaenia albiceps chilensis is a long-distance austral migrant that breeds in the Patagonian Forest biome and overwinters in tropical South America. Because this small flycatcher plays a key role in the regeneration of this ecosystem, our objective was to describe the annual cycle of White-crested elaenias to evaluate the degree of migratory connectivity between breeding and wintering areas and therefore to determine if there are specific biomes of northern South America linked by elaenias to Patagonian forests. Fifteen individuals were successfully tracked throughout a complete migration cycle using miniature light-level geolocators. All individuals resided and moved through the same general regions. During fall (March-April-May, elaenias were located in the Caatinga and the Atlantic Forest biomes, from Rio de Janeiro to the region near Salvador da Bahia, Brazil. During winter (June-July-Aug., birds were located further inland, within the Cerrado biome. Birds used three different routes during fall migration. Our results indicate that some individuals use a direct route, flying between 500-600 km/day, crossing desert and grasslands, while others took a detour, flying 100-200 km/day through forested areas with refueling opportunities. All birds used the Yunga forest during spring migration, with ten out of 15 individuals

  1. Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    Tai M. Maaz

    2017-05-01

    Full Text Available Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among strategies proposed to mitigate and adapt to climate shifts in the inland Pacific Northwest (iPNW. Our objectives were to assess these strategies across iPNW agroecological zones and time for their impacts on (1 winter wheat (WW (Triticum aestivum L. productivity, (2 crop sequence productivity, and (3 N fertilizer use efficiency. Region-wide analysis indicated that WW yields increased with increasing annual precipitation, prior to maximizing at 520 mm yr−1 and subsequently declining when annual precipitation was not adjusted for available soil water holding capacity. While fallow periods were effective at mitigating low nitrogen (N fertilization efficiencies under low precipitation, efficiencies declined as annual precipitation exceeded 500 mm yr−1. Variability in the response of WW yields to annual precipitation and N fertilization among locations and within sites supports precision N management implementation across the region. In years receiving <350 mm precipitation yr−1, WW yields declined when preceded by crops rather than summer fallow. Nevertheless, WW yields were greater when preceded by pulses and oilseeds rather than wheat across a range of yield potentials, and when under conservation tillage practices at low yield potentials. Despite the yield penalty associated with eliminating fallow prior to WW, cropping system level productivity was not affected by intensification, diversification, or conservation tillage. However, increased fertilizer N inputs, lower fertilizer N use efficiencies, and more yield variance may offset and limit the economic feasibility of intensified and diversified cropping systems.

  2. International and European law on protected areas and climate change: need for adaptation or implementation?

    Science.gov (United States)

    Cliquet, A

    2014-10-01

    The protection and management of protected areas must be adapted to the effects of climate change. An important question is if the law on protected areas is capable of dealing with the required changes. In general, both international nature conventions and European Union nature conservation law do not contain any specific provisions on climate change and protected areas. Attention has been paid to this link in non-binding decisions and policy documents. In order to adapt the law to increased dynamics from climate change, more flexibility is needed. This flexibility should not be understood as "legal" flexibility, in the sense of the weakening nature conservation provisions. Scientific uncertainties on the effects of climate change might conflict with the need for legal certainties. In order to adapt to the effects of climate change, the two crucial elements are the strengthening of core protected areas and connectivity between the core areas. At the international level, both elements can be found in non-binding documents. International law enables the required adaptation; however, it often lacks concrete obligations. A stronger legal framework can be found at the level of the European Union. The Birds and Habitats Directives contain sufficient tools to deal with the effects of climate change. The Directives have been insufficiently implemented so far. Especially the central goals of reaching a favorable conservation status and connectivity measures need to be addressed much more in the future.

  3. Assessing climate change-robustness of protected area management plans-The case of Germany.

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.

  4. Assessing climate change-robustness of protected area management plans—The case of Germany

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187

  5. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  6. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    Science.gov (United States)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  7. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  8. Nuclear winter or nuclear fall?

    Science.gov (United States)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  9. The Effect of Nitrogen Fertilizer Application on Wild Oat (Avena ludoviciana L. Competition Ability with Winter Wheat (Triticum asetivum L. in Kermanshah Climate Condition

    Directory of Open Access Journals (Sweden)

    A Jalilian

    2017-12-01

    Full Text Available Introduction Cereals are the main agricultural production. Wheat is an annual crop, which plays an important role in human’s source of food. Wheat grains have various nutrients such as carbohydrates, proteins and various amino acids. The annual per capita consumption of wheat is about 232 in Iran, which is about double time of the world capita consumption. Weed interference decrease the quality and quantity of wheat production. Weed management in wheat farms is one of the main cost and time-consuming practices. Wheat yield decrease significantly by weed competition. Therefore, effective weed management dependents on knowledge about the effect of competition on yield and yield components. Response of the yield and yield components to weeds competition is different in crop species during the growth period. Yield components in development stages show the maximum sensitivity to weed competition. Wild Oat is the most important weed in wheat fields. Synchrony in development stages of wild oat with development stages of wheat is much more important reason in reducing of wheat yield and yield component. On the other hand, wild oat damage on wheat yield and yield components depends on several factors including species, plant density, wheat cultivars, nutrients consumption, sowing date, row spacing, and other ecological conditions. Moreover, leaf area index, plant height, leaf area density in canopy determine competitiveness of wild oat among wheat. Therefore, the objective of the present study was to evaluate the effect of wild oat competition in different plant densities and levels of Nitrogen fertilizer consumption on yield and yield components of wheat under Kermanshah climate. Materials and Methods This study was conducted to evaluate the competition of wild oat and winter wheat at the Research Farm of Campus of Agricultural and Natural Resources of Razi University during 2014-2015. The experiment was arranged in a split plots based on randomized

  10. Natural areas as a basis for assessing ecosystem vulnerability to climate change

    Science.gov (United States)

    Margaret H. Massie; Todd M. Wilson; Anita T. Morzillo; Emilie B. Henderson

    2016-01-01

    There are more than 580 natural areas in Oregon and Washington managed by 20 federal, state, local, and private agencies and organizations. This natural areas network is unparalleled in its representation of the diverse ecosystems found in the Pacific Northwest, and could prove useful for monitoring long-term ecological responses to climate change. Our objectives were...

  11. Risk to a Changing Climate in the Mexico City Metropolitan Area

    Science.gov (United States)

    Vargas, N. D.

    2016-12-01

    The issue of climate change has dominated the atmospheric sciences agenda in recent decades. The concern about an increase in climate related disasters, mainly in large population centers, has led to ask whether they are mainly due to changes in climate or in vulnerability.The Mexico City Metropolitan Area (MCMA) is an example of megalopolis under high climate risk, where floods, landslides, health problems, high air pollution events, socioeconomic droughts are becoming important environmental and social problems. As urbanization spreads and population increases exposure to natural hazards increases, and so the magnitude of risk to a changing climate and the negative impacts. Since the late nineteenth century, in the MCMA an average maximum temperature could be around 22°C, whereas today it is about 24.5ºC. That is, the increase in the average temperature in Mexico City is around 3°C in a hundred years. But there are areas where an increase in the average temperature is similar in only thirty years. The heating rate of the city can vary depending on the change in land use. Areas that conserve forested regions in the process of urbanization tend to warm less than areas where the transformation into concrete and cement is almost complete. Thus, the climate of the MCMA shows important changes mainly in relation to land use changes. Global warming and natural climate variability were also analyzed as possible forcing factors of the observed warming by comparing low frequency variations in local temperature and indices for natural forcing. The hydrological cycle of the MCMA has also changed with urbanization. The "bubble of hot air" over the urban area has more capacity to hold moisture now than before the UHI. However, the increased risk to floods, heat or drought appears to be related not only to more frequent intense climatic hazards induced by the urbanization effect. This process also induces increased vulnerability to a changing climate. The establishment of

  12. Managing for climate change on protected areas: An adaptive management decision making framework.

    Science.gov (United States)

    Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc

    2017-12-15

    Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Climate variability and impacts on east African livestock herders: The Maasai of Ngorongoro Conservation Area, Tanzania

    OpenAIRE

    Galvin, K.A.; Thornton, P.K.; Boone, R.B.; Sunderland, J.

    2004-01-01

    Metadata only record East African pastoral adaptation and vulnerability to climate variability and climate change is assessed, using data from decision-making processes and ecological data of the Maasai of Ngorongoro Conservation Area as an example. The paper uses integrated modeling, linking PHEWS, a household model, to SAVANNA, an ecosystem model to look at the effects of drought and a series of wet years on the well-being of Maasai pastoralists. Model results suggest that the ecosystem ...

  14. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    severe consequences of climate changes, under influence of multiple abiotic stresses. These stresses are becoming even more pronounced under changing climate, resulting in drier conditions, increasing temperatures and greater variability, causing desertification. This topic has been addressed in the EU...... FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts...

  15. A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al. (2013) winter storm- and summer thunderstorm-related loss events in Theoretical and Applied Climatology (TAC)

    Science.gov (United States)

    Wechsung, Frank; Wechsung, Maximilian

    2016-11-01

    The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.

  16. Identifying Effective Strategies for Climate Change Education: The Coastal Areas Climate Change Education (CACCE) Partnership Audiences and Activities

    Science.gov (United States)

    Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.

    2011-12-01

    Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and

  17. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review

    Directory of Open Access Journals (Sweden)

    Ignacio Palomo

    2017-05-01

    Full Text Available High mountain areas are experiencing some of the earliest and greatest impacts of climate change. However, knowledge on how climate change impacts multiple ecosystem services that benefit different stakeholder groups remains scattered in the literature. This article presents a review of the literature on climate change impacts on ecosystem services benefiting local communities and tourists in high mountain areas. Results show a lack of studies focused on the global South, especially where there are tropical glaciers, which are likely to be the first to disappear. Climate change impacts can be classified as impacts on food and feed, water availability, natural hazards regulation, spirituality and cultural identity, aesthetics, and recreation. In turn, climate change impacts on infrastructure and accessibility also affect ecosystem services. Several of these impacts are a direct threat to the lives of mountain peoples, their livelihoods and their culture. Mountain tourism is experiencing abrupt changes too. The magnitude of impacts make it necessary to strengthen measures to adapt to climate change in high mountain areas.

  18. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to...

  19. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    Science.gov (United States)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    Coastal areas are highly vulnerable to the impact of climate change and handling is difficult. Adaption to two different situations has to be taken into account. On the one hand, increasing global sea level in combination with increased precipitation and higher storm surge frequency has to be handled. On the other hand, in summer periods due to the increase of temperature, enhanced evapotranspiration and an increase of salty seawater intrusion into groundwater have to be managed. In this study we present different landuse management scenarios on a coastal area in Northwest Germany, East Frisia, and their effect on the hydrological response. Landuse is dominated by dairy farming and intensive crop farming. 30 percent of the area lies below sea level. A dense channel network in combination with several pumping stations allows permeant drainage. The soils are characterised by marsh soils and impermeable layers which prevent an interaction with the confined brackish aquifer. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. The landuse strategies include a scenario that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. Two scenarios use large polder areas in the future as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods, additional usage for nature conservation and as the storage of carbon sequestration or extensive farming are planned. Also, stakeholders have developed a system of several smaller polders in combination with an intensification of the water resource management, and this is

  20. Flood risk and climate change in the Rotterdam area, The Netherlands: Enhancing citizen's climate risk perceptions and prevention responses despite skepticism

    OpenAIRE

    de Boer, J.; Botzen, W.J.W.; Terpstra, T.

    2016-01-01

    Effective communication about climate change and related risks is complicated by the polarization between “climate alarmists” and “skeptics.” This paper provides insights for the design of climate risk communication strategies by examining how the interplay between climate change and flood risk communication affects citizens’ risk perceptions and responses. The study is situated in a delta area with substantial geographic variations in the occurrence and potential impact of flood risk, which ...

  1. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  2. Disconnects Between Audiences, Resources, and Initiatives: Key Findings of the Coastal Areas Climate Change Education Partnership

    Science.gov (United States)

    Muller-Karger, F. E.; Ryan, J. G.; Feldman, A.; Gilbes, F.; Trotz, M.; McKayle, C.; Stone, D.; Plank, L.; Meisels, G.; Peterson, M.; Reynolds, C. J.

    2012-12-01

    The Coastal Areas Climate Change Education (CACCE) Partnership focused on defining a plan for effective education on climate change and its salient issues in coastal communities Florida and the US Caribbean territories. The approach included assessing perceptions and needs of stakeholders, evaluating the nature of available educational and information resources, and establishing a partnership that includes the public and professional organizations most relevant in planning and in addressing the resiliency of coastal communities. Information gathering activities included surveys among K-12 educators and students on climate change perceptions and current classroom activities in both Florida and the Caribbean territories; surveys of professional urban and land-use planners across Florida regarding their understanding of related in their professional practice; and conducting an inventory of relevant educational materials and information resources. Survey results showed a range of misperceptions about climate change, its causes and its likely impacts. At present, students and teachers in high and middle schools show poor understanding of climate science, and minimal time is spent in instruction on climate change in science courses in Florida and Puerto Rico schools. Also, there has to be professional development efforts and access to rich instructional content in a continuum spanning schools and professional communities including planners (which we surveyed). Architects and engineers are communities that also need to be surveyed and included in future efforts. A major obstacle to efforts at providing continuing education for planners and municipal officials is the lack of consensus on and access to regionally-specific scientific data regarding climate impacts and the relevant instructional content. It is difficult for professionals to prepare for climate change if they cannot define impacts in the Florida-Caribbean region and its coastal urban areas. Across over 1000

  3. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    Science.gov (United States)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  4. General circulation and climate changes in the Mid-European area

    International Nuclear Information System (INIS)

    Schubert, S.; Hupfer, P.

    1992-01-01

    The long-term changes in the frequency distribution of weather patterns ('Grosswetterlage') are closely related to recent climate variations in the investigation area. However, this simple recording of weather pattern frequency changes is not enough for the complete explanation of the climatic changes which took place in our century in central Europe. One of the causes is the large variability of the weather for identical flow directions. In the case of weather situations which are linked to a low cloudiness degree, especially the temperature is strongly dependent on the duration of the 'Grosswetterlage'. Also when viewed from a long-term view, the climatic characteristics of the GWL air masses are by no means constant. If one considers the course of climate elements under identical circulation conditions, it is found that the average weather sometimes varied considerably in the course of the century although the general flow direction was the same. (orig./KW) [de

  5. Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar

    Science.gov (United States)

    Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba

    2018-03-01

    The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.

  6. Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar.

    Science.gov (United States)

    Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba

    2018-03-14

    The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.

  7. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  8. On the seasonal transition from winter to spring in Europe and the "seasonal feeling" relating to "Fasnacht" in comparison with those in East Asia (Toward an interdisciplinary activity on climate and cultural understanding education)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Hamaki, Tatsuya

    2016-04-01

    As mentioned in the introduction of the EGU2016 abstract (Kato et al., submitted to CL5.06/AS4.9), there are many stages with rapid seasonal transitions in East Asia, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the arts. On the other hand, around Germany located near the western edge of the Eurasian Continent, there are so many music or literature works in which the "May" is treated as the special season (comparison of the climate and songs on "spring" (or "May") between Japan and Germany was tried in a book by Kato, H. and K. Kato, although written in Japanese). The Japanese researchers on German Literature suggested that there are basically two seasons "winter" and "summer" around Germany, with the transitional stages of spring and autumn. The concepts of the battle between winter and summer, and driving winter away, and so on, around Germany seem to show rather different seasonal feelings from that around the Japan Islands (Oshio 1982; Miyashita 1982; Takeda 1980). A traditional event there called "Fasnacht" for driving winter away is held in March or slightly earlier stage (Takeda 1980; Ueda and Ebato 1988). Kato et al. (EGU2016, submitted to CL5.06/AS4.9) will report the synoptic climatological features on the seasonal transition from winter to spring in Europe based on the daily data, by comparing with that in East Asia. In this presentation, we will discuss on the climatological background for the "seasonal feeling" leading to such as the battle between winter and summer, driving winter away, including "Fasnacht", also by referring to some songs (children's songs, etc.). At the same time, the analysis results on the seasonal transition from winter to spring in Europe in comparison with those in East Asia by Kato et al. (EGU2016) will be also referred to. On the other hand, although it is around the end of March when the "wintertime pressure pattern" on the daily surface weather maps in

  9. Effects of climate change on agroclimatic indices in rainfed wheat production areas of Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2009-06-01

    Full Text Available Despite the importance of all climatic parameters for crop growth and productivity, temperature and rainfall are more crucial compared to others and almost all climatic and agroclimatic indices are based on these two variables. Climate change will lead to variation in agroclimatic indices and evaluation of this variation is a key to study crop response to future climatic conditions. Length of growing period (LGP and rainfall deficit index could be used as indictors for assessment of potential impact of climate change of rainfed systems. To study this impact long-term weather data of main rainfed wheat production areas of Iran were collected. UKMO general circulation model was used for perdiction of climatic parameters of selected stations for years 2025 and 2050 based on pre defined scenarios of IPCC for this target years. LGP, length of dry season and rainfall deficit index were calculated from present data and the generated data for target years. The results showed that LGP based on temperature would be increased in all rainfed areas of country. However, including the water availability in the calculation was led to a lowered LGP. Reduction of LGP for the studied stations was in the range of 8-36 and 19-55 days for years 2025 and 2050, respectively. Rainfall deficit index for 2025 and 2050 was varied, respectively at 8.3-17.7 and 21.1-32.3 mm. It was estimated that under climatic condition of years 2025 and 2050 the cultivated areas in the main rainfed production regions of the country would be reduced by 16-25 and 23-33%, respectively.

  10. Expansion of Protected Areas under Climate Change: An Example of Mountainous Tree Species in Taiwan

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lin

    2014-11-01

    Full Text Available Tree species in mountainous areas are expected to shift their distribution upward in elevation in response to climate change, calling for a potential redesign of existing protected areas. This study aims to predict whether or not the distributions of two high-mountain tree species, Abies (Abies kawakamii and Tsuga (Tsuga chinensis var. formosana, will significantly shift upward due to temperature change, and whether current protected areas will be suitable for conserving these species. Future temperature change was projected for 15 different future scenarios produced from five global climate models. Shifts in Abies and Tsuga distributions were then predicted through the use of species distribution models (SDMs which included occurrence data of Abies and Tsuga, as well as seasonal temperature, and elevation. The 25 km × 25 km downscaled General Circulation Model (GCMs data for 2020–2039 produced by the Taiwan Climate Change Projection and Information Platform was adopted in this study. Habitat suitability in the study area was calculated using maximum entropy model under different climatic scenarios. A bootstrap method was applied to assess the parameter uncertainty of the maximum entropy model. In comparison to the baseline projection, we found that there are significant differences in suitable habitat distributions for Abies and Tsuga under seven of the 15 scenarios. The results suggest that mountainous ecosystems will be substantially impacted by climate change. We also found that the uncertainty originating from GCMs and the parameters of the SDM contribute most to the overall level of variability in species distributions. Finally, based on the uncertainty analysis and the shift in habitat suitability, we applied systematic conservation planning approaches to identify suitable areas to add to Taiwan’s protected area network.

  11. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-05-01

    Full Text Available The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs, are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project, which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to

  12. Dynamics in Protected Areas and Domesticated Landscapes Caused by Climate Change and Anthropogenic Use

    Science.gov (United States)

    Hartter, J.; Ryan, S.; Stampone, M.; Chapman, C.

    2009-12-01

    Climate change, a key factor of concern for conservation, has important biological and social implications. Africa’s Albertine Rift is an area of extremely high endemic biodiversity and is classed as a world conservation priority. However, natural areas are represented by a chain of protected forest areas in a matrix of intensive smallholder agriculture and dense human settlements. Kibale National Park in western Uganda has become an island of forest surrounded by intensive small-scale agriculture and is the only remaining large area of mid-altitude forest remaining in Albertine Rift Region and East Africa. Increased temperature and precipitation over recent decades has been observed by scientists and local farmers, however, to date, rigorous analysis of local climate data and the impact of climate change on local resources does not exist. Moreover, local farmers report that some crops die or ripen too early because of increased precipitation. Conservation biologists and park managers are concerned that changes in tree phenology and primary productivity will alter wildlife feeding preferences and ranges leading to more human-wildlife conflict. Understanding the impact of local and regional climate change and variation within the social, conservation, and geographic context is necessary to construct informed management plans and to maintain positive park-people relationships. This paper describes our first attempt to fully integrate multiple temporal and spatial datasets, and our progress in developing an interdisciplinary framework to study social and ecological relationships in the Kibale landscape. We examine historical in situ climate data and proxy climate information derived from remotely sensed satellite-borne imagery in our preliminary analyses. Our goal is to link these data with both pre-existing imagery analyses and tree community composition and phenology data from 39 years of ongoing research to identify the pattern, trajectory, and drivers of local

  13. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Science.gov (United States)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2013-05-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the

  14. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  15. Future climate and wildfire: ecosystem projections of area burned in the western US

    Science.gov (United States)

    Littell, J. S.; Duffy, P.; Battisti, D. S.; McKenzie, D.; Peterson, D. L.

    2010-12-01

    The area burned by fire in ecosystems of the western United States has been closely linked to climate in the paleoecological record and in the modern record. Statistical models of area burned show that the climatic controls on area burned vary with vegetation type (Littell et al. 2009). In more arid or systems (grasslands, shrublands, woodlands), antecedent climatic controls on fire were associated first with the production of fuels and secondarily with drought in the year of fire. These relationships typically manifested as wetter and sometimes cooler conditions in the seasons prior to the fire season. Area burned in forest ecosystems and some woodlands was primarily associated with drought conditions, specifically increased temperature and decreased precipitation in the year of fire and the seasons leading up to the fire season. These climatic controls indicate the role of climate in drying existing fuels. Statistical fire models trained on the late 20th century for ecoprovinces in the West would be useful for projecting area burned, at least until vegetation type conversion driven by climate and disturbance occurs. To that end, we used ~ 2.5 degree gridded future climate fields derived for a multi-GCM ensemble of 1C and 2C temperature increase forcing to develop future ecoprovince monthly and seasonal average temperature and associated precipitation and used these as predictors in statistical fire models of future projected area burned. We also conducted modeling scenarios with the ensemble temperature increase paired with historical precipitation. Most ecoprovinces had increases in area burned, with a range of ~ 67% to over 600% . Ecoprovinces that are primarily sensitive to precipitation changes exhibit smaller increases than those most sensitive to temperature (forest systems). We also developed exceedance probabilities. Some ecoprovinces show large increases in area burned but low exceedance probabilities, suggest that the area burned is concentrated more

  16. Climate change impact on fire probability and severity in Mediterranean areas

    Science.gov (United States)

    Bachisio Arca; Grazia Pellizzaro; Pierpaolo Duce; Michele Salis; Valentina Bacciu; Donatella Spano; Alan Ager; Mark Finney

    2010-01-01

    Fire is one of the most significant threats for the Mediterranean forested areas. Global change may increase the wildland fire risk due to the combined effect of air temperature and humidity on fuel status, and the effect of wind speed on fire behaviour. This paper investigated the potential effect of the climate changes predicted for the Mediterranean basin by a...

  17. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  18. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    Science.gov (United States)

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  19. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography

    DEFF Research Database (Denmark)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten

    2015-01-01

    model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models...

  20. Regional relationships between climate and wildfire-burned area in the interior West, USA

    Science.gov (United States)

    Brandon M. Collins; Philip N. Omi; Phillip L. Chapman

    2006-01-01

    Recent studies have linked the Atlantic Multtidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) with drought occurrence in the interior United States. This study evaluates the influence of AM0 and PDO phases on interannual relationships between climate and wildfire-burned area during the 20th century. Palmer's Drought Severity Index (PDSI) is...

  1. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    Science.gov (United States)

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  2. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  3. Estimating future burned areas under changing climate in the EU-Mediterranean countries.

    Science.gov (United States)

    Amatulli, Giuseppe; Camia, Andrea; San-Miguel-Ayanz, Jesús

    2013-04-15

    The impacts of climate change on forest fires have received increased attention in recent years at both continental and local scales. It is widely recognized that weather plays a key role in extreme fire situations. It is therefore of great interest to analyze projected changes in fire danger under climate change scenarios and to assess the consequent impacts of forest fires. In this study we estimated burned areas in the European Mediterranean (EU-Med) countries under past and future climate conditions. Historical (1985-2004) monthly burned areas in EU-Med countries were modeled by using the Canadian Fire Weather Index (CFWI). Monthly averages of the CFWI sub-indices were used as explanatory variables to estimate the monthly burned areas in each of the five most affected countries in Europe using three different modeling approaches (Multiple Linear Regression - MLR, Random Forest - RF, Multivariate Adaptive Regression Splines - MARS). MARS outperformed the other methods. Regression equations and significant coefficients of determination were obtained, although there were noticeable differences from country to country. Climatic conditions at the end of the 21st Century were simulated using results from the runs of the regional climate model HIRHAM in the European project PRUDENCE, considering two IPCC SRES scenarios (A2-B2). The MARS models were applied to both scenarios resulting in projected burned areas in each country and in the EU-Med region. Results showed that significant increases, 66% and 140% of the total burned area, can be expected in the EU-Med region under the A2 and B2 scenarios, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. On the potential for abrupt Arctic winter sea-ice loss

    NARCIS (Netherlands)

    Bathiany, S.; Notz, Dirk; Mauritsen, T.; Raedel, G.; Brovkin, V.

    2016-01-01

    The authors examine the transition from a seasonally ice-covered Arctic to an Arctic Ocean that is sea ice free all year round under increasing atmospheric CO2 levels. It is shown that in comprehensive climate models, such loss of Arctic winter sea ice area is faster than the preceding loss of

  5. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    Science.gov (United States)

    K C, A.

    2016-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. However, there are considerable gaps in research regarding tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. Seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. The empirical data collected at the site are complemented by secondary scientific data on climate and tourism. Correlation, regression, descriptive and graphical analysis was carried out for the presentation and analysis of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. It was also verified by the observed scientific data of temperature and precipitation. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. Till the date, there is positive impact of climate change on tourism sector in the study area. But, unfavorable weather change phenomena, intense rainfall and snowfall, melting of snow, occurrence of hydrological and climatic hazards and increase in temperature may have adverse impact on the tourism and livelihood in the mountainous area. Such type of adverse impact of climate change and tourism is already experienced in the case of Annapurna region and Mt. Everest region as tourist were trapped and affected by unfavorable weather change phenomena. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for

  6. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    Science.gov (United States)

    Aukema, Juliann E; Pricope, Narcisa G; Husak, Gregory J; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  7. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  8. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1 Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2 Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka, posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  9. Towards a New Policy for Climate Adaptive Water Management in Flanders: The Concept of Signal Areas

    Directory of Open Access Journals (Sweden)

    Peter De Smedt

    2014-05-01

    Full Text Available In Flanders, the Government has recently established an innovative policy framework to preserve the water storage capacity in flood-prone areas. In this context, the concept of ‘Signal Areas’ (signaalgebieden has been created. These areas are still undeveloped areas with a hard planning destination (residential and industrial areas located in flood-prone areas. The framework outlines in what way one needs to deal with the flood risk in these areas. The intention is to work with tailor-made solutions for each separate area. For this purpose, a comprehensive tool-box is available, such as land reparcelling, spatial destination or zoning swapping (bestemmingsruil, regulations regarding appropriate construction methods and land use in urban planning regulations or in public utility servitudes, and the application of a sharpened Water Test. The final objective is to create an efficacious, area-oriented adaptation strategy for climate-proof spatial planning. In this contribution, the author will provide an insight into the legal design of the above-mentioned concepts and instruments, how they can contribute to a stronger linkage between water management and spatial planning and therefore to a solid climate change adaptation strategy, as well as the factors of success and failure of this new policy framework.

  10. Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model

    Directory of Open Access Journals (Sweden)

    Kalle Eerola

    2014-12-01

    Full Text Available At the end of January 2012, a low-level cloud from partly ice-free Lake Ladoga caused very variable 2-m temperatures in Eastern Finland. The sensitivity of the High Resolution Limited Area Model (HIRLAM to the lake surface conditions was tested in this winter anticyclonic situation. The lake appeared to be (incorrectly totally covered by ice when the lake surface was described with its climatology. Both parametrisation of the lake surface state by using a lake model integrated to the NWP system and objective analysis based on satellite observations independently resulted in a correct description of the partly ice-free Lake Ladoga. In these cases, HIRLAM model forecasts were able to predict cloud formation and its movement as well as 2-m temperature variations in a realistic way. Three main conclusions were drawn. First, HIRLAM could predict the effect of Lake Ladoga on local weather, when the lake surface state was known. Second, the current parametrisation methods of air–surface interactions led to a reliable result in conditions where the different physical processes (local surface processes, radiation and turbulence were not strong, but their combined effect was important. Third, these results encourage work for a better description of the lake surface state in NWP models by fully utilising satellite observations, combined with advanced lake parametrisation and data assimilation methods.

  11. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E

    2012-04-01

    The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.

  12. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    International Nuclear Information System (INIS)

    Huang, Kuo-Ching; Huang, Thomas C C

    2014-01-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred

  13. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  14. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  15. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  16. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  17. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations.

  18. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  19. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.

    2011-08-01

    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  20. Protected areas offer refuge from invasive species spreading under climate change

    Czech Academy of Sciences Publication Activity Database

    Gallardo, B.; Aldridge, D.; González-Moreno, P.; Pergl, Jan; Pizarro, M.; Pyšek, Petr; Thuiller, W.; Yesson, C.; Vila, M.

    2017-01-01

    Roč. 23, č. 12 (2017), s. 5331-5343 ISSN 1354-1013 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002; COST(XE) TD1209 Program:Akademická prémie - Praemium Academiae; FA Institutional support: RVO:67985939 Keywords : climate change * protected areas * invasions Subject RIV: EH - Ecology, Behaviour OBOR OECD: Entomology Impact factor: 8.502, year: 2016

  1. Quantitation of major allergens in dust samples from urban populations collected in different seasons in two climatic areas of the Basque region (Spain).

    Science.gov (United States)

    Echechipía, S; Ventas, P; Audícana, M; Urrutia, I; Gastaminza, G; Polo, F; Fernández de Corres, L

    1995-06-01

    We present the results of allergen content evaluation in 80 dust samples from 31 homes of atopic patients from two climatic areas (humid and subhumid), collected in two seasons of the year (autumn and winter). Monoclonal antibody-based immunoassays were used to quantify Der p 1, Der f 1, Der 2, Lep d 1, and Fel d 1. The results were compared according to climate, season, and the type of sensitization (Pyroglyphidae mites, storage mites, or grass pollens). We underline the predominance of Dermatophagoides pteronyssinus (89% of samples) over D. farinae (16% of samples) in our environment. Der p 1 rates were higher in the humid area (Mann-Whitney P < 0.001), especially in the autumn (Wilcoxon P < 0.05). Lep d 1 was detected in 23% of samples and Lep d 1 levels were higher in the homes of patients sensitized to storage mites (Mann-Whitney P < 0.05), whereas this allergen was not detected in the homes of pollen-allergic patients. Fel d 1 was detected in nine of the 31 homes (16% of samples) although there was a cat in only one home.

  2. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    Science.gov (United States)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  3. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata) and its implications for northward migration in a warming climate

    Science.gov (United States)

    Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...

  4. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    Science.gov (United States)

    K C, A.

    2017-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. It had impact on different sectors of the environment including tourism and livelihood. There are very few researches focused on tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. In this study, the empirical data collected at the field was complemented by secondary data on climate and tourism. For primary data collection, seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. Correlation, regression and graphical analysis was carried out for the presentation of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. Change in usual pattern of temperature and rainfall had affected tourism sector. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for tourism promotional activities in the study area. Also awareness and education related to tourism, gender empowerment of women, advertisement and publicity on tourism promotion, adequate subsidy and training on ecotourism and skill development trainings on handicraft are recommended.

  5. Regional impact of climate on Japanese encephalitis in areas located near the three gorges dam.

    Directory of Open Access Journals (Sweden)

    Yuntao Bai

    Full Text Available BACKGROUND: In this study, we aim to identify key climatic factors that are associated with the transmission of Japanese encephalitis virus in areas located near the Three Gorges Dam, between 1997 and 2008. METHODS: We identified three geographical regions of Chongqing, based on their distance from the Three Gorges Dam. Collectively, the three regions consisted of 12 districts from which study information was collected. Zero-Inflated Poisson Regression models were run to identify key climatic factors of the transmission of Japanese encephalitis virus for both the whole study area and for each individual region; linear regression models were conducted to examine the fluctuation of climatic variables over time during the construction of the Three Gorges Dam. RESULTS: Between 1997 and 2008, the incidence of Japanese encephalitis decreased throughout the entire city of Chongqing, with noticeable variations taking place in 2000, 2001 and 2006. The eastern region, which is closest to the Three Gorges Dam, suffered the highest incidence of Japanese encephalitis, while the western region experienced the lowest incidence. Linear regression models revealed that there were seasonal fluctuations of climatic variables during this period. Zero-Inflated Poisson Regression models indicated a significant positive association between temperature (with a lag of 1 and 3 months and Japanese encephalitis incidence, and a significant negative association between rainfall (with a lag of 0 and 4 months and Japanese encephalitis incidence. CONCLUSION: The spatial and temporal trends of Japanese encephalitis incidence that occurred in the City of Chongqing were associated with temperature and rainfall. Seasonal fluctuations of climatic variables during this period were also observed. Additional studies that focus on long-term data collection are needed to validate the findings of this study and to further explore the effects of the Three Gorges Dam on Japanese

  6. Climate adaptation in NVE's areas of responsibility - Strategy 2010 - 2014; Klimatilpasning innen NVEs ansvarsomraader - Strategi 2010 - 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hamarsland, Arne T. (ed.)

    2010-09-15

    NVE has developed a comprehensive climate change strategies within their areas of responsibility. There is a systematic review of how a future climate change will affect NVE management areas; how to meet challenges, vulnerabilities, opportunities and proposals for adaptation measures. Climate adaptation is a dynamic process. It is therefore necessary to follow up the work continuously and correct direction at regular intervals. Climate change adaptation strategy of adaptation measures is a foundation and a direction sensor in NVE's business planning. (AG)

  7. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    Science.gov (United States)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  8. Gaz de France first quarter 2007 sales: an 11 per cent drop due to an exceptionally warm winter: a 1.3 per cent increase on an average-climate basis. Non-audited IFRS data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Paris, May 14 2007 - For the first quarter 2007, Gaz de France Group posted euro 9,053 million in consolidated sales. This 11 per cent decrease on the same period in 2006 is a direct result of the extremely warm weather conditions in France and Europe this winter. In contrast, under average climate conditions sales improved by 1.3 per cent. In France, where the winter of 2006/2007 was the warmest in fifty years, sales were impacted by 18 billion kWh in the quarter compared to a quarter with average-climate conditions and 32 billion kWh compared to the first quarter 2006 which, in contrast, was colder than normal. The impact of the weather had similar effects on sales outside France. The highly unusual weather conditions also had an indirect impact on the market and, consequently, on both gas production and the arbitrage activities. Not withstanding these effects, the Group continued to consolidate its position in foreign markets, with sales outside France reaching euro 3,341 million. The share of sales outside France increased by 3 points in the first quarter of 2007 versus first quarter 2006 to 37 per cent as at end March 2007. The group reiterates the 2007 financial objective as presented at the full year 2006 results: '2007 will be a year of consolidation and the EBITDA should be in line with that of 2006'.

  9. Gaz de France first quarter 2007 sales: an 11 per cent drop due to an exceptionally warm winter: a 1.3 per cent increase on an average-climate basis. Non-audited IFRS data

    International Nuclear Information System (INIS)

    2007-01-01

    Paris, May 14 2007 - For the first quarter 2007, Gaz de France Group posted euro 9,053 million in consolidated sales. This 11 per cent decrease on the same period in 2006 is a direct result of the extremely warm weather conditions in France and Europe this winter. In contrast, under average climate conditions sales improved by 1.3 per cent. In France, where the winter of 2006/2007 was the warmest in fifty years, sales were impacted by 18 billion kWh in the quarter compared to a quarter with average-climate conditions and 32 billion kWh compared to the first quarter 2006 which, in contrast, was colder than normal. The impact of the weather had similar effects on sales outside France. The highly unusual weather conditions also had an indirect impact on the market and, consequently, on both gas production and the arbitrage activities. Not withstanding these effects, the Group continued to consolidate its position in foreign markets, with sales outside France reaching euro 3,341 million. The share of sales outside France increased by 3 points in the first quarter of 2007 versus first quarter 2006 to 37 per cent as at end March 2007. The group reiterates the 2007 financial objective as presented at the full year 2006 results: '2007 will be a year of consolidation and the EBITDA should be in line with that of 2006'

  10. Climate change and protection: Recent experiences within planning of the area of cultural and natural heritage

    Directory of Open Access Journals (Sweden)

    Crnčević Tijana

    2015-01-01

    Full Text Available The aim of the paper is to provide an insight into the current legal and other regulatory frameworks that introduces problems of climate change into planning practice of natural and cultural heritage, with special emphasis on the situation in the Republic of Serbia. Further, an overview of the selected case studies of natural and cultural heritage from the UNESCO World Heritage List for which were done studies of the impacts of climate change is included. The results indicate that the legal frameworks as well as actual practice are promoting the development of the ecological networks (the network of areas NATURA 2000 and landscape protection. This applies also to the planning practice in Serbia, where the planning of ecological corridors, habitat networking and other measures, provide responses to climate change. One of the conclusions of this paper is pointing out the necessity of increasing the level of protection of natural and cultural heritage within preserving the authenticity and improving flexibility or adaptability to climate change.

  11. Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J.; Tzirkalli, Elli; Pamperis, Lazaros N.; Halley, John M.

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998–2011/2012) and short-term (2011–2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990–2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species’ elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011–2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species’ resilience may have to be

  12. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J; Tzirkalli, Elli; Pamperis, Lazaros N; Halley, John M

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012) and short-term (2011-2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species' elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be devised.

  13. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Directory of Open Access Journals (Sweden)

    Konstantina Zografou

    Full Text Available The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012 and short-term (2011-2012 changes in the butterfly fauna of Dadia National Park (Greece by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012 in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a species' elevational distributions in Greece and (b Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year. Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012 variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be

  14. Developing a Climate-Induced Social Vulnerability Index for Urban Areas: A Case Study of East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carvalhaes, Thomaz M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Census American Community Survey 2008-2012 data are used to construct a spatially explicit Climate-Induced Social Vulnerability Index (CSVI) for the East Tennessee area. This CSVI is a combination of a Social Vulnerability Index (SVI) and a Climate Index. A method is replicated and adapted to derive a custom SVI by Census tract for the counties participating in the East Tennessee Index, and a Climate Index is developed for the same area based on indicators for climate hazards. The resulting datasets are exported as a raster to be integrated and combined within the Urban Climate Adaptation Tool (Urban-CAT) to act as an indicator for communities which may be differentially vulnerable to changes in climate. Results for the SVI are mapped separately from the complete CSVI in this document as results for the latter are in development.

  15. Application of Social Vulnerability Indicators to Climate Change for the Southwest Coastal Areas of Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Wu

    2016-12-01

    Full Text Available The impact of climate change on the coastal zones of Taiwan not only affects the marine environment, ecology, and human communities whose economies rely heavily on marine activities, but also the sustainable development of national economics. The southwest coast is known as the area most vulnerable to climate change; therefore, this study aims to develop indicators to assess social vulnerability in this area of Taiwan using the three dimensions of susceptibility, resistance, and resilience. The modified Delphi method was used to develop nine criteria and 26 indexes in the evaluation, and the analytic hierarchy process method was employed to evaluate the weight of each indicator based on the perspectives of experts collected through questionnaire surveys. The results provide important information pertaining to the vulnerability of the most susceptive regions, the lowest-resistance areas, and the least resilient townships on the southwest coast. The most socially vulnerable areas are plotted based on the present analysis. Experts can consider the vulnerability map provided here when developing adaptation policies. It should be kept in mind that improving the capacities of resistance and resilience is more important than reducing susceptibility in Taiwan.

  16. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas

    Directory of Open Access Journals (Sweden)

    Yvonne Andersson-Sköld

    2015-01-01

    Full Text Available The urban environment is a complex structure with interlinked social, ecological and technical structures. Global warming is expected to have a broad variety of impacts, which will add to the complexity. Climate changes will force adaptation, to reduce climate-related risks. Adaptation measures can address one aspect at the time, or aim for a holistic approach to avoid maladaptation. This paper presents a systematic, integrated approach for assessing alternatives for reducing the risks of heat waves, flooding and air pollution in urban settings, with the aim of reducing the risk of maladaptation. The study includes strategies covering different spatial scales, and both the current climate situation and the climate predicted under climate change scenarios. The adaptation strategies investigated included increasing vegetation; selecting density, height and colour of buildings; and retreat or resist (defend against sea-level rise. Their effectiveness was assessed with regard to not only flooding, heat stress and air quality but also with regard to resource use, emissions to air (incl. GHG, soil and water, and people’s perceptions and vulnerability. The effectiveness of the strategies were ranked on a common scale (from −3 to 3 in an integrated assessment. Integrated assessments are recommended, as they help identify the most sustainable solutions, but to reduce the risk of maladaptation they require experts from a variety of disciplines. The most generally applicable recommendation, derived from the integrated assessment here, taking into account both expertise from different municipal departments, literature surveys, life cycle assessments and publics perceptions, is to increase the urban greenery, as it contributes to several positive aspects such as heat stress mitigation, air quality improvement, effective storm-water and flood-risk management, and it has several positive social impacts. The most favourable alternative was compact, mid

  17. Surface area changes of Himalayan ponds as a proxy of hydrological climate-driven fluctuations

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Tartari, Gianni

    2016-04-01

    The meteorological measurements at high-elevations of the Himalayan range are scarce due to the harsh conditions of these environments which limit the suitable maintenance of weather stations. As a consequence, the meager knowledge on how the climate is changed in the last decades at Himalayan high-elevations sets a serious limit upon the interpretation of relationships between causes and recent observed effects on the cryosphere. Although the glaciers masses reduction in Himalaya is currently sufficiently well described, how changes in climate drivers (precipitation and temperature) have influenced the melting and shrinkage processes are less clear. Consequently, the uncertainty related to the recent past amplifies when future forecasts are done, both for climate and impacts. In this context, a substantial body of research has already demonstrated the high sensitivity of lakes and ponds to climate. Some climate-related signals are highly visible and easily measurable in lakes. For example, climate-driven fluctuations in lake surface area have been observed in many remote sites. On interior Tibetan Plateau the lake growth since the late 1990s is mainly attributed to increased regional precipitation and weakened evaporation. Differently, other authors attribute at the observed increases of lake surfaces at the enhanced glacier melting. In our opinion these divergences found in literature are due to the type of glacial lakes considered in the study and in particular their relationship with glaciers. In general, in Himalaya three types of glacial lakes can be distinguished: (i) lakes that are not directly connected with glaciers, but that may have a glacier located in their basin (unconnected glacial lakes); (ii) supraglacial lakes, which develop on the surface of the glacier downstream; or (iii) proglacial lakes, which are moraine-dammed lakes that are in contact with the glacier front. Some of these lakes store large quantities of water and are susceptible to GLOFs

  18. The Neolithization of Northern Black Sea area in the context of climate changes

    Directory of Open Access Journals (Sweden)

    Nadezhda Kotova

    2009-12-01

    Full Text Available The neolithisation of the Pontic steppe was a long process, with four stages which were associated with climate changes. It began c. 7500 calBC, with early animal husbandry in the western Azov Sea area. The beginning of the second stage was connected with an arid climate (7000–6900 calBC and the origin of the Rakushechny Yar culture in the Lower Don region. The third stage (6500–6300 calBC occurred during a humid period. Besides animal husbandry, the steppe population borrowed the first pottery from the Rakushechny Yar culture. The fourth phase (6300–6000 calBC was connected with extreme aridity and the neolithisation of the modern forest-steppe and forest zones of Ukraine and Russia.

  19. Study of climate change related to deforestation in the Xishuangbanna area, Yunnan, China

    International Nuclear Information System (INIS)

    Chungcheng Li; Cong Lai

    1991-01-01

    The analysis of the results of deforestation and the meteorological data of the Xinshuangbanna region of China shows that there are possible relations between the deforestation and climate change. With the forest area decreased by 33% during the past 30 years, the climate of this region has also been changed. The annual mean temperature has been increased by 0.7C, of which the increase is 0.97C in the dry season and 0.53C in the wet season. Together with the annual temperature increase the temperature variations have also been increased, which has resulted in more frequent low temperature damage to the local plantation agriculture. The relative humidity decreased by 3% annually; and the annual precipitation also decreased, with a decrease in the wet season of 6.8% and an increase in the dry season of 20.8%

  20. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  1. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas

    2018-01-01

    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  2. Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site

    Science.gov (United States)

    Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.

    2017-12-01

    Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.

  3. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  4. Calculation of climate factors as an additional criteria to determine agriculturally less favoured areas

    Directory of Open Access Journals (Sweden)

    Tjaša POGAČAR

    2016-04-01

    Full Text Available Climate factors that are proposed to determine agriculturally less favoured areas (LFA in Slovenia were analyzed for the period 1981–2010. Following the instructions of European Commission prepared by Joint Research Centre (JRC 30-years averages of low air temperatures criteria (the vegetation period duration and sums of effective air temperatures and aridity criteria (aridity index AI have to be calculated. Calculations were additionally done using Slovenian Environment Agency (ARSO method, which is slightly different when determining temperature thresholds. Only hilly areas are below the LFA low air temperatures threshold with the lowest located meteorological station in Rateče. According to aridity criteria no area in Slovenia is below the threshold, so meteorological water balance was also examined. Average water balance in the period 1981–2010 was in most of locations lower than in the period 1971–2000. Climate change impacts are already expressed as trend presence in time series of studied variables, so it is recommended to calculate trends and take them into account or to perform regular iterations of calculations.

  5. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Directory of Open Access Journals (Sweden)

    T. Wang

    2011-07-01

    Full Text Available Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m−2 d−1, when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m−2 d−1. Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m−2 d−1 of 0.70(±0.33, 0.60(±0.38, 0.62(±0.43, 0.49(±0.22 and 0.27(±0.08, respectively. Our cross site analysis showed that winter air (Tair and soil (Tsoil temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands. Besides temperature, the seasonal amplitude of the leaf area index (LAI, inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (

  6. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    Science.gov (United States)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue

  7. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae)

    DEFF Research Database (Denmark)

    Diniz, J.A.F.; Nabout, J.C.; Bini, L.M.

    2010-01-01

    niche models, four AOGCMs and two emission scenarios. Combinations of these effects (50 cross-validations for each of the 15 subsets of the environmental variables) were used to estimate and map the occurrence frequencies (EOF) across all analyses. A three-way anova was used to partition and map...... the sources of variation. 3. The projections for 2080 show that the range edges of the species are likely to remain approximately constant, but shifts in maximum EOF are forecasted. Suitable climatic conditions tend to disappear from central areas of Amazon, although this depends on the AOGCM and the niche...

  8. NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from the NOAA Climate Data...

  9. Air Pollutants, Climate, and the Prevalence of Pediatric Asthma in Urban Areas of China

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhang

    2016-01-01

    Full Text Available Background. Prevalence of childhood asthma varies significantly among regions, while its reasons are not clear yet with only a few studies reporting relevant causes for this variation. Objective. To investigate the potential role of city-average levels of air pollutants and climatic factors in order to distinguish differences in asthma prevalence in China and explain their reasons. Methods. Data pertaining to 10,777 asthmatic patients were obtained from the third nationwide survey of childhood asthma in China’s urban areas. Annual mean concentrations of air pollutants and other climatic factors were obtained for the same period from several government departments. Data analysis was implemented with descriptive statistics, Pearson correlation coefficient, and multiple regression analysis. Results. Pearson correlation analysis showed that the situation of childhood asthma was strongly linked with SO2, relative humidity, and hours of sunshine (p<0.05. Multiple regression analysis indicated that, among the predictor variables in the final step, SO2 was found to be the most powerful predictor variable amongst all (β=-19.572, p < 0.05. Furthermore, results had shown that hours of sunshine (β = -0.014, p < 0.05 was a significant component summary predictor variable. Conclusion. The findings of this study do not suggest that air pollutants or climate, at least in terms of children, plays a major role in explaining regional differences in asthma prevalence in China.

  10. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    Science.gov (United States)

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  11. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    Science.gov (United States)

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  12. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    Science.gov (United States)

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minn...

  13. Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors

    Science.gov (United States)

    Yu, Qiangyi; van Vliet, Jasper; Verburg, Peter H.; You, Liangzhi; Yang, Peng; Wu, Wenbin

    2018-04-01

    Previous analyses have shown that cropland in China is intensifying, leading to an increase in crop production. However, these output measures leave the potential for further intensification largely unassessed. This study uses the harvested area gap (HAG), which expresses the amount of harvested area that can be gained if all existing cropland is harvested as frequently as possible, according to their potential limit for multi-cropping. Specifically, we calculate the HAG and changes in the HAG in China between 1981 and 2010. We further assess how climatic and land management factors affect these changes. We find that in China the HAG decreases between the 1980s and the 1990s, and subsequently increases between the 1990s and the 2000s, resulting in a small net increase for the entire study period. The initial decrease in the HAG is the result of an increase in the average multi-cropping index throughout the country, which is larger than the increase in the potential multi-cropping index as a result of the changed climatic factors. The subsequent increase in the HAG is the result of a decrease in average multi-cropping index throughout the country, in combination with a stagnant potential. Despite the overall increase in harvested area in China, many regions, e.g. Northeast and Lower Yangtze, are characterized by an increased HAG, indicating their potential for further increasing the multi-cropping index. The study demonstrates the application of the HAG as a method to identify areas where the harvested area can increase to increase crop production, which is currently underexplored in scientific literature.

  14. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Viola, F., E-mail: francesco.viola77@unipa.it; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-02-15

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  15. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  16. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    International Nuclear Information System (INIS)

    Viola, F.; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-01-01

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  17. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  18. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  19. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  20. Long-term effects of climate change on the hydrological system of a lowland area at the German North Sea coast

    Science.gov (United States)

    Graeff, Thomas; Baroni, Gabriele; Krause, Stefan

    2014-05-01

    Coastal areas are highly vulnerable to the impacts of climate change. In particular for the winter season, global sea level rise is expected to be combined with increased precipitation and higher storm surge frequency. During summer, due to the increase of temperature, enhanced evapotranspiration with an increase of groundwater intrusion has been observed. It is expected that the salinization of the surface will rise under drier conditions by upward seeping groundwater. Coastal water resource management requires a better understanding and predictions of these dynamic systems. Therefore, a long-term monitoring programme has been established at the German North Sea coast, located at the estuary of the River Ems. The research area is dominated by a dense canal system that is regulated by pumping stations and tidal gates. Landuse of the area is mainly dairy farming with 30 % of the area below sea level. The underlying aquifer is confined and brackish, and it is connected to the surface water by geological faults of old paleo-channels. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. This study investigates the effects of climate change on water balance and salt transport by applying regional climate models (RCMs) based on the IPCC emission scenarios for the period until 2100 as drivers for a hydrological and solute transport model. To investigate the impact of different meteorological scenarios, the RCM results for the climate scenarios A1B, A2 and B1 are used to cover an increase of future temperature between 1 and 3.5 K. As changes in water level and salinity are expected to influence vegetation patterns (and water management aims to guaranty agricultural use) two alternative landuse scenarios are considered. The first scenario assumes that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration

  1. Performance of ALADIN-Climate/CZ over the area of the Czech Republic in comparison with ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Crhová, L.; Holtanova, E.; Kalvová, J.; Farda, Aleš

    2014-01-01

    Roč. 58, č. 1 (2014), s. 148-169 ISSN 0039-3169 R&D Projects: GA MŽP(CZ) SP/1A6/108/07 Institutional support: RVO:67179843 Keywords : regional climate model * climate model performance * Taylor diagram * skill score Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.806, year: 2014

  2. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  3. Solar radiation in forested urban environments with dry climate. Case: Metropolitan Area of Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    Mariela Edith Arboit

    2014-12-01

    Full Text Available The aim of this work is to advance the understanding of the solar potential of urban residential environments which, by their morphology, and the impact of urban trees, present values of irradiance very different from full solar collection. Morphological variables of urban settings and urban trees, a very distinctive feature of the Mendoza Metropolitan Area (MMA, have a fundamental impact on the feasibility of implementing strategies for solar energy utilization in urban environments. The results achieved will contribute to modify and gradually update urban and building legislation to implement higher levels of energy efficiency and minimum environmental impacts.This work proposes to study the potential of solar collection in urban environments, analyzing eleven urban configurations selected according to their building and urban morphological characteristics.Methodologically, we have monitored the global solar irradiance on vertical plane on northern facades, completely sunny and partly sunny, affected by solid masking and arboreal masking. Results obtained so far indicate that solar masking is critical for vertical surfaces, with a reduction of the available solar energy between 2% and 66% in the winter season. However, these drawbacks caused by urban trees are compensated by benefits in the warm season: controlling the intensity of the urban heat island, absorption of pollutants, cooling and humidifying the air through evapotranspiration, reducing thermal loads of buildings, occupancy of public open spaces, and an invaluable contribution to the urban aesthetic.

  4. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  5. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  6. Spatiotemporal Variations of Extreme Precipitation under a Changing Climate in the Three Gorges Reservoir Area (TGRA

    Directory of Open Access Journals (Sweden)

    Mingquan Lü

    2018-01-01

    Full Text Available The Three Gorges Dam (TGD is one of the largest hydroelectric projects in the world. Monitoring the spatiotemporal distribution of extreme precipitation offers valuable information for adaptation and mitigation strategies and reservoir management schemes. This study examined variations in extreme precipitation over the Three Gorges Reservoir area (TGRA in China to investigate the potential role of climate warming and Three Gorges Reservoir (TGR. The trends in extreme precipitation over the TGRA were investigated using the iterative-based Mann–Kendall (MK test and Sen’s slope estimator, based on weather station daily data series and TRMM (Tropical Rainfall Measuring Mission data series. The mean and density distribution of extreme precipitation indices between pre-dam and post-dam, pre-1985 and post-1985, and near and distant reservoir area were assessed by the Mann–Whitney test and the Kolmogorov–Smirnov test. The ratio of extreme precipitation to non-extreme precipitation became larger. The precipitation was characterized by increases in heavy precipitation as well as decreases in light and moderate rain. Comparing extreme precipitation indices between pre-1985 (cooling and post-1985 (warming indicated extreme precipitation has changed to become heavier. Under climate warming, the precipitation amount corresponding to more than the 95th percentile increased at the rate of 6.48%/°C. Results from comparing extreme precipitation for the pre- and post-dam, near reservoir area (NRA and away from the reservoir area (ARA imply an insignificant role of the TGR on rainfall extremes over the TGRA. Moreover, the impoundment of TGR did not exert detectable impacts on the surface relative humidity (RH and water vapor pressure (WP.

  7. Coming to grips with nuclear winter

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1985-01-01

    This editorial examines the politics related to the concept of nuclear winter which is a term used to describe temperature changes brought on by the injection of smoke into the atmosphere by the massive fires set off by nuclear explosions. The climate change alone could cause crop failures and lead to massive starvation. The author suggests that the prospect of a nuclear winter should be a deterrent to any nuclear exchange

  8. Simulating the influences of various fire regimes on caribou winter habitat

    Science.gov (United States)

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  9. [Winter surveillance of cold exposure effects on health among the homeless population in the Paris area: data from the Coordinated Health Surveillance of Emergency Department network (Organisation de la surveillance coordonnée des urgences [Oscour(®)])].

    Science.gov (United States)

    Rouquette, A; Mandereau-Bruno, L; Baffert, E; Laaidi, K; Josseran, L; Isnard, H

    2011-12-01

    A program for helping homeless individuals in winter is implemented from November 1(st) to March 31(st) each year in France. Its aim is to prevent morbidity and mortality in this population during cold spells and periods of severe cold. A health surveillance system of the homeless population in the Paris area has been proposed to evaluate the effectiveness of the program and to alert decision-makers if an unusual increase in cold-weather effects is observed. The goal of this study was the creation of an indicator for the proposed surveillance system based on emergency department activity in the Paris area (Oscour(®) Network - Organisation de la surveillance coordonnée des urgences). The winter 2007-2008 computer medical files of 11 emergency departments in the Paris area were examined to confirm diagnosis and ascertain patient-homelessness for each patient visit which was selected from the Oscour(®) database by the patient chief-complaint or diagnosis code referring to hypothermia or frostbites. The proposed indicator is based on the maximization of three criteria: the positive predictive value, the proportion of people identified as being homeless and the number of emergency department visits. A Shewhart control chart was applied to the indicator for the four winters between 2005 and 2009 in the Paris area. Values beyond the statistical threshold would indicate a need for an adjustment to the program strategy. Two hundred and sixteen medical files were analyzed. An indicator was created, "number of emergency department visits of 15 to 69-years-old persons with chief-complaint or diagnosis code referring to hypothermia". It had a positive predictive value estimated near 85 % and identified 61.7 % people as being homeless. In the winter of 2008-2009, the statistical threshold was reached in December during the first cold spell, and again at the beginning of January during a period of severe cold. Our results support the use of this health indicator

  10. Volcanos and el Nino - signal separation in Winter

    International Nuclear Information System (INIS)

    Kirchner, I.; Graf, H.F.

    1993-01-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  11. Volcanos and el Nino - signal separation in Winter

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, I.; Graf, H.F.

    1993-12-01

    The aim of this study is the detection of climate signals following violent volcanic eruptions in relation to those forced by El Nino during winter in higher latitudes of the northern hemisphere. The applied statistical methods are a combination of the local t-test statistics and signal detection methods based on Empirical Orthogonal Functions (EOFs). The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland is well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is only weak in high latitudes during winter. The local anomalies in the El Nino forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combination of high stratospheric aerosol loading and El Nino leads to a climate perturbation stronger than for forcing with El Nino or stratospheric aerosol alone. Over Europe, generally the volcanic signal dominates, and in the Pacific region the El Nino forcing determines the observed and the simulated anomalies in winter. (orig./KW)

  12. Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Giuseppina A. Giorgio

    2017-05-01

    Full Text Available The Urban Heat Island (UHI phenomenon prevalently concerns industrialized countries. It consists of a significant increase in temperatures, especially in industrialized and urbanized areas, in particular, during extreme warm periods like summer. This paper explores the climate variability of temperatures in two stations located in Matera city (Southern Italy, evaluating the increase in temperatures from 1988 to 2015. Moreover, the Corine Land Covers (1990–2000–2006–2012 were used in order to investigate the effect of land use on temperatures. The results obtained confirm the prevalence of UHI phenomena for industrialized areas, highlighting the proposal that the spreading of settlements may further drive these effects on the microclimate. In particular, the presence of industrial structures, even in rural areas, shows a clear increase in summer maximum temperatures. This does not occur in the period before 2000, probably due to the absence of the industrial settlement. On the contrary, from 2000 to 2015, changes are not relevant, but the maximum temperatures have always been higher than in the suburban area (station localized in green zone during daylight hours.

  13. Present and future assessment of growing degree days over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Matzarakis, Andreas

    2017-10-01

    The determination of heat requirements in the first developing phases of plants has been expressed as Growing Degree Days (GDD). The current study focuses on three selected study areas in Greece that are characterised by different climatic conditions due to their location and aims to assess the future variation and spatial distribution of Growing Degree Days (GDD) and how these can affect the main cultivations in the study areas. Future temperature data were obtained and analysed by the ENSEMBLES project. The analysis was performed for the future periods 2021-2050 and 2071-2100 with the A1B and B1 scenarios. Spatial distribution was performed using a combination of dynamical and statistical downscaling technique through ArcGIS 10.2.1. The results indicated that for all the future periods and scenarios, the GDD are expected to increase. Furthermore, the increase in the Sperchios River basin will be the highest, followed by the Ardas and the Geropotamos River basins. Moreover, the cultivation period will be shifted from April-October to April-September which will have social, economical and environmental benefits. Additionally, the spatial distribution indicated that in the upcoming years the existing cultivations can find favourable conditions and can be expanded in mountainous areas as well. On the other hand, due to the rough topography that exists in the study areas, the wide expansion of the existing cultivations into higher altitudes is unaffordable. Nevertheless, new more profitable cultivations can be introduced which can find propitious conditions in terms of GDD.

  14. The Guayas Estuary and sea level corrections to calculate flooding areas for climate change scenarios

    Science.gov (United States)

    Moreano, H. R.; Paredes, N.

    2011-12-01

    The Guayas estuary is the inner area of the Gulf of Guayaquil, it holds a water body of around 5000 km2 and the Puna island divides the water flow in two main streams : El Morro and Estero Salado Channel (length: 90 Km.) and Jambeli and Rio Guayas Channel (length: 125km.). The geometry of the estuarine system with the behavior of the tidal wave (semidiurnal) makes tidal amplitude higher at the head than at the mouth, whereas the wave crest at the head is delayed from one and a half to two hours from that at the mouth and sea level recorded by gages along the estuary are all different because of the wave propagation and mean sea level (msl) calculated for each gage show differences with that of La Libertad which is the base line for all altitudes on land (zero level). A leveling and calculations were made to correct such differences in a way that all gages (msl) records were linked to La Libertad and this in turn allowed a better estimates of flooding areas and draw them on topographic maps where zero level corresponds to the mean sea level at La Libertad. The procedure and mathematical formulation could be applied to any estuary or coastal area and it is a useful tool to calculate such areas especially when impacts are on people or capital goods and related to climate change scenarios.

  15. Water erosion on areas planted to potato in Tucumán by climate change.

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  16. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    Science.gov (United States)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  17. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-03-01

    The assessment of future precipitation variations prevailing in an area is essential for the research regarding climate and climate change. The current paper focuses on 3 selected areas in Greece that present different climatic characteristics due to their location and aims to assess and compare the future variation of annual and seasonal precipitation. Future precipitation data from the ENSEMBLES anthropogenic climate-change (ACC) global simulations and the Climate version of the Local Model (CLM) were obtained and analyzed. The climate simulations were performed for the future periods 2021-2050 and 2071-2100 under the A1B and B1 scenarios. Mann-Kendall test was applied to investigate possible trends. Spatial distribution of precipitation was performed using a combination of dynamic and statistical downscaling techniques and Kriging method within ArcGIS 10.2.1. The results indicated that for both scenarios, reference periods and study areas, precipitation is expected to be critically decreased. Additionally, Mann-Kendall test application showed a strong downward trend for every study area. Furthermore, the decrease in precipitation for the Ardas River basin characterized by the continental climate will be tempered, while in the Sperchios River basin it will be smoother due to the influence of some minor climatic variations in the basins' springs in the highlands where milder conditions occur. Precipitation decrease in the Geropotamos River basin which is characterized by Mediterranean climate will be more vigorous. B1 scenario appeared more optimistic for the Ardas and Sperchios River basins, while in the Geropotamos River basin, both applied scenarios brought similar results, in terms of future precipitation response.

  18. Effects of dirty snow in nuclear winter simulations

    International Nuclear Information System (INIS)

    Vogelmann, A.M.; Robock, A.; Ellingson, R.G.

    1988-01-01

    A large-scale nuclear war would inject smoke into the atmosphere from burning forests, cities, and industries in targeted areas. This smoke could fall out onto snow and ice and would lower cryospheric albedos by as much as 50%. A global energy balance climate model is used to investigate the maximum effect these ''dirty snow'' albedos have on the surface temperature in nuclear winter simulations which span several years. These effects are investigated for different nuclear winter scenarios, snow precipitation rates, latitudinal distributions of smoke, and seasonal timings. We find that dirty snow, in general, would have a small temperature effect at mid- and low latitudes but could have a large temperature effect at polar latitudes, particularly if the soot is able to reappear significantly in later summers. Factors which limit the climatic importance of the dirty snow are (1) the dirty snow albedo is lowest when the atmosphere still contains a large amount of light-absorbing smoke; (2) even with dirty snow, sea ice areas can still increase, which helps maintain colder temperatures through the sea ice thermal inertial feedback; (3) the snow and ice areas affected by the dirty snow albedos are largest when there is little seasonal solar insolation; and (4) the area affected by the dirty snow is relatively small under all circumstances. copyright American Geophysical Union 1988

  19. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  20. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  1. Impact of change in winter strategy of one parasitoid species on the diversity and function of a guild of parasitoids.

    Science.gov (United States)

    Andrade, Thiago Oliveira; Krespi, Liliane; Bonnardot, Valérie; van Baaren, Joan; Outreman, Yannick

    2016-03-01

    The rise of temperatures may enable species to increase their activities during winter periods and to occupy new areas. In winter, resource density is low for most species and an increased number of active consumers during this season may produce heightened competitive pressure. In Western France, the aphid parasitoid species Aphidius avenae Haliday has been known to adopt a winter diapausing strategy adjacent to newly sown cereal crops, until recent reports of active winter populations in cereal crops. We investigate how the addition of this species to the winter guild of parasitoids may change the structure of the aphid-parasitoid food web and the host-exploitation strategies of previously occurring parasitoids. We showed that in winter, Aphidius avenae was mostly associated with two aphid species, Sitobion avenae Fabricius and Metopolophium dirhodum Walker, while the generalist species Aphidius rhopalosiphi was restricted to the aphid species Rhopalosiphum padi L. in the presence of Aphidius avenae. Due to this new competition, winter food webs present a higher degree of compartmentalization and lower proportional similarity index values than spring ones. Parasitoid and aphid abundances responded significantly to changes in daily high temperatures, suggesting that the host-parasitoid community structure can be partly predicted by climate. This study demonstrates how a change in the winter strategy of one species of a guild can modify complex interspecific relationships in host-parasitoid systems.

  2. Integrative assessment of climate change for fast-growing urban areas: Measurement and recommendations for future research

    Science.gov (United States)

    Haase, Dagmar; Volk, Martin

    2017-01-01

    Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts. PMID:29232695

  3. Environmental problems related to winter traffic safety conditions

    OpenAIRE

    Hääl, Maire-Liis; Sürje, Peep

    2006-01-01

    The changeable Nordic climate has added problems to road maintenance and the environment to ensure traffic safety under winter conditions. The widespread use of salt (NaCl) for snow and ice removal from roads has resulted in environmental impacts in many areas. Some of the problems associated with the use of NaCl are the corrosion of bridges, road surfaces and vehicles and damage to roadside vegetation and aquatic system that are affected by water from de-iced roads. Accumulation of hard meta...

  4. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  5. Spirit's Winter Work Site

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  6. Attribution of UK Winter Floods to Anthropogenic Forcing

    Science.gov (United States)

    Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.

    2014-12-01

    Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.

  7. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  8. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  9. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Dwire

    2018-04-01

    Full Text Available Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that a warmer climate may bring. Areas associated with springs and small streams will probably experience near-term changes, and some riparian areas and wetlands may decrease in size over time. A warmer climate and reduced soil moisture could lead to a transition from riparian hardwood species to more drought tolerant conifers and shrubs. Increased frequency and spatial extent of wildfire spreading from upland forests could also affect riparian species composition. The specific effects of climate change will vary, depending on local hydrology (especially groundwater, topography, streamside microclimates, and current conditions and land use. Keywords: Climate change, Groundwater-dependent ecosystems, Riparian areas, Springs, Wetlands

  10. Ensemble of European regional climate simulations for the winter of 2013 and 2014 from HadAM3P-RM3P

    Science.gov (United States)

    Schaller, Nathalie; Sparrow, Sarah N.; Massey, Neil R.; Bowery, Andy; Miller, Jonathan; Wilson, Simon; Wallom, David C. H.; Otto, Friederike E. L.

    2018-04-01

    Large data sets used to study the impact of anthropogenic climate change on the 2013/14 floods in the UK are provided. The data consist of perturbed initial conditions simulations using the Weather@Home regional climate modelling framework. Two different base conditions, Actual, including atmospheric conditions (anthropogenic greenhouse gases and human induced aerosols) as at present and Natural, with these forcings all removed are available. The data set is made up of 13 different ensembles (2 actual and 11 natural) with each having more than 7500 members. The data is available as NetCDF V3 files representing monthly data within the period of interest (1st Dec 2013 to 15th February 2014) for both a specified European region at a 50 km horizontal resolution and globally at N96 resolution. The data is stored within the UK Natural and Environmental Research Council Centre for Environmental Data Analysis repository.

  11. Vegetation history inferred from pollen in Late Quaternary faecal deposits (hyraceum) in the Cape winter-rain region, and its bearing on past climates in South Africa

    CSIR Research Space (South Africa)

    Scott, L

    2007-01-01

    Full Text Available blocks of hyrax dung, where detailed enough, show marked variation at a millennial to centennial scale. Over the whole sequence, the most prominent change in pollen composition occurs just after 16 ka when a sudden decline of fynbos elements in favour... in the region is more complex than previously suggested in the usual generalizations. Sharp variations of similar scale to those found in the LGM also characterize the climatic evolution throughout the Holo- cene. We assume that regular marked centennial...

  12. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  13. Improvement of greenhouse design and climate control in mediterranean conditions

    NARCIS (Netherlands)

    Tuzel, Yuksel; Zwart, de Feije; Sapounas, A.; Hemming, Silke; Stanghellini, Cecilia

    2017-01-01

    The Mediterranean Region is one of the most important areas of the world in terms of protected cultivation. Turkey, with its increasing greenhouse area, is one of the representative countries of the region. Thanks to the mild winter climatic conditions, cultivation of vegetables under simple

  14. Maize stubble as foraging habitat for wintering geese and swans in northern Europe

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Madsen, Jesper; Nolet, Bart, A.

    2018-01-01

    Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging in this r......Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging...... in this region, little is known about the abundance and energetic value of this resource to foraging birds. In this study we quantify food availability, intake rates and energetic profitability of the maize stubble habitat, and describe the value of this increasingly cultivated crop to wintering geese and swans...... of geese and swans wintering in northern Europe....

  15. Global Warming: The Instability of Desert Climate is Enhancing in the Northwest Area in China: A Case Study in the Desert Area in Northwestern China

    OpenAIRE

    Zhao-Feng Chang; Shu-Juan Zhu; Fu-Gui Han; Sheng-Nnian Zhong; Qiang-Qiang Wang; Jian-Hui Zhang

    2013-01-01

    To disclose the relation between the sandstorms change and the temperature changes, a case study in the desert area in northwestern china is investigated. The results showed that: the instability of climate in Minqin desert area is enhancing in the arid desert region in northwest China. Mainly as follows: Variation the annual extreme maximum temperature increasing. Variation of extreme minimum temperature also an increasing trend. Average visibility of sandstorms significantly reduced and the...

  16. Impact of Climate Variability on the Coastal Areas of Argentina and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Existing information on the geomorphological, social and economic impact of climate ... and assess the impact of climate change in relation to land use regulations and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  17. Climate trends in a specific Mediterranean viticultural area between 1950 and 2006

    Directory of Open Access Journals (Sweden)

    Frédéric Laget

    2008-09-01

    Significance and impact of study: Climate is a major factor in vine cultivation and in the understanding of viticultural terroirs and wine typicality. The climate trends observed over a 50-year period are discussed in the viticultural context of a Mediterranean region. However, the interaction between climate change and technical progress in viticulture and oenology complicate the analysis over the time frame under consideration.

  18. Climate Change Anticipation on Supporting Capacity of Fishing Environment in the Coastal Area of Tanjungmas Semarang City

    Science.gov (United States)

    Sari, Indah Kurniasih Wahyu; Hadi, Sudharto P.

    2018-02-01

    Climate change is no longer a debate about its existence but already a problem shared between communities, between agencies, between countries even global for handling serious because so many aspects of life and the environment is affected, especially for communities in coastal environments This climate change is a threat to the Earth, because it can affect all aspects of life and will damage the balance of life of Earth Climate change happens slowly in a fairly long period of time and it is a change that is hard to avoid. These Phenomena will give effect to the various facets of life. Semarang as areas located to Java and bordering the Java Sea are at high risk exposed to the impacts of climate change Also not a few residents of the city of Semarang who settled in the northern part of the city of Semarang and also have a livelihood as farmers/peasants and fishermen Many industrial centers or attractions that are prone to impacted by climate change. Thus, the anticipation of climate change on resources support neighborhood of fishermen in the coastal area of Tanjungmas Semarang interesting for further review. This study aims to find out more the influence of climate change on the environment of fishing identify potential danger due to the impacts of climate change on coastal areas of Tanjungmas Semarang The research was conducted through surveys, interviews and field observation without a list of questions to obtain primary and secondary data As for the analysis undertaken, namely the analysis of climate change on the coastal environment, the analysis of productivity of fishermen as well as the analysis of the likelihood of disaster risk at the coast due to climate change. From the results of the study the occurrence of sea rise as one of the indicators of climate change in the coastal City of Semarang to reach 0.8 mm/year and average soil degradation that ranged between 5 - 12 cm/year cause most coastal communities as well as the social life of the agricultural

  19. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered.

    Science.gov (United States)

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer

    2018-05-01

    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  20. The long-term effect of climate change on productivity of winter wheat in Denmark: a scenario analysis using three crop models

    DEFF Research Database (Denmark)

    Öztürk, Isik; Sharif, Behzad; Baby, Sanmohan

    2017-01-01

    ) A1B emission scenario for the 21st century using three process-based models; A 20-year set (1991–2010) of observed daily climate data from Aarslev, Denmark was used to form the baseline, from which the RCM data were generated. The simulation of crop growth was performed with increasing carbon...... dioxide (CO2) levels and under continuous mono-cropping system at different N input rates. Results indicated that grain yield and grain N will be reduced in the future despite increased CO2 concentration in the atmosphere. While the increased N input may increase yield, it will not increase grain N...

  1. Coefficient of variation for use in crop area classification across multiple climates

    Science.gov (United States)

    Whelen, Tracy; Siqueira, Paul

    2018-05-01

    In this study, the coefficient of variation (CV) is introduced as a unitless statistical measurement for the classification of croplands using synthetic aperture radar (SAR) data. As a measurement of change, the CV is able to capture changing backscatter responses caused by cycles of planting, growing, and harvesting, and thus is able to differentiate these areas from a more static forest or urban area. Pixels with CV values above a given threshold are classified as crops, and below the threshold are non-crops. This paper uses cross-polarized L-band SAR data from the ALOS PALSAR satellite to classify eleven regions across the United States, covering a wide range of major crops and climates. Two separate sets of classification were done, with the first targeting the optimum classification thresholds for each dataset, and the second using a generalized threshold for all datasets to simulate a large-scale operationalized situation. Overall accuracies for the first phase of classification ranged from 66%-81%, and 62%-84% for the second phase. Visual inspection of the results shows numerous possibilities for improving the classifications while still using the same classification method, including increasing the number and temporal frequency of input images in order to better capture phenological events and mitigate the effects of major precipitation events, as well as more accurate ground truth data. These improvements would make the CV method a viable tool for monitoring agriculture throughout the year on a global scale.

  2. The Use of Woodland Products to Cope with Climate Variability in Communal Areas in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Lotte S. Woittiez

    2013-12-01

    Full Text Available Common lands provide smallholder farmers in Africa with firewood, timber, and feed for livestock, and they are used to complement human diets through the collection of edible nontimber forest products (NTFPs. Farmers have developed coping mechanisms, which they deploy at times of climatic shocks. We aimed to analyze the importance of NTFPs in times of drought and to identify options that could increase the capacity to adapt to climate change. We used participatory techniques, livelihood analysis, observations, and measurements to quantify the use of NTFPs. Communities recognized NTFPs as a mechanism to cope with crop failure. We estimated that indigenous fruits contributed to approximately 20% of the energy intake of wealthier farmers and to approximately 40% of the energy intake of poor farmers in years of inadequate rainfall. Farmers needed to invest a considerable share of their time to collect wild fruits from deforested areas. They recognized that the effectiveness of NTFPs as an adaptation option had become threatened by severe deforestation and by illegal harvesting of fruits by urban traders. Farmers indicated the need to plan future land use to (1 intensify crop production, (2 cultivate trees for firewood, (3 keep orchards of indigenous fruit trees, and (4 improve the quality of grazing lands. Farmers were willing to cultivate trees and to organize communal conservation of indigenous fruits trees. Through participatory exercises, farmers elaborated maps, which were used during land use discussions. The process led to prioritization of pressing land use problems and identification of the support needed: fast-growing trees for firewood, inputs for crop production, knowledge on the cultivation of indigenous fruit trees, and clear regulations and compliance with rules for extraction of NTFPs. Important issues that remain to be addressed are best practices for regeneration and conservation, access rules and implementation, and the

  3. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Science.gov (United States)

    Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang

    2018-01-01

    The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840

  4. Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets.

    Science.gov (United States)

    Lee, Jung-Seok; Carabali, Mabel; Lim, Jacqueline K; Herrera, Victor M; Park, Il-Yeon; Villar, Luis; Farlow, Andrew

    2017-07-10

    Dengue has been prevalent in Colombia with high risk of outbreaks in various locations. While the prediction of dengue epidemics will bring significant benefits to the society, accurate forecasts have been a challenge. Given competing health demands in Colombia, it is critical to consider the effective use of the limited healthcare resources by identifying high risk areas for dengue fever. The Climate Risk Factor (CRF) index was constructed based upon temperature, precipitation, and humidity. Considering the conditions necessary for vector survival and transmission behavior, elevation and population density were taken into account. An Early Warning Signal (EWS) model was developed by estimating the elasticity of the climate risk factor function to detect dengue epidemics. The climate risk factor index was further estimated at the smaller geographical unit (5 km by 5 km resolution) to identify populations at high risk. From January 2007 to December 2015, the Early Warning Signal model successfully detected 75% of the total number of outbreaks 1 ~ 5 months ahead of time, 12.5% in the same month, and missed 12.5% of all outbreaks. The climate risk factors showed that populations at high risk are concentrated in the Western part of Colombia where more suitable climate conditions for vector mosquitoes and the high population level were observed compared to the East. This study concludes that it is possible to detect dengue outbreaks ahead of time and identify populations at high risk for various disease prevention activities based upon observed climate and non-climate information. The study outcomes can be used to minimize potential societal losses by prioritizing limited healthcare services and resources, as well as by conducting vector control activities prior to experiencing epidemics.

  5. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    Science.gov (United States)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  6. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2018-05-01

    Full Text Available The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems, Fusarium pseudograminearum (14.9% from roots; 27.8% from stems, Rhizoctonia cerealis (1.7% from roots; 4.4% from stems, and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems. We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01 in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01 were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum. In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4% or in individual plants (11.6% was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing

  7. Modeling winter moth Operophtera brumata egg phenology

    NARCIS (Netherlands)

    Salis, Lucia; Lof, Marjolein; Asch, van Margriet; Visser, Marcel E.

    2016-01-01

    Understanding the relationship between an insect's developmental rate and temperature is crucial to forecast insect phenology under climate change. In the winter moth Operophtera brumata timing of egg-hatching has severe fitness consequences on growth and reproduction as egg-hatching has to match

  8. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  9. Assessing Effect of Manure and Chemical Fertilizer on Net Primary Production, Soil Respiration and Carbon Budget in Winter Wheat (Triticum aestivum L. Ecosystem under Mashhad Climatic Condition

    Directory of Open Access Journals (Sweden)

    Y alizade

    2018-02-01

    Full Text Available Introduction The imbalance between anthropogenic emissions of CO2 and the sequestration of CO2 from the atmosphere by ecosystems has led to an increase in the average concentration of this greenhouse gas (GHG in the atmosphere. Enhancing carbon sequestration in soil is an important issue to reduce net flux of carbon dioxide to the atmosphere. Soil organic carbon content is obtained from the difference between carbon input resulting from plant biomass and carbon losses the soil through different ways including soil respiration. CO2 emission varies largely during the year and is considerably affected by management type. The goal of this investigation was to study the effects of application of manure and chemical fertilizer on CO2 flux and carbon balance in agricultural system. Materials and Methods In order to evaluate the carbon dynamics and effect of fertilizer and manure management on soil respiration and carbon budget for winter wheat, an experiment was conducted as a randomized complete block design with three replications in research field of Faculty of Agriculture of Ferdowsi University of Mashhad for two years of 2010-2011 and 2011-2012 . The experimental treatments were 150 and 250 kg chemical nitrogen (N1 and N2, manure (M, manure plus chemical nitrogen (F-M and control (C. CO2 emission was measured six times during growth season and to minimize daily temperature variation error, the measurement was performed between 8 to 11 am. Chambers length and diameter were 50 cm and 30 cm respectively and their edges were held down 3 cm in soil in time of sampling so that no plant live mass was present in the chamber. Carbon budgets were estimated for two years using an ecological technique. Results and Discussion The net primary production (NPP was significantly higher in the F2 and F-M treatments with 6467 and 6294kg ha-1 in the first year and 6260 and 6410 kg ha-1 in the second year, respectively. The highest shoot to root ratio was obtained in

  10. Climatic changes in the next hundred years especially in our areas

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2000-01-01

    The article surveys how pollution may disturb the climate, the most commonly used climatic models and some results using these models from the large European Climatic Research Centres. The uncertainties in predicting the changes in the currents in the Atlantic Ocean caused by the global warming and how this may lead to uncertain climatic change estimates for Scandinavia are reviewed. The research into the factors influencing the climatic changes north of 60 deg has intensified since 1995. However, the author points out that the uncertainties in the estimations are still very large and suggests further research, monitoring changes in the ocean ice and currents as well as all physical processes which are important to the expected alterations in order to improve the climatic models and the estimates. 8 figs

  11. Evidence of Climate Change (Global Warming) and Temperature Increases in Arctic Areas

    OpenAIRE

    Eric Kojo Wu Aikins

    2012-01-01

    This paper contributes to the debate on the proximate causes of climate change. Also, it discusses the impact of the global temperature increases since the beginning of the twentieth century and the effectiveness of climate change models in isolating the primary cause (anthropogenic influences or natural variability in temperature) of the observed temperature increases that occurred within this period. The paper argues that if climate scientist and policymakers ignore the...

  12. FLOOD RISK FACTORS IN SUBURBAN AREA IN THE CONTEXT OF CLIMATE CHANGE ADAPTATION POLICIES – CASE STUDY OF WROCLAW, POLAND

    Directory of Open Access Journals (Sweden)

    Szymon Szewrański

    2015-02-01

    Full Text Available The uncontrolled sprawl of urban development exerts environmental impact in rural areas. The aim of this study is to identify areas vulnerable to climate change in the context of implementation of policies adapting to climate change at the local level. Such areas can be defined as those where the negative implication of flesh flood overlapping with soil sealing is observed. The study areas composed of municipalities which are influenced by the urban sprawl process of the city of Wroclaw, Poland. The analyses were performed using publicly available spatial data from aerial orthophotomaps from 2004–2012, the satellite images; archival and current land use maps. The database CORINE 1990, 2000, 2006; Urban Atlas and geodatabase of the European Environment Agency were also of an important usage for this study.

  13. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  14. Climate change and farmers’ cropping patterns in Cemoro watershed area, Central Java, Indonesia

    Science.gov (United States)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Cropping pattern applied by farmers is usually based on the availability of water. Farmers cultivate rice when water is available. If it is unavailable, farmers will choose to plant crops that need less water. Climate change greatly affects to farmers in determining the cropping pattern as it alters the rainfall pattern and distribution in the region. This condition requires farmers to adjust the cropping pattern so that they can do the farming successfully. This study aims to examine the application of cropping patterns applied by the farmers in the Cemoro Watershed, Central Java, Indonesia. Descriptive analysis approach is employed in this research. The results showed that farmers’ cropping pattern is not based on the availability of water. However, it adopts a habit that has been practiced since long time ago or just adopt others farmer's habit. The cropping pattern applied by irrigated paddy farmers in Cemoro watershed area consists of two types: rice-rice-rice and rice-rice-secondary crops. Among those two types, most farmers apply the rice-rice-rice pattern. Meanwhile, there are three cropping patterns applied in the rain-land, namely rice-rice-rice, rice-rice-secondary crop, and rice-rice-fallow. The majority of farmers apply the second pattern (rice-rice-secondary crops). It was also found that farmers’ cropping pattern was not in accordance with the recommendation of the local government.

  15. Effect of limestone dust on vegetation in an area with a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Gale, J; Easton, J

    1979-01-01

    Possible effects of limestone dust on photosynthesis and transpiration throughout the summer season were assessed. Calculations were based on measurements of the dust accumulating on the leaves during the summer season, photosynthesis light curves of representative species, effect of dust on the optical characteristics of the leaves and stomatal diffusion resistances in the region of the quarry based on meteorological data. On a seasonal basis the dust was calculated to have only a very small effect in reducing photosynthesis and transpiration. A field experiment in which irrigated Xanthium strumarium plants were grown at different distances downwind from the quarry showed no deleterious effect of the dust even when plants close to the quarry were heavily coated. Comparison of aerial photographs taken just before the quarry was opened and 22 years later revealed no changes in the size, number or distribution pattern of the perennial, tree and shrub vegetation. It is concluded that, in an area with a Mediterranean climate, limestone dust, whilst being aesthetically offensive, does not significantly affect the growth of the natural vegetation. 13 references, 5 figures, 3 tables.

  16. ANALYSIS OF THE TENSILE STRENGTH OF 100% WOOL YARN FROM DIFFERENT CLIMATIC AREAS

    Directory of Open Access Journals (Sweden)

    OANA Dorina

    2017-05-01

    Full Text Available One of the basic conditions required of yarns is to have enough tensile strength to allow them to be turned into textiles and also to give the final product durability. During processing, threads are subjected to various unavoidable forms of mechanical stress, simple or compounded, but the amount of stress can be kept under control by adjusting the corresponding operating parameters (speed, gauges, push force on the cylinders of the rolling train etc.. The values of the operating parameters of the spinning operation are set so as to obtain uniform products in large scale production, but also to ensure the preservation of the properties of the fibers and yarns, for further processing. To this end we analyzed the tensile strength of three batches of 100% wool yarn meant for knitting, from three different geo-climatic areas. These are fine woolen yarn of 25 tex and torque of 620 twists/meter. The study of the tensile strength was carried out using a Uster R Tensojet 4 (UTj4 tension meter, analyzing ten samples of 500 m from each batch. The statistical and mathematical processing of the data obtained after analyzing the samples indicated that the yarns from South Africa have better tensile strength and a lower mechanical impedance variation coefficient than yarns from Asia and England.

  17. Climate change, heat, and mortality in the tropical urban area of San Juan, Puerto Rico

    Science.gov (United States)

    Méndez-Lázaro, Pablo A.; Pérez-Cardona, Cynthia M.; Rodríguez, Ernesto; Martínez, Odalys; Taboas, Mariela; Bocanegra, Arelis; Méndez-Tejeda, Rafael

    2016-12-01

    Extreme heat episodes are becoming more common worldwide, including in tropical areas of Australia, India, and Puerto Rico. Higher frequency, duration, and intensity of extreme heat episodes are triggering public health issues in most mid-latitude and continental cities. With urbanization, land use and land cover have affected local climate directly and indirectly encouraging the Urban Heat Island effect with potential impacts on heat-related morbidity and mortality among urban populations. However, this association is not completely understood in tropical islands such as Puerto Rico. The present study examines the effects of heat in two municipalities (San Juan and Bayamón) within the San Juan metropolitan area on overall and cause-specific mortality among the population between 2009 and 2013. The number of daily deaths attributed to selected causes (cardiovascular disease, hypertension, diabetes, stroke, chronic lower respiratory disease, pneumonia, and kidney disease) coded and classified according to the Tenth Revision of the International Classification of Diseases was analyzed. The relations between elevated air surface temperatures on cause-specific mortality were modeled. Separate Poisson regression models were fitted to explain the total number of deaths as a function of daily maximum and minimum temperatures, while adjusting for seasonal patterns. Results show a significant increase in the effect of high temperatures on mortality, during the summers of 2012 and 2013. Stroke (relative risk = 16.80, 95% CI 6.81-41.4) and cardiovascular diseases (relative risk = 16.63, 95% CI 10.47-26.42) were the primary causes of death most associated with elevated summer temperatures. Better understanding of how these heat events affect the health of the population will provide a useful tool for decision makers to address and mitigate the effects of the increasing temperatures on public health. The enhanced temperature forecast may be a crucial component in decision

  18. Climate change, heat, and mortality in the tropical urban area of San Juan, Puerto Rico

    Science.gov (United States)

    Méndez-Lázaro, Pablo A.; Pérez-Cardona, Cynthia M.; Rodríguez, Ernesto; Martínez, Odalys; Taboas, Mariela; Bocanegra, Arelis; Méndez-Tejeda, Rafael

    2018-05-01

    Extreme heat episodes are becoming more common worldwide, including in tropical areas of Australia, India, and Puerto Rico. Higher frequency, duration, and intensity of extreme heat episodes are triggering public health issues in most mid-latitude and continental cities. With urbanization, land use and land cover have affected local climate directly and indirectly encouraging the Urban Heat Island effect with potential impacts on heat-related morbidity and mortality among urban populations. However, this association is not completely understood in tropical islands such as Puerto Rico. The present study examines the effects of heat in two municipalities (San Juan and Bayamón) within the San Juan metropolitan area on overall and cause-specific mortality among the population between 2009 and 2013. The number of daily deaths attributed to selected causes (cardiovascular disease, hypertension, diabetes, stroke, chronic lower respiratory disease, pneumonia, and kidney disease) coded and classified according to the Tenth Revision of the International Classification of Diseases was analyzed. The relations between elevated air surface temperatures on cause-specific mortality were modeled. Separate Poisson regression models were fitted to explain the total number of deaths as a function of daily maximum and minimum temperatures, while adjusting for seasonal patterns. Results show a significant increase in the effect of high temperatures on mortality, during the summers of 2012 and 2013. Stroke (relative risk = 16.80, 95% CI 6.81-41.4) and cardiovascular diseases (relative risk = 16.63, 95% CI 10.47-26.42) were the primary causes of death most associated with elevated summer temperatures. Better understanding of how these heat events affect the health of the population will provide a useful tool for decision makers to address and mitigate the effects of the increasing temperatures on public health. The enhanced temperature forecast may be a crucial component in decision

  19. Climate change, heat, and mortality in the tropical urban area of San Juan, Puerto Rico.

    Science.gov (United States)

    Méndez-Lázaro, Pablo A; Pérez-Cardona, Cynthia M; Rodríguez, Ernesto; Martínez, Odalys; Taboas, Mariela; Bocanegra, Arelis; Méndez-Tejeda, Rafael

    2018-05-01

    Extreme heat episodes are becoming more common worldwide, including in tropical areas of Australia, India, and Puerto Rico. Higher frequency, duration, and intensity of extreme heat episodes are triggering public health issues in most mid-latitude and continental cities. With urbanization, land use and land cover have affected local climate directly and indirectly encouraging the Urban Heat Island effect with potential impacts on heat-related morbidity and mortality among urban populations. However, this association is not completely understood in tropical islands such as Puerto Rico. The present study examines the effects of heat in two municipalities (San Juan and Bayamón) within the San Juan metropolitan area on overall and cause-specific mortality among the population between 2009 and 2013. The number of daily deaths attributed to selected causes (cardiovascular disease, hypertension, diabetes, stroke, chronic lower respiratory disease, pneumonia, and kidney disease) coded and classified according to the Tenth Revision of the International Classification of Diseases was analyzed. The relations between elevated air surface temperatures on cause-specific mortality were modeled. Separate Poisson regression models were fitted to explain the total number of deaths as a function of daily maximum and minimum temperatures, while adjusting for seasonal patterns. Results show a significant increase in the effect of high temperatures on mortality, during the summers of 2012 and 2013. Stroke (relative risk = 16.80, 95% CI 6.81-41.4) and cardiovascular diseases (relative risk = 16.63, 95% CI 10.47-26.42) were the primary causes of death most associated with elevated summer temperatures. Better understanding of how these heat events affect the health of the population will provide a useful tool for decision makers to address and mitigate the effects of the increasing temperatures on public health. The enhanced temperature forecast may be a crucial component in decision

  20. Linked Climatic, Environmental, and Societal Changes in the Lower Yellow River Area during the Neolithic-Bronze Age Transition

    Science.gov (United States)

    Yu, S. Y.

    2017-12-01

    Understanding human-environment interactions during times of large and rapid climatic changes in the second half of the Holocene may deepen our insight into human adaptation and resilience against potential climate anomalies in the future. However, the drivers and societal responses tend to be different from area to area, and the degree and nature of this link are still a matter of debate. Flooding sediments preserved within the cultural stratigraphical context at archaeological sites in the lower Yellow River area may offer an ideal framework for evaluating the association between evolution of Neolithic cultures and climate fluctuations. Here, we present evidence from a mound site for the prevalence of extreme overbank floods during the Neolithic-Bronze Age transition most likely triggered by excessive summer precipitation in the Yellow River valley when prolonged weak El Niño condition prevailed. Repeated flooding during around 4000-3500 cal yr BP substantially modified the floodplain landscape, thereby driving people to disperse to areas dominated by the Erlitou culture and eventually giving rise to a state-level society in central China historiographically identified as the Xia Dynasty. Changes in the drainage network due to repeated flooding also exerted a profound impact on the rice farming-based communities centered in the region of the floods. Our results provide a precise past analogue of the linked climatic, environmental, and societal changes at a time when human societies were evolving into a hierarchy similar to those of today.

  1. Prediction of thermal behavior of pervious concrete pavements in winter.

    Science.gov (United States)

    2017-05-15

    Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and : mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing,...

  2. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  3. A climate risk assessment of clean water supply in an urban area: A case study of South Tangerang city, Indonesia

    Science.gov (United States)

    Nastiti, S. I. W.; Kusnoputranto, H.; Boer, R.; Utomo, S. W.

    2018-03-01

    The demand for clean water in South Tangerang, Indonesia, is very high. At present, this demand is mostly met by groundwater that is much influenced by climate variability, land cover change, and human activities. The local company on water services (PDAM) provides clean water services for only about 9% of the population. The climate risk assessment conducted by South Tangerang Government in 2016 indicates that several areas are potentially exposed to a high risk of climate change. Survey and in-depth interview with communities and sectoral officers suggest that a risk to clean water supply in this city is increasing. This study aims to assess climate potential risks on clean water supply based on the 2016 study. We adopted the method of that study by modifying some of the vulnerability indicators that can represent clean water access and supply. The results of the study demonstrate that many wards in South Tangerang would be exposed to high climate risks of clean water supply. By 2021, about 54% of wards would be exposed from high to the very very high risk of clean water supply. These results signify the tangible need of adaptation actions, to prevent the worsening impacts of climate on clean water supply.

  4. Impact assessment of recent climate change on rice yields in the Heilongjiang Reclamation Area of north-east China.

    Science.gov (United States)

    Zhou, Yang; Li, Ning; Dong, Guanpeng; Wu, Wenxiang

    2013-08-30

    Investigating the degree to which climate change may have impacted on rice yields can provide an insight into how to adapt to climate change in the future. Meteorological and rice yield data over the period 1960-2009 from the Heilongjiang Reclamation Area of north-east China (HRANC) were used to explore the possible impacts of climate change on rice yields at sub-regional scale. Results showed that a warming trend was obvious in the HRANC and discernible climate fluctuations and yield variations on inter-annual scale were detected to have occurred in the 1980s and 1990s, respectively. Statistically positive correlation was observed between growing season temperature and rice yields, with an increase rate by approximately 3.60% for each 1°C rise in the minimum temperature during growing season. Such findings are consistent with the current mainstream view that warming climate may exert positive impacts on crop yields in the middle and higher latitude regions. Our study indicated that the growing season minimum temperature was a major driver of all the climatic factors to the recent increase trends in rice yield in HRANC over the last five decades. © 2013 Society of Chemical Industry.

  5. Communicating Certainty About Nuclear Winter

    Science.gov (United States)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  6. Long-term evolution of the Campine area in Northern Belgium: past and expected future evolution of tectonics and climate

    International Nuclear Information System (INIS)

    De Craen, M.; Beerten, K.; Brassinnes, S.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. Disposal of radioactive waste in a geological repository involves the reliance, now and in the long-term future, on the geological and hydrogeological environment. In preparation of the safety and feasibility case 1 (SFC1), the long-term geodynamic evolution of Boom Clay and its geological environment in the Campine area in northern Belgium is studied. Time frames considered are the geological past and the future 1 million year. The idea is that the past long-term evolution can be extended to predict what might happen in the future. In this paper, we first focusses on the past long-term tectonic evolution of the Campine area, and make an extrapolation for the future 1 Ma. We then focus on past climate evolution, and similarly, an assessment of possible future climate conditions is made for the Campine area within the next 1 Ma. Another paper focusses on the combined effect of tectonics and climate on the evolution of the surface environment in the Campine area for the next 1 Ma, with respect to geomorphological, pedological and hydrological processes. During the Palaeozoic, the geodynamic evolution of the Campine area was mainly determined by tectonics. A large intermittently subsiding sedimentary basin existed in which large amounts of sediments were deposited, and which was protected by the Brabant Massif from major oro-genetic compressive processes. Palaeozoic sediments in the Campine Basin reach a maximum thickness of 4000 m. During Mesozoic and Cenozoic, its geodynamic evolution was the interactive result of plate tectonics, sea level changes and climate evolution. Further subsidence resulted in a thick sequence of sedimentary deposits. Mesozoic sediments are found throughout the Campine area while remains of Jurassic-Triassic sediments are found only in the central Roer Valley Graben in the east. The Cenozoic is characterised by a succession of sub-horizontal layers of Tertiary clays and sands and covered by

  7. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Science.gov (United States)

    Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun

    2016-01-01

    Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...

  8. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    DEFF Research Database (Denmark)

    Garcia, Raquel A.; Burgess, Neil David; Cabeza, Mar

    2012-01-01

    Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate...

  9. Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States

    Science.gov (United States)

    Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.

    2017-01-01

    The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and

  10. Constraints to leisure travel and visitation to natural areas: An international comparison of four cities.In: Chavez, Deborah J.; Winter, Patricia L.; Absher, James D., eds

    Science.gov (United States)

    Patrick T. Tierney; Deborah J. Chavez; James D. Absher

    2008-01-01

    Leisure travel and visitation to natural areas and constraints to undertaking these activities are important concerns for recreation resource managers and tourism businesses. Surveys were administered to Los Angeles, Barcelona, Glasgow, and Morelia, Mexico, residents to ascertain leisure travel and undeveloped natural area visitation levels and constraints. A...

  11. Air pollution and urban climate in the Rhine--Westphalian industrial area and their influence on lichen growth on trees

    Energy Technology Data Exchange (ETDEWEB)

    Domroes, M

    1966-01-01

    Lichens on tree boles were examined on 25,114 trees along streets and areas in the central part of the Ruhr District and related to air pollution concentrations. The lichens were studied with regard to physiognomy, density, and exposition, and in relation to bark characteristics of tree species. Lichens were classified into the following areas: Lichen desert, transitional zone, or area of normal distribution. The lichens were sensitive to air pollution, especially sulfur dioxide emissions. The damaging influence of the town climate, especially aridity, was taken into consideration. Lichens were missing in all areas with a high degree of air pollution. These were areas of high density housing and of lower humidity than open country. Areas which had lower housing density and lower humidity also had increased lichen damage. Lichens were missing in the immediate neighborhood of factories or industrial areas outside towns. Lichen growth was reduced along busy roads.

  12. Adapting to Climate Change: Reconsidering the Role of Protected Areas and Protected Organisms in Western North America

    Science.gov (United States)

    Graumlich, L. J.; Cross, M. S.; Hilty, J.; Berger, J.

    2007-12-01

    With the recent publication of the 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), little doubt remains among scientists that the global climate system is changing due to human influence and that climate change will have far-reaching and fundamental impacts on ecosystems and biodiversity. Arguably the best-documented evidence linking 20th Century warming trends to changes in physical and biological systems comes from the mountains of western North America (e.g., Figure SPM1 in Summary of Working Group 11 Report). In the West, ecosystem impacts include changes in the distribution of species as well as changing functional linkages between species such as the synchrony between flower emergence and pollinating insects. These climate impacts, when combined with other environmental stressors (e.g., altered disturbance regimes, land-use change and habitat fragmentation) portend an amplification of species extinction rates. One of the great challenges in adapting to climate change is developing and implementing policies that enhance ecological resilience in the face of these change. Clearly, the current system of nature reserves in Western North America is a fundamental asset for maintaining biodiversity and ecosystem services. However, the fixed- boundary nature of these protected areas presents a problem as species' ranges shift with future climate change. The loss of species whose ranges move outside of fixed park boundaries and the arrival of other species that move into protected areas could lead to significant turnover of species diversity, new species assemblages, and altered functionality. In short, reserves that were designed to protect particular species or communities may no longer serve their intended purpose under a changing climate. In this talk, we use case studies from the Greater Yellowstone Ecosystem and the Sonoran Desert Ecosystem to define strategies for enhancing ecological resilience to climate change at

  13. A GENERAL ASSESSMENT OF CLIMATE, SOIL STRUCTURE, FOREST AREAS, GROWING STOCK AND SOME FORESTRY APPLICATIONS OF ARTVIN REGION

    OpenAIRE

    Yüksek, Turan; Ölmez, Zafer

    2011-01-01

    Artvin is located in the North Eastern Blacksea region of Turkey. Forests of Artvin are spread out from cool climate zone to cold climate zone. Artvin has approximately 390471 ha of forests, which is consist of 276883 ha (70.91%) natural forest and 113588 (29.09 %) coppice forests. Forest area covering 54.77% of total land of Artvin. Most of species of forests (natural and coppice forests) areconiferous trees, such as Picea ssp., Pinus ssp., Juniperus ssp. and broaded leaves such as Quercus s...

  14. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World’s Biodiversity Priorities

    Science.gov (United States)

    Pricope, Narcisa G.; Husak, Gregory J.; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change–largely wetting–in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being. PMID:28125659

  15. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  16. The influence of negative climate changes on physical development of urban and rural areas in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Rahman NURKOVIĆ

    2014-11-01

    Full Text Available The influence of negative climate changes on physical development of urban and rural areas of Bosnia and Herzegovina has been analysed in the paper. So, economy and society in urban and rural areas of Bosnia and Herzegovina are susceptible to environmental consequences of climate changes. In practice, this means that poorer countries in development of economic activities will suffer most due to climate changes, while some developed countries can be in a position to use new commercial possibilities. Presently, there is a significant scientific consensus that human activity affected the increase of atmospheric concentration of greenhouse gases, respectively the carbon dioxide, methane, nitrous oxide, ozone and chlorofluorocarbon, as a result of global changes of climate that will probably change dramatically during the next centuries in Bosnia and Herzegovina. More and more intensive industrialisation and urbanisation, as well as tourism, a growing phenomenon of the 21st century, have numerous negative direct, indirect and multiplicative effects on flora and fauna habitats of Bosnia and Herzegovina. For all mentioned above, this paper tries to indicate to a need for more significant investing into tourism development, which is presently at a very low level of development in Bosnia and Herzegovina. In the past ten years a dynamical development of tertiary activities in urban and rural areas has been distinguished; among which shopping centres take a significant position. 

  17. Numerical climate modeling and verification of selected areas for heat waves of Pakistan using ensemble prediction system

    International Nuclear Information System (INIS)

    Amna, S; Samreen, N; Khalid, B; Shamim, A

    2013-01-01

    Depending upon the topography, there is an extreme variation in the temperature of Pakistan. Heat waves are the Weather-related events, having significant impact on the humans, including all socioeconomic activities and health issues as well which changes according to the climatic conditions of the area. The forecasting climate is of prime importance for being aware of future climatic changes, in order to mitigate them. The study used the Ensemble Prediction System (EPS) for the purpose of modeling seasonal weather hind-cast of three selected areas i.e., Islamabad, Jhelum and Muzaffarabad. This research was purposely carried out in order to suggest the most suitable climate model for Pakistan. Real time and simulated data of five General Circulation Models i.e., ECMWF, ERA-40, MPI, Meteo France and UKMO for selected areas was acquired from Pakistan Meteorological Department. Data incorporated constituted the statistical temperature records of 32 years for the months of June, July and August. This study was based on EPS to calculate probabilistic forecasts produced by single ensembles. Verification was done out to assess the quality of the forecast t by using standard probabilistic measures of Brier Score, Brier Skill Score, Cross Validation and Relative Operating Characteristic curve. The results showed ECMWF the most suitable model for Islamabad and Jhelum; and Meteo France for Muzaffarabad. Other models have significant results by omitting particular initial conditions.

  18. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  19. The Effects of Heat Advection on UK Weather and Climate Observations in the Vicinity of Small Urbanized Areas

    Science.gov (United States)

    Bassett, Richard; Cai, Xiaoming; Chapman, Lee; Heaviside, Clare; Thornes, John E.

    2017-10-01

    Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (p careful interpretation of long-term temperature data taken near small urban areas.

  20. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  1. Climate change in the Carpathian-Balkan Area. Advancing research and cooperation

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU

    2013-06-01

    Full Text Available The Carpathian Mountains are considered to be one of Europe’s last “wilderness” areas, but are nevertheless under heavy pressure from human activities. Examples range from large-scale activities (e.g. metal and coal mining and ecological disasters (e.g. tailing dam failures in the Toroiaga and Baia Mare areas to cross-border pollution (e.g. Chernobyl nuclear accident. The current political thrust for economic development is accelerating the pace of industrial activities, exploitation of natural resources and tourism. Romania has just recently been integrated into the European Union and many community-based projects were initiated to evaluate problems related to climatic and anthropogenic impacts.The diversity of landforms that characterize the Carpathian region encompassing mountain ranges and large spans of adjacent lowlands and the dynamic interplay between North Atlantic, continental, and Mediterranean atmospheric circulation patterns in southeastern Europe, have resulted in extremely fragmented habitats and exceptional biodiversity (Veres and Mindrescu, 2013. However, the Carpathian Mountains remain the least studied mountain environment in Europe, as reflected for example by the low number of well-dated and high-resolution paleorecords (e.g. Buczkó et al. 2009. Rose et al. (2009 published a pollution history study from a lake in the Retezat Mountains at the western extremity of the Southern Carpathians, but no paleoenvironmental studies exist for the rest of the mountain range, despite the abundance of suitable sites (Akinyemi et al., 2013.An interdisciplinary approach to geoscience is particularly important in this vast research field (geosciences, as innovative science is increasingly stimulated by studies that cross disciplinary boundaries and thus benefit from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by creating “meeting places” where geoscience

  2. Climate change trends, grape production, and potential alcohol concentration in wine from the "Romagna Sangiovese" appellation area (Italy)

    Science.gov (United States)

    Teslić, Nemanja; Zinzani, Giordano; Parpinello, Giuseppina P.; Versari, Andrea

    2018-01-01

    The trend of climate change and its effect on grape production and wine composition was evaluated using a real case study of seven wineries located in the "Romagna Sangiovese" appellation area (northern Italy), one of the most important wine producing region of Italy. This preliminary study focused on three key aspects: (i) Assessment of climate change trends by calculating bioclimatic indices over the last 61 years (from 1953 to 2013) in the Romagna Sangiovese area: significant increasing trends were found for the maximum, mean, and minimum daily temperatures, while a decreasing trend was found for precipitation during the growing season period (April-October). Mean growing season temperature was 18.49 °C, considered as warm days in the Romagna Sangiovese area and optimal for vegetative growth of Sangiovese, while nights during the ripening months were cold (13.66 °C). The rise of temperature shifted studied area from the temperate/warm temperate to the warm temperate-/warm grape-growing region (according to the Huglin classification). (ii) Relation between the potential alcohol content from seven wineries and the climate change from 2001 to 2012: dry spell index (DSI) and Huglin index (HI) suggested a large contribution to increasing level of potential alcohol in Sangiovese wines, whereas DSI showed higher correlation with potential alcohol respect to the HI. (iii) Relation between grape production and the climate change from 1982 to 2012: a significant increasing trend was found with little effect of the climate change trends estimated with used bioclimatic indices. Practical implication at viticultural and oenological levels is discussed.

  3. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation.

    Science.gov (United States)

    Prieto-Torres, David A; Navarro-Sigüenza, Adolfo G; Santiago-Alarcon, Diego; Rojas-Soto, Octavio R

    2016-01-01

    Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate-change models suggested (in comparison with the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem. © 2015

  4. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  5. Winter Dew Harvest in Mexico City

    Directory of Open Access Journals (Sweden)

    Arias-Torres Jorge Ernesto

    2015-12-01

    Full Text Available This study presents experimental and theoretical results of winter dew harvest in México City in terms of condensation rate. A simplified theoretical model based on a steady-state energy balance on a radiator-condenser was fitted, as a function of the ambient temperature, the relative humidity and the wind velocity. A glass sheet and aluminum sheet white-painted were used as samples over the outdoor experiments. A good correlation was obtained between the theoretical and experimental data. The experimental results show that there was condensation in 68% of the winter nights on both condensers. The total winter condensed mass was 2977 g/m2 and 2888 g/m2 on the glass sheet and aluminum sheet white-painted, respectively. Thus, the condensed mass on the glass was only 3% higher than that on the painted surface. The maximum nightly dew harvests occurred during December, which linearly reduced from 50 g/m2 night to 22 g/m2 night as the winter months went by. The condensation occurred from 1:00 a.m. to 9:00 a.m., with maximum condensation rates between 6:00 a.m. and 7:00 a.m. The dew harvest can provide a partial alternative to the winter water shortage in certain locations with similar climates to the winter in Mexico City, as long as pollution is not significant.

  6. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.

    Science.gov (United States)

    Dixit, Prakash N; Telleria, Roberto

    2015-04-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2017-01-01

    Full Text Available Climate change adaptation is one of the most crucial issues in developing countries like Bangladesh. The main objective was to understand the linkage of participation with Community Based Adaptation (CBA to climate change. Institutional framework following different types of conceptual theories (collective action, group, game and social learning theory was utilized to analyze the participatory process in local community level Village Disaster Mangement Committee (VDMC that works in collaboration with local government. Field level data was collected through interview and group discussion during 25 April to 30 May 2015 in the Teesta riverine area of northern Bangladesh. Results showed that flood and drought were the major climate change impacts in the study area, and various participatory tools were used for risk assessment and undertaking action plans to overcome the climate change challenges by the group VDMC. Participation in VDMC generated both relational and technical outcomes. The relational outcomes are the informal institutional changes through which local community adopt technological adaptation measures. Although, limitations like bargaining problem, free riding or conflict were found in collective decision making, but the initiation of local governance like VDMC has brought various institutional change in the communities in terms of adaptation practices. More than 80% VDMC and around 40–55% non-VDMC household respondents agreed that overall community based adaptation process was successful in the previous year. They believed that some innovative practices had been brought in the community through VDMC action for climate change adaptation. No doubt that the CBA has achieved good progress to achieve the government Comprehensive Disaster Management (CDM strategy of climate change adaptation. But, there is still lack of coordination among local government, NGOs and civil partners in working together. Research related to socio

  8. Nuclear winter: The evidence and the risks

    Energy Technology Data Exchange (ETDEWEB)

    Greene, O.

    1985-01-01

    Global concern over nuclear extinction, centered on the holocaust itself, now has turned to the more terrifying consequences of a post-war nuclear winter: ''the long-term effects - destruction of the environment, spread of epidemic diseases, contamination by radioactivity, and ... collapse of agriculture-(that) would spread famine and death to every country.'' Nuclear Winter, the latest in a series of studies by a number of different groups is clinical, analytical, systematic, and detailed. Two physicists and biologist analyze the effects on the climate, plants, animals, and living systems; the human costs; the policy implications.

  9. Nuclear winter: The evidence and the risks

    International Nuclear Information System (INIS)

    Greene, O.

    1985-01-01

    Global concern over nuclear extinction, centered on the holocaust itself, now has turned to the more terrifying consequences of a post-war nuclear winter: ''the long-term effects - destruction of the environment, spread of epidemic diseases, contamination by radioactivity, and ... collapse of agriculture-[that] would spread famine and death to every country.'' Nuclear Winter, the latest in a series of studies by a number of different groups is clinical, analytical, systematic, and detailed. Two physicists and biologist analyze the effects on the climate, plants, animals, and living systems; the human costs; the policy implications

  10. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, S., E-mail: sandra.rafael@ua.pt [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Martins, H. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), SE-60176 Norrköping (Sweden); Marta-Almeida, M. [Centro Oceanográfico A Coruña, Instituto Español de Oceanografía, A Coruña (Spain); Sá, E.; Coelho, S. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal); Rocha, A. [CESAM & Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Borrego, C.; Lopes, M. [CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal)

    2017-05-15

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986–2005) scenario and a future scenario (2046–2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. - Highlights: • Assessment of energy fluxes behaviour under past period and medium-term climate change projection. • Evaluation of climate change at urban scale. • Meteorological variables alters the partitioning of the energy fluxes. • Changes in the partition of the annual energy balance are found between the two analysed periods. • Increase in the magnitude of sensible and storage heat fluxes.

  11. Climate variability in the subarctic area for the last 2 millennia

    Science.gov (United States)

    Nicolle, Marie; Debret, Maxime; Massei, Nicolas; Colin, Christophe; deVernal, Anne; Divine, Dmitry; Werner, Johannes P.; Hormes, Anne; Korhola, Atte; Linderholm, Hans W.

    2018-01-01

    To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA) was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ˜ 16-30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ˜ 20-30- and ˜ 50-90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice-temperature positive feedback.

  12. Climate variability in the subarctic area for the last 2 millennia

    Directory of Open Access Journals (Sweden)

    M. Nicolle

    2018-01-01

    Full Text Available To put recent climate change in perspective, it is necessary to extend the instrumental climate records with proxy data from paleoclimate archives. Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from three regionally averaged records from the North Atlantic, Siberia and Alaska based on many types of proxy data archived in the Arctic 2k database v1.1.1. In the North Atlantic and Alaska, the major climatic trend is characterized by long-term cooling interrupted by recent warming that started at the beginning of the 19th century. This cooling is visible in the Siberian region at two sites, warming at the others. The cooling of the Little Ice Age (LIA was identified from the individual series, but it is characterized by wide-range spatial and temporal expression of climate variability, in contrary to the Medieval Climate Anomaly. The LIA started at the earliest by around AD 1200 and ended at the latest in the middle of the 20th century. The widespread temporal coverage of the LIA did not show regional consistency or particular spatial distribution and did not show a relationship with archive or proxy type either. A focus on the last 2 centuries shows a recent warming characterized by a well-marked warming trend parallel with increasing greenhouse gas emissions. It also shows a multidecadal variability likely due to natural processes acting on the internal climate system on a regional scale. A ∼ 16–30-year cycle is found in Alaska and seems to be linked to the Pacific Decadal Oscillation, whereas ∼ 20–30- and ∼ 50–90-year periodicities characterize the North Atlantic climate variability, likely in relation with the Atlantic Multidecadal Oscillation. These regional features are probably linked to the sea ice cover fluctuations through ice–temperature positive feedback.

  13. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal).

    Science.gov (United States)

    Rafael, S; Martins, H; Marta-Almeida, M; Sá, E; Coelho, S; Rocha, A; Borrego, C; Lopes, M

    2017-05-01

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  15. Augmenting Blue Land Uses: An adaptation approach for Climate Change in Urban Areas. A case study of Janakpur Municipalities, Nepal

    Directory of Open Access Journals (Sweden)

    Ajay Chandra Lal

    2016-11-01

    Full Text Available Climate change has emerged as a major challenge to human kind in the 21st century and Nepal is no exception. The challenges are even more severe in the context of urban areas where most wealth and population is concentrated. Greening an area is a major strategy for adapting to climate change; however, with blue land use a major source of evaporation can act as another activity to aid the adaption to climate change, where ponds are traditionally present within a city but are often abandoned. The present research has been carried out in the city of Janakpur situated in the central southern flatland of Nepal along its Southern border with India. The research outlines the relation of blue land use and its cooling capacity in an urban area. The research adopts both qualitative and quantitative research methods, showing that blue land use does have positive a correlation with the cooling of the surrounding area. The research in Janakpur, a pond city with more than 200 ponds within the urban fabric reveals that during summer the houses along the ponds will experience temperatures 2 °C lower than houses situated more than 100 m away from the ponds.

  16. Moving into Protected Areas? Setting Conservation Priorities for Romanian Reptiles and Amphibians at Risk from Climate Change

    Science.gov (United States)

    Popescu, Viorel D.; Rozylowicz, Laurenţiu; Cogălniceanu, Dan; Niculae, Iulian Mihăiţă; Cucu, Adina Livia

    2013-01-01

    Rapid climate change represents one of the top threats to biodiversity, causing declines and extinctions of many species. Range shifts are a key response, but in many cases are incompatible with the current extent of protected areas. In this study we used ensemble species distribution models to identify range changes for 21 reptile and 16 amphibian species in Romania for the 2020s and 2050s time horizons under three emission scenarios (A1B = integrated world, rapid economic growth, A2A = divided world, rapid economic growth [realistic scenario], B2A = regional development, environmentally-friendly scenario) and no- and limited-dispersal assumptions. We then used irreplaceability analysis to test the efficacy of the Natura 2000 network to meet conservation targets. Under all scenarios and time horizons, 90% of the species suffered range contractions (greatest loses under scenarios B2A for 2020s, and A1B for 2050s), and four reptile species expanded their ranges. Two reptile and two amphibian species are predicted to completely lose climate space by 2050s. Currently, 35 species do not meet conservation targets (>40% representation in protected areas), but the target is predicted to be met for 4 - 14 species under future climate conditions, with higher representation under the limited-dispersal scenario. The Alpine and Steppic-Black Sea biogeographic regions have the highest irreplaceability value, and act as climate refugia for many reptiles and amphibians. The Natura 2000 network performs better for achieving herpetofauna conservation goals in the future, owing to the interaction between drastic range contractions, and range shifts towards existing protected areas. Thus, conservation actions for herpetofauna in Romania need to focus on: (1) building institutional capacity of protected areas in the Alpine and Steppic-Black Sea biogeographic regions, and (2) facilitating natural range shifts by improving the conservation status of herpetofauna outside protected areas

  17. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change.

    Directory of Open Access Journals (Sweden)

    Viorel D Popescu

    Full Text Available Rapid climate change represents one of the top threats to biodiversity, causing declines and extinctions of many species. Range shifts are a key response, but in many cases are incompatible with the current extent of protected areas. In this study we used ensemble species distribution models to identify range changes for 21 reptile and 16 amphibian species in Romania for the 2020s and 2050s time horizons under three emission scenarios (A1B = integrated world, rapid economic growth, A2A = divided world, rapid economic growth [realistic scenario], B2A = regional development, environmentally-friendly scenario and no- and limited-dispersal assumptions. We then used irreplaceability analysis to test the efficacy of the Natura 2000 network to meet conservation targets. Under all scenarios and time horizons, 90% of the species suffered range contractions (greatest loses under scenarios B2A for 2020s, and A1B for 2050s, and four reptile species expanded their ranges. Two reptile and two amphibian species are predicted to completely lose climate space by 2050s. Currently, 35 species do not meet conservation targets (>40% representation in protected areas, but the target is predicted to be met for 4 - 14 species under future climate conditions, with higher representation under the limited-dispersal scenario. The Alpine and Steppic-Black Sea biogeographic regions have the highest irreplaceability value, and act as climate refugia for many reptiles and amphibians. The Natura 2000 network performs better for achieving herpetofauna conservation goals in the future, owing to the interaction between drastic range contractions, and range shifts towards existing protected areas. Thus, conservation actions for herpetofauna in Romania need to focus on: (1 building institutional capacity of protected areas in the Alpine and Steppic-Black Sea biogeographic regions, and (2 facilitating natural range shifts by improving the conservation status of herpetofauna outside

  18. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change.

    Science.gov (United States)

    Popescu, Viorel D; Rozylowicz, Laurenţiu; Cogălniceanu, Dan; Niculae, Iulian Mihăiţă; Cucu, Adina Livia

    2013-01-01

    Rapid climate change represents one of the top threats to biodiversity, causing declines and extinctions of many species. Range shifts are a key response, but in many cases are incompatible with the current extent of protected areas. In this study we used ensemble species distribution models to identify range changes for 21 reptile and 16 amphibian species in Romania for the 2020s and 2050s time horizons under three emission scenarios (A1B = integrated world, rapid economic growth, A2A = divided world, rapid economic growth [realistic scenario], B2A = regional development, environmentally-friendly scenario) and no- and limited-dispersal assumptions. We then used irreplaceability analysis to test the efficacy of the Natura 2000 network to meet conservation targets. Under all scenarios and time horizons, 90% of the species suffered range contractions (greatest loses under scenarios B2A for 2020s, and A1B for 2050s), and four reptile species expanded their ranges. Two reptile and two amphibian species are predicted to completely lose climate space by 2050s. Currently, 35 species do not meet conservation targets (>40% representation in protected areas), but the target is predicted to be met for 4 - 14 species under future climate conditions, with higher representation under the limited-dispersal scenario. The Alpine and Steppic-Black Sea biogeographic regions have the highest irreplaceability value, and act as climate refugia for many reptiles and amphibians. The Natura 2000 network performs better for achieving herpetofauna conservation goals in the future, owing to the interaction between drastic range contractions, and range shifts towards existing protected areas. Thus, conservation actions for herpetofauna in Romania need to focus on: (1) building institutional capacity of protected areas in the Alpine and Steppic-Black Sea biogeographic regions, and (2) facilitating natural range shifts by improving the conservation status of herpetofauna outside protected areas

  19. Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat?

    Science.gov (United States)

    Fisichelli, Nicholas A; Schuurman, Gregor W; Monahan, William B; Ziesler, Pamela S

    2015-01-01

    Climate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S. National Park Service systematically collects data regarding its 270+ million annual recreation visits, and therefore provides an opportunity to examine how human visitation may respond to climate change from the tropics to the polar regions. To assess the relationship between climate and park visitation, we evaluated historical monthly mean air temperature and visitation data (1979-2013) at 340 parks and projected potential future visitation (2041-2060) based on two warming-climate scenarios and two visitation-growth scenarios. For the entire park system a third-order polynomial temperature model explained 69% of the variation in historical visitation trends. Visitation generally increased with increasing average monthly temperature, but decreased strongly with temperatures > 25°C. Linear to polynomial monthly temperature models also explained historical visitation at individual parks (R2 0.12-0.99, mean = 0.79, median = 0.87). Future visitation at almost all parks (95%) may change based on historical temperature, historical visitation, and future temperature projections. Warming-mediated increases in potential visitation are projected for most months in most parks (67-77% of months; range across future scenarios), resulting in future increases in total annual visits across the park system (8-23%) and expansion of the visitation season at individual parks (13-31 days). Although very warm months at some parks may see decreases in future visitation, this potential change represents a relatively small proportion of visitation across the national park system. A changing climate is likely to have cascading and complex effects on protected area visitation, management, and local economies. Results suggest that protected areas and neighboring communities that develop adaptation strategies for these changes may be able to both

  20. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  1. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elsgaard, Lars; Olesen, Joergen E.; Hermansen, John E.; Kristensen, Inge T.; Boergesen, Christen D. [Dept. of Agroecology, Aarhus Univ., Tjele (Denmark)], E-mail: lars.elsgaard@agrsci.dk

    2013-04-15

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO{sub 2} equivalents (CO{sub 2}eq) were quantified from the footprints of CO{sub 2}, CH{sub 4} and N{sub 2}O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO{sub 2}eq MJ{sup 1} ethanol for winter wheat and 26.0 g CO{sub 2}eq MJ{sup 1} RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Territorial Units for Statistics [NUTS]) ranged from 20.0 to 23.9 g CO{sub 2}eq MJ{sup 1} ethanol and from 23.5 to 27.6 g CO{sub 2}eq MJ{sup 1} RME. Thus, at the regional level emission results varied by up to 20%. Differences in area-based emissions were only 4% reflecting the importance of regional variation in yields for the emission result. Fertilizer nitrogen production and direct emissions of soil N{sub 2}O were major contributors to the final emission result and sensitivity analyses showed that the emission result depended to a large extent on the uncertainty ranges assumed for soil N{sub 2}O emissions. Improvement of greenhouse gas balances could be pursued, e.g., by growing dedicated varieties for energy purposes. However, in a wider perspective, land-use change of native ecosystems to bioenergy cropping systems could compromise the CO{sub 2} savings of bioenergy production and challenge the targets set for biofuel

  2. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  3. Impacts of management and climate change on nitrate leaching in a forested karst area.

    Science.gov (United States)

    Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf

    2016-01-01

    Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [PM2.5 pollution and aerosol optical properties in fog and haze days during autumn and winter in Beijing area].

    Science.gov (United States)

    Zhao, Xiu-Juan; Pu, Wei-Wei; Meng, Wei; Ma, Zhi-Qiang; Dong, Fan; He, Di

    2013-02-01

    A study on the PM2.5 pollution and aerosol optical properties in haze-fog days was carried out from Sep. 1st to Dec. 7th, 2011 in Beijing area by using PM2.5 concentration, aerosol scattering coefficient (sigma sca) and absorption coefficient (sigma abs) measured under urban and rural environment. The effect of weather condition on the PM25 pollution and aerosol optical properties was discussed as well. The results showed that the PM2.5 concentration, sigma sca and sigma abs, were evidently higher in haze-fog days than those in non-haze-fog days. The average PM2.5 concentrations in haze-fog days with values of 97.6 microg m-3 and 64.4 microg.m-3 were as 3.3 and 4.8 times as those in non-haze-fog days at urban and rural stations, respectively. The higher PM2.5 concentration in urban area resulted in the more frequent fog and haze phenomena than that in rural area. The PM25 concentration, sigma sca, and sigma abs were significantly higher in urban area than that in rural area in mist days, while relatively close in mist-haze days. This difference suggested that the effect of regional transport of pollution was relatively evident in mist-haze days but weak in mist day. In fog days the sigma sca showed no evident difference between urban and rural area, and was the highest in all types of fog and haze weather. The scattering property of aerosol was the strongest in fog days. The different weather conditions resulted in various characteristics of spatial distribution of PM2.5 concentration, sigma sca and sigma abs, as well as the strength of PM2,5 pollution and aerosol extinction. The pollutants transported by the strong southwest wind above the boundary layer and subsided in the boundary layer companying with the local accumulation of pollutants due to the weak diffusion resulted in the most serious haze-fog episode with the strongest PM2.5 pollution and aerosol extinction.

  5. Perspectives in Winter Limnology: Closing the annual cycle of freezing lakes

    NARCIS (Netherlands)

    Salonen, K.; Leppäranta, M.; Viljanen, M.; Gulati, R.D.

    2009-01-01

    Winter has traditionally been considered as an ecologically insignificant season and, together with technical difficulties, this has led winter limnology to lag behind summer limnology. Recently, rapidly expanding interest in climate warming has increased water research in winter. It has also become

  6. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: An important first step for assessing impact of future climate

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Prakash N., E-mail: p.dixit@cgiar.org; Telleria, Roberto

    2015-04-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., > 30 years observed weather data for calibration as generated results proved to be satisfactory with > 10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. - Highlights: • LARS-WG performed better than MarkSim in generating daily weather parameters. • LARS-WG can serve

  7. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: An important first step for assessing impact of future climate

    International Nuclear Information System (INIS)

    Dixit, Prakash N.; Telleria, Roberto

    2015-01-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., > 30 years observed weather data for calibration as generated results proved to be satisfactory with > 10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. - Highlights: • LARS-WG performed better than MarkSim in generating daily weather parameters. • LARS-WG can serve

  8. Determination of areas with the most significant shift in persistence of pests in Europe under climate change

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Eva; Trnka, Miroslav; Dubrovský, Martin; Semerádová, Daniela; Eitzinger, Josef; Štěpánek, Petr; Žalud, Z.

    2014-01-01

    Roč. 70, č. 5 (2014), s. 708-715 ISSN 1526-498X R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : climate matching * pests * endangered areas * northern range Subject RIV: EH - Ecology, Behaviour Impact factor: 2.694, year: 2014

  9. Climate change, variability and extreme events : risk assessment and management strategies in a Peach cultivated area in Italy.