WorldWideScience

Sample records for winter circumpolar vortex

  1. Representation of the Antarctic circumpolar vortex mixing barrier in a Global Climate Model

    Science.gov (United States)

    Cameron, Chris; Conway, Jono; Bodeker, Greg; Renwick, James

    2017-04-01

    Dynamical processes that occur in the stratosphere between 15 and 50 km above Earth's surface can affect circulation in the troposphere and have an impact on weather and climate. The Antarctic Circumpolar Vortex (ACV) forms each winter and spring as a zone of strong stratospheric westerly winds surrounding Antarctica. The ACV presents a barrier to transport of air masses between middle and high-latitudes, and contributes to stratospheric temperatures above the polar region dropping sufficiently low in spring to allow for ozone loss. The processes controlling the permeability of the ACV, and how they are likely to respond to a changing climate and a recovering ozone hole, have not been well studied, and as a result are not well simulated in Global Climate Models, particularly in terms of sub-grid scale turbulent diffusion which is parameterized in the models. The UK Met Office Unified Model (UM) is used to examine vortex permeability using both the "New Dynamics" and the upgraded "ENDGame" dynamical cores. Results are compared against reanalysis representations of vortex permeability using the MERRA-2 and ERA-Interim reanalyses data sets, which have been shown to have superior performance in the Southern Hemisphere stratosphere when compared against NCEP-CFSR, and MERRA reanalyses. Results are expected to lead to improved representation of ACV transport process in Global Climate Models and subsequent improvements in climate modelling.

  2. Post-Younger Dryas climate interval linked to circumpolar vortex variability: isotopic evidence from Fayetteville Green Lake, New York

    Science.gov (United States)

    Kirby, M. E.; Patterson, W. P.; Mullins, H. T.; Burnett, A. W.

    2002-04-01

    The late-Glacial/Holocene transition in the North Atlantic-European sectors has long been known to be a period of rapid climate change. There is, however, a continued need for acquiring and developing paleoclimate archives spanning this interval from continental settings. Here we report on a lacustrine (Fayetteville Green Lake) isotope record sampled at a 10-year resolution from the NE USA over the late-Glacial/Holocene interval (14,600-8000 cal year BP). Based on prior isotopic and hydrologic research from Green Lake, the δ18O(calcite) values predominantly reflect winter moisture source and thus winter atmospheric patterns. Furthermore, we use historic (AD 1948-1980) winter circulation data and δ18O(calcite) values from varved sediments to examine the relationship between the circumpolar vortex latitude and isotopes which results in a strong (r = -0.79 r2 = 0.63) negative relationship. Using the linear regression from the isotope-vortex relationship, we model the winter vortex latitude for the late-Glacial/Holocene transition over the NE USA. In addition, we identify an interval from 11,600 to 10,300 cal year BP (the post-Younger Dryas climate interval) wherein the mean winter vortex over the NE USA was expanded by 6° latitude ( 36.1°N i.e., 630 km) from its mean historic position between AD 1948-1998 ( 41.8°N). Renewal of more vigorous thermohaline circulation following the Younger Dryas cold event may have forced the post-Younger Dryas climate interval. Increased poleward heat transport due to an active oceanic conveyor would have strengthened the thermal contrast between the NE USA and the North Atlantic thereby enhancing atmospheric pressure gradients and firmly establishing the semi-permanent winter trough over the NE USA. Consequently, storms tracked more frequently up the east coast of the United States from the Gulf of Mexico and Atlantic regions delivering precipitation with relatively high δ18O values to the NE USA. Alternatively, the relative

  3. Antarctic Circumpolar Current Fronts, Winter Sea Ice and Variability: Topographic Influences

    Science.gov (United States)

    Talley, L. D.

    2017-12-01

    The Antarctic winter sea ice edge is closely associated with the southernmost Antarctic Circumpolar Current (ACC) fronts, which are guided northeastward, with their cold waters, by mid-ocean ridges in the Pacific and Atlantic, and Kerguelen Plateau in the Indian. In the Amundsen/Bellingshausen Seas and along Adelie Land, the southern ACC fronts are free from topographic control, and swing southwards towards Antarctica, carrying warmer waters. This suggests poleward Sverdrup transport due to wind-driven upwelling, distorted by the major topographic ridges. Hydrographic observations show stronger penetration of full-depth ACC water into the Amundsen/ Bellingshausen Seas in 2011 compared with 1992, consistent with decreasing sea ice and increasing ice-shelf melt. Winter sea ice increased where the southern ACC is topographically locked into northeastward pathways. The standing eddy pattern of ACC poleward heat flux, strengthening winds, and decadal winter sea ice changes are consistent with strengthening circulation along the southern side of the ACC.

  4. The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica

    Science.gov (United States)

    Gloersen, Per; White, Warren B.

    1999-01-01

    Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.

  5. Quantifying Subsidence in the 1999-2000 Arctic Winter Vortex

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Elkins, James W.; Moore, Fred L.; Ray, Eric A.; Sen, Bhaswar; Margitan, James J.; hide

    2000-01-01

    Quantifying the subsidence of the polar winter stratospheric vortex is essential to the analysis of ozone depletion, as chemical destruction often occurs against a large, altitude-dependent background ozone concentration. Using N2O measurements made during SOLVE on a variety of platforms (ER-2, in-situ balloon and remote balloon), the 1999-2000 Arctic winter subsidence is determined from N2O-potential temperature correlations along several N2O isopleths. The subsidence rates are compared to those determined in other winters, and comparison is also made with results from the SLIMCAT stratospheric chemical transport model.

  6. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  7. Evolution of microwave limb sounder ozone and the polar vortex during winter

    Science.gov (United States)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  8. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  9. Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter

    Science.gov (United States)

    Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.

    2002-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very

  10. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    Science.gov (United States)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  11. The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2008-02-01

    Full Text Available The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE Validation Campaigns were conducted at Eureka (80° N, 86° W during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, and Aura Microwave Limb Sounder (MLS, along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher temperatures in the upper (lower stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high

  12. Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003

    Directory of Open Access Journals (Sweden)

    G. Günther

    2008-07-01

    Full Text Available Strong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex, filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement.

    Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relatively undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results.

    In the lower stratosphere export

  13. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  14. Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2016-04-01

    Full Text Available In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of polar stratospheric clouds (PSCs. These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl (hydrochloric acid mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 (chlorine nitrate was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSCs indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSC particles and the observed chlorine activation can only be explained by an increase in surface area density due to PSC formation. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area density.

  15. The formation and evolution of Titan’s winter polar vortex

    NARCIS (Netherlands)

    Teanby, Nicholas; Bezard, Bruno; Vinatier, Sandrine; Sylvestre, Melody; Nixon, Conor; Irwin, Patrick; de Kok, R.J.; Calcutt, Simon; Flasar, Michael

    2017-01-01

    Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter

  16. Frostbites in circumpolar areas

    Directory of Open Access Journals (Sweden)

    Tiina Maria Ikäheimo

    2011-10-01

    Full Text Available Circumpolar areas are associated with prolonged cold exposure where wind, precipitation, and darkness further aggravate the environmental conditions and the associated risks. Despite the climate warming, cold climatic conditions will prevail in circumpolar areas and contribute to adverse health effects. Frostbite is a freezing injury where localized damage affects the skin and other tissues. It occurs during occupational or leisure-time activities and is common in the general population among men and women of various ages. Industries of the circumpolar areas where frostbite occurs frequently include transportation, mining, oil, and gas industry, construction, agriculture, and military operations. Cold injuries may also occur during leisure-time activities involving substantial cold exposure, such as mountaineering, skiing, and snowmobiling. Accidental situations (occupational, leisure time often contribute to adverse cooling and cold injuries. Several environmental (temperature, wind, wetness, cold objects, and altitude and individual (behavior, health, and physiology predisposing factors are connected with frostbite injuries. Vulnerable populations include those having a chronic disease (cardiovascular, diabetes, and depression, children and the elderly, or homeless people. Frostbite results in sequelae causing different types of discomfort and functional limitations that may persist for years. A frostbite injury is preventable, and hence, unacceptable from a public health perspective. Appropriate cold risk management includes awareness of the adverse effects of cold, individual adjustment of cold exposure and clothing, or in occupational context different organizational and technical measures. In addition, vulnerable population groups need customized information and care for proper prevention of frostbites.

  17. Cancer among circumpolar populations

    DEFF Research Database (Denmark)

    Young, T Kue; Kelly, Janet J; Friborg, Jeppe

    2016-01-01

    OBJECTIVES: To determine and compare the incidence of cancer among the 8 Arctic States and their northern regions, with special focus on 3 cross-national indigenous groups--Inuit, Athabaskan Indians and Sami. METHODS: Data were extracted from national and regional statistical agencies and cancer...... registries, with direct age-standardization of rates to the world standard population. For comparison, the "world average" rates as reported in the GLOBOCAN database were used. FINDINGS: Age-standardized incidence rates by cancer sites were computed for the 8 Arctic States and 20 of their northern regions......, averaged over the decade 2000-2009. Cancer of the lung and colon/rectum in both sexes are the commonest in most populations. We combined the Inuit from Alaska, Northwest Territories, Nunavut and Greenland into a "Circumpolar Inuit" group and tracked cancer trends over four 5-year periods from 1989 to 2008...

  18. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    Science.gov (United States)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  19. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  20. Obesity studies in the circumpolar Inuit

    DEFF Research Database (Denmark)

    Galloway, Tracey; Blackett, Hilary; Chatwood, Susan

    2012-01-01

    Among circumpolar populations, recent research has documented a significant increase in risk factors which are commonly associated with chronic disease, notably obesity.......Among circumpolar populations, recent research has documented a significant increase in risk factors which are commonly associated with chronic disease, notably obesity....

  1. Northern Circumpolar Soils Map, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of a circumpolar map of dominant soil characteristics, with a scale of 1:10,000,000, covering the United States, Canada, Greenland, Iceland,...

  2. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  3. Fourth international circumpolar arctic vegetation mapping workshop

    Science.gov (United States)

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  4. The Circumpolar Arctic vegetation map

    Science.gov (United States)

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  5. Global health-a circumpolar perspective

    DEFF Research Database (Denmark)

    Chatwood, Susan; Bjerregaard, Peter; Young, T Kue

    2012-01-01

    Global health should encompass circumpolar health if it is to transcend the traditional approach of the "rich North" assisting the "poor South." Although the eight Arctic states are among the world's most highly developed countries, considerable health disparities exist among regions across...... in the northern hemisphere have developed different health systems, strategies, and practices, some of which are relevant to middle and lower income countries. As the Arctic gains prominence as a sentinel of global issues such as climate change, the health of circumpolar populations should be part of the global...... health discourse and policy development....

  6. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  7. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  8. Regional stratospheric warmings in the Pacific-Western Canada (PWC sector during winter 2004/2005: implications for temperatures, winds, chemical constituents and the characterization of the Polar vortex

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2008-11-01

    Full Text Available The vortex during winter 2004/2005 was interesting for several reasons. It has been described as "cold" stratospherically, with relatively strong westerly winds. Losses of ozone until the final warming in March were considerable, and comparable to the cold 1999–2000 winter. There were also modest warming events, indicated by peaks in 10 hPa zonal mean temperatures at high latitudes, near 1 January and 1 February. Events associated with a significant regional stratospheric warming in the Pacific-Western Canada (PWC sector then began and peaked toward the end of February, providing strong longitudinal variations in dynamical characteristics (Chshyolkova et al., 2007; hereafter C07. The associated disturbed vortex of 25 February was displaced from the pole and either elongated (upper or split into two cyclonic centres (lower.

    Observations from Microwave Limb Sounder (MLS on Aura are used here to study the thermal characteristics of the stratosphere in the Canadian-US (253° E and Scandinavian-Europe (16° E sectors. Undisturbed high latitude stratopause (55 km zonal mean temperatures during the mid-winter (December–February reached 270 K, warmer than empirical-models such as CIRA-86, suggesting that seasonal polar warming due to dynamical influences affects the high altitude stratosphere as well as the mesosphere. There were also significant stratopause differences between Scandinavia and Canada during the warming events of 1 January and 1 February, with higher temperatures near 275 K at 16° E. During the 25 February "PWC" event a warming occurred at low and middle stratospheric heights (10–30 km: 220 K at 253° E and the stratopause cooled; while over Scandinavia-Europe the stratosphere below ~30 km was relatively cold at 195 K and the stratopause became even warmer (>295 K and lower (~45 km. The zonal winds followed the associated temperature gradients so that the vertical and latitudinal gradients of the winds differed strongly

  9. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect......The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments in terrestrial, marine, freshwater...

  10. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  11. Vortex methods and vortex statistics

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (''blobs'') and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ''blob'' methods provide the most promising path to the understanding of these phenomena

  12. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Circumpolar Biodiversity Monitoring Program, CBMP, Terrestrial Plan, www.caff.is/terrestrial, is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders......, northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...

  13. A circumpolar monitoring framework for polar bears

    Science.gov (United States)

    Vongraven, Dag; Aars, Jon; Amstrup, Steven C.; Atkinson, Stephen N.; Belikov, Stanislav; Born, Erik W.; DeBruyn, T.D.; Derocher, Andrew E.; Durner, George M.; Gill, Michael J.; Lunn, Nicholas J.; Obbard, Martyn E.; Omelak, Jack; Ovsyanikov, Nikita; Peacock, Elizabeth; Richardson, E.E.; Sahanatien, Vicki; Stirling, Ian; Wiig, Øystein

    2012-01-01

    Polar bears (Ursus maritimus) occupy remote regions that are characterized by harsh weather and limited access. Polar bear populations can only persist where temporal and spatial availability of sea ice provides adequate access to their marine mammal prey. Observed declines in sea ice availability will continue as long as greenhouse gas concentrations rise. At the same time, human intrusion and pollution levels in the Arctic are expected to increase. A circumpolar understanding of the cumulative impacts of current and future stressors is lacking, long-term trends are known from only a few subpopulations, and there is no globally coordinated effort to monitor effects of stressors. Here, we describe a framework for an integrated circumpolar monitoring plan to detect ongoing patterns, predict future trends, and identify the most vulnerable polar bear subpopulations. We recommend strategies for monitoring subpopulation abundance and trends, reproduction, survival, ecosystem change, human-caused mortality, human–bear conflict, prey availability, health, stature, distribution, behavioral change, and the effects that monitoring itself may have on polar bears. We assign monitoring intensity for each subpopulation through adaptive assessment of the quality of existing baseline data and research accessibility. A global perspective is achieved by recommending high intensity monitoring for at least one subpopulation in each of four major polar bear ecoregions. Collection of data on harvest, where it occurs, and remote sensing of habitat, should occur with the same intensity for all subpopulations. We outline how local traditional knowledge may most effectively be combined with the best scientific methods to provide comparable and complementary lines of evidence. We also outline how previously collected intensive monitoring data may be sub-sampled to guide future sampling frequencies and develop indirect estimates or indices of subpopulation status. Adoption of this framework

  14. Circumpolar Active-Layer Permafrost System (CAPS), Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  15. Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes, 2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the distribution of thermokarst landscapes in the boreal and tundra ecoregions within the northern circumpolar permafrost zones. This dataset...

  16. Proceedings of the 15th International Congress on Circumpolar Health

    OpenAIRE

    incl Table of Contents, Complete Supplement,

    2013-01-01

    Proceedings of the 15th International Congress on Circumpolar Health August 5–10, 2012, Fairbanks, Alaska, USA. This extensive publication includes nearly 100 full length papers, 90 extended abstracts and nearly 100 short abstracts. The full publication is freely available through the journal website.(Published: 5 August 2013)Citation: Int J Circumpolar Health 2013, 72: 22447 - http://dx.doi.org/10.3402/ijch.v72i0.22447

  17. 210Pb and 226Ra distributions in the circumpolar waters

    International Nuclear Information System (INIS)

    Chung, Y.

    1981-01-01

    210 Pb and 226 Ra profiles have been measured at five GEOSECS stations in the Circumpolar region. These profiles show that 226 Ra is quite uniformly distributed throughout the Circumpolar region, with slightly lower activities in surface waters, while 210 Pb varies with depth as well as location or area. There is a subsurface 210 Pb maximum which matches the oxygen minimum in depth and roughly correlates with the temperature and salinity maxima. This 210 Pb maximum has its highest concentrations in the Atlantic sector and appears to originate near the South Sandwich Islands northeast of the Weddell Sea. Concentrations in this maximum decrease toward the Indian Ocean sector and then become fairly constant along the easterly Circumpolar Current. Relative to 226 Ra, the activity of 210 Pb is deficient in the entire water column of the Circumpolar waters. The deficiency increases from the depth of the 210 Pb maximum toward the bottom, and the 210 Pb/ 226 Ra activity ratio is lowest in the Antarctic Bottom Water, indicating a rapid removal of Pb by particulate scavenging in the bottom layer and/or a short mean residence time of the Antarctic Bottom Water in the Circumpolar region. 226 Ra is essentially linearly correlated with silica and barium in the Circumpolar waters. However, close examination of the vertical profiles reveals that Ba and Si are more variable than 226 Ra in this region. (orig.)

  18. Structures for caribou management and their status in the circumpolar north

    Directory of Open Access Journals (Sweden)

    D.R. Klein

    1996-01-01

    Full Text Available Large herds of caribou (Rangifer tarandus in Canada, Alaska, and Russia that winter in northern coniferous forests and summer in tundra of the Arctic have provided a sustainable source of meat and other products for indigenous peoples for thousands of years. Several different administrative structures for management of large caribou herds have emerged throughout the circumpolar North. In Russia under the previous Soviet government, the herd of the Taimyr Region, numbering around 500 000 caribou, was managed under a harvest quota system for both subsistence use by indigenous people and commercial sale of meat and skins. In North America, as indigenous peoples have gained increasing political empowerment, systems for caribou management have been undergoing change. Establishment of the Beverly and Qamanirjuaq Caribou Management Board in Canada, with majority representation from users of the resource, provides a model and a test of the effectiveness of a comanagement system. The Western Arctic Herd in northwestern Alaska, numbering close to 500 000 caribou, has been managed under the traditional American system of game management, with user advisory groups, but with management decisions resting with a statewide Board of Game, whose major representation is from sport-hunting interests. The Porcupine Caribou Herd, which is shared by the United States and Canada, is the focus of an international agreement, in principle designed to assure its continued productivity and well-being. The diversity of systems for caribou management in the circumpolar North provides an opportunity for comparing their effectiveness.

  19. Indigenous Values and Health Systems Stewardship in Circumpolar Countries

    Directory of Open Access Journals (Sweden)

    Susan Chatwood

    2017-11-01

    Full Text Available Circumpolar regions, and the nations within which they reside, have recently gained international attention because of shared and pressing public policy issues such as climate change, resource development, endangered wildlife and sovereignty disputes. In a call for national and circumpolar action on shared areas of concern, the Arctic states health ministers recently met and signed a declaration that identified shared priorities for international cooperation. Among the areas for collaboration raised, the declaration highlighted the importance of enhancing intercultural understanding, promoting culturally appropriate health care delivery and strengthening circumpolar collaboration in culturally appropriate health care delivery. This paper responds to the opportunity for further study to fully understand indigenous values and contexts, and presents these as they may apply to a framework that will support international comparisons and systems improvements within circumpolar regions. We explored the value base of indigenous peoples and provide considerations on how these values might interface with national values, health systems values and value bases between indigenous nations particularly in the context of health system policy-making that is inevitably shared between indigenous communities and jurisdictional or federal governments. Through a mixed methods nominal consensus process, nine values were identified and described: humanity, cultural responsiveness, teaching, nourishment, community voice, kinship, respect, holism and empowerment.

  20. A scoping review of Indigenous suicide prevention in circumpolar regions

    Directory of Open Access Journals (Sweden)

    Jennifer Redvers

    2015-03-01

    Full Text Available Background: Suicide is a serious public health challenge in circumpolar regions, especially among Indigenous youth. Indigenous communities, government agencies and health care providers are making concerted efforts to reduce the burden of suicide and strengthen protective factors for individuals, families and communities. The persistence of suicide has made it clear that more needs to be done. Objective: Our aim was to undertake a scoping review of the peer-reviewed literature on suicide prevention and interventions in Indigenous communities across the circumpolar north. Our objective was to determine the extent and types of interventions that have been reported during past decade. We want to use this knowledge to support community initiative and inform intervention development and evaluation. Design: We conducted a scoping review of online databases to identify studies published between 2004 and 2014. We included articles that described interventions in differentiated circumpolar Indigenous populations and provided evaluation data. We retained grey literature publications for comparative reference. Results: Our search identified 95 articles that focused on suicide in distinct circumpolar Indigenous populations; 19 articles discussed specific suicide-related interventions and 7 of these described program evaluation methods and results in detail. The majority of publications on specific interventions were found in North American countries. The majority of prevention or intervention documentation was found in supporting grey literature sources. Conclusion: Despite widespread concern about suicide in the circumpolar world and active community efforts to promote resilience and mental well-being, we found few recorded programs or initiatives documented in the peer-reviewed literature, and even fewer focusing specifically on youth intervention. The interventions described in the studies we found had diverse program designs and content, and used varied

  1. A scoping review of Indigenous suicide prevention in circumpolar regions.

    Science.gov (United States)

    Redvers, Jennifer; Bjerregaard, Peter; Eriksen, Heidi; Fanian, Sahar; Healey, Gwen; Hiratsuka, Vanessa; Jong, Michael; Larsen, Christina Viskum Lytken; Linton, Janice; Pollock, Nathaniel; Silviken, Anne; Stoor, Petter; Chatwood, Susan

    2015-01-01

    Suicide is a serious public health challenge in circumpolar regions, especially among Indigenous youth. Indigenous communities, government agencies and health care providers are making concerted efforts to reduce the burden of suicide and strengthen protective factors for individuals, families and communities. The persistence of suicide has made it clear that more needs to be done. Our aim was to undertake a scoping review of the peer-reviewed literature on suicide prevention and interventions in Indigenous communities across the circumpolar north. Our objective was to determine the extent and types of interventions that have been reported during past decade. We want to use this knowledge to support community initiative and inform intervention development and evaluation. We conducted a scoping review of online databases to identify studies published between 2004 and 2014. We included articles that described interventions in differentiated circumpolar Indigenous populations and provided evaluation data. We retained grey literature publications for comparative reference. Our search identified 95 articles that focused on suicide in distinct circumpolar Indigenous populations; 19 articles discussed specific suicide-related interventions and 7 of these described program evaluation methods and results in detail. The majority of publications on specific interventions were found in North American countries. The majority of prevention or intervention documentation was found in supporting grey literature sources. Despite widespread concern about suicide in the circumpolar world and active community efforts to promote resilience and mental well-being, we found few recorded programs or initiatives documented in the peer-reviewed literature, and even fewer focusing specifically on youth intervention. The interventions described in the studies we found had diverse program designs and content, and used varied evaluation methods and outcomes. The studies we included consistently

  2. Interaction between Antarctic sea ice and synoptic activity in the circumpolar trough

    Science.gov (United States)

    Schlosser, Elisabeth

    2010-05-01

    Different from conditions in the Arctic, total Antarctic sea ice extent does not show large interannual variability and almost no long-term trend is found. On a regional/monthly scale, however, large differences are observed, depending on winds and oceanic currents, thus on the prevailing synoptic weather situation. At the same time, the sea ice influences atmospheric conditions: presence of sea ice considerably changes the energy exchange between ocean and atmosphere, thus the meridional air temperature gradient, which is usually strongest at the sea ice edge. This leads to high baroclinicity in this area and thus favours cyclogenesis. The position and movement of low pressure systems, in turn, together with the local heat balance, determines sea ice extent and concentration. Divergence and convergence of sea ice also depends on the position of the circumpolar trough relative to the sea ice edge, since its position determines whether the atmospheric flow is predominantly easterly or westerly, which leads to sea ice transport to the southwest or the northeast, respectively. The circumpolar trough is usually situated closer to the coast in spring and autumn and moves north in summer and winter. In this study, meteorological data from the ECMWF ERA-interim reanalysis as well as sea ice extent and concentration derived from passive microwave data (SSMI/SMMR) are used to investigate the interactions between Antarctic sea ice and synoptic activity in the polar ocean. Special consideration is given to the frequency of regional sea ice minima and warm air advection from lower latitudes. A stable synoptic situation with amplified Rossby waves can lead to regional extrema in sea ice extent. An extreme case was observed in the austral summer of 2001/2002 in the Weddell Sea, when continuous northwesterly winds removed the ice from the northwestern part of the Weddell Sea and drove it to the coast of Coats Land, where usually coastal polynyas are observed in summer.

  3. Circumpolar distribution and carbon storage of thermokarst landscapes

    Science.gov (United States)

    Olefeldt, David; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A. David; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; Turetsky, M.R.

    2016-01-01

    Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ∼20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale.

  4. A scoping review of Indigenous suicide prevention in circumpolar regions

    DEFF Research Database (Denmark)

    Redvers, Jennifer; Bjerregaard, Peter; Eriksen, Heidi

    2015-01-01

    , families and communities. The persistence of suicide has made it clear that more needs to be done. OBJECTIVE: Our aim was to undertake a scoping review of the peer-reviewed literature on suicide prevention and interventions in Indigenous communities across the circumpolar north. Our objective...... Indigenous populations; 19 articles discussed specific suicide-related interventions and 7 of these described program evaluation methods and results in detail. The majority of publications on specific interventions were found in North American countries. The majority of prevention or intervention......BACKGROUND: Suicide is a serious public health challenge in circumpolar regions, especially among Indigenous youth. Indigenous communities, government agencies and health care providers are making concerted efforts to reduce the burden of suicide and strengthen protective factors for individuals...

  5. Circumpolar Biodiversity Monitoring Programme: Coastal Expert Workshop meeting summary

    Science.gov (United States)

    Thomson, L.; McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Christensen, T.; Price, C.

    2016-01-01

    The Coastal Expert Workshop brought together a diverse group of coastal experts with the common goal of developing a biodiversity monitoring program for coastal ecosystems across the circumpolar Arctic. Meeting participants, including northern residents, industry and Non-Governmental Organization (NGO) representatives, scientists, and government regulators from across the circumpolar Arctic, gathered at the Lord Elgin Hotel in Ottawa from March 1 to 3, 2016, to discuss current biodiversity monitoring efforts, understand key issues facing biodiversity in the Arctic coastal areas and suggest monitoring indicators, or Focal Ecosystem Components, for the program. A Traditional Knowledge Holders meeting was held on February 29, 2016 in conjunction with the workshop. The following document provides a summary of the workshop activities and outcomes, and will be followed by a more complete Workshop Report.

  6. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  7. Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    OpenAIRE

    Karapetrov, G.; Yefremenko, V.; Mihajlović, G.; Pearson, J. E.; Iavarone, M.; Novosad, V.; Bader, S. D.

    2012-01-01

    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipula...

  8. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M. N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  9. Winter Weather

    Science.gov (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  10. Winter MVC

    OpenAIRE

    Castellón Gadea, Pasqual

    2013-01-01

    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  11. Pre-ABoVE: Circumpolar Arctic Vegetation, Geobotanical, Physiographic Data, 1982-2003

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the spatial distributions of vegetation types, geobotanical characteristics, and physiographic features for the circumpolar Arctic tundra...

  12. Descriptive review of tuberculosis surveillance systems across the circumpolar regions

    Directory of Open Access Journals (Sweden)

    Annie-Claude Bourgeois

    2016-04-01

    Full Text Available Background: Tuberculosis is highly prevalent in many Arctic areas. Members of the International Circumpolar Surveillance Tuberculosis (ICS-TB Working Group collaborate to increase knowledge about tuberculosis in Arctic regions. Objective: To establish baseline knowledge of tuberculosis surveillance systems used by ICS-TB member jurisdictions. Design: Three questionnaires were developed to reflect the different surveillance levels (local, regional and national; all 3 were forwarded to the official representative of each of the 15 ICS-TB member jurisdictions in 2013. Respondents self-identified the level of surveillance conducted in their region and completed the applicable questionnaire. Information collected included surveillance system objectives, case definitions, data collection methodology, storage and dissemination. Results: Thirteen ICS-TB jurisdictions [Canada (Labrador, Northwest Territories, Nunavik, Nunavut, Yukon, Finland, Greenland, Norway, Sweden, Russian Federation (Arkhangelsk, Khanty-Mansiysk Autonomous Okrug, Yakutia (Sakha Republic, United States (Alaska] voluntarily completed the survey – representing 2 local, 7 regional and 4 national levels. Tuberculosis reporting is mandatory in all jurisdictions, and case definitions are comparable across regions. The common objectives across systems are to detect outbreaks, and inform the evaluation/planning of public health programmes and policies. All jurisdictions collect data on confirmed active tuberculosis cases and treatment outcomes; 11 collect contact tracing results. Faxing of standardized case reporting forms is the most common reporting method. Similar core data elements are collected; 8 regions report genotyping results. Data are stored using customized programmes (n=7 and commercial software (n=6. Nine jurisdictions provide monthly, bi-annual or annual reports to principally government and/or scientific/medical audiences. Conclusion: This review successfully establishes

  13. Hydrodynamic Vortex on Surfaces

    Science.gov (United States)

    Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique

    2017-10-01

    The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.

  14. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  15. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group

    Science.gov (United States)

    Parkinson, Alan J.; Evengard, Birgitta; Semenza, Jan C.; Ogden, Nicholas; Børresen, Malene L.; Berner, Jim; Brubaker, Michael; Sjöstedt, Anders; Evander, Magnus; Hondula, David M.; Menne, Bettina; Pshenichnaya, Natalia; Gounder, Prabhu; Larose, Tricia; Revich, Boris; Hueffer, Karsten; Albihn, Ann

    2014-01-01

    The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses. PMID:25317383

  16. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group

    Directory of Open Access Journals (Sweden)

    Alan J. Parkinson

    2014-09-01

    Full Text Available The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

  17. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  18. Transformational Change and Regime Shifts in the Circumpolar Arctic

    Directory of Open Access Journals (Sweden)

    Annika E. Nilsson

    2016-11-01

    Full Text Available The Arctic is changing rapidly, and there are many indications that the region is in the midst of transformational change. While some of the focus relates to impacts of climate change, rapid economic development and the potential for shifts in political and social structures in the region have also been in the limelight. This article looks at the circumpolar Arctic as a potential case of a regime shift in a large-scale social–ecological system that includes reinforcing feedbacks. A special focus is placed on governance structures, as these play an important role in social negotiations on the relationship between societies and the environment. While climate change is often portrayed as a driver of social change in the Arctic, it does not appear that the ongoing changes in the biophysical features of the Arctic region have rocked current circumpolar governance structures out of kilter. On the contrary, the ongoing climate-related changes, in particular sea ice decline, appear to have reinforced political commitment to existing legal structures. Major past social regime shifts have mainly been related to access to resources and national identity ideology, with political dynamics reinforced at times by military security considerations.

  19. Circumpolar biodiversity monitoring program (CBMP): Coastal expert workshop meeting report

    Science.gov (United States)

    Anderson, Rebecca D.; McLennan, Donald; Thomson, Laura; Wegeberg, Susse; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, Stacey; Christensen, Thomas K.; Price, Courtney

    2016-01-01

    The Coastal Expert Workshop, which took place in Ottawa, Canada from March 1 to 3, 2016, initiated the development of the Arctic Coastal Biodiversity Monitoring Plan (Coastal Plan). Meeting participants, including northern residents, representatives from industry, non-governmental organisations (NGOs), academia, and government regulators and agencies from across the circumpolar Arctic, discussed current biodiversity monitoring efforts, key issues facing biodiversity in Arctic coastal areas, and collectively identified monitoring indicators, or Focal Ecosystem Components (FECs). On February 29, the day before the workshop, a full day was allocated to Traditional Knowledge (TK) holders to meet and elucidate how this important knowledge can be included in the process of building the Coastal Plan and monitoring biodiversity in Arctic coastal areas, along with scientific data and variables. This document provides 1) background information about the Circumpolar Biodiversity Monitoring Programme and the Coastal Expert Monitoring Group, 2) overviews on workshop presentations and breakout sessions, and 3) details regarding outcomes of the workshop that will inform the drafting of the Coastal Plan.

  20. Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper

    Science.gov (United States)

    McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.

    2016-01-01

    In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.

  1. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  2. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  3. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  4. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  5. The Arctic Vortex in March 2011: A Dynamical Perspective

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  6. Mean Antarctic Circumpolar Current transport measured in Drake Passage

    Science.gov (United States)

    Donohue, K. A.; Tracey, K. L.; Watts, D. R.; Chidichimo, M. P.; Chereskin, T. K.

    2016-11-01

    The Antarctic Circumpolar Current is an important component of the global climate system connecting the major ocean basins as it flows eastward around Antarctica, yet due to the paucity of data, it remains unclear how much water is transported by the current. Between 2007 and 2011 flow through Drake Passage was continuously monitored with a line of moored instrumentation with unprecedented horizontal and temporal resolution. Annual mean near-bottom currents are remarkably stable from year to year. The mean depth-independent or barotropic transport, determined from the near-bottom current meter records, was 45.6 sverdrup (Sv) with an uncertainty of 8.9 Sv. Summing the mean barotropic transport with the mean baroclinic transport relative to zero at the seafloor of 127.7 Sv gives a total transport through Drake Passage of 173.3 Sv. This new measurement is 30% larger than the canonical value often used as the benchmark for global circulation and climate models.

  7. Obesity studies in the circumpolar Inuit: a scoping review

    Directory of Open Access Journals (Sweden)

    Tracey Galloway

    2012-07-01

    Full Text Available Background. Among circumpolar populations, recent research has documented a significant increase in risk factors which are commonly associated with chronic disease, notably obesity. Objective. The present study undertakes a scoping review of research on obesity in the circumpolar Inuit to determine the extent obesity research has been undertaken, how well all subpopulations and geographic areas are represented, the methodologies used and whether they are sufficient in describing risk factors, and the prevalence and health outcomes associated with obesity. Design. Online databases were used to identify papers published 1992–2011, from which we selected 38 publications from Canada, the United States, and Greenland that used obesity as a primary or secondary outcome variable in 30 or more non-pregnant Inuit (“Eskimo” participants aged 2 years or older. Results. The majority of publications (92% reported cross-sectional studies while 8% examined retrospective cohorts. All but one of the studies collected measured data. Overall 84% of the publications examined obesity in adults. Those examining obesity in children focused on early childhood or adolescence. While most (66% reported 1 or more anthropometric indices, none incorporated direct measures of adiposity. Evaluated using a customized quality assessment instrument, 26% of studies achieved an “A” quality ranking, while 18 and 39% achieved quality rankings of “B” and “C”, respectively. Conclusions. While the quality of studies is generally high, research on obesity among Inuit would benefit from careful selection of methods and reference standards, direct measures of adiposity in adults and children, studies of preadolescent children, and prospective cohort studies linking early childhood exposures with obesity outcomes throughout childhood and adolescence.

  8. Nitric oxide measurements in the Arctic winter stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, D.W. (National Oceanic and Atmospheric Administration (USA)); Kawa, S.R. (National Oceanic and Atmospheric Administration (USA) Univ. of Colorado, Boulder (USA)); Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (USA))

    1990-03-01

    Measurements of nitric oxide (NO) from five flights of the NASA ER-2 aircraft during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The NO values and vertical gradient near 60{degree}N latitude are similar to previous measurements near 50{degree}N in winter (Ridley et al., 1984; 1987). The NO latitudinal gradient is distinctly negative outside of the polar vortex, approaching zero at the boundary of the vortex, and remaining below the 20 pptv detection limit inside the vortex. The low NO values in the vortex occur at solar zenith angles as low as 82{degree} indicating that NO{sub 2} values in the vortex are also low. Steady state NO{sub 2} and NO{sub x} (NO+NO{sub 2}) are calculated from measured NO, O{sub 3}, and ClO, and modeled photodissociation rates. NO{sub x} outside the vortex shows a negative dependence on latitude and solar zenith angle. The average ratio of NO{sub x} to NO{sub y} (at the same relative latitudes from different flight days) shows a strong latitude gradient with values near 0.08 at 12{degree} equatorward of the vortex edge, decreasing to less than 0.02 at the vortex boundary. Low NO{sub x} and NO{sub x}/NO{sub y} inside and near the vortex boundary may be indications of heterogeneous removal of ClONO{sub 2} and N{sub 2}O{sub 5}.

  9. VORTEX Gimbal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To overcome the communication gap to Venus, TUI proposes to develop the Venus or Titan Exploratory (VORTEX) Gimbal to point a meter scale diameter, high gain...

  10. The singing vortex

    Science.gov (United States)

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  11. The singing vortex.

    Science.gov (United States)

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  12. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... is dedicated to vortex rings. Source rings are only briefly mentioned....

  13. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    Science.gov (United States)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies

  14. ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides annual cumulative end-of-season burned area in circumpolar high northern latitudes (HNL) above 60 degrees for the years 2001-2015. The data...

  15. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived from the...

  16. Fire Intensity and Burn Severity Metrics for Circumpolar Boreal Forests, 2001-2013

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides products characterizing immediate and longer-term ecosystem changes from fires in the circumpolar boreal forests of Northern Eurasia and North...

  17. Tree Canopy Cover for the Circumpolar Taiga-Tundra Ecotone: 2000-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a map of selected areas with defined tree canopy cover over the circumpolar taiga-tundra ecotone (TTE). Canopy cover was derived...

  18. Modeling modified Circumpolar Deep Water intrusions onto the Prydz Bay continental shelf, East Antarctica

    Science.gov (United States)

    Liu, Chengyan; Wang, Zhaomin; Cheng, Chen; Xia, Ruibin; Li, Bingrui; Xie, Zelin

    2017-07-01

    An eddy-resolving coupled regional ocean-sea ice-ice shelf model is employed to locate the hot spots where modified Circumpolar Deep Water (mCDW) intrudes onto the continental shelf within Prydz Bay, and locate the paths through which mCDW is transported to the Amery Ice Shelf (AIS) calving front. Evaluation of the model output is with satellite, hydrographic and borehole data. Two critical windows responsible for mCDW intrusions are identified. The first is the eastern branch of the cyclonic Prydz Bay gyre (PBG) that carries mCDW to the ice front line, accounting for an annual mean heat transport of ˜8.7 ×1011 J s-1. The second is located to the east of the Four Ladies Bank (FLB) where mCDW is channeled through submarine troughs, accounting for an annual mean heat transport of ˜16.2 ×1011 J s-1. The eddy-induced heat transport accounts for ˜23% in the path of the PBG and ˜52% in the path of the eastern coastal current, with respect to their total onshore heat transport. The seasonal pulsing of mCDW intrusions is greatly dependent on the seasonal cycle of the Antarctic Slope Current (ASC) that peaks with a maximum of ˜29.3 Sv at 75°E in June. In austral winter, mCDW is allowed to access the eastern flank of the AIS calving front with potential consequences for the basal mass balance of the AIS. The dynamic effects of small-scale troughs on the longshore ASC play an important role in the onshore mCDW transport.

  19. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  20. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  1. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  2. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  3. Circumpolar patterns of ground-fast lake ice and landscape development

    Science.gov (United States)

    Bartsch, Annett; Pointner, Georg; Leibmann, Marina; Dvornikov, Yuri; Khomutov, Artem

    2017-04-01

    Shallow lakes in the Arctic are often associated with thermokarst processes which are characteristic for permafrost environments. They partially or completely freeze-up during winter time what can be observed from space using Synthetic Aperture Radar (SAR) data. Spatial patterns of ground-fast and floating ice relate to geomorphological and hydrological processes, but no circumpolar account of this phenomenon is currently available due to challenges when dealing with the varying observation geometry typical for SAR. An approach using ENVISAT ASAR Wide Swath data (approximately 120 m resolution) has been developed supported by bathymetric measurements in Siberia and eventually applied across the entire Arctic for late winter 2008. In total about 2 Million lake objects have been analyzed considering the boundaries of the Last Glacial Maximum, permafrost zones and soil organic carbon content. Distinct patterns of ground-fast lake ice fraction can be found across the Arctic. Clusters of variable fractions of ground-fast ice occur especially in Yedoma regions of Eastern Siberia and Alaska. This reflects the nature of thaw lake dynamics. Analyses of lake depth measurements from several sites (Alaskan North Slope, Richards Island in Canada, Yamal Peninsula and Lena Delta) suggest that the used method yields the potential to utilize ground-fast lake ice information over larger areas with respect to landscape development, but results need to be treated with care, specifically for larger lakes and along river courses. A combination of general lake features and ground-fast ice fraction may lead to an advanced understanding of landscape patterns and development. Ground-fast ice fraction information may support to some extent the identification of landscape units, for example areas of adjacent lakes with similar patterns (terraces) or areas with mixed ground-fast fractions which indicate different lake development stages. This work was supported by the Austrian Science Fund

  4. Reshaping the Antarctic Circumpolar Current via Antarctic Bottom Water Export

    Science.gov (United States)

    Stewart, A.; Hogg, A.

    2016-02-01

    Westerly wind forcing of Antarctic Circumpolar Current (ACC) is balanced at large-scale topographic obstructions by form drag; the formation of standing meanders produces a net westward pressure gradient associated with the geostrophically balanced meridional flow. These topographic obstructions also support the northward geostrophic flow of Antarctic Bottom Water (AABW), which piles up dense water on the eastern side of the topography and thereby acts to reduce the form drag. We therefore hypothesize that variations in the density of AABW and its export rate must be accommodated by reshaping the ACC's standing meanders in order to preserve the zonal force balance. We test this hypothesis using an idealized, eddy-resolving sector model of the ACC. We find that response of the ACC to switching off AABW production depends on whether the topography is high enough to block barotropic potential vorticity (PV) contours. If re-entrant PV contours exist then the ACC responds similarly to switching off AABW production or halving the westerly wind strength: for example the ACC transport drops by 10-20% and the surface speed in the meander decreases by around 25%. If PV contours are blocked then the ACC transport becomes insensitive to the westerlies, but switching off AABW production still leads to a reduced ACC transport through a wider, slower meander. These results suggest that the warming and freshening of AABW observed in recent decades may have a detectable impact on the surface circulation of the ACC.

  5. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  6. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  7. An NOy Algorithm for Arctic Winter 2000

    Science.gov (United States)

    Loewenstein, M.; Jost, H.; Greenblatt, J. B.; Podolske, J. R.; Gao, R. S.; Popp, P. J.; Toon, G. C.; Webster, C. R.; Herman, R. L.; Hurst, D. F.; hide

    2000-01-01

    NOy, total reactive nitrogen, and the long-lived tracer N2O, nitrous oxide, were measured by both in situ and remote sensing instruments during the Arctic winter 1999-2000 SAGE III Ozone Loss and Validation Experiment (SOLVE). The correlation function NOy:N2O observed before the winter Arctic vortex forms, which is known as NOy(sup), is an important reference relationship for conditions in the evolving vortex. NOy(sup) can, with suitable care, be used to quantify vortex denitrification by sedimentation of polar stratospheric cloud particles when NOy data is taken throughout the winter. Observed NOy values less than the reference value can be interpreted in terms of semi-permanent removal of active nitrogen by condensation and sedimentation processes. In this paper we present a segmented function representing NOy(sup) applicable over the full range of altitudes sampled during SOLVE. We also assess the range of application of this function and some of its limitations.

  8. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  9. Eddy-induced carbon transport across the Antarctic Circumpolar Current

    Science.gov (United States)

    Moreau, Sébastien; Penna, Alice Della; Llort, Joan; Patel, Ramkrushnbhai; Langlais, Clothilde; Boyd, Philip W.; Matear, Richard J.; Phillips, Helen E.; Trull, Thomas W.; Tilbrook, Bronte; Lenton, Andrew; Strutton, Peter G.

    2017-09-01

    The implications of a mesoscale eddy for relevant properties of the Southern Ocean carbon cycle are examined with in situ observations. We explored carbon properties inside a large ( 190 km diameter) cyclonic eddy that detached from the Subantarctic Front (SAF) south of Tasmania in March 2016. Based on remote sensing, the eddy was present for 2 months in the Subantarctic Zone (SAZ), an important region of oceanic carbon dioxide (CO2) uptake throughout the annual cycle and carbon subduction (i.e., where mode and intermediate waters form), before it was reabsorbed into the SAF. The eddy was sampled during the middle of its life, 1 month after it spawned. Comparatively, the eddy was 3°C colder, 0.5 practical salinity unit fresher, and less biologically productive than surrounding SAZ waters. The eddy was also richer in dissolved inorganic carbon (DIC) and had lower saturation states of aragonite and calcite than the surrounding SAZ waters. As a consequence, it was a strong source of CO2 to the atmosphere (with fluxes up to +25 mmol C m-2 d-1). Compared to the SAF waters, from which it originated, DIC concentration in the eddy was 20 μmol kg-1 lower, indicating lateral mixing, small-scale recirculation, or eddy stirring with lower-DIC SAZ waters by the time the eddy was observed. As they are commonly spawned from the Antarctic Circumpolar Current, and as 50% of them decay in the SAZ (the rest being reabsorbed by the SAF-N), these types of eddies may represent a significant south-north transport pathway for carbon across the ACC and may alter the carbon properties of SAZ waters.

  10. Circumpolar dataset of sequenced specimens of Promachocrinus kerguelensis (Echinodermata, Crinoidea).

    Science.gov (United States)

    Hemery, Lenaïg G; Améziane, Nadia; Eléaume, Marc

    2013-01-01

    This circumpolar dataset of the comatulid (Echinodermata: Crinoidea) Promachocrinus kerguelensis (Carpenter, 1888) from the Southern Ocean, documents biodiversity associated with the specimens sequenced in Hemery et al. (2012). The aim of Hemery et al. (2012) paper was to use phylogeographic and phylogenetic tools to assess the genetic diversity, demographic history and evolutionary relationships of this very common and abundant comatulid, in the context of the glacial history of the Antarctic and Sub-Antarctic shelves (Thatje et al. 2005, 2008). Over one thousand three hundred specimens (1307) used in this study were collected during seventeen cruises from 1996 to 2010, in eight regions of the Southern Ocean: Kerguelen Plateau, Davis Sea, Dumont d'Urville Sea, Ross Sea, Amundsen Sea, West Antarctic Peninsula, East Weddell Sea and Scotia Arc including the tip of the Antarctic Peninsula and the Bransfield Strait. We give here the metadata of this dataset, which lists sampling sources (cruise ID, ship name, sampling date, sampling gear), sampling sites (station, geographic coordinates, depth) and genetic data (phylogroup, haplotype, sequence ID) for each of the 1307 specimens. The identification of the specimens was controlled by an expert taxonomist specialist of crinoids (Marc Eléaume, Muséum national d'Histoire naturelle, Paris) and all the COI sequences were matched against those available on the Barcode of Life Data System (BOLD: http://www.boldsystems.org/index.php/IDS_OpenIdEngine). This dataset can be used by studies dealing with, among other interests, Antarctic and/or crinoid diversity (species richness, distribution patterns), biogeography or habitat / ecological niche modeling. This dataset is accessible through the GBIF network at http://ipt.biodiversity.aq/resource.do?r=proke.

  11. Magnetic vortex racetrack memory

    International Nuclear Information System (INIS)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-01-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  12. Dynamics of Vortex Crystals.*

    Science.gov (United States)

    Jin, D. Z.; Dubin, D. H. E.

    1997-11-01

    We discuss the linear and nonlinear 2D dynamics of vortex crystals observed in experiments on pure electron plasmas [1]. Vortex crystals are rods of intense vorticity that form stable geometrical patterns in a low vorticity background. We consider a system consisting of several point vortices inside an initially circular background of constant vorticity. When the point vorticities have sufficiently small circulation compared to the background, there exist two time scales in the dynamics: a slow time scale associated with the motion of the point vortices and the driven response in the background; and a fast time scale associated with freely streaming Kelvin waves on the edge of the background vorticity profile. On the slow time scale, we show that the linear dynamics of the point vortices is equivalent to the classical problem of point vortices inside a circular conducting boundary, with the boundary radius equal to that of the background. However, filamentation involving both slow and fast time scales and subsequent wave breaking eventually occurs due to the nonlinear processes. This causes turbulent mixing of the background, and may be responsible for the irreversible ``cooling'' of the point vortex motions toward the vortex crystal state. Supported by NSF grant PHY94-21318. [1] K.S. Fine et al., Phys. Rev. Lett. 75, 3277 (1995).

  13. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  14. 35 years of ICCH: evolution or stagnation of circumpolar health research?

    DEFF Research Database (Denmark)

    Bjerregaard, P; Young, T K; Curtis, T

    2004-01-01

    The first Circumpolar Health symposium took place in Fairbanks in 1967. Approximately every three years since, an increasing number of researchers have met to present and discuss the health conditions of the North. We analysed the proceedings from the 11 congresses and the abstracts from the 12th...... congress in 2003 and found a shift of focus from biology to sociology of health. Today, circumpolar health research is primarily focused on three major topics: 1. epidemiology of indigenous peoples of the North; 2. health care delivery in the North; and 3. the effect of physical factors on human physiology...... and health. Despite the diverse research interests, it is remarkable how a community of circumpolar scientists and practitioners has emerged over the past 35 years....

  15. Possible water lubricated grain movement in the circumpolar region of Mars

    Science.gov (United States)

    Kereszturi, A.; Rivera-Valentin, E. G.

    2016-06-01

    In this work we evaluate a new model on the possibility, could microscopic liquid water supported grain movement on Mars happen at the circumpolar region (in Richardson crater) today, combined with the analysis of new HiRISE ESP images. We confirmed earlier (PSP images based) findings on the morphology, sequential growth and two separate phased formation method of flow features emanate from Dark Dune Spots (1: gas-jet driven streaks toward different directions, 2: flow-like streaks downward). We also identified that the gas-jet ejected and back fallen grains surrounded by water ice produce local enrichment of H2O, forming local water ice layer. Several model scenarios were developed and evaluated to exploit the possibilities of liquid supported flow, including the increased thickness of interfacial liquid layer by salts and impurities, the collapse and movement of loose stratum of air-fallen dust-salt mixture with interbedded liquid layers, the mechanical force to kick-off the movement by hydration/dehydration cycles, and the migrating phase change plus the seeping of thin liquid film around interconnected grains. Selecting the most relevant elements among them, which are also compatible to our current knowledge of Mars, a comprehensive model was built that could be tested. This best model contains four interconnected and subsequent elements: 1. deposition of airfall dust in autumn and winter producing a loose surface layer, 2. spatial concentration of H2O ice by gas-jet activity during the CO2 sublimation phase, 3. mechanical kick-off by daily expansion/contraction cycles to mix the components, 4. engulfed hygroscopic salts and dust grains to enlarge the ratio of liquid to support the flow. The emerged self-amplifying process could produce daily movement in theory. The scenario contains realistic elements; it is in agreement with the observations, and also being testable by laboratory modelling. The analyzed locations are important because of the joint occurrence

  16. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  17. Dynamics of Vortex Crystals

    Science.gov (United States)

    Jin, D. Z.; Dubin, D. H. E.

    1997-11-01

    This poster discusses the linear and nonlinear dynamics of vortex crystals observed in experiments on pure electron plasmas [1]. Vortex crystals are rods of intense density that form stable geometrical patterns in a low density background. We consider a system consisting of several line charges inside an initially circular background of constant density. When the line charges have sufficiently small charge per unit length compared to the background, there exist two time scales in the dynamics: a slow time scale associated with the motion of the line charges and the driven response in the background; and a fast time scale associated with freely streaming diocotron waves on the edge of the background density profile. On the slow time scale, we show that the linear dynamics of the line charges is equivalent to the classical problem of line charges inside a circular conducting wall, with the wall radius equal to that of the background. However, filamentation involving both slow and fast time scales and subsequent wave breaking eventually occurs due to the nonlinear processes. This causes turbulent mixing of the background, and may be responsible for the irreversible ``cooling'' of the line charge motions toward the vortex crystal state. Supported by NSF grant PHY94-21318. [1] K.S. Fine et al., Phys. Rev. Lett. 75, 3277 (1995).

  18. Interferometric optical vortex array generator.

    Science.gov (United States)

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  19. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  20. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  1. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 66; Issue 1. Melting of heterogeneous vortex matter: The vortex `nanoliquid'. S S Banerjee S Goldberg Y Myasoedov M Rappaport E Zeldov A Soibel F de la Cruz C J van der Beek M Konczykowski T Tamegai V Vinokur. Volume 66 Issue 1 January 2006 pp 43-54 ...

  2. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    Crow instability (see for example Leweke & Williamson, 2012). (b) Short-wave cooperative elliptic instability (Leweke & Williamson 1998). (c...vortex generators. Of interest in such studies would be the formation of secondary vorticity from the surface, the downstream vortex trajectories , and

  3. Winter Weather: Frostbite

    Science.gov (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  4. The roundtrip to Fairbanks: the circumpolar health movement comes full circle, part II

    Directory of Open Access Journals (Sweden)

    Neil J. Murphy

    2013-08-01

    Full Text Available Objectives . Evaluate the course of the International Union for Circumpolar Health (IUCH and the Proceedings of the International Congress(s on Circumpolar Health (ICCH in the context of the concomitant historical events. Make recommendations for future circumpolar health research. Study design . Medline search and historical archive search of ICCH Proceedings. Methods . Search of all PubMed resources from 1966 concerning the circumpolar health movement. Two University of Alaska, Anchorage Archive Collections were searched: the C. E. Albrecht and Frank Pauls Archive Collections. Results . Fourteen sets of Proceedings manuscripts and one set of Proceedings Abstracts were evaluated. There was a trend towards consistent use of the existing journals with indexing in Index Medicus; shorter intervals between the Congress and Proceedings manuscript publication; and increased online availability of either the Table of Contents or Proceedings citations.Recent additions include online publication of full-length manuscripts and 2 instances of full peer-review evaluations of the Proceedings manuscripts. These trends in Proceedings publication are described within the course of significant events in the circumpolar health movement. During this period, the IUCH funds are at an all-time low and show little promise of increasing, unless significant alternative funds strategies are pursued. Conclusions . The IUCH has matured politically over these years, but some of the same questions persist over the years. There has been a trend towards more rapid dissemination of scientific content, more analytic documentation of epidemiologic study design and trend towards wider dissemination of scientific content through the Internet. Significant progress in each of those areas is still possible and desirable. In the meantime, the IUCH should encourage alternative funding strategies by developing a foundation to support on-going expenses, for example Hildes awards; explore

  5. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  6. The Acoustically Driven Vortex Cannon

    Science.gov (United States)

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  7. Compressibility effect in vortex identification

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2009-01-01

    Roč. 47, č. 2 (2009), s. 473-475 ISSN 0001-1452 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex * vortex identification * compressible flows * compressibility effect Subject RIV: BK - Fluid Dynamics Impact factor: 0.990, year: 2009

  8. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  9. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  10. Defining the Polar Vortex Edge from a N20: Potential Temperature Correlation

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.

    2002-01-01

    A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.

  11. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  12. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  13. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios. For ...

  14. Interannual Variability in Weddell Sea Ice Formation and Bottom Water Outflow in Response to the Antarctic Circumpolar Wave

    Science.gov (United States)

    Drinkwater, M.; Kreyscher, M.

    1997-01-01

    The seasonal sea-ice cover surrounding the continent of Antarctica, together with the circumpolar current belt, form a contiguous pathway for propagation and transfer of climatological anomalies around the Sourthern hemisphere.

  15. Defining the Polar Vortex Edge Using an N2O: Potential Temperature Correlation Versus the Nash Criterion: A Comparison

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.; hide

    2001-01-01

    A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.

  16. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  17. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  18. Review of Vortex Methods for Simulation of Vortex Breakdown

    National Research Council Canada - National Science Library

    Levinski, Oleg

    2001-01-01

    The aim of this work is to identify current developments in the field of vortex breakdown modelling in order to initiate the development of a numerical model for the simulation of F/A-18 empennage buffet...

  19. Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea?

    Science.gov (United States)

    Kim, T. W.; Ha, H. K.; Wåhlin, A. K.; Lee, S. H.; Kim, C. S.; Lee, J. H.; Cho, Y. K.

    2017-01-01

    Ekman pumping induced by horizontally varying wind and sea ice drift is examined as an explanation for observed seasonal variation of the warm layer thickness of circumpolar deep water on the Amundsen Sea continental shelf. Spatial and temporal variation of the warm layer thickness in one of the deep troughs on the shelf (Dotson Trough) was measured during two oceanographic surveys and a two-year mooring deployment. A hydrographic transect from the deep ocean, across the shelf break, and into the trough shows a local elevation of the warm layer at the shelf break. On the shelf, the water flows south-east along the trough, gradually becoming colder and fresher due to mixing with cold water masses. A mooring placed in the trough shows a thicker and warmer layer in February and March (late summer/early autumn) and thinner and colder layer in September, October and November (late winter/early spring). The amplitude of this seasonal variation is up to 60 m. In order to investigate the effects of Ekman pumping, remotely sensed wind (Antarctic Mesoscale Prediction System wind data) and sea ice velocity and concentration (EASE Polar Pathfinder) were used. From the estimated surface stress field, the Ekman transport and Ekman pumping were calculated. At the shelf break, where the warm layer is elevated, the Ekman pumping shows a seasonal variation correlating with the mooring data. Previous studies have not been able to show a correlation between observed wind and bottom temperature, but it is shown here that when sea ice drift is taken into account the Ekman pumping at the outer shelf correlates with bottom temperature in Dotson Trough. The reason why the Ekman pumping varies seasonally at the shelf break appears to be the migration of the ice edge in the expanding polynya in combination with the wind field which on average is westward south of the shelf break.

  20. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  1. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  2. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  3. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  4. Holographic Vortex Coronagraph

    Science.gov (United States)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  5. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  6. Acculturation and adaptation: health consequences of culture contact among circumpolar peoples.

    Science.gov (United States)

    Berry, J W

    1990-07-01

    An overview is presented of the processes of acculturation and adaptation. Research with a variety of acculturating groups (including Refugees, Immigrants, Sojourners, Native Peoples and Ethnic Groups) shows that satisfactory adaptations are possible given appropriate conditions in the host or settlement countries. These conditions are largely under the potential control of policy makers and programm developers, and hence healthy outcomes are within reach. When these findings and conclusions are applied to Native Peoples in Circumpolar regions, some particular experiences stand out, resulting in the potential for difficult social and psychological adaptations. However, the literature shows that like all other acculturating groups, successful adaptations are possible for Circumpolar peoples, especially when they are in a position to understand and control the process.

  7. Performance indicators for maternity care in a circumpolar context: a scoping review

    Science.gov (United States)

    Rich, Rebecca; D'Hont, Thomsen; Linton, Janice; Murphy, Kellie E.; Veillard, Jeremy; Chatwood, Susan

    2016-01-01

    Background In circumpolar regions, harsh climates and scattered populations have prompted the centralization of care and reduction of local maternity services. The resulting practice of routine evacuation for birth from smaller towns to larger urban centres points to a potential conflict between the necessity to ensure patient safety and the importance of delivering services that are responsive to the health needs and values of populations served. Objective To identify recommended performance/quality indicators for use in circumpolar maternity care systems. Methods We searched Scopus, Ebscohost databases (including Academic Search Complete and CINAHL), the Global Health Database, High North Research Documents, and online grey literature. Articles were included if they focused on maternal health indicators in the population of interest (Indigenous women, women receiving care in circumpolar or remote regions). Articles were excluded if they were not related to pregnancy, birth or the immediate post-partum or neonatal periods. Two reviewers independently reviewed articles for inclusion and extracted relevant data. Results Twenty-six documents were included. Twelve were government documents, seven were review articles or indicator compilations, four were indicator sets recommended by academics or non-governmental organizations and three were research papers. We extracted and categorized 81 unique health indicators. The majority of indicators reflected health systems processes and outcomes during the antenatal and intra-partum periods. Only two governmental indicator sets explicitly considered the needs of Indigenous peoples. Conclusions This review demonstrates that, although most circumpolar health systems engage in performance reporting for maternity care, efforts to capture local priorities and values are limited in most regions. Future work in this area should involve northern stakeholders in the process of indicator selection and development. PMID:27938636

  8. Performance indicators for maternity care in a circumpolar context: a scoping review

    Directory of Open Access Journals (Sweden)

    Rebecca Rich

    2016-12-01

    Full Text Available Background: In circumpolar regions, harsh climates and scattered populations have prompted the centralization of care and reduction of local maternity services. The resulting practice of routine evacuation for birth from smaller towns to larger urban centres points to a potential conflict between the necessity to ensure patient safety and the importance of delivering services that are responsive to the health needs and values of populations served. Objective: To identify recommended performance/quality indicators for use in circumpolar maternity care systems. Methods: We searched Scopus, Ebscohost databases (including Academic Search Complete and CINAHL, the Global Health Database, High North Research Documents, and online grey literature. Articles were included if they focused on maternal health indicators in the population of interest (Indigenous women, women receiving care in circumpolar or remote regions. Articles were excluded if they were not related to pregnancy, birth or the immediate post-partum or neonatal periods. Two reviewers independently reviewed articles for inclusion and extracted relevant data. Results: Twenty-six documents were included. Twelve were government documents, seven were review articles or indicator compilations, four were indicator sets recommended by academics or non-governmental organizations and three were research papers. We extracted and categorized 81 unique health indicators. The majority of indicators reflected health systems processes and outcomes during the antenatal and intra-partum periods. Only two governmental indicator sets explicitly considered the needs of Indigenous peoples. Conclusions: This review demonstrates that, although most circumpolar health systems engage in performance reporting for maternity care, efforts to capture local priorities and values are limited in most regions. Future work in this area should involve northern stakeholders in the process of indicator selection and development.

  9. The Circumpolar Arctic Vegetation Map: AVHRR-derived base maps, environmental controls, and integrated mapping procedures

    Science.gov (United States)

    D. A. WALKER; W. A. GOULD; MAIERH. A.; M. K. RAYNOLDS

    2002-01-01

    A new false-colour-infrared image derived from biweekly 1993 and 1995 Advanced Very High Resolution Radiometer (AVHRR) data provides a snow-free and cloud-free base image for the interpretation of vegetation as part of a 1:7.5M-scale Circumpolar Arctic Vegetation Map (CAVM). A maximum-NDVI (Normalized DiVerence Vegetation Index) image prepared from the same data...

  10. Antarctic circumpolar transport and the southern mode: a model investigation of interannual to decadal timescales

    Directory of Open Access Journals (Sweden)

    C. W. Hughes

    2014-04-01

    Full Text Available It is well-established that, at periods shorter than a year, variations in Antarctic circumpolar transport are reflected in a barotropic mode, known as the southern mode, in which sea level and bottom pressure varies coherently around Antarctica. Here, we use two multidecadal ocean model runs to investigate the behaviour of the southern mode at timescales on which density changes become important, leading to a baroclinic component to the adjustment. We find that the concept of a southern mode in bottom pressure remains valid, and remains a direct measure of the circumpolar transport, with changes at the northern boundary playing only a small role even on decadal timescales. However, at periods longer than about 5 years, density changes start to play a role, leading to a surface intensification of the vertical profile of the transport. We also find that barotropic currents on the continental slope account for a significant fraction of the variability, and produce surface intensification in the meridional-integral flow. Circumpolar sea level and transport are related at all investigated timescales. However, the role of density variations results in a ratio of sea level change to transport which becomes larger at longer timescales. This means that any long-term transport monitoring strategy based on present measurement systems must involve multiplying the observed quantity by a factor which depends on frequency.

  11. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  12. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health ... Although there are no guarantees of safety during winter weather emergencies, you can take actions to protect ...

  13. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  14. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  15. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  16. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  17. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  18. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  19. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-09-01

    We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004-2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.

  20. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-09-01

    Full Text Available We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2, bromine species, nitrogen species (HNO3, NOx and hydrogen species (HOx. For clarity, we focus on one Arctic winter (2004–2005 and one Antarctic winter (2006 in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM driven by the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen and activation and deactivation of chlorine.

  1. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  2. Ground vortex flow field investigation

    Science.gov (United States)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  3. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  4. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  5. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  6. Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation

    Science.gov (United States)

    Foppert, Annie; Donohue, Kathleen A.; Watts, D. Randolph; Tracey, Karen L.

    2017-08-01

    Eddy heat flux (EHF) is a predominant mechanism for heat transport across the zonally unbounded mean flow of the Antarctic Circumpolar Current (ACC). Observations of dynamically relevant, divergent, 4 year mean EHF in Drake Passage from the cDrake project, as well as previous studies of atmospheric and oceanic storm tracks, motivates the use of sea surface height (SSH) standard deviation, H*, as a proxy for depth-integrated, downgradient, time-mean EHF (>[EHF>¯>]) in the ACC. Statistics from the Southern Ocean State Estimate corroborate this choice and validate throughout the ACC the spatial agreement between H* and >[EHF>¯>] seen locally in Drake Passage. Eight regions of elevated >[EHF>¯>] are identified from nearly 23.5 years of satellite altimetry data. Elevated cross-front exchange usually does not span the full latitudinal width of the ACC in each region, implying a hand-off of heat between ACC fronts and frontal zones as they encounter the different >[EHF>¯>] hot spots along their circumpolar path. Integrated along circumpolar streamlines, defined by mean SSH contours, there is a convergence of ∮>[EHF>¯>] in the ACC: 1.06 PW enters from the north and 0.02 PW exits to the south. Temporal trends in low-frequency [EHF] are calculated in a running-mean sense using H* from overlapping 4 year subsets of SSH. Significant increases in downgradient [EHF] magnitude have occurred since 1993 at Kerguelen Plateau, Southeast Indian Ridge, and the Brazil-Malvinas Confluence, whereas the other five >[EHF>¯>] hot spots have insignificant trends of varying sign.

  7. The Scotia Sea and the Drake Passage as an orographic barrier for the Antarctic Circumpolar Current

    Science.gov (United States)

    Tarakanov, R. Yu.

    2012-04-01

    It is shown on the basis of the data of the Russian Academy of Sciences expeditions in 2003-2010, the historical CTD database, the WOCE climatology, and the satellite altimetry that the area of the Scotia Sea and the Drake Passage is even a greater significant orographic barrier for the eastward Antarctic Circumpolar Current (ACC) than was previously thought. It is the current concept that this barrier is the most important for the ACC; it consists of three obstacles: the Hero Ridge with the Phoenix Rift, the Shackleton Ridge, and the North Scotia Ridge with the relatively shallow eastern part of the Scotia Sea. Despite the fact that all three obstacles are permeable for the layer of the Circumpolar Bottom Water (CBW; 28.16 intensified ACC jets. Herewith, the upper CBW boundary is the lower limit of the circumpolar coverage of the ACC jets. This result is confirmed by the near zero estimate of the total CBW transport according to the three series of the LADCP measurements on the sections across the Drake Passage. It is shown that the transformation (cooling and freshening) of the CBW layer, which occurs owing to the flow of the ACC over the Shackleton Ridge, is associated with the shape and location of the ridge in the Drake Passage. The high southern part of this ridge is a partially permeable screen for the eastward CBW transport behind which the colder and fresher waters of the Weddell Sea and the Bransfield Strait of the same density range as the CBW penetrate into the ACC zone. The partial permeability of the Shackleton Ridge for the CBW layer leads to the salinization of this layer on the eastern side of the ridge and to the CBW's freshening on the western side of this ridge, which is observed across the entire Drake Passage.

  8. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  9. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    Science.gov (United States)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel

  10. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  11. CO as a marker and probe of polar vortex structure in the upper stratosphere and mesosphere

    Science.gov (United States)

    de Zafra, R. L.; Muscari, G.

    2003-04-01

    We present new ground-based measurements of polar stratospheric and mesospheric CO showing that it serves as an excellent tracer of vortex position, size, and descent at an altitude range where other information may be sparse or unreliable. Observations were made with a mm-wave spectrometer at Thule, Greenland (76.5o N, 68.7o W), and involved almost-daily measurements between January 17 and March 4, 2002. Our analysis is supplemented with occasional observations made at the geographic South Pole during both summer and winter periods of 1999. Mixing ratio profiles are retrieved from pressure-broadened line shape measurements of the 230 GHz rotational emission line, using a spectrometer with a bandwidth of 50 MHz and a resolution of about 65 kHz. Although Doppler broadening increasingly dominates over pressure broadening in the mesosphere, eventually frustrating profile retrieval, extensive testing shows that rather accurate retrievals (Lidar probe for temperature retrievals in 2003. We find CO to be a very good marker for the upper vortex (e.g. 50-70 km), in agreement with recent analysis of 1991-92 ISAMS data by Allen et al. [J. Atmos. Sci. 56, 563-583, 1999]. Large changes in the vertical profile are evident from outside to inside the polar vortex in this altitude range. Observed short-term changes at 50-70 km are consistent with vortex position below 50 km. Relative to its January height just outside the vortex, we find that the CO mixing ratio peak had descended by ˜10 km (to ˜55 km altitude) within the vortex by late January of 2002, while the external peak altitude is already much lower (˜65 km) than the CO peak at low latitudes or in polar summer. From earlier South Pole trial observations (with poorer signal/noise ratio) we find the total column density above 40 km in polar summer to be only 6-7% of its winter value. We have also compared our total column density values above 64 km to the same computations by Solomon et al. [J. Atmos. Sci., 42, 1072

  12. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  13. Vortex dynamics in inhomogeneous plasmas

    DEFF Research Database (Denmark)

    Naulin, V.; Juul Rasmussen, J.

    1999-01-01

    The dynamics of vortical structures in magnetized plasmas with nonuniform density is investigated numerically. In particular the dynamics of monopolar vortices is considered and the results are discussed in terms of the conservation of potential vorticity. It is found that individual vortex...

  14. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  15. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    Science.gov (United States)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  16. Impacts of snow on soil temperature observed across the circumpolar north

    Science.gov (United States)

    Zhang, Yu; Sherstiukov, Artem B.; Qian, Budong; Kokelj, Steven V.; Lantz, Trevor C.

    2018-04-01

    Climate warming has significant impacts on permafrost, infrastructure and soil organic carbon at the northern high latitudes. These impacts are mainly driven by changes in soil temperature (TS). Snow insulation can cause significant differences between TS and air temperature (TA), and our understanding about this effect through space and time is currently limited. In this study, we compiled soil and air temperature observations (measured at about 0.2 m depth and 2 m height, respectively) at 588 sites from climate stations and boreholes across the northern high latitudes. Analysis of this circumpolar dataset demonstrates the large offset between mean TS and TA in the low arctic and northern boreal regions. The offset decreases both northward and southward due to changes in snow conditions. Correlation analysis shows that the coupling between annual TS and TA is weaker, and the response of annual TS to changes in TA is smaller in boreal regions than in the arctic and the northern temperate regions. Consequently, the inter-annual variation and the increasing trends of annual TS are smaller than that of TA in boreal regions. The systematic and significant differences in the relationship between TS and TA across the circumpolar north is important for understanding and assessing the impacts of climate change and for reconstruction of historical climate based on ground temperature profiles for the northern high latitudes.

  17. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    Science.gov (United States)

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  18. Arctic indigenous youth resilience and vulnerability: comparative analysis of adolescent experiences across five circumpolar communities.

    Science.gov (United States)

    Ulturgasheva, Olga; Rasmus, Stacy; Wexler, Lisa; Nystad, Kristine; Kral, Michael

    2014-10-01

    Arctic peoples today find themselves on the front line of rapid environmental change brought about by globalizing forces, shifting climates, and destabilizing physical conditions. The weather is not the only thing undergoing rapid change here. Social climates are intrinsically connected to physical climates, and changes within each have profound effects on the daily life, health, and well-being of circumpolar indigenous peoples. This paper describes a collaborative effort between university researchers and community members from five indigenous communities in the circumpolar north aimed at comparing the experiences of indigenous Arctic youth in order to come up with a shared model of indigenous youth resilience. The discussion introduces a sliding scale model that emerged from the comparative data analysis. It illustrates how a "sliding scale" of resilience captures the inherent dynamism of youth strategies for "doing well" and what forces represent positive and negative influences that slide towards either personal and communal resilience or vulnerability. The model of the sliding scale is designed to reflect the contingency and interdependence of resilience and vulnerability and their fluctuations between lowest and highest points based on timing, local situation, larger context, and meaning. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Low-frequency variability in idealised GCM experiments with circumpolar and localised storm tracks

    Directory of Open Access Journals (Sweden)

    W. Müller

    2002-01-01

    Full Text Available Idealised global circulation model simulations with circumpolar and localised (one and two storm tracks are re-analysed to determine scaling, intermittency and phase-space structures. In a hundred year experiment with a circumpolar storm track, the spectrum S(f of the first principal component of the zonal wind fluctuations shows the following power law regimes: (a a short-term memory between f- -4 and f  -2 up to 50 days and (b a long-term memory f -1 from 50 to 400 days and f -0.24 beyond 400 days, similar to observed maritime single station near-surface air temperature data. In the presence of localised storm tracks, the wave number two dominates the dynamics and a long-term memory cannot be detected. The recurrence plot is introduced as a novel tool to comprehensively visualise the evolution of the dynamical system in terms of state separations (distances in phase space. The patterns allow for a qualitative interpretation of the underlying local phenomena in phase space, such as waves, analogs, extremes, and global regimes. Attractor dimensions are, in general, larger than 10, but they appear to be lower in the wave-dominated regimes of the double storm track experiment.

  20. Vortex veins: anatomic investigations on human eyes.

    Science.gov (United States)

    Kutoglu, Tunc; Yalcin, Bulent; Kocabiyik, Necdet; Ozan, Hasan

    2005-05-01

    The aim of this study was to determine number of ocular vortex veins, their scleral coordinates, and their relationship with nearby extraocular muscles. Sixty intact cadaver orbits having no history of eye or orbital disorders during life were carefully dissected under stereomicroscopic magnification to expose vortex veins and their exit sites from the eyeball. The number of vortex veins per eye varied from four to eight. Eyes having four (35%) or five (30%) vortex veins were observed most frequently. Three eyes (5%) had eight vortex veins. Although the incidence of the vortex veins was variable, there was at least one vein in each quadrant of the sclera. Knowledge of the approximate location of the vortex vein exit sites is very important for surgeons because damage to these veins during eye surgery could produce potential complications, especially choroidal detachment. Copyright 2005 Wiley-Liss, Inc.

  1. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  2. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  3. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  4. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    Science.gov (United States)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  5. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  6. Vortex Wakes of Conventional Aircraft

    Science.gov (United States)

    1975-05-01

    literature . Of course, the correct scheme would be one which exactly predicts the unsteady velocity at each vortex. However, there is evidence that...problem, many measurements of the velocity distributions in trailing vortices are appearing in the literature . Unfortunately, since the Betz method did...small axial grad- ients) seemingly for no reason. Peckham and Atkinson [36] first observed the phenomenon over leading edge vortices on a gothic

  7. Normal-mode-vortex interactions

    International Nuclear Information System (INIS)

    Bernal, R.; Coste, C.; Lund, F.; Melo, F.

    2002-01-01

    Standing surface waves that interact with a confined, vertical, vorticity field with zero net circulation are studied both analytically and experimentally. The surface waves are generated by vertical vibration, and constant vorticity injection is achieved by a rotating disk flush mounted in the cell. Experimental results are indicative of a local wave-vortex interaction (no dislocation), and a simple theoretical model is able to explain them in quantitative detail

  8. Vortex Molecules in Bose-Einstein Condensates

    Science.gov (United States)

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2014-04-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-component BECs. We find how the vortex lattices without the Rabi coupling known before are connected to the Abrikosov lattice of integer vortices with increasing the Rabi coupling. In this process, vortex dimers change their partners in various ways at large couplings. We then find that the Abrikosov lattices are robust in three-component BECs.

  9. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov

    2015-11-01

    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  10. Birth and evolution of an optical vortex.

    Science.gov (United States)

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-25

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  11. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  12. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  13. Stabilization of Inviscid Vortex Sheets

    Science.gov (United States)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  14. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure.

    Science.gov (United States)

    Katz, Miriam E; Cramer, Benjamin S; Toggweiler, J R; Esmay, Gar; Liu, Chengjie; Miller, Kenneth G; Rosenthal, Yair; Wade, Bridget S; Wright, James D

    2011-05-27

    Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large δ(13)C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth δ(13)C and O(2) minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.

  15. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  17. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  18. 15 years of social crisis in the largest Circumpolar region: hygienic implications.

    Science.gov (United States)

    Tyrylgin, Mikhail A

    2007-01-01

    The aim of the study was to determine the nature and size of the hygienical impact of social crisis on the public health of the population of a Circumpolar region. The study was carried out in the Sakha (Yakutia) Republic (area 3.1 million km2; population nearly 1 million). The analysis of health indicators was done using demographic and hygienical methods, and 15-year (1989-2005) statistical data from the Federal State Statistic Service division in the Sakha Republic. The study has yielded reliable data on public health trends of the population in the Sakha Republic. During a period of 15 years of social crisis, the population has declined by 13%, mainly due to the departure of 1/3 of the non-Aboriginal population, which clearly demonstrated the negative nature of social changes. The natural increase rate has been reduced to a 1/ 3. Marriage and family institutions were affected seriously, with twice more children born to single mothers and 2.6-fold more to fathers of a foreign origin. Incidence rates of alcoholic psychosis, chronic alcoholism and drug abuse increased 3.1- to 4.2-fold; and mortality associated with psycho-emotional stress (circulatory diseases, external causes of injury, digestive system diseases), 1.7- to 3.1-fold. Rates of mortality due to circulatory, respiratory and malignant neoplastic diseases were 1.6- to 2.7-fold lower than those in Russia in general. Such low mortality due to degenerative diseases was predetermined by the small percent of the elderly in the age structure (8.4%), which was 2.5-fold lower compared to Russia and developed countries. The public health status of the residents of Circumpolar areas was extremely sensitive to socioeconomic changes. The social crisis had a multifactorial effect on lifestyle, quality of life-supporting infrastructure, and particularly, on the medical care system, with highly negative hygienical implications.

  19. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  20. Uncertain Future, Deliberate Action: Proceedings of the Circumpolar Climate Change Summit

    International Nuclear Information System (INIS)

    2001-01-01

    Northern environments and communities are entering a period of unprecedented change. Emissions of greenhouse gases due to human activities are altering the atmosphere and are expected to change global climate in ways that may be detrimental to our environmental, social and economic systems. An increasing body of observation provides convincing evidence of a warming world, and there is strong evidence that the warming observed over the last 50 years is attributable to human activity. While climate change science is, without a doubt, complicated and not all views about climate change are universally accepted by all, in northern Canada, climate change is no longer an abstract idea. There is strong scientific and anecdotal evidence that the northern environment is responding to new climatic conditions, evidence that strongly supports the current Intergovernmental Panel on Climate Change (IPCC) models and predictions on global climatic change. This conference, 'Uncertain future, deliberate action -- Climate Change in the Circumpolar North' was organized to provide northerners, and those with an interest in the North, an opportunity to learn more about climate change from internationally recognized experts, business leaders, professionals and community leaders who shared their ideas about climate change and the circumpolar North. Discussions, talks, exhibits, and posters were structured around the three themes of 'Understanding Climate Change in the North: (1) State of knowledge and new directions in research'; (2) 'Responding to climate change in the North: Measures to reduce greenhouse gas emissions and our vulnerability to a changing climate'; and (3) 'Policy and planning responses to climate change in the North'. This special issue of the NORTHERN REVIEW contains a report, and the presentations and discussions at the Summit, along with papers that complement the main themes

  1. Vortex molecules in Bose-Einstein condensates

    OpenAIRE

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2013-01-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-compo...

  2. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  3. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  4. Statistical behaviour of optical vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2009-09-01

    Full Text Available = ρ exp(−iφ) V+ = x+ iy = ρ exp(iφ) +1-1 y x Vortex Contour: Unit circle ∮ C ∇θ(x, y) · dˆs = ν 2pi Vortex dipole = 2 oppositely charged vortices . – p.3/37 Topological charge conservation Vortices form lines in 3D → annihilation and creation of vortex...→ optical vortices. ⇒ conventional adaptive optics does not work anymore. Need to get rid of the vortices. . – p.12/37 Forced annihilation One idea to get rid of optical vortices in strongly scintillated optical beams is to force vortex dipoles to annihilate...

  5. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern...... hemisphere. Can climatic conditions alone explain the sizeable difference in reduction in building activity in the construction sector in European countries in the winter months, or are other factors such as technology, economic cycles and schemes for financial compensation influential as well? What...... possibilities exist for reducing seasonal variation in employment? In addition to a literature review related to winter construction, European and national employment and meteorological data were studied. Finally, ministerial acts, ministerial orders or other public policy documents related to winter...

  6. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  7. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  8. Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes

    Directory of Open Access Journals (Sweden)

    S. R. Kawa

    2005-01-01

    Full Text Available Understanding the impact of atmospheric dynamical variability on observed changes in stratospheric O3 is a key to understanding how O3 will change with future climate dynamics and trace gas abundances. In this paper we examine the linkage between interannual variability in total column O3 at northern high latitudes in March and lower-to-mid stratospheric vortex O3 in the prior November. We find that these two quantities are significantly correlated in the years available from TOMS, SBUV, and POAM data (1978-2004. Additionally, we find that the increase in March O3 variability from the 1980s to years post-1990 is also seen in the November vortex O3, i.e., interannual variability in both quantities is much larger in the later years. The cause of this correlation is not clear, however. Interannual variations in March total O3 are known to correspond closely with variations in winter stratospheric wave driving consistent with the effects of varying residual circulation, temperature, and chemical loss. Variation in November vortex O3 may also depend on dynamical wave activity, but the dynamics in fall are less variable than in winter and spring. We do not find significant correlations of dynamic indicators for November such as temperature, heat flux, or polar average total O3 with the November vortex O3, nor with dynamical indicators later in winter and spring that might lead to a connection to March. We discuss several potential hypotheses for the observed correlation but do not find strong evidence for any considered mechanism. We present the observations as a phenomenon whose understanding may improve our ability to predict the dependence of O3 on changing dynamics and chemistry.

  9. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  10. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  11. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  12. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  13. The decay of confined vortex rings

    Science.gov (United States)

    Stewart, K. C.; Niebel, C. L.; Jung, S.; Vlachos, P. P.

    2012-07-01

    Vortex rings are produced during the ejection of fluid through a nozzle or orifice, which occurs in a wide range of biological conditions such as blood flow through the valves of the heart or through arterial constrictions. Confined vortex ring dynamics, such as these, have not been previously studied despite their occurrence within the biological flow conditions mentioned. In this work, we investigate laminar vortex rings using particle image velocimetry and develop a new semi-empirical model for the evolution of vortex ring circulation subject to confinement. Here we introduce a decay parameter β which exponentially grows with increasing vortex ring confinement ratio, the ratio of the vortex ring diameter ( D VR) to the confinement diameter ( D), with the relationship β=4.38 exp(9.5D_VR/D), resulting in a corresponding increase in the rate of vortex ring circulation decay. This work enables the prediction of circulation decay rate based on confinement, which is important to understanding naturally occurring confined vortex ring dynamics.

  14. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  15. Mathematical aspects of vortex dynamics; Proceedings of the Workshop, Leesburg, VA, Apr. 25-27, 1988

    International Nuclear Information System (INIS)

    Caflisch, R.E.

    1989-01-01

    Various papers on the mathematical aspects of vortex dynamics are presented. Individual topics addressed include: mathematical analysis of vortex dynamics, improved vortex methods for three-dimensional flows, the relation between thin vortex layer and vortex sheets, computations of broadband instabilities in a class of closed-streamline flows, vortex-sheet dynamics and hyperfunction theory, free surface vortex method with weak viscous effects, iterative method for computing steady vortex flow systems, invariant measures for the two-dimensional Euler flow, similarity flows containing two-branched vortex sheets, strain-induced vortex stripping, convergence of the vortex method for vortex sheets, boundary conditions and deterministic vortex methods for the Navier-Stokes equations, vorticity creation boundary conditions, vortex dynamics of stratified flows, vortex breakdown, numerical studies of vortex reconnection, vortex lattices in theory and practice, dynamics of vortex structures in the wall region of a turbulent boundary layer, and energy of a vortex lattice configuration

  16. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  17. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  18. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  19. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    Science.gov (United States)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  20. Variability of the Antarctic Circumpolar Current transport through the Fawn Trough, Kerguelen Plateau

    Science.gov (United States)

    Vivier, Frédéric; Park, Young-Hyang; Sekma, Hela; Le Sommer, Julien

    2015-04-01

    The Kerguelen Plateau is a major topographic obstacle to the eastward flowing Antarctic Circumpolar Current (ACC). While approximately two-third of the ACC transport is diverted to the North, most of the remaining flow engulfs in the Fawn Trough, the only deep passage across the plateau. As part of the TRACK (TRansport ACross the Kerguelen plateau) project, three mooring lines of current meters were deployed in the Fawn Trough for one year in February 2009, underneath ground-track 94 of the Jason-2 satellite altimeter. Full depth CTD-LADCP casts carried out during the deployment cruise were previously analyzed to provide a comprehensive description of the regional circulation, featuring in particular a volume transport of ~43 Sv across the Fawn Trough (Park et al., 2009). Here we present a time series of the transport in the Fawn Trough estimated from current meter observations, featuring a mean eastward transport of 34 Sv (possibly biased low by at most 5 Sv) and a root mean squared variability of 6 Sv, consistent with LADCP estimates (43 Sv in February 2009 and 38 Sv in January 2010). In addition, we analyze to what extent the transport can be directly monitored from along-track satellite altimeter data, which would enable study of the variability of the Fawn Trough Current from a now 20-year long archive. The ability to reconstruct the flow from a limited set of moored instruments as well as from altimeter-derived surface geostrophic velocity is further assessed from synthetic data extracted from a high-resolution peri-Antarctic simulation. While a canonical method to derive transport from altimetry, previously applied to the Malvinas Current, gives here unsatisfactory comparisons with in situ estimates, an ad hoc approach using only the two northernmost mooring lines yields an estimate well correlated (~0.8) with in situ transport at subseasonal time scales during the one year period of observations. At interannual time scales, however, both methods provide

  1. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  2. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  3. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  4. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  5. Determination of Proper Motions of Circumpolar Stars by Using Images from Ukrvo Plate Archives

    Science.gov (United States)

    Protsyuk, Yu.; Andruk, V.; Mazhaev, A.; Kovylianska, O.; Protsyuk, S.; Golovnya, V.

    UkrVO plate archives contain informationobtained at different time periods and in different observatories for the same regions of the sky [3, 5, 6, 7, 8]. It allows us to carry out joint processing of plates and to receive new results for interesting objects. To obtain proper motions of stars in circumpolar areas, we selected 34 photographic plates from the RI NAO archive and 161 plates from the archive of the MAO NAS. A mean epoch difference between the plates from these archives is 55 years. Scanning of the plates and data processing were independently carried out by both observatories. A catalog of equatorial positions for 195 thousand stars up to 15m was compiled in the RI NAO (black dots in Fig. 1). A catalog of equatorial positions for 1050 thousand stars up to 16.5m was compiled in MAO (gray dots in Fig. 1). A comparison of positions for common stars contained in these catalogs was conducted. A catalog of proper motions for 30 thousand common stars up to 15m was compiled using these two input catalogs. The obtained result suggests the advisability of processing of all observations to receive proper motions of stars up to 14-15m in the declination zone of 65° to 90°.

  6. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades

    International Nuclear Information System (INIS)

    Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982–2010). We found that the southernmost tundra subzones (C–E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field. (letter)

  7. Sensitivity of the Antarctic Circumpolar Current transport to surface buoyancy conditions in the North Atlantic

    Science.gov (United States)

    Sun, Shantong; Liu, Jinliang

    2017-10-01

    The sensitivity of the Antarctic Circumpolar Current (ACC) transport to surface buoyancy conditions in the North Atlantic is investigated using a sector configuration of an ocean general circulation model. We find that the sensitivity of the ACC transport is significantly weaker than previous studies. We attribute this difference to the different depth of the simulated Atlantic Meridional Overturning Circulation. Because a fast restoring buoyancy boundary condition is used that strongly constrains the surface buoyancy structure at the Southern Ocean surface, the ACC transport is determined by the isopycnal slope that is coupled to the overturning circulation in the Southern Ocean. By changing the surface buoyancy in the North Atlantic, the shared buoyancy contour between the North Atlantic and the Southern Ocean is varied, and consequently the strength of the overturning circulation is modified. For different depth of the simulated overturning circulation, the response of the ACC transport to changes in the strength of the overturning circulation varies substantially. This is illustrated in two conceptual models based on the residual-mean theory of overturning circulation. Our results imply that the sensitivity of the ACC transport to surface forcing in the North Atlantic could vary substantially in different models depending on the simulated vertical structure of the overturning circulation.

  8. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  9. The Relationship between Traditional Ecological Knowledge, Evolving Cultures, and Wilderness Protection in the Circumpolar North

    Directory of Open Access Journals (Sweden)

    Alan Watson

    2003-12-01

    Full Text Available There are many unique issues associated with natural resource management in the far north as a result of legislative direction, historic settlement and occupation patterns, northern cultural traditions, ecotourism, economic depression, pressures for energy development, and globalization and modernization effects. Wilderness designation in Canada, the USA, and Finland is aimed at preserving and restoring many human and ecological values, as are the long-established, strictly enforced, nature reserves in Russia. In Alaska and Finland, and in some provinces of Canada, there is a variety of values associated with protecting relatively intact relationships between indigenous people and relatively pristine, vast ecosystems. These values are often described as "traditional means of livelihood," "traditional means of access," "traditional relationships with nature," or "traditional lifestyles." Traditional ecological knowledge (TEK forms part of these relationships and has been acknowledged as a contributor to understanding the effects of management decisions and human-use impacts on long-term ecological composition, structure, and function. Wilderness protection can help maintain opportunities to continue traditional relationships with nature. As cultures continue to evolve in customs, attitudes, knowledge, and technological uses, values associated with both TEK and relationships with relatively pristine ecosystems will also evolve. Understanding these relationships and how to consider them in wilderness protection and restoration decision making is potentially one of the most contentious, widespread natural resource management issues in the circumpolar north.

  10. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  11. On the Use of Vortex-Fitting in the Numerical Simulation of Blade-Vortex Interaction

    Science.gov (United States)

    Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1997-01-01

    The usefulness of vortex-fitting in the computational fluid dynamics (CFD) methods to preserve the vortex strength and structure while convecting in a uniform free stream is demonstrated through the numerical simulations of two- and three-dimensional blade-vortex interactions. The fundamental premise of the formulation is the velocity and pressure field of the interacting vortex are unaltered either in the presence of an airfoil or a rotor blade or by the resulting nonlinear interactional flowfield. Although, the governing Euler and Navier-Stokes equations are nonlinear and independent solutions cannot be superposed, the interactional flowfield can be accurately captured by adding and subtracting the flowfield of the convecting vortex at each instant. The aerodynamics and aeroacoustics of two- and three-dimensional blade-vortex interactions have been calculated in Refs. 1-6 using this concept. Some of the results from these publications and similar other published material will be summarized in this paper.

  12. A numerical study of atmospheric Kàrmàn vortex shedding from Jeju Island

    Science.gov (United States)

    Ito, J.; Niino, H.

    2014-12-01

    Kàrmàn vortex shading universally occurs when a uniform flow pasts a bluff body. Similar vortex shading occurs when an atmospheric flow hits an isolated mountain, and can be seen in satellite images when the vortices are accompanied by clouds. While previous idealized numerical studies have focused on the mechanism of the atmospheric Kàrmàn vortex shading, there has been no simulation for a real case. In this study, a meso-scale non-hydrostatic model developed by the Japan Meteorological Agency (JMA) is used to reproduce the observed Kàrmàn vortex shedding, where initial and boundary conditions are given by the meso-scale objective analysis data of the JMA. The cases investigated here occurred on 16 and 20 February 2013 when satellite images clearly capture Kàrmàn vortex shading behind the Jeju Island over the East China sea. The size of simulation's domain is about 800 km by 1200 km in the horizontal direction, and the Jeju Island locates the center of the domain. The horizontal gird interval is 2 km. The cloud microphysics including the ice phase is considered. The numerical simulation successfully reproduced realistic Kàrmàn vortex shading which accompany characteristic clouds in the wake of the Jeju Island (see Figure; shading show mixing ratio of cloud water). The size of the vortices and there intervals appear to be comparable to those observed by the satellite. The winter monsoon flows out from Eurasia continent over the Yellow sea, which is 10 K warmer than the atmosphere, obtain much sensible and latent heat flux, and then a convective boundary layer is developed. Necessary conditions to form lee vortices proposed in previous studies are indeed satisfied: (1) the height of the convective boundary layer is lower than that of the mountain, and (2) the Froude number above the convective boundary layer is less than 0.4. The environment around the region in the wintertime is favorable for forming Kàrmàn vortex shading. The pressure depressions

  13. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  14. Vortex Pada Bangunan Pengambilan (Intake) Waduk Wonogiri

    OpenAIRE

    Qomariyah, Siti

    2007-01-01

    Vortex or swirling flow in a reservoir is a result of the complex interaction among the geometry of the reservoir, the approach channel, the flow velocity, and the liquid properties. The vortex enables air entrains and floating trash took in the flow system swirling to an inlet of an intake. This natural phenomenon may result in a disturbance of an intake performance. An aim of the experiment was to examine the occurrence of vortex in front of an intake structure of a reservoir and the provis...

  15. Vortex rings and the solar granulation

    Science.gov (United States)

    Arendt, Steve

    1994-01-01

    Observations indicate that solar granules have the flow topology of updraft vortex loops. We interpret granule behavior in terms of the mutual and self-interactions of such loops. In particular, the expansion phase that granules commonly undergo is explained by the self-expansion of a vortex ring in a stratified fluid. For a range of granular parameters, we find that the expansion velocity of a vortex ring varies from 0.7 to 1.5 times the maximum surface flow velocity, in agreement with granule observations. We also present speculation on the nature of granule fragmentation.

  16. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  17. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    )]10.1088/0143-0807/21/3/310 determined by numerical experiments that leapfrogging is linearly unstable for σ2 stable for larger α. Here we derive a linear system of equations governing small perturbations of the leapfrogging motion. We show that symmetry-breaking perturbations are essentially governed by a 2D...... linear system with time-periodic coefficients and perform a Floquet analysis. We find transition from linearly unstable to stable leapfrogging at α = φ2 ≈ 0.381966, where is the golden ratio. Acheson also suggested that there was a sharp transition between a "disintegration" instability mode, where two...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  18. Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex-vortex interactions

    Science.gov (United States)

    Ge, Jun-Yi; Gladilin, Vladimir N.; Sluchanko, Nikolay E.; Lyashenko, A.; Filipov, Volodimir B.; Indekeu, Joseph O.; Moshchalkov, Victor V.

    2017-09-01

    The magnetic response related to the paramagnetic Meissner effect (PME) is studied in a high quality single crystal ZrB12 with non-monotonic vortex-vortex interactions. We observe the expulsion and penetration of magnetic flux in the form of vortex clusters with increasing temperature. A vortex phase diagram is constructed, and shows that the PME can be explained by considering the interplay among the flux compression, the different temperature dependencies of the vortex-vortex and the vortex-pin interactions, and thermal fluctuations. Such a scenario is in good agreement with the results of magnetic relaxation measurements.

  19. Applications of point vortex equilibria: blocking events and the stability of the polar vortex

    Directory of Open Access Journals (Sweden)

    Annette Müller

    2015-12-01

    Full Text Available The present study investigates non-linear dynamics of atmospheric flow phenomena on different scales as interactions of vortices. Thereby, we apply the idealised, two-dimensional concept of point vortices considering two important issues in atmospheric dynamics. First, we propose this not widely spread concept in meteorology to explain blocked weather situations using a three-point vortex equilibrium. Here, a steady state is given if the zonal mean flow is identical to the opposed translational velocity of the vortex system. We apply this concept exemplarily to two major blocked events establishing a new pattern recognition technique based on the kinematic vorticity number to determine the circulations and positions of the interacting vortices. By using reanalysis data, we demonstrate that the velocity of the tripole in a westward direction is almost equal to the westerly flow explaining the steady state of blocked events. Second, we introduce a novel idea to transfer a stability analysis of a vortex equilibrium to the stability of the polar vortex concerning its interaction with the quasi-biennial oscillation (QBO. Here, the point vortex system is built as a polygon ring of vortices around a central vortex. On this way we confirm observations that perturbations of the polar vortex during the QBO east phase lead to instability, whereas the polar vortex remains stable in QBO west phases. Thus, by applying point vortex theory to challenging problems in atmospheric dynamics we show an alternative, discrete view of synoptic and planetary scale motion.

  20. Aircraft Vortex Wake Decay Near the Ground

    Science.gov (United States)

    1977-05-01

    A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...

  1. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  2. Editorial - The winter Atomiades

    CERN Multimedia

    Staff Association

    2011-01-01

    As we wrote in our previous editorial, the Staff Association gives direct support to sports events, such as the Atomiades, a section of the Association of Sports Communities of European Research Institutes, which brings together sportsmen and women from 38 European research centres in 13 countries (Austria, Belgium, Czech Republic, United Kingdom, Finland, France, Germany, Hungary, Italy, Luxemburg, the Netherlands, Russia, and Switzerland). The summer Atomiades take place between the months of June and September every three years. Thirteen such events have taken place since 1973, the last one in June 2009 in Berlin. As far as the winter Atomiades are concerned, also organized every three years, and alternating with the summer Atomiades, there have been eleven since 1981, the last one at the end of January this year in neighbouring France. The following article tells the wonderful adventure of the CERN staff who took part in this event. A positive outcome for CERN skiers at the winter Atomiades The 11t...

  3. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  4. Towards a string formulation of vortex dynamics

    International Nuclear Information System (INIS)

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom

  5. On the interpretation of vortex breakdown

    Science.gov (United States)

    Keller, Jakob J.

    1995-07-01

    Studying the numerous papers that have appeared in the recent past that address ``vortex breakdown,'' it may be difficult for a reader to avoid getting rather confused. It appears that various authors or even schools have conflicting views on the correct interpretation of the physics of vortex breakdown. Following the investigation by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], in this paper, axisymmetric forms of vortex breakdown, as originally defined by Benjamin [J. Fluid Mech. 14, 593 (1962)] are addressed. It is argued that at least some of the previous investigations have been concerned with different aspects of the same phenomena and may, in fact, not disagree. One of the most fundamental questions in this context concerns the properties of the distributions of total head and circulation on the downstream side of vortex breakdown transitions. Some previous investigators have suggested that the downstream flow would exhibit properties that are similar to those of a wake. For this reason the phenomenon of vortex breakdown is investigated for a class of distributions of total head and circulation in the domain of flow reversal that is substantially more general than in previous investigations. Finally, a variety of problems are discussed that are crucial for a more complete theory of vortex breakdown, but have not yet been solved. It is shown that for the typically small flow speeds in a domain of flow reversal produced by a vortex breakdown wave, the departures of both vortex core size and swirl number, with respect to the case of uniform total pressure in the zone of flow reversal, as discussed by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], remain surprisingly small. As a consequence, the possible appearance of large departures from a Kirchhoff-type wake must be due to viscous diffusion at low and due to shear-layer instabilities at high Reynolds numbers.

  6. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  7. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)

  8. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  9. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  10. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara.

    Science.gov (United States)

    Bills, John W; Roalson, Eric H; Busch, Jeremiah W; Eidesen, Pernille B

    2015-07-01

    • Sexual reproduction often requires more energy and time than clonal reproduction. In marginal arctic conditions, species that can reproduce both sexually and clonally dominate. Plants with this capacity may thrive because they can alter reproduction depending on environmental conditions. Bistorta vivipara is a circumpolar herb that predominately reproduces clonally, but certain environmental conditions promote higher investment in flowers (and possible sexual reproduction). Despite largely reproducing clonally, the herb has high levels of genetic variation, and the processes underlying this paradoxical pattern of variation remain unclear. Here we identified environmental factors associated with sexual investment and examined whether sexual reproduction is associated with higher levels of genetic variation.• We sampled 20 populations of B. vivipara across the high Arctic archipelago of Svalbard. In each population, we measured reproductive traits, environmental variables, and collected samples for genetic analyses. These samples permitted hypotheses to be tested regarding sexual investment and ecological and genetic correlates.• Increased soil nitrogen and organic matter content and decreased elevation were positively associated with investment in flowers. Increased investment in flowers significantly correlated with more genotypes per population. Linkage disequilibrium was consistent with predominant clonality, but several populations showed higher genetic variation and lower differentiation than expected. There was no geographical genetic structure.• In B. vivipara, sexual investment is positively associated with habitat quality. Bistorta vivipara predominantly reproduces clonally, but occasional outcrossing, efficient clonal reproduction, and dispersal by bulbils can explain the considerable genetic variation and weak genetic structure in B. vivipara. © 2015 Botanical Society of America, Inc.

  11. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  12. Circumpolar freeze/thaw surface status and surface soil moisture from Metop ASCAT

    Science.gov (United States)

    Bartsch, Annett; Paulik, Christoph; Melzer, Thomas; Hahn, Sebastian; Wagner, Wolfgang

    2013-04-01

    Circumpolar surface soil moisture and freeze/thaw surface status has been derived from Metop ASCAT within the framework of the ESA DUE Permafrost and STSE ALANIS-Methane projects. The dataset is available via Pangaea (doi:10.1594/PANGAEA.775959) and can be vizualized with the WebGIS of the DUE Permafrost data portal (www.ipf.tuwien.ac.at/permafrost). MetOp ASCAT data have been used for both the near surface soil moisture (SSM) product and determination of freeze/thaw status at panboreal/ arctic scale. Metop-A, launched in October 2006 by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), is the first of three satellites within EUMETSAT's Polar System (EPS). The ASCAT SSM DUE Permafrost product is the result of an improved SSM retrieval algorithm developed at the Institute for Photogrammetry and Remote Sensing (IPF) of the Vienna University of Technology. The SSM Product is delivered with a weekly temporal resolution and 25 km spatial resolution. The soil moisture product also includes a quality flag which contains the number of used measurements. Data are masked for frozen ground conditions also based on MetOp ASCAT. The daily SSF is available as separate flag. The SSM product is provided as weekly averaged images north of 50°N in GeoTIFF/NetCDF format and EASE Grid projection Further, complementary regional scale (1km) freeze/thaw information is available at selected sites based on ENVISAT ASAR GM (PANGAEA http://doi.pangaea.de/10.1594/PANGAEA.779658).

  13. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies.

    Science.gov (United States)

    Scher, Howie D; Whittaker, Joanne M; Williams, Simon E; Latimer, Jennifer C; Kordesch, Wendy E C; Delaney, Margaret L

    2015-07-30

    Earth's mightiest ocean current, the Antarctic Circumpolar Current (ACC), regulates the exchange of heat and carbon between the ocean and the atmosphere, and influences vertical ocean structure, deep-water production and the global distribution of nutrients and chemical tracers. The eastward-flowing ACC occupies a unique circumglobal pathway in the Southern Ocean that was enabled by the tectonic opening of key oceanic gateways during the break-up of Gondwana (for example, by the opening of the Tasmanian Gateway, which connects the Indian and Pacific oceans). Although the ACC is a key component of Earth's present and past climate system, the timing of the appearance of diagnostic features of the ACC (for example, low zonal gradients in water-mass tracer fields) is poorly known and represents a fundamental gap in our understanding of Earth history. Here we show, using geophysically determined positions of continent-ocean boundaries, that the deep Tasmanian Gateway opened 33.5 ± 1.5 million years ago (the errors indicate uncertainty in the boundary positions). Following this opening, sediments from Indian and Pacific cores recorded Pacific-type neodymium isotope ratios, revealing deep westward flow equivalent to the present-day Antarctic Slope Current. We observe onset of the ACC at around 30 million years ago, when Southern Ocean neodymium isotopes record a permanent shift to modern Indian-Atlantic ratios. Our reconstructions of ocean circulation show that massive reorganization and homogenization of Southern Ocean water masses coincided with migration of the northern margin of the Tasmanian Gateway into the mid-latitude westerly wind band, which we reconstruct at 64° S, near to the northern margin. Onset of the ACC about 30 million years ago coincided with major changes in global ocean circulation and probably contributed to the lower atmospheric carbon dioxide levels that appear after this time.

  14. Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/2003

    Directory of Open Access Journals (Sweden)

    S. Davies

    2006-01-01

    Full Text Available Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite (MIPAS-E were made during the cold Arctic winter of 2002/2003. Vortex temperatures were unusually low in early winter and remained favourable for polar stratospheric cloud formation and denitrification until mid-January. MIPAS-E observations provide the first dataset with sufficient coverage of the polar vortex in mid-winter which enables a reasonable estimate of the timing of onset and spatial distribution of denitrification of the Arctic lower stratosphere to be performed. We use the observations from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by Lagrangian Particle Sedimentation microphysical denitrification model coupled to the SLIMCAT chemical transport model. In addition, the predicted denitrification from a simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E. Modelled denitrification is compared with in-vortex NOy and N2O observations from the balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly observed by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex by early January 2003. The DLAPSE model is broadly able to capture both the timing of onset and the spatial distribution of the observed denitrification. A simple thermodynamic equilibrium scheme is able to reproduce the observed denitrification in the core of the vortex but overestimates denitrification closer to the vortex edge. This study also suggests that the onset of denitrification in simple thermodynamic schemes may be earlier than in the MIPAS-E observations.

  15. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex

    Science.gov (United States)

    Zhang, Wending; Wei, Keyan; Wang, Heng; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-01-01

    We present a method for tunable-wavelength picosecond vortex pulse generation by using an acoustically-induced fiber grating (AIFG). The AIFG-driven mode conversion characteristic was activated via a shear-mode piezoelectric transducer that excels in excitation efficiency of acoustic flexural wave and mechanical stability. The linearly-polarized ±1-order picosecond vortex pulse was experimentally generated via AIFG with a uniform coupling efficiency of ∼98.4% from the fundamental mode to the ±1-order vortex mode within the wavelength range 1540 nm ∼ 1560 nm. The topological charge and the linearly-polarized characteristic of the picosecond vortex pulse were verified by examination of the off-axial interference and the polarization angle-dependent intensity, respectively. Furthermore, the picosecond vortex pulse with wavelength tunability was input to a nonlinear BBO crystal to generate a frequency-doubled ±2-order vortex in the wavelength range 770 nm ∼ 780 nm. This technology provides a convenient apparatus for generating a picosecond vortex pulse and the frequency-doubled vortex with wavelength tunability.

  16. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  17. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2012-11-01

    Full Text Available Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite

  18. High basal metabolic rates in shorebirds while in the Arctic: a circumpolar view

    NARCIS (Netherlands)

    Lindström, A.; Klaassen, M.R.J.

    2003-01-01

    The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of

  19. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow

  20. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic

    Science.gov (United States)

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will

  1. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    Directory of Open Access Journals (Sweden)

    Elizabeth Peacock

    Full Text Available We provide an expansive analysis of polar bear (Ursus maritimus circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation

  2. Devices that Alter the Tip Vortex of a Rotor

    Science.gov (United States)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  3. Transverse force on a moving vortex with the acoustic geometry

    International Nuclear Information System (INIS)

    Zhang Pengming; Cao Liming; Duan Yishi; Zhong Chengkui

    2004-01-01

    We consider the transverse force on a moving vortex with the acoustic metric using the phi-mapping topological current theory. In the frame of effective space-time geometry the vortex appear naturally by virtue of the vortex tensor in the Lorentz space-time and we show that it is just the vortex derived with the order parameter in the condensed matter. With the usual Lagrangian we obtain the equation of motion for the vortex. At last, we show that the transverse force on the moving vortex in our equation is just the usual Magnus force in a simple model

  4. Vortex shedding from tandem cylinders

    Science.gov (United States)

    Alam, Md. Mahbub; Elhimer, Mehdi; Wang, Longjun; Jacono, David Lo; Wong, C. W.

    2018-03-01

    An experimental investigation is conducted on the flow around tandem cylinders for ranges of diameter ratio d/ D = 0.25-1.0, spacing ratio L/ d = 5.5-20, and Reynolds number Re = 0.8 × 104-2.42 × 104, where d and D are the diameters of the upstream and downstream cylinders, respectively, L is the distance from the upstream cylinder center to the forward stagnation point of the downstream one. The focus is given on examining the effects of d/ D, L/ d and Re on Strouhal number St, flow structures and fluid forces measured using hotwire, particle image velocimetry (PIV) and load cell measurement techniques, respectively. Changes in d/ D and L/ d in the ranges examined lead to five flow regimes, namely lock-in, intermittent lock-in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Time-mean drag coefficient ( C D) and fluctuating drag and lift coefficients ({C^'D} and {C^'L}) are more sensitive to L/ d than d/ D. The scenario is opposite for St where d/ D is more prominent than L/ d to change the St. The detailed facet of the dependence on d/ D and L/ d of C D, {C^'D}, {C^'L} and St is discussed based on shear-layer velocity, approaching velocity, vortex formation length, and wake width.

  5. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    Science.gov (United States)

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  6. Circumpolar polynya characteristics in the Arctic between 2002/2003 and 2014/2015 as derived from MODIS thermal infrared imagery and ERA-Interim reanalysis

    Science.gov (United States)

    Preußer, Andreas; Willmes, Sascha; Heinemann, Günther; Paul, Stephan

    2016-04-01

    In this pan-Arctic study, high-resolution MODIS thermal infrared satellite data are used to infer spatial and temporal characteristics of 16 prominent coastal polynya regions and leads over the entire Arctic basin. Thin-ice thickness distributions (≤ 20cm) are calculated from MODIS ice-surface temperatures swath-data (MOD/MYD29), combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy balance model for the last 13 winter-seasons (2002/2003 to 2014/2015; November to March). From all available swath-data, (quasi-) daily thin-ice thickness composites are computed in order to derive valuable quantities such as polynya area and total thermodynamic ice production. Two different cloud-cover correction schemes are applied to account for cloud and data gaps in the MODIS composites. During the investigated period, the average total wintertime accumulated ice production in all 16 polynya regions is estimated with about 1481 ± 262 km³, plus an additional 65 ± 59 km³ if leads in the central Arctic Ocean are taken into consideration. The largest contributions originate from the Kara Sea region and the North Water polynya (both ~19%) as well as scattered smaller polynyas in the Canadian Arctic Archipelago (all combined ~15%), while other well-known sites of polynya formation (Laptev Sea, Chukchi Sea) show smaller contributions with around 2-7%. Compared to another recently published pan-Arctic polynya study using coarser resolution passive microwave remote sensing data, our estimates are considerably larger due to distinct differences regarding the observed winter-period and applied polynya masks/reference areas. In addition, the use of high-resolution MODIS data increases the capability to resolve small scale (> 2km) thin-ice features such as leads, which therefore contribute to our ice production estimates. Despite the short record of 13 winter-seasons, positive trends in ice production can be detected for some regions of the eastern Arctic (most

  7. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  8. Winter School Les Houches

    CERN Document Server

    Lannoo, Michel; Bastard, Gérald; Voos, Michel; Boccara, Nino

    1986-01-01

    The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super­ lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron­ ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorgani...

  9. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  10. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  11. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  12. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  13. The South Circumpolar Dorsa Argentea Formation and the Noachian-Hesperian Climate of Mars

    Science.gov (United States)

    Head, J. W., III; Scanlon, K. E.; Fastook, J.; Wordsworth, R. D.

    2017-12-01

    The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering 1.5 · 106 km2 in the south circumpolar region of Mars with lobes extending along the 0° and 90°W meridians, has been interpreted as the remnants of a large Noachian-Hesperian ice sheet. Determining the extent and thermal regime of the DAF ice sheet, and the controls on its development, can therefore provide insight into the ancient martian climate. We used the Laboratoire de Météorologie Dynamique early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates that would permit both development of a south polar ice sheet of DAF-like size and shape and melting consistent with observed eskers and channels. An asymmetric south polar cold trap is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600 - 1000 mb CO2 atmosphere. The shape results from the strong dependence of surface temperature on altitude in a thicker atmosphere. Of the scenarios considered here, the shape and extent of the modeled DAF ice sheet in UMISM simulations most closely match those of the DAF when the surface water ice inventory of Mars is 20 · 106 km3 and obliquity is 15°. In climates warmed only by CO2, basal melting does not occur except when the ice inventory is larger than most estimates for early Mars. In this case, the extent of the ice sheet is also much larger than that of the DAF, and melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20° near the poles relative to CO2 alone, the extent of the ice sheet is less than that of the DAF, but strong basal melting occurs, with maxima in the locations where eskers and channels are observed. We conclude that the glaciofluvial landforms in the DAF implicate warming by a gas other than CO2 alone. Previously published exposure ages of eskers in the DAF indicate that eskers were being exposed as

  14. Anomalous transient behavior from an inhomogeneous initial optical vortex density

    CSIR Research Space (South Africa)

    Roux, FS

    2011-04-01

    Full Text Available Inhomogeneous optical vortex densities can be produced in stochastic optical fields by a combination of coherent and incoherent superposition of speckle fields. During subsequent propagation, the inhomogeneity in the vortex density decays away...

  15. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  16. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  17. Universal statistics of vortex lines.

    Science.gov (United States)

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  18. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2016-01-15

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  19. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  20. Front propagation in a regular vortex lattice: Dependence on the vortex structure

    Science.gov (United States)

    Beauvier, E.; Bodea, S.; Pocheau, A.

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  1. Measurements for winter road maintenance

    OpenAIRE

    Riehm, Mats

    2012-01-01

    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  2. Elementary pinning force for a superconducting vortex

    International Nuclear Information System (INIS)

    Hyun, O.B.; Finnemore, D.K.; Schwartzkopf, L.; Clem, J.R.

    1987-01-01

    The elementary pinning force f/sub p/ has been measured for a single vortex trapped in one of the superconducting layers of a cross-strip Josephson junction. At temperatures close to the transition temperature the vortex can be pushed across the junction by a transport current. The vortex is found to move in a small number of discrete steps before it exits the junction. The pinning force for each site is found to be asymmetric and to have a value of about 10/sup -6/ N/m at the reduced temperature, t = T/T/sub c/ = 0.95. As a function of temperature, f/sub p/ is found to vary approximately as (1-t)/sup 3/2/. .AE

  3. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  4. Inertial mass of the Abrikosov vortex.

    Science.gov (United States)

    Chudnovsky, E M; Kuklov, A B

    2003-08-08

    We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)

  5. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  6. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.G.

    1980-01-01

    We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)

  7. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  8. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  9. Chaotic scattering of two identical point vortex pairs revisited

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Aref, Hassan

    2008-01-01

    unstable periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex...

  10. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  11. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  12. Winter fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city

  13. Stamena winter wheat variety

    Directory of Open Access Journals (Sweden)

    Mišić Todor

    2001-01-01

    Full Text Available Stamena is a winter wheat variety developed at the Institute of Field and Vegetable Crops in Novi Sad, Yugoslavia. It was released by the Federal Commission for varietals Approval in 1999. Stamena was developed by crossing genetically divergent and highly productive parents Lasta and Rodna (Breeders: T. Mišić. N. Mladenov, Z. Jerković and R. Jevtić. Spike is white, smooth, awn less, medium compact with 18-21 spike lets. The grain is vitreous and dark red (Triticum aestivum L. ssp. vulgar e var. lutescens. Stamena is a medium early variety, 1 day earlier than Partizanka and 3 days earlier than Jugoslavija (Table 4. It has excellent resistance to winterkilling, as in very winter hardy Partizanka. The average stem height is 78 cm, with a good resistance to lodging. Stamena has field resistance to leaf rust (Pucce, recondita tritict, horizontal resistance, which is the type of resistance that modern wheat breeding is interested in. The resistance to stem rust (Pucce, graminis tritict is good and to powdery mildew (Erysiphegraminis tritici very good. The 1000 grain mass is about 32 g and volume grain mass 81.3 kg/hi. (Table 2. Stamena is classified in the subgroup A-l. It has excellent milling and baking quality and it belong to the 1st technological group (quality enhancer. The quantity of dry gluten is about 9%. The variety Stamena is a very productive, with the genetic potential for grain above 11 t/ha suitable for growing on fertile and less fertile soils. It has started to be grown commercially in 2000.

  14. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  15. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  16. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  17. Venus's southern polar vortex reveals precessing circulation.

    Science.gov (United States)

    Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

    2011-04-29

    Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

  18. Vortex-Peierls States in Optical Lattices

    International Nuclear Information System (INIS)

    Burkov, A.A.; Demler, Eugene

    2006-01-01

    We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states

  19. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  20. Aircraft Wake Vortex Observations in Hong Kong

    Directory of Open Access Journals (Sweden)

    Hon Kaikwong

    2017-12-01

    Full Text Available The Hong Kong International Airport (HKIA is among the busiest airports in the world, with total aircraft movement exceeding 400,000 in 2016. The Hong Kong Observatory (HKO, provider of aviation meteorological services to HKIA, has recently begun making the first sets of aircraft wake vortex observations at HKIA using short-range LIDARs. This paper briefly describes the preliminary observation results obtained from field measurements between 2014 and 2016, and discusses the way forward on the monitoring and prediction of wake vortex behaviour in Hong Kong.

  1. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  2. Inertial mass of a superconducting vortex

    OpenAIRE

    Chudnovsky, E. M.; Kuklov, A. B.

    2003-01-01

    We show that a large contribution to the inertial mass of a moving superconducting vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is $M_{l} = ({\\rm m}_e^2c^{2}/64{\\pi}{\\alpha}^{2}{\\mu}{\\lambda}_{L}^{4})\\ln({\\lambda}_{L}/{\\xi})$ , where ${\\rm m}_{e}$ is the the bare electron mass, $c$ is the speed of light, ${\\alpha}=e^{2}/{\\hbar}c {\\approx} 1/137$ is the fine structure constant, ${\\mu}$ is the shear mod...

  3. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    Science.gov (United States)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated

  4. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  5. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  6. Vortex Ring Extremization for Low Speed Maneuvering of Underwater Vehicles

    Science.gov (United States)

    Mohseni, Kamran

    2004-11-01

    Most attempts in underwater locomotion have been focused on propeller thrust generation or recently on flapping locomotion. However, new developments in autonomous and tethered underwater vehicles motivated closer look at the biomimetics of sea animals. To this end, Cephalopoda and jelly fish utilize pulsatile jets and vortex formation for locomotion. To avoid further complications with background flows, we focus on the formation of the leading vortex ring rather than a train of vortices. It is shown that a pinched-off vortex ring characterizes the extremum impulse accumulated by the leading vortex ring in vortex formation process. An appropriate scaling for vortex ring impulse is found and the limiting values of the non-dimensionalized impulses are established. An estimate for the non-dimensional impulses is provided by equating their values from the slug model with their values from a vortex in the Norbury family of vortices. For a vortex ring generator with constant kinetic energy and circulation generation rate, the pinched-off vortex ring has a maximum impulse of I_nd^E ≈ 11 normalized by the circulation and energy. On the other hand, for a vortex ring generator with constant rate of circulation generation at a constant translational velocity, a pinched-off vortex ring produces a minimum impulse of I_nd^Γ ≈ 0.12 normalized by the circulation and translational velocity. Direct numerical simulations of vortex ring formation and vortex ring pinch-off process are performed and the estimated values of the non-dimensionalized impulses are confirmed. These ideas are employed in designing a vortex jet generator for low speed maneuvering of underwater robots. The presented vortex generators are simple and low cost, they consume little valuable payload space, and they have no moving external parts. Experimental data are presented in support of the optimal formation number of 4 for maximum thrust generation.

  7. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2016-07-01

    Full Text Available Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs. The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate ∕ carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ∼  5 µm taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  8. Satellite-derived attributes of cloud vortex systems and their application to climate studies

    Science.gov (United States)

    Carleton, Andrew M.

    1987-01-01

    Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).

  9. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  10. DNS of droplet-vortex interaction with a Karman vortex street

    International Nuclear Information System (INIS)

    Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J.

    2006-01-01

    Predicting fuel spray interaction with large scale vortex structures still is a major challenge for state-of-the-art CFD codes. In order to elucidate the mechanisms involved, a fundamental study has been carried out in which the interaction of water droplets with a Karman vortex street is investigated. The disperse two-phase flow around a cylinder has been computed taking into account the mass, momentum and heat transfer between both phases. Flow conditions are chosen such that large scale vortices are generated by periodic flow separations of the well known Karman vortex street. A homogeneous distribution of water droplets is injected into the hot air up-stream of the computational domain. The mixing process as well as the impact of the droplets on the gas phase instabilities is analyzed in the downstream region where large scale vortex structures are present

  11. Optimal Cross Hedging Winter Canola

    OpenAIRE

    Kim, Seon-Woong; Brorsen, B. Wade; Yoon, Byung-Sam

    2014-01-01

    Winter canola in the southern Great Plains has shown large price fluctuations and there have been questions about which futures market could be used to reduce price risk. Our results indicate that the optimal futures contract to cross hedge winter canola is soybean oil futures.

  12. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  13. Vortex Thermometry for Turbulent Two-Dimensional Fluids

    Science.gov (United States)

    Groszek, Andrew J.; Davis, Matthew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-01-01

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014), 10.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  14. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  15. Wilderness in the Circumpolar North: searching for compatibility in ecological, traditional, and ecotourism values; 2001 May 15-16; Anchorage, AK

    Science.gov (United States)

    Alan E. Watson; Lilian Alessa; Janet Sproull

    2002-01-01

    There are growing pressures on undeveloped (wild) places in the Circumpolar North. Among them are pressures for economic development, oil and gas exploration and extraction, development of geothermal energy resources, development of heavy industry close to energy sources, and lack of appreciation for "other" orientations toward wilderness resources by...

  16. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Science.gov (United States)

    D A Walker; F J A Daniels; I Alsos; U S Bhatt; A L Breen; M Buchhorn; H Bultmann; L A Druckenmiller; M E Edwards; D Ehrich; H E Epstein; William Gould; R A Ims; H Meltofte; M K Raynolds; J Sibik; S S Talbot; P J Webber

    2016-01-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding.Wereview aspects of the PanArctic Flora, the...

  17. Summer climate of Madagascar and monsoon pulsing of its vortex

    Science.gov (United States)

    Jury, Mark R.

    2016-02-01

    This study analyzes the climate of Madagascar (12°-26°S, 43°-50°E) and its relation to the Indian Ocean during austral summer (Dec-Mar). Moisture converges onto a standing easterly wave and floods are prevalent in late summer. All-island daytime land temperatures exceed 38 °C in October and are ~4 °C above sea temperatures during summer. Analysis of thermally induced diurnal convection and circulation revealed inflow during the afternoon recirculated from the southeastern mountains and the warm Mozambique Channel. Summer rainfall follows latent and sensible heat flux during the first half of the day, and gains a surplus by evening via thunderstorms over the western plains. At the inter-annual time-scale, 2.3 years oscillations in all-island rainfall appear linked with the stratospheric quasi-biennial oscillation and corresponding 80 Dobson Unit ozone fluctuations during flood events. Wet spells at frequencies from 11-27 days derive from locally-formed tropical cyclones and NW-cloud bands. Flood case studies exhibit moisture recycling in the confluence zone between the sub-tropical anticyclone and the lee-side vortex. Hovmoller analysis of daily rainfall reinforces the concept of local generation and pulsing by cross-equatorial (Indian winter) monsoon flow rather than zonal atmospheric waves. Since the surface water budget is critical to agriculture in Madagascar, this study represents a further step to understand its meso-scale summer climate.

  18. Missing chemistry of reactive nitrogen in the upper stratospheric polar winter

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, S.R.; Douglass, A.R. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Kumer, J.B. [Lockheed Palo Alto Research Lab., CA (United States)] [and others

    1995-10-01

    Data from the CLAES on UARS indicate that a significant mechanism for production of HNO{sub 3} in the middle to upper stratosphere is missing from the chemical reaction set currently used by atmospheric models. Measured HNO{sub 3} in the polar vortex is strongly enhanced relative to the extra-vortex at 1200 K potential temperature (near 3 mbar) in January, 1992. The HNO{sub 3} vertical profile shows this enhancement forms a secondary altitude maximum from about 10 to 2 mbar (800-1500 K). A chemistry/transport model (CTM) simulation of this period produces no increase of HNO{sub 3} in the vortex near 3 mbar and no secondary maximum in the HNO{sub 3} profile. Furthermore, the CTM produces relatively high N{sub 2}O{sub 5} in the vortex, with a vertical peak near 3 mbar, while both CLAES and ISAMS show a shallow minimum there. The implication of this comparison is that some unmodeled process is acting to enhance HNO{sub 3} and reduce N{sub 2}O{sub 5} at high latitudes in the winter middle and upper stratosphere. Heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3} on hydrated ion clusters is proposed as a possibility for the missing mechanism. 15 refs., 5 figs.

  19. A review of protective factors and causal mechanisms that enhance the mental health of Indigenous Circumpolar youth.

    Science.gov (United States)

    MacDonald, Joanna Petrasek; Ford, James D; Willox, Ashlee Cunsolo; Ross, Nancy A

    2013-12-09

    To review the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. A systematic literature review of peer-reviewed English-language research was conducted to systematically examine the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with elements of a realist review. From 160 records identified in the initial search of 3 databases, 15 met the inclusion criteria and were retained for full review. Data were extracted using a codebook to organize and synthesize relevant information from the articles. More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social environment, which interacts with factors at the individual level to enhance resilience. An emphasis on the roles of cultural and land-based activities, history, and language, as well as on the importance of social and family supports, also emerged throughout the literature. More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social

  20. A review of protective factors and causal mechanisms that enhance the mental health of Indigenous Circumpolar youth

    Directory of Open Access Journals (Sweden)

    Joanna Petrasek MacDonald

    2013-12-01

    Full Text Available Objectives . To review the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. Study design . A systematic literature review of peer-reviewed English-language research was conducted to systematically examine the protective factors and causal mechanisms which promote and enhance Indigenous youth mental health in the Circumpolar North. Methods . This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines, with elements of a realist review. From 160 records identified in the initial search of 3 databases, 15 met the inclusion criteria and were retained for full review. Data were extracted using a codebook to organize and synthesize relevant information from the articles. Results . More than 40 protective factors at the individual, family, and community levels were identified as enhancing Indigenous youth mental health. These included practicing and holding traditional knowledge and skills, the desire to be useful and to contribute meaningfully to one's community, having positive role models, and believing in one's self. Broadly, protective factors at the family and community levels were identified as positively creating and impacting one's social environment, which interacts with factors at the individual level to enhance resilience. An emphasis on the roles of cultural and land-based activities, history, and language, as well as on the importance of social and family supports, also emerged throughout the literature. Conclusions . Healthy communities and families foster and support youth who are resilient to mental health challenges and able to adapt and cope with multiple stressors, be they social, economic, or environmental. Creating opportunities and environments where youth can successfully navigate challenges and enhance their resilience can in turn contribute to fostering healthy Circumpolar communities. Looking at the

  1. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  2. Vortex breakdown in a truncated conical bioreactor

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2015-01-01

    . It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional...

  3. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  4. On open-quotes Vortex breakdownclose quotes

    International Nuclear Information System (INIS)

    Shmyglevskii, Yu.D.

    1995-01-01

    The well-known investigations of vortex breakdown are supplemented with an exact analytic representation of this phenomenon on the basis of the complete Navier-Stokes equations for the case of a potential swirl of the input flow about the axis of symmetry

  5. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.

    1978-01-01

    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  6. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  7. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available is neglected in this generation approach. Here, we show that a consequence of this is that vortex beams carry very little energy in the desired zeroth radial order, as little as only a few percent of the incident power. We demonstrate this experimentally...

  8. Point vortex dynamics: A classical mathematics playground

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    the integrability of the three-vortex problem, the interplay of relative equilibria of identical vortices and the roots of certain polynomials, addition formulas for the cotangent and the Weierstrass zeta function, projective geometry, and other topics. The hope and intent of the article is to garner further...

  9. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  10. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time...

  11. Vortex identification: new requirements and limitations

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2007-01-01

    Roč. 28, č. 4 (2007), s. 638-652 ISSN 0142-727X R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex identification * vorticity decomposition * decomposition of motion Subject RIV: BK - Fluid Dynamics Impact factor: 1.283, year: 2007

  12. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street, inv...

  13. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  14. Hexatic vortex glass in disordered superconductors

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1989-01-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed

  15. Vortex formation with a snapping shrimp claw.

    Directory of Open Access Journals (Sweden)

    David Hess

    Full Text Available Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  16. Vortex formation with a snapping shrimp claw.

    Science.gov (United States)

    Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst

    2013-01-01

    Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  17. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    Science.gov (United States)

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  18. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen

    2010-06-01

    Full Text Available The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

  19. On the evolution of vortex rings with swirl

    International Nuclear Information System (INIS)

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-01-01

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions

  20. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  1. The organized nature of a turbulent trailing vortex

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Ash, Robert L.; Stead, Daniel J.

    1990-01-01

    The turbulence structure of a trailing vortex produced at the juncture of a flow aligned cylinder and a pair of oppositely loaded airfoils is analyzed. The freestream turbulence intensity in this study varies from 0.32 to 1.48 percent, the vortex Reynold number varies from 15000 to 25000, and the Rossby number varies from 0.65 to 0.81. Within this parameter range, it is shown that the screens, but not the freestream turbulence level, are able to produce significant variations in the turbulence structure of the vortex, and that the turbulent structure is determined by the Rossby number and not the vortex Reynolds number. It is noted that the core is dynamic and an organized exchange of momentum takes place between the outer flow and the core region of the vortex. The vortex structure in the trailing vortex having the lowest Rossby number is considered.

  2. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  3. Klaus Winter (1930 - 2015)

    CERN Multimedia

    2015-01-01

    We learned with great sadness that Klaus Winter passed away on 9 February 2015, after a long illness.   Klaus was born in 1930 in Hamburg, where he obtained his diploma in physics in 1955. From 1955 to 1958 he held a scholarship at the Collège de France, where he received his doctorate in nuclear physics under the guidance of Francis Perrin. Klaus joined CERN in 1958, where he first participated in experiments on π+ and K0 decay properties at the PS, and later became the spokesperson of the CHOV Collaboration at the ISR. Starting in 1976, his work focused on experiments with the SPS neutrino beam. In 1984 he joined Ugo Amaldi to head the CHARM experiment, designed for detailed studies of the neutral current interactions of high-energy neutrinos, which had been discovered in 1973 using the Gargamelle bubble chamber at the PS. The unique feature of the detector was its target calorimeter, which used large Carrara marble plates as an absorber material. From 1984 to 1991, Klau...

  4. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  6. A New Dark Vortex on Neptune

    Science.gov (United States)

    Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph

    2018-03-01

    An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.

  7. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  8. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  9. Tracing hepatitis B virus (HBV genotype B5 (formerly B6 evolutionary history in the circumpolar Arctic through phylogeographic modelling

    Directory of Open Access Journals (Sweden)

    Remco Bouckaert

    2017-08-01

    Full Text Available Background Indigenous populations of the circumpolar Arctic are considered to be endemically infected (>2% prevalence with hepatitis B virus (HBV, with subgenotype B5 (formerly B6 unique to these populations. The distinctive properties of HBV/B5, including high nucleotide diversity yet no significant liver disease, suggest virus adaptation through long-term host-pathogen association. Methods To investigate the origin and evolutionary spread of HBV/B5 into the circumpolar Arctic, fifty-seven partial and full genome sequences from Alaska, Canada and Greenland, having known location and sampling dates spanning 40 years, were phylogeographically investigated by Bayesian analysis (BEAST 2 using a reversible-jump-based substitution model and a clock rate estimated at 4.1 × 10−5 substitutions/site/year. Results Following an initial divergence from an Asian viral ancestor approximately 1954 years before present (YBP; 95% highest probability density interval [1188, 2901], HBV/B5 coalescence occurred almost 1000 years later. Surprisingly, the HBV/B5 ancestor appears to locate first to Greenland in a rapid coastal route progression based on the landscape aware geographic model, with subsequent B5 evolution and spread westward. Bayesian skyline plot analysis demonstrated an HBV/B5 population expansion occurring approximately 400 YBP, coinciding with the disruption of the Neo-Eskimo Thule culture into more heterogeneous and regionally distinct Inuit populations throughout the North American Arctic. Discussion HBV/B5 origin and spread appears to occur coincident with the movement of Neo-Eskimo (Inuit populations within the past 1000 years, further supporting the hypothesis of HBV/host co-expansion, and illustrating the concept of host-pathogen adaptation and balance.

  10. Winter Safety Tips for Older Adults

    Science.gov (United States)

    Winter Safety Tips for Older Adults Expert Information from Healthcare Professionals Who Specialize in the Care of ... thick clothing. Think about getting your thermals! –Essential winter wears: hats, gloves or preferably mittens, winter coat, ...

  11. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are at increased risk for overexposure ... associated with sun exposure. "It's easy to associate winter with frostbite and windburn, but most people are ...

  12. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  13. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  14. Decadal variation of the impact of La Niña on the winter Arctic stratosphere

    Science.gov (United States)

    Yang, Shuangyan; Li, Tim; Hu, Jinggao; Shen, Xi

    2017-05-01

    The impact of La Niña on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Niña events considered. This study shows that this is mainly due to the decadal variation of La Niña's impact on the winter Arctic stratosphere since the late 1970s. Specifically, during the period 1951-78, the tropospheric La Niña teleconnection exhibits a typical negative Pacific-North America pattern, which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere, and leads to a significantly strengthened stratospheric polar vortex. In contrast, during 1979-2015, the La Niña teleconnection shifts eastwards, with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Niña teleconnection with climatological stationary waves seen in the earlier period reduces greatly, which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly, the stratospheric response shows a less disturbed stratospheric polar vortex in winter.

  15. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  16. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  17. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  18. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves

    Science.gov (United States)

    Sumer, B. M.; Christiansen, N.; Fredsøe, J.

    1997-02-01

    This study concerns the flow around the base of a vertical, wall-mounted cylinder a pile exposed to waves. The study comprises (i) flow visualization of horseshoe-vortex flow in front of and the lee-wake-vortex flow behind the pile and (ii) bed shear stress measurements around the pile conducted in a wave flume, plus supplementary bed shear stress measurements carried out in an oscillatory-flow water tunnel. The Reynolds number range of the flume experiments is ReD = (2[minus sign]9) × 103 and that of the tunnel experiments is ReD = 103[minus sign]5 × 104, in which ReD is based on the pile size. Steady-current tests were also carried out for reference. The horseshoe-vortex flow (like lee-wake-vortex flow) is governed primarily by the Keulegan Carpenter number, KC. The range of KC was from 0 to about 25 in the flume experiments, and from 4 to 120 in the tunnel experiments. The experiments were conducted mainly with circular piles. The results indicate that no horseshoe vortex exists for KC one, the circular-pile result being between the two. The influence of a superimposed current on the horseshoe vortex was also investigated. The range of the current-to-wave-induced-velocity ratio, Uc/Um, was from 0 to about 0.8. The overall effect of the superimposed current is to increase the size and lifespan of the horseshoe vortex. This effect increases with increasing Uc/Um. Regarding the near-bed lee-wake flow, the flow regimes observed for the two-dimensional free-cylinder case exist for the present case, too, but with one exception: in the present case, no transverse vortex street was observed in the so-called single-pair regime. The results show that the bed shear stress beneath the horseshoe vortex and in the lee-wake area is heavily influenced by KC. The amplification of the bed shear stress with respect to its undisturbed value is maximum (O(4)) at the side edges of the pile, in contrast to what occurs in steady currents where the maximum occurs at an angle of about

  19. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  20. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  1. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  2. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  3. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli

    2017-01-01

    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  4. Geometric symmetries in superfluid vortex dynamics

    Science.gov (United States)

    Kozik, Evgeny; Svistunov, Boris

    2010-10-01

    Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z) , describing the instant shape of the line. Along with a natural set of Noether’s constants of motion, which—apart from their rather specific expressions in terms of w(z) —are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.

  5. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  6. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  7. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  8. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  9. Vortex induced vibrations in gapped restrainted pipes

    International Nuclear Information System (INIS)

    Veloso, P. de A.A.; Loula, A.F.D.

    1984-01-01

    The vortex induced vibration problem of gapped restrained piping is solved numerically. The model proposed by Skop-Griffin is used to describe the pipe-fluid interaction. The variational formulation is obtained modeling the gapped restraints as non-linear elastic springs. The regularized problem is solved using a finite element discretization for the spatial domain. In the time domain a finite difference discretization is used for the lift coefficient equatin and a Newmark discretization for the equation of motion. (Author) [pt

  10. Quantum vortex fluid in two dimensions

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1995-01-01

    It is argued that in two dimensions the high-field zero-temperature phase of a type-II superconductor can be quantum vortex fluid. The average intervortex spacing in this phase takes discrete values, leading to macroscopic steps in the total flux through the superconductor on the applied magnetic field. In the absence of dissipation, the Hall conductivity is quantized in units of 4e 2 /πℎ

  11. Numerical study of hydrofoil tip vortex fluid field

    Directory of Open Access Journals (Sweden)

    PU Jijun

    2017-01-01

    Full Text Available Three different models,k-ω,DES and LES,are conducted in the analysis of the tip vortex flow field. In order to reduce the discrete error induced by the grid,mesh refinement is applied to the area of the tip vortex core in numerical simulations. The axis and tangential velocities of the tip vortex flow field with no cavitation are calculated,and the calculated velocities agree well with the experimental results. On the basis of this process,the influence of vortex roll-up on the tip vortex pressure filed is discussed,and bubble static equilibrium is proposed by which the tip vortex cavitation inception number is computed.

  12. A Discretized Method for Deriving Vortex Impulse from Volumetric Datasets

    Science.gov (United States)

    Buckman, Noam; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    Many biological and mechanical systems transfer momentum through a fluid by creating vortical structures. To study this mechanism, we derive a method for extracting impulse and its time derivative from flow fields observed in experiments and simulations. We begin by discretizing a thin-cored vortex filament, and extend the model to account for finite vortex core thickness and asymmetric distributions of vorticity. By solely using velocity fields to extract vortex cores and calculate circulation, this method is applicable to 3D PIV datasets, even with low spatial resolution flow fields and measurement noise. To assess the performance of this analysis method, we simulate vortex rings and arbitrary vortex structures using OpenFOAM computational fluid dynamics software and analyze the wake momentum using this model in order to validate this method. We further examine a piston-vortex experiment, using 3D synthetic particle image velocimetry (SAPIV) to capture velocity fields. Strengths, limitations, and improvements to the framework are discussed.

  13. Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2017-01-01

    . Thisintrinsic vortex potential can be tuned by an externally applied magnetic fieldand tilted by a bias current. The two-state system is accurately modeled by aone-dimensional sine-Gordon like equation by means of which one can numericallycalculate both the magnetic field needed to set the vortex in a given...... state aswell as the vortex depinning currents. Experimental data taken at 4.2K onhigh-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocatethe presence of a robust and finely tunable double-well potential for whichreliable manipulation of the vortex state has been classically...... demonstrated.The vortex is prepared in a given potential by means of an externally appliedmagnetic field, while the state readout is accomplished by measuring thevortex-depinning current in a small magnetic field. Our proof of principleexperiment convincingly demonstrates that the proposed vortex qubit based...

  14. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  15. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  16. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R. M. da [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Milošević, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Domínguez, D. [Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro (Argentina); Aguiar, J. Albino, E-mail: albino@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil)

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  17. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  18. Simulating marine propellers with vortex particle method

    Science.gov (United States)

    Wang, Youjiang; Abdel-Maksoud, Moustafa; Song, Baowei

    2017-01-01

    The vortex particle method is applied to compute the open water characteristics of marine propellers. It is based on the large-eddy simulation technique, and the Smagorinsky-Lilly sub-grid scale model is implemented for the eddy viscosity. The vortex particle method is combined with the boundary element method, in the sense that the body is modelled with boundary elements and the slipstream is modelled with vortex particles. Rotational periodic boundaries are adopted, which leads to a cylindrical sector domain for the slipstream. The particle redistribution scheme and the fast multipole method are modified to consider the rotational periodic boundaries. Open water characteristics of three propellers with different skew angles are calculated with the proposed method. The results are compared with the ones obtained with boundary element method and experiments. It is found that the proposed method predicts the open water characteristics more accurately than the boundary element method, especially for high loading condition and high skew propeller. The influence of the Smagorinsky constant is also studied, which shows the results have a low sensitivity to it.

  19. Vortex formation in a complex plasma

    Science.gov (United States)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  20. Vortex convection in nonuniform compressible flow

    Science.gov (United States)

    Szumowski, A. P.; Meier, G. E. A.

    1988-03-01

    Vortex convection in longitudinally nonuniform transonic flow fields was studied. Vortices moving in moderately accelerated flow are distinct in the subsonic and supersonic range. Due to the acceleration, the vortices of the Karman street separate continuously one from another. They form a series of periodically shedding individual vortices. The density distribution of the accelerated vortices stays circular. Vortices in subsonic stream (behind the shock wave in the divergent part of the Laval nozzle) impinging on an obstacle (in this case on the regulating valve) cause shock fronts which move upstream. In a subsonic stream flowing out from the convergent nozzle, the primary vortices inside the stream significantly perturb its boundaries and induce secondary vortices (at the boundaries). Flow patterns in a duct with a sudden enlargement of cross section are influenced by the vortices convected in the flow too. However, the observed perturbations of these patterns are relatively weak. The unsteady behaviour of the free stream is not only the effect of the vortex convection but also of the unsteady interactions with the boundaries, i.e., the adjusting valve and the test-section walls. However, the effect of the vortex convection is the stronger.

  1. Nonlinear tearing mode and vortex chains

    International Nuclear Information System (INIS)

    Jovanovic, D.; Vranjes, J.

    1996-01-01

    We study the nonlinear stage of a tearing mode, whose island width exceeds the tearing layer thickness, and the wavelength is of the order of collisionless skin depth. A coherent solution is found in the form of a moving vortex chain. It is the result of a self-organization process, which adjusts the profile of the sheared poloidal magnetic field and excites a localized perpendicular sheared plasma flow, consisting of three counterstreaming jets. A numerical solution shows a twin chain of plasma vortices, coupled with a single chain of magnetic islands, whose width is of the order of collisionless skin depth. Adiabatic evolution of the vortex chain in the presence of small viscosity reveals its finite lifetime. The chain destruction may occur either directly, or through a sequence of bifurcations (corresponding to abrupt changes of the vortex chain parameters) to magnetic field stochastization within a layer of the collisionless skin depth scale, which occurs before the magnetic island overlapping takes place. This provides a new mechanism for the anomalous transport. (orig.)

  2. From vortex reconnections to quantum turbulence

    International Nuclear Information System (INIS)

    Lipniacki, T.

    2001-01-01

    An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)

  3. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010

    Directory of Open Access Journals (Sweden)

    G. Nikulin

    2012-09-01

    Full Text Available We present an analysis of the major sudden stratospheric warmings (SSWs in the Arctic winters 2003/04–2009/10. There were 6 major SSWs (major warmings [MWs] in 6 out of the 7 winters, in which the MWs of 2003/04, 2005/06, and 2008/09 were in January and those of 2006/07, 2007/08, and 2009/10 were in February. Although the winter 2009/10 was relatively cold from mid-December to mid-January, strong wave 1 activity led to a MW in early February, for which the largest momentum flux among the winters was estimated at 60° N/10 hPa, about 450 m2 s−2. The strongest MW, however, was observed in 2008/09 and the weakest in 2006/07. The MW in 2008/09 was triggered by intense wave 2 activity and was a vortex split event. In contrast, strong wave 1 activity led to the MWs of other winters and were vortex displacement events. Large amounts of Eliassen-Palm (EP and wave 1/2 EP fluxes (about 2–4 ×105 kg s−2 are estimated shortly before the MWs at 100 hPa averaged over 45–75° N in all winters, suggesting profound tropospheric forcing for the MWs. We observe an increase in the occurrence of MWs (~1.1 MWs/winter in recent years (1998/99–2009/10, as there were 13 MWs in the 12 Arctic winters, although the long-term average (1957/58–2009/10 of the frequency stays around its historical value (~0.7 MWs/winter, consistent with the findings of previous studies. An analysis of the chemical ozone loss in the past 17 Arctic winters (1993/94–2009/10 suggests that the loss is inversely proportional to the intensity and timing of MWs in each winter, where early (December–January MWs lead to minimal ozone loss. Therefore, this high frequency of MWs in recent Arctic winters has significant implications for stratospheric ozone trends in the northern hemisphere.

  4. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  5. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  6. Vortex (particle) and antivortex (hole) doping into superconducting network

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Shimizu, Makoto; Matsushima, Yoshiaki; Hayashi, Masahiko; Ebisawa, Hiromichi; Sato, Osamu; Kato, Masaru; Satoh, Kazuo

    2007-01-01

    Superconducting finite-sized Pb square networks with 10 x 10 square holes fabricated by electron beam lithography have been investigated in view of particle (vortex) doping into superconducting networks. Vortex image observations were carried out by a SQUID microscope to compare with predictions from the Ginzburg-Landau theory. We found the exactly reversed pattern between the vortex-doping x and the antivortex doping 1 - x into the fully occupied network (x = 1/4)

  7. Current-driven resonant excitation of magnetic vortex

    OpenAIRE

    Kasai, Shinya; Nakatani, Yoshinobu; Kobayashi, Kensuke; Kohno, Hiroshi; Ono, Teruo

    2006-01-01

    A magnetic vortex core in a ferromagnetic circular nanodot has a resonance frequency originating from the confinement of the vortex core. By the micromagnetic simulation including the spin-transfer torque, we show that the vortex core can be resonantly excited by an AC (spin-polarized) current through the dot and that the resonance frequency can be tuned by the dot shape. The resistance measurement under the AC current successfully detects the resonance at the frequency consistent with the si...

  8. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... on the determination of wake deficits. The last section compares the wake deficits obtained from vortex code and CFD simulations under turbulent conditions with results from lidar measurements....

  9. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  10. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω 0 =2πv/a, up to a superconducting gap, Δ/(ℎ/2π). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices

  11. Z2 vortex strings in grand unified theories

    International Nuclear Information System (INIS)

    Olive, D.; Turok, N.

    1982-01-01

    Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)

  12. Electromagnetic radiation from vortex flow in type-II superconductors

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, $\\omega_0=2\\pi v/a$, up to a superconducting gap, $\\Delta/\\hbar$. Here $v$ is the velocity of the vortex lattice and $a$ is the intervortex spacing. We compute radiation power and show that this effect can be used for generation of terahertz radiation and for characterization of moving vortex lattices.

  13. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  14. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  15. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...... topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its...

  16. Three-wave electron vortex lattices for measuring nanofields.

    Science.gov (United States)

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  18. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  19. Functionalized liquid crystal polymers generate optical and polarization vortex beams

    Science.gov (United States)

    Sakamoto, Moritsugu; Nakamoto, Yuki; Tien, Tran Minh; Kawai, Kotaro; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    In recent year, optical and polarization vortex (OV and PV) beams, which has phase and polarization singularities, have much-attracted attention in various research fields due to their unique physical properties. In this presentation, we report our attempts for the vortex beam generation based on the photo-alignment technique of functionalized liquid crystal polymers. The OV and PV beam generations are respectively demonstrated by using azo-dye-doped liquid crystal polymers and photocrosslinkable polymer liquid crystal. Our approaches realize highly functionalized vortex beam generators which are expected to evolve the photonics applications of vortex beams.

  20. Anomalous Josephson effect controlled by an Abrikosov vortex

    Science.gov (United States)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  1. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    Actuator Vortex Generator Model (AcVG), is based on the lifting force theory of Bender, Anderson and Yagle, the BAY Model, which provides an efficient method for computational fluid dynamic (CFD) simulations of flow with VGs, and the forces are applied into the computational domain using the actuator shape...... in the center of the test section. The fourth model, used as a quantitative comparison, is the analytical model of the primary vortex based in the helical structure of longitudinal embedded vortex, which can reduce the complex flow to merely four parameters: circulation, convection velocity, vortex core radius...

  2. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  3. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  4. Influence of free stream turbulence on a trailing line vortex

    Science.gov (United States)

    Ash, Robert L.; Stead, Daniel J.

    1990-01-01

    Low-speed wind tunnel experiments have been conducted to investigate the influence of free stream turbulence on the mean behavior of a trailing line vortex. Perforated plates and screens were used to produce turbulence levels ranging between 0.03 percent and 5 percent of the free stream velocity in the vicinity of the vortex generator. Smoke was used to provide a visual image of the vortex and photographic and videotape records were taken. Experiments have shown that high turbulence levels cause vortices to meander but with little evidence of structural change. At lower turbulence intensities, some types of vortex oscillations were observed which suggest possible instabilities.

  5. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  6. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  7. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    Science.gov (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  8. Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex-vortex interaction

    Science.gov (United States)

    Reimann, Tommy; Schulz, Michael; Mildner, David F. R.; Bleuel, Markus; Brûlet, Annie; Harti, Ralph P.; Benka, Georg; Bauer, Andreas; Böni, Peter; Mühlbauer, Sebastian

    2017-10-01

    Vortex attraction which can cause a bundling of vortices has been observed in a multitude of type-II superconductors. While its underlying mechanisms have been extensively studied, the morphology of the emerging vortex superstructure has only been rarely considered. Here, we present a comprehensive experimental study on the type-II/1 superconductor niobium which focuses on the transformation of its homogeneous vortex lattice into an inhomogeneous domain structure at the onset of vortex attraction. By means of small-angle neutron scattering, ultra-small-angle neutron scattering, and neutron grating interferometry, the vortex lattice and the micrometer-scale vortex domain structure as well as its distribution could be investigated. In particular, we focus on the transformation of the vortex lattice at the transition to the intermediate mixed state, which is characterized by vortex attraction. We have found that the phase separation of the vortex lattice into an irregular domain structure takes place via a process showing strong similarity to spinodal decomposition. While pinning disorders the domain morphology, the characteristic length scale of the domain structure is governed by an interplay of field distortion energy and domain surface tension. Finally, geometric barriers in the disk-shaped samples provoke an inhomogeneous distribution of domains on the macroscopic scale.

  9. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    In resent work we have developed a new FFT based Poisson solver, which uses regularized Greens functions to obtain arbitrary high order convergence to the unbounded Poisson equation. The high order Poisson solver has been implemented in an unbounded particle-mesh based vortex method which uses a re...

  10. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  11. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.

    Science.gov (United States)

    Veretenov, N A; Fedorov, S V; Rosanov, N N

    2017-12-29

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.

  12. Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2009-03-01

    The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.

  13. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  14. Energy exchange between the jets of the Antarctic Circumpolar Current and synoptic eddies in the Drake Passage and Scotia Sea

    Science.gov (United States)

    Koshlyakov, Mikhail; Savchenko, Darya; Tarakanov, Roman

    2017-04-01

    Energy exchange between the jets of the Antarctic Circumpolar Current (ACC) and ocean synoptic eddies in the surface layer of the Drake Passage and Scotia Sea is studied on the base of the satellite altimeter data for the period from 1993 to 2014 with the assumption that every ACC jet is enclosed between some fixed isopleths of the ocean surface absolute dynamics topography (ADT). All the ACC jets are dynamically unstable what results in the jet meandering, formation of cyclonic and anticyclonic eddies inside the meanders, intensification of the eddies up to reaching their maximum energy, subsequent eddy attenuation and their reverse merging with the mother jets. Corresponding fluctuations of the kinetic energy of the ACC jets and the eddies, generated by different jets, in the surface ocean layer were computed and analysed for the above mentioned 22 years period. As a main result of the analysis, if was confirmed that the kinetic energy of the ACC jets depends strongly on the intensivity of jet meandering and processes of eddy formation and reverse eddy absorption by the jets. Mean and extreme energy parameters of the jets and eddies were also estimated. The northern and middle jets of the South Polar Current are in the lead with respect to the formation of the ocean synoptic eddies.

  15. A pivotal role for ocean eddies in the distribution of microbial communities across the Antarctic Circumpolar Current.

    Directory of Open Access Journals (Sweden)

    Siddarthan Venkatachalam

    Full Text Available Mesoscale variability and associated eddy fluxes play crucial roles in ocean circulation dynamics and the ecology of the upper ocean. In doing so, these features are biologically important, providing a mechanism for the mixing and exchange of nutrients and biota within the ocean. Transient mesoscale eddies in the Southern Ocean are known to relocate zooplankton communities across the Antarctic Circumpolar Current (ACC and are important foraging grounds for marine top predators. In this study we investigated the role of cyclonic and anti-cyclonic eddies formed at the South-West Indian Ridge on the spatial variability and diversity of microbial communities. We focused on two contrasting adjacent eddies within the Antarctic Polar Frontal Zone to determine how these features may influence the microbial communities within this region. The water masses and microbiota of the two eddies, representative of a cyclonic cold core from the Antarctic zone and an anti-cyclonic warm-core from the Subantarctic zone, were compared. The data reveal that the two eddies entrain distinct microbial communities from their points of origin that are maintained for up to ten months. Our findings highlight the ecological impact that changes, brought by the translocation of eddies across the ACC, have on microbial diversity.

  16. Variations of the Antarctic Circumpolar Current (ACC) in the Kerguelen Sector during the Last Deglaciation : sedimentological and geochemical evidences

    Science.gov (United States)

    Bout-Roumazeilles, V.; Beny, F.; Mazaud, A.; Michel, E.; Crosta, X.; Davies, G. R.; Bory, A. J. M.

    2017-12-01

    High-resolution sedimentological and geochemical records were obtained from two sediment cores recovered by the French R/V Marion Dufresne during the INDIEN-SUD-ACC cruises near the sub-Antarctic Kerguelen Islands (49°S). This area is ideal to record past oceanic and atmospheric changes in the Southern Ocean because they are currently located in the northern branch of the Antarctic Circumpolar Current and under the direct influence of Southern Hemisphere Westerly wind belt. This study focuses on the last termination, with specific emphasis on the impact of severe climatic events (Heinrich Stadial 1, Antarctic Cold Reversal, Younger Dryas) onto the ocean-atmospheric exchange. Results indicates that most of the sediment is derived from the Kerguelen Plateau, characterized by high smectite content. Periodically, a minor contribution of Antarctica is noticeable. In particular, illite variations suggest fast and short northward incursions of Antarctic Bottom Water, probably formed in the Prydz Bay during the last glaciation. Grainsize repartition combined to magnetic parameters show a southward migration of the ACC and the fronts associated from the beginning of the deglaciation, which is consistent with Southern Hemisphere climate variations. On the opposite, it highlights an asynchronous decrease of the ACC strength, with a large drop during the Antarctic Cold Reversal when atmospheric CO2 increase was slowed down. Thus, at least in the studied area, the ACC strength and the Antarctic Climate were not synchronous during the last deglaciation.

  17. Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata).

    Science.gov (United States)

    Hemery, L G; Eléaume, M; Roussel, V; Améziane, N; Gallut, C; Steinke, D; Cruaud, C; Couloux, A; Wilson, N G

    2012-05-01

    Sampling at appropriate spatial scales in the Southern Ocean is logistically challenging and may influence estimates of diversity by missing intermediate representatives. With the assistance of sampling efforts especially influenced by the International Polar Year 2007-2008, we gathered nearly 1500 specimens of the crinoid species Promachocrinus kerguelensis from around Antarctica. We used phylogeographic and phylogenetic tools to assess its genetic diversity, demographic history and evolutionary relationships. Six phylogroups (A-F) identified in an earlier study are corroborated here, with the addition of one new phylogroup (E2). All phylogroups are circumpolar, sympatric and eurybathic. The phylogeny of Promachocrinus phylogroups reveals two principal clades that may represent two different cryptic species with contrasting demographic histories. Genetic diversity indices vary dramatically within phylogroups, and within populations, suggesting multiple glacial refugia in the Southern Ocean: on the Kerguelen Plateau, in the East Weddell Sea and the South Shetland Islands (Atlantic sector), and on the East Antarctic continental shelf in the Dumont d'Urville Sea and Ross Sea. The inferences of gene flow vary among the phylogroups, showing discordant spatial patterns. Phylogroup A is the only one found in the Sub-Antarctic region, although without evident connectivity between Bouvet and Kerguelen populations. The Scotia Arc region shows high levels of connectivity between populations in most of the phylogroups, and barriers to gene flow are evident in East Antarctica. © 2012 Blackwell Publishing Ltd.

  18. Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: A regional circumpolar model study

    Science.gov (United States)

    Kusahara, Kazuya; Williams, Guy D.; Tamura, Takeshi; Massom, Robert; Hasumi, Hiroyasu

    2017-08-01

    The spreading of dense shelf water (DSW) from Antarctic coastal margins to lower latitudes plays a vital role in the ocean thermohaline circulation and the global climate system. Through enhanced localized sea ice production in Antarctic coastal polynyas, cold and saline DSW is formed over the continental shelf regions as a precursor to Antarctic Bottom Water (AABW). However, the detailed fate of coastal DSW over the Southern Ocean is still unclear. Here we conduct extensive passive tracer experiments using a circumpolar ocean-sea ice-ice shelf model to investigate pathways of the regional polynya-based DSW from the Antarctic margins to the deep Southern Ocean basins. In the numerical experiments, the Antarctic coastal margin is divided into nine regions, and a passive tracer is released from each region at the same rate as the local sea ice production. The modeled spatial distribution of the total concentration of the nine tracers is consistent with the observed AABW distribution and clearly demonstrates nine routes of the DSW over the Southern Ocean along its bottom topography. Furthermore, the model shows that while ˜50% of the total tracer is distributed northward from the continental shelf to the deep ocean, ˜7% is transported poleward beneath ice shelf cavities. The comprehensive tracer experiments allow us to estimate the contribution of local DSW to the total concentration along each of the pathways.

  19. Circumpolar Diversity and Geographic Differentiation of mtDNA in the Critically Endangered Antarctic Blue Whale (Balaenoptera musculus intermedia)

    Science.gov (United States)

    Sremba, Angela L.; Hancock-Hanser, Brittany; Branch, Trevor A.; LeDuc, Rick L.; Baker, C. Scott

    2012-01-01

    The Antarctic blue whale (Balaenoptera musculus intermedia) was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC) during research cruises from 1990–2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131° longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86) have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968±0.004), perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (FST = 0.032, pwhales. PMID:22412889

  20. Frequency response of Lamb-Oseen vortex

    Science.gov (United States)

    Blanco-Rodríguez, F. J.; Parras, L.; del Pino, C.

    2016-12-01

    In this numerical study we present the frequency response of the Lamb-Oseen (Gaussian) vortex for two synthetic jet configurations. The first one consists of an annular axial jet that is superimposed on the Gaussian vortex. The other configuration deals with an off-axis, single-point, axial jet (SPI). We detect that the system responds to the forcing for a given axial wavenumber, k, exciting natural modes of the vortex by a resonance mechanism. We propose an explanation for the physical mechanism responsible for the maximum energy gain obtained by comparing our results with the different branches found theoretically by Fabre et al (2006 J. Fluid Mech. 551 235-74). We find high energy gains in both cases ({G}∞ ≃ {10}3 for the annular jet and {G}∞ ≃ {10}4 for the SPI jet), so these types of forcing are able to produce responses of the system strong enough to reach a non-linear state. Axisymmetric modes, with azimuthal wavenumber m = 0, produce the highest energy gain while applying an annular forcing. However, other modes, such as the helical one m = 1 and also double helix modes with m = 2, contribute in the SPI configuration. We find that the best region to be tested experimentally in both cases is the region that corresponds to the L2 branch described by Fabre and his collaborators. Furthermore, and whenever using these L2 branch frequencies, the response of the system is always axisymmetric, independently of the type of excitation. Finally, we conclude that the energy gain with the SPI jet is one order of magnitude greater than for the annular jet, so that the single-point off-axis jet is a feasible candidate to design a control device.

  1. Basic study on vortex cavitation inception

    International Nuclear Information System (INIS)

    Ezure, Toshiki; Sato, Hiroyuki; Kimura, Nobuyuki; Kamide, Hideki

    2008-12-01

    In the FaCT Project for Commercialized Fast Reactor Cycle Systems, a compact reactor vessel and 2 loops system are investigated in terms of economical improvement of a sodium cooled fast reactor. In order to certificate the issues in thermal hydraulics, 1/10th scaled model water tests have been performed. In the flow visualization of the 1/10th scaled model tests, vortex cavitations were observed at the inlet of Hot Leg pipes. In order to estimate the occurrence of this type of cavitation in the reactor, cavitation number will be used. In the reactor design, cover gas in a reactor vessel is pressurized up to 0.25MPa. This results in higher velocity at the onset condition of the cavitation as compared to the open-air water experiment. In addition, viscosity of the sodium at 550degC is nearly 1/3rd of that of water at room temperature. These differences may affect the flow pattern and the inception of vortex cavitation. These factors will bring some difficulties in the estimation using the cavitation number. Thus, the effects of pressure and viscosity on the inception of vortex cavitations were examined in basic water experiments. As the results, it was found that the onset value of cavitation coefficient became higher with the increase of the pressure. In addition, it also appeared that the onset value of cavitation coefficient became higher under lower viscosity. However, this difference of onset value due to the viscosity became smaller with the increase of pressure, and was negligible under the same pressure in the real reactor. (author)

  2. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    Science.gov (United States)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  3. Vortex dynamics in the wake of a mechanical fish

    Energy Technology Data Exchange (ETDEWEB)

    Bruecker, Christoph [TU Bergakademie Freiberg, Lehrstuhl fuer Stroemungslehre und Stroemungsmaschinen, Freiberg (Germany); Bleckmann, Horst [Poppelsdorfer Schloss, Zoologisches Institut Bonn, Bonn (Germany)

    2007-11-15

    This study focuses on the three-dimensional flow around a mechanical fish model, which reproduces the typical undulatory body and fin motion of a carangiform swimmer. The mechanical model consists of a flexible skeleton embedded in a soft transparent silicone body, which is connected with two cams to a flapping and bending hinge generating a traveling wave motion with increasing amplitude from anterior to posterior, extending to a combined heaving and pitching motion at the fin. The model is submerged in a water tank and towed at the characteristic swimming speed for the neutral swimming mode at U/V = 1. The method of Scanning Particle Image Velocimetry was used to analyze the three-dimensional time-dependent flow field in the axial and saggital planes. The results confirm the earlier observations that the wake develops into a chain of vortex rings which travel sidewards perpendicular to the swimming direction. However, instead of one single vortex shed at each tail beat half-cycle we observed a pair of two vortex rings being shed. Each pair consists of a larger main vortex ring corresponding to the tail beat start-stop vortex, while the second vortex ring is due to the body bending motion. The existence of the second vortex reflects the role of the body in undulatory swimming. A simplified model of the fish body comparing it to a plate with a hinged flap demonstrates the link between the sequence of kinematics and vortex shedding. (orig.)

  4. Drift turbulence of plasma as a gas of vortex ensemble

    International Nuclear Information System (INIS)

    Aburdzhaniya, G.

    1989-01-01

    This paper shows that in the magnetoactive plasma the short-wavelength nonlinear vortex structures can form the drift turbulence. It has been established that the vortex structures, interacting between and with plasma particles, exite the wide density pulsation spectrum and lead to the anomalous diffusion of the particles. (author). 28 refs

  5. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  6. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    Science.gov (United States)

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  7. Vortex beam characterization in terms of Hypergeometric- Gaussian modes

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Q-plates are commonly used for uncomplicated generation of polarization controlled vortex beams. Here we show experimentally that the output is not a pure vortex but rather a Hypergeometric-Gaussian mode. Results are in good agreement with theory....

  8. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  9. Modeling Vortex Generators in the Wind-US Code

    Science.gov (United States)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  10. Quantitative theory of thermal fluctuations and disorder in the vortex ...

    Indian Academy of Sciences (India)

    Abstract. A metastable supercooled homogeneous vortex liquid state exists down to zero fluctuation temperature in systems of mutually repelling objects. The zero- temperature liquid state therefore serves as a (pseudo) 'fixed point' controlling the prop- erties of vortex liquid below and even around the melting point.

  11. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  12. Generating and analyzing non-diffracting vector vortex beams

    CSIR Research Space (South Africa)

    Li, Y

    2013-08-01

    Full Text Available We experimentally generate non-diffracting vector vortex beams by using a Spatial Light Modulator (SLM) and an azimuthal birefringent plate (q-plate). The SLM generates scalar Bessel beams and the q-plate converts them to vector vortex beams. Both...

  13. The formation of turbulent vortex rings by synthetic jets

    Science.gov (United States)

    Lawson, J. M.; Dawson, J. R.

    2013-10-01

    An investigation is made into the mechanism of pinch-off for turbulent vortex rings formed by a synthetic jet using time resolved particle image velocimetry measurements in air. During formation, measurements of the material acceleration field show a trailing pressure maximum (TPM) forms behind the vortex core. The adverse pressure gradient behind this TPM inhibits vorticity transport into the ring and the TPM is spatially coincident with the termination of vorticity flux into a control volume moving with the ring. A Lagrangian Coherent Structures (LCS) analysis is shown to be in agreement with the role of the TPM in pinch-off and in identifying the vortex ring before separation. The LCS analysis provides physical insights which form the basis of a revised model of pinch-off, based on kinematics, which predicts the time of formation (formation number) well for the present dataset. The delivery of impulse to the vortex ring is also considered. Two equally important mechanisms are shown to play a role: a material flux and a vortex force. In the case of long maximum stroke ratio, it is demonstrated that a vortex force continues to deliver impulse to the ring after the material flux is terminated at pinch-off and that this contribution may be substantial. This shows that the pinch-off and separation process cannot be considered impulse invariant, which has important implications for unsteady propulsion, present models of vortex ring formation, and existing explanations for vortex ring pinch-off.

  14. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  15. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  16. Finned Tube With Vortex Generators For A Heat Exchanger.

    Science.gov (United States)

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  17. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Keywords. Vortices; asymmetric pinning; rectifier; adiabatic ratchet. Abstract. Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect ...

  18. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  19. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...

  20. Vortex-glass transition in three dimensions

    International Nuclear Information System (INIS)

    Reger, J.D.; Tokuyasu, T.A.; Young, A.P.; Fisher, M.P.A.

    1991-01-01

    We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simulations at finite temperature and domain-wall renormalization-group calculations at T=0 indicate that d=3 is just above the lower critical dimension d l , though the possibility that d l =3 cannot be definitely ruled out. A comparison is made with XY and Ising spin glasses. The (effective) correlation-length exponent ν and dynamical exponent z are in fairly good agreement with experiment

  1. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  2. IDRC Bulletin — Winter 2017

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-16

    Jan 16, 2018 ... In this issue, read the research results from our Safe and Inclusive Cities program and don't forget that the Joint Canada-Israel Health Research Program 2018 call is now open. IDRC Bulletin logo IDRC Bulletin — Winter 2017. Featured this month. View of Port-au-Prince in Haiti, March 30, 2016. Safe and ...

  3. Learning through a Winter's Tale

    Science.gov (United States)

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this…

  4. Winter School on Coding Theory

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. Winter School on Coding Theory. Information and Announcements Volume 8 Issue 8 August 2003 pp 111-111. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/08/0111-0111. Resonance ...

  5. Nuclear Winter: The Continuing Debate.

    Science.gov (United States)

    1987-03-23

    prospect of human annihilation. Speculation about the environmental results of a ’long darkness’ were considered by Paul Ehrlich .10 The term nuclear winter...Washington D.C., 1983 The Cold and the Dark: The World after Nuclear War, by Paul Ehrlich , et al. New York: Norton, 1984. (QH545 N83 C66 1983k Caldicott

  6. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  7. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  8. The structure and dynamics of bubble-type vortex breakdown

    Science.gov (United States)

    Spall, R. E.; Ash, R. L.; Gatski, T. B.

    1990-01-01

    A unique discrete form of the Navier-Stokes equations for unsteady, three-dimensional, incompressible flow has been used to study vortex breakdown numerically. A Burgers-type vortex was introduced along the central axis of the computational domain, and allowed to evolve in space and time. By varying the strength of the vortex and the free stream axial velocity distribution, using a previously developed Rossby number criterion as a guide, the location and size of the vortex breakdown region was controlled. While the boundaries of the vortex breakdown bubble appear to be nominally symmetric, the internal flow field is not. Consequently, the mechanisms for mixing and entrainment required to sustain the bubble region are different from those suggested by earlier axisymmetric models. Results presented in this study, for a Reynolds number of 200, are in good qualitative agreement with higher Reynolds number experimental observations, and a variety of plots have been presented to help illuminate the fluid physics.

  9. Stability and dynamics of electron plasma vortex under external strain

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-11-01

    The behavior of two-dimensional vortex structures is of key interest in a number of important physical systems, including geophysical fluids and strongly magnetized plasmas. Studied here is the case of an initially axisymmetric vortex subjected to a simple strain flow. Experiments are performed using pure electron plasmas confined in a Penning-Malmberg trap to model the dynamics of an ideal two-dimensional fluid. Vortex-In-Cell simulations are also conducted to complement the laboratory results. The dynamical behavior and stability threshold of the strained vortex are measured, showing good agreement with Kida's elliptical patch model for relatively flat vorticity profiles. However, non-flat profiles feature a reduced stability threshold, apparently due to filamentation at the vortex periphery.

  10. The control of magnetic vortex state in rectangular nanomagnet

    Science.gov (United States)

    Li, Junqin; Wang, Yong; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Tai, Renzhong

    2018-04-01

    We study the magnetic vortex states in rectangular nanomagnet with aspect ratio close to two by micro-magnetic simulations and experiments comparatively, and propose a simple way to manipulate both the chirality and polarity independently by tuning the direction of the in-plane magnetic field. There are always two vortices which have opposite chirality with Neel type wall and identical polarity for the rectangular nanomagnet with aspect ratio close to two. Four stable vortex states can be genetated from the uniformly magnetized state by in-plane magnetic field, and specific vortex states depend on the direction of the initial magnetization. The phenomenont of the formation of vortex states was explained based on the vortex dynamics. Also the reliability of proposed method was confirmed by domain structure using magnetic force microscopy (MFM) in experiment.

  11. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  12. Experimental framework to study tip vortex interactions in multirotor wakes

    Science.gov (United States)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  13. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  14. The evolution of contrail microphysics in the vortex phase

    Directory of Open Access Journals (Sweden)

    Simon Unterstrasser

    2008-04-01

    Full Text Available We investigate the evolution of contrails during the vortex phase using numerical simulations. Emphasis is placed on microphysical properties and on the vertical distribution of ice mass and number concentration at the end of the vortex phase. Instead of using a 3D model which would be preferable but computationally too costly, we use a 2D model equipped with a special tool for controlling vortex decay. We conduct a great number of sensitivity studies for one aircraft type. It turns out that atmospheric parameters, namely supersaturation, temperature, stability and turbulence level have the biggest impact on the number of ice crystals and on the ice mass that survives until vortex breakup and that therefore makes up the persistent contrail in supersaturated air. The initial ice crystal number density and its distribution in the vortex, are of minor importance.

  15. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  16. Inclined Jet in Crossflow Interacting with a Vortex Generator

    Science.gov (United States)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  17. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  18. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  19. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  20. Winter movement dynamics of black brant

    Science.gov (United States)

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  1. Wintering ecology of adult North American ospreys

    Science.gov (United States)

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  2. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-12-01

    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation.

  3. Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter

    Science.gov (United States)

    Manney, Gloria L.; Allen, Douglas R.; Kruger, Kirstin; Naujokat, Barbara; Santee, Michelle L.; Sabutis, Joseph L.; Pawson, Steven; Swinbank, Richard; Randall, Cora E.; Simmons, Adrian J.; hide

    2005-01-01

    Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport

  4. Classification guide: Sochi 2014 Paralympic Winter Games

    OpenAIRE

    2014-01-01

    The Sochi 2014 Paralympic Winter Games classification guide is designed to provide National Paralympic Committees (NPCs) and International Federations (IFs) with information about the classification policies and procedures that will apply to the Sochi 2014 Paralympic Winter Games.

  5. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  6. On the scaling and dynamics of periodically generated vortex rings

    Science.gov (United States)

    Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team

    2017-11-01

    Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.

  7. A counter-rotating vortex pair in inviscid fluid

    Science.gov (United States)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  8. Physical Analysis and Scaling of a Jet and Vortex Actuator

    Science.gov (United States)

    Lachowicz, Jason T.; Yao, Chung-Sheng; Joslin, Ronald D.

    2004-01-01

    Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.

  9. Giant moving vortex mass in thick magnetic nanodots.

    Science.gov (United States)

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  10. Formation and interference of two pairs of vortex streets

    International Nuclear Information System (INIS)

    Kamemoto, Kyoji

    1976-01-01

    A series of theoretical analysis were made on the mechanism of the formation and interference of two pairs of vortex streets appearing behind a pair of two long bars placed perpendicularly to uniform flow. In the first part, the flow model used for this study is explained. It was assumed that two pairs of vortex sheets having the same interval (h) were placed at the distance of g in non-viscous flow. Then small disturbance was given to the flow, and the behavior of the vortex sheets in course of time was analyzed by solving a set of linear simultaneous differential equations. Eight fundamental modes of small displacement were obtained as the independent solutions of the equations. The fundamental modes and the associated parameters are presented. In the second part, a set of non-linear differential equations were derived by substituting the vortex sheets with vortex streets with finite intensity. The set of equations were solved numerically. The results of numerical solutions for various conditions are presented. Main conclusions drawn from this study are that the condition of the existence of two pairs of vortex sheets is g/h >= 1, and that the mutual interference between two pairs of vortex streets becomes conspicuous for g/h <= 2. Some discussions made by other researchers and the author are also presented at the end of this paper. (Aoki, K.)

  11. Temperature effect on vortex-core reversals in magnetic nanodots

    Science.gov (United States)

    Kim, Bosung; Yoo, Myoung-Woo; Lee, Jehyun; Kim, Sang-Koog

    2015-05-01

    We studied the temperature effect on vortex-core reversals in soft magnetic nanodots by micromagnetic numerical calculations within a framework of the stochastic Landau-Lifshitz-Gilbert scheme. It was determined that vortex-core-switching events at non-zero temperatures occur stochastically, and that the threshold field strength increases with temperature for a given field frequency. The mechanism of core reversals at elevated temperatures is the same as that of vortex-antivortex-pair-mediated core reversals found at the zero temperature. The reversal criterion is also the out-of-plane component of a magnetization dip that should reach -p, which is to say, m z , dip = -p, where p is the original polarization, p = +1 (-1), for the upward (downward) core. By this criterion, the creation of a vortex-antivortex pair accompanies complete vortex-antivortex-annihilation-mediated core reversals, resulting in the maximum excess of the exchange energy density, Δ Eex cri ≈ 15.4 ± 0.2 mJ/cm3. This work provides the underlying physics of vortex-core reversals at non-zero temperatures, and potentiates the real application of vortex random access memory operating at elevated temperatures.

  12. Copepod behavior response to Burgers' vortex treatments mimicking turbulent eddies

    Science.gov (United States)

    Elmi, D.; Webster, D. R.; Fields, D. M.

    2017-11-01

    Copepods detect hydrodynamic cues in the water by their mechanosensory setae. We expect that copepods sense the flow structure of turbulent eddies in order to evoke behavioral responses that lead to population-scale distribution patterns. In this study, the copepods' response to the Burgers' vortex is examined. The Burgers' vortex is a steady-state solution of three-dimensional Navier-Stokes equations that allows us to mimic turbulent vortices at the appropriate scale and eliminate the stochastic nature of turbulence. We generate vortices in the laboratory oriented in the horizontal and vertical directions each with four intensity levels. The objective of including vortex orientation as a parameter in the study is to quantify directional responses that lead to vertical population distribution patterns. The four intensity levels correspond to target vortex characteristics of eddies corresponding to the typical dissipative vortices in isotropic turbulence with mean turbulent dissipation rates in the range of 0.002 to 0.25 cm2/s3. These vortices mimic the characteristics of eddies that copepods most likely encounter in coastal zones. We hypothesize that the response of copepods to hydrodynamic features depends on their sensory architecture and relative orientation with respect to gravity. Tomo-PIV is used to quantify the vortex circulation and axial strain rate for each vortex treatment. Three-dimensional trajectories of the copepod species Calanus finmarchicus are analyzed to examine their swimming kinematics in and around the vortex to quantify the hydrodynamic cues that trigger their behavior.

  13. On the Vortex Detection Method Using Continuous Wavelet Transform with Application to Propeller Wake Analysis

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2015-01-01

    Full Text Available The method based on the continuous wavelet transformation to detect and characterize two-dimensional vortex is analyzed for a synthetic flow and applied to vortex detection of propeller wake. The characteristics of a vortex, such as center location, core radius, and circulation, are extracted based on the Lamb-Oseen and Rankine vortex models, the latter of which is a novel attempt. The effects of various factors such as the difference scheme, the grid and scale discretization, transform variable, and vortex model on vortex detection have been investigated thoroughly. The method is further applied to identify the tip vortex in a propeller wake.

  14. What do we know about health-related knowledge translation in the Circumpolar North? Results from a scoping review

    Science.gov (United States)

    McDonald, M. Ellen; Papadopoulos, Andrew; Edge, Victoria L.; Ford, James; Sumner, Alison; Harper, Sherilee L.

    2016-01-01

    Background Health research knowledge translation (KT) is important to improve population health outcomes. Considering social, geographical and cultural contexts, KT in Inuit communities often requires different methods than those commonly used in non-Inuit populations. Objectives To examine the extent, range and nature of literature about health-related KT in Inuit communities. Design A scoping review was conducted. A search string was used to search 2 English aggregator databases, ProQuest and EBSCOhost, on 12 March 2015. Study selection was conducted by 2 independent reviewers using inclusion and exclusion criteria. To be included, studies had to explicitly state that KT approaches were used to share human health research results in Inuit communities in the Circumpolar North. Articles that evaluated or assessed KT approaches were thematically analysed to identify and characterize elements that contributed to KT success or challenges. Results From 680 unique records identified in the initial search, 39 met the inclusion criteria and were retained for analysis. Of these 39 articles, 17 evaluated the KT approach used; thematic analysis identified 3 themes within these 17 articles: the value of community stakeholders as active members in the research process; the importance of local context in tailoring KT strategies and messaging; and the challenges with varying and contradictory health messaging in KT. A crosscutting gap in the literature, however, included a lack of critical assessment of community involvement in research. The review also identified a gap in assessments of KT in the literature. Research primarily focused on whether KT methods reflected the local culture and needs of the community. Assessments rarely focused on whether KT had successfully elicited its intended action. Conclusions This review synthesized a small but burgeoning area of research. Community engagement was important for successful KT; however, more discussion and discourse on the

  15. What do we know about health-related knowledge translation in the Circumpolar North? Results from a scoping review

    Directory of Open Access Journals (Sweden)

    M. Ellen McDonald

    2016-04-01

    Full Text Available Background: Health research knowledge translation (KT is important to improve population health outcomes. Considering social, geographical and cultural contexts, KT in Inuit communities often requires different methods than those commonly used in non-Inuit populations. Objectives: To examine the extent, range and nature of literature about health-related KT in Inuit communities. Design: A scoping review was conducted. A search string was used to search 2 English aggregator databases, ProQuest and EBSCOhost, on 12 March 2015. Study selection was conducted by 2 independent reviewers using inclusion and exclusion criteria. To be included, studies had to explicitly state that KT approaches were used to share human health research results in Inuit communities in the Circumpolar North. Articles that evaluated or assessed KT approaches were thematically analysed to identify and characterize elements that contributed to KT success or challenges. Results: From 680 unique records identified in the initial search, 39 met the inclusion criteria and were retained for analysis. Of these 39 articles, 17 evaluated the KT approach used; thematic analysis identified 3 themes within these 17 articles: the value of community stakeholders as active members in the research process; the importance of local context in tailoring KT strategies and messaging; and the challenges with varying and contradictory health messaging in KT. A crosscutting gap in the literature, however, included a lack of critical assessment of community involvement in research. The review also identified a gap in assessments of KT in the literature. Research primarily focused on whether KT methods reflected the local culture and needs of the community. Assessments rarely focused on whether KT had successfully elicited its intended action. Conclusions: This review synthesized a small but burgeoning area of research. Community engagement was important for successful KT; however, more discussion and

  16. Circumpolar diversity and geographic differentiation of mtDNA in the critically endangered Antarctic blue whale (Balaenoptera musculus intermedia.

    Directory of Open Access Journals (Sweden)

    Angela L Sremba

    Full Text Available The Antarctic blue whale (Balaenoptera musculus intermedia was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC during research cruises from 1990-2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131° longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86 have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968±0.004, perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (F(ST = 0.032, p<0.005 and microsatellite alleles (F(ST = 0.005, p<0.05 among the six Antarctic Areas historically used by the IWC for management of blue whales.

  17. Leadership in American Indian Communities: Winter Lessons

    Science.gov (United States)

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  18. Studies of vortex dominated flows; Proceedings of the Symposium, Hampton, VA, July 9-11, 1985

    International Nuclear Information System (INIS)

    Hussaini, M.Y.; Salas, M.D.

    1987-01-01

    Papers are presented on waves and bifurcations in vortex filaments, a ring-vortex representation of an axisymmetric vortex sheet, and comparison of experiment with the dynamics of the von Karman vortex trail. Also considered are force-free and loss-free transitions between vortex flow states, a vortex breakdown simulation based on a nonlinear inviscid method, and the prediction of highly vortical flows using an Euler equation model. Other topics include the theory of high-Reynolds-number flow past a blunt body, progress on the calculation of large-scale separation at high Reynolds numbers, and viscous-inviscid interaction solvers and computation of highly separated flows. Papers are also presented on simulation studies of vortex dynamics of a leading edge vortex flap, methods for numerical simulation of leading edge vortex flow, and comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing

  19. Coupling between temporal and spatial chaos of vortex state in superconductors with periodical pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.T. [Department of Information Management, Cheng Shiu University, Kaoshuing, Taiwan (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ke, C.; Pan, M. [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2011-11-15

    Mean field approach is a good way of dealing with chaos of vortex motion in a background of many vortices. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system. Vortex motion in the background of many vortices is investigated by a mean field approach. Effects of the vortex-vortex coupling, the driving frequency, and the vortex viscosity on the vortex motion have been studied to reveal the interaction between the spatial and temporal chaos. It is found that the mean-field approach is a good approximation to describe the vortex motion in one dimensional vortex system. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system.

  20. Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence

    Science.gov (United States)

    Ghimire, Hari C.; Bailey, Sean C. C.

    2018-03-01

    Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, vortex stripping events were connected to asymmetry in the vortex core, and this asymmetry was associated with instances of rapid circulation loss. The increased rate of decay of the vortex in turbulence coincided with the formation of secondary vortical structures which wrapped azimuthally around the primary vortex.

  1. Vertically homogeneous stationary tornado-type vortex

    Science.gov (United States)

    Rutkevich, P. B.; Rutkevych, P. P.

    2010-05-01

    Tornado is regarded as one of the most dangerous atmosphere phenomena. The tornado phenomenon has been intensively studied so far, however, there is still no established and accepted theory of how tornadoes form, an uncertainty still exists concerning extreme winds and pressure drops in tornadoes. It is commonly accepted that it is possible to describe tornado from the set of nonlinear hydrodynamical equations, however, it is still unclear which non-linear processes are responsible for its formation. Nonlinear terms in the system are associated with either centrifugal force, or entropy transport, or transport of humidity. It appears that the amount and spatial distribution of precipitation with the convection are important indicators of the weather phenomena associated with a particular storm. The low-precipitation supercells that produce relatively little precipitation and yet show clear visual signs of rotation. Low-precipitation supercells occur most often near the surface dryline and, owing to the sparse precipitation and relatively dry environments with little cloudiness. Low-precipitation storms are frequently non-tornadic and many are non-severe despite exhibiting persistent rotation. On the other hand, the so-called high-precipitation storms are characterized by substantial precipitation within their mesocyclonic circulations. When high-precipitation storms have a recognizable hook radar echo, reflectivity in the hook is comparable to those in the precipitation core. High-precipitation supercells are probably the most common form of supercell and produce severe weather of all types including tornadoes. Therefore, in this work we consider a hydrodynamic system with only one nonlinear term associated with atmosphere humidity, which yields energy to the system. The tornado vortex is usually to a good approximation cylindrical so we use cylindrical geometry and homogeneity in vertical direction. In this case the problem reduces to a system of ordinary

  2. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  3. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  4. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  5. Hidden vortex lattices in a thermally paired superfluid

    International Nuclear Information System (INIS)

    Dahl, E. K.; Sudboe, A.; Babaev, E.

    2008-01-01

    We study the evolution of rotational response of a statistical mechanical model of two-component superfluid with a nondissipative drag interaction as the system undergoes a transition into a paired superfluid phase at finite temperature. The transition manifests itself in a change of (i) vortex-lattice symmetry and (ii) nature of the vortex state. Instead of a vortex lattice, the system forms a highly disordered tangle which constantly undergoes merger and reconnecting processes involving different types of vortices with a 'hidden' breakdown of translation symmetry

  6. Inverse crystallization if Abrikosov vortex system at periodic pinning

    CERN Document Server

    Zyubin, M V; Kashurnikov, V A

    2002-01-01

    The vortex system in the quasi-two-dimensional HTSC plate is considered in the case of the periodic pinning. The M(H) magnetization curves by various values of the external magnetic field and different temperatures are calculated through the Monte Carlo method. It is shown that in the case of the periodic pinning the crystallization of the vortex system is possible by the temperature increase. A number of peculiarities conditioned by the impact of the pinning centers periodic lattice are identified on the magnetization curves. The pictures of the vortex distribution corresponding to various points on the M(H) curve are obtained

  7. Evolution of a Vortex in a Strain Flow

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-12-01

    Experiments and vortex-in-cell simulations are used to study an initially axisymmetric, spatially distributed vortex subject to an externally imposed strain flow. The experiments use a magnetized pure electron plasma to model an inviscid two-dimensional fluid. The results are compared to a theory assuming an elliptical region of constant vorticity. For relatively flat vorticity profiles, the dynamics and stability threshold are in close quantitative agreement with the theory. Physics beyond the constant-vorticity model, such as vortex stripping, is investigated by studying the behavior of nonflat vorticity profiles.

  8. Disordered vortex phases in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Crabtree, G. W.; Kwok, W. K.; Olsson, R. J.; Karapetrov, G.; Paulius, L. M.; Petrean, A.; Tobos, V.; Moulton, W. G.

    2000-01-01

    The disordered vortex phases induced by line and point pinning in YBa 2 Cu 3 O x are explored. At high defect densities there is a single disordered solid separated from the liquid phase by a melting line. At low defect densities the topology of the phase diagram changes dramatically, with a vortex lattice phase adjoining disordered phases at high or low field. Critical points at the termination of first order melting separate the lattice and disordered phases. The line defect disordered phases follow the expected Bose glass behavior, while the point defect disordered phases do not exhibit the expected vortex glass behavior

  9. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  10. Electromagnetic radiation from vortex flow in Type-II superconductors.

    Science.gov (United States)

    Bulaevskii, L N; Chudnovsky, E M

    2006-11-10

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, omega(0)=2pi v/a, up to a superconducting gap, Delta/variant Planck's over 2pi. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  11. Beam-width spreading of vortex beams in free space

    Science.gov (United States)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  12. Numerical study on physical mechanism of vortex breakdown occurrence in spin-up process

    OpenAIRE

    "小出, 輝明"; Teruaki", "Koide

    2008-01-01

    "A Numerical study presented on a vortex breakdown in spin-up process in an enclosed cylindrical container. In a transitional state, momentary vortex breakdowns can occur for particular parameter values ofthe Reynolds number and aspect ratio where no vortex breakdown appears in a steady state. This transient vortex breakdown flow is convenient to consider a mechanism for the occurrence of a vortex breakdown. It isdiscussed that periodical increase and decrease of angular momentum in upstream ...

  13. Vortex-antivortex patterns in mesoscopic superconductors

    International Nuclear Information System (INIS)

    Teniers, Gerd; Moshchalkov, V.V.; Chibotaru, L.F.; Ceulemans, Arnout

    2003-01-01

    We have studied the nucleation of superconductivity in mesoscopic structures of different shape (triangle, square and rectangle). This was made possible by using an analytical gauge transformation for the vector potential A which gives A n =0 for the normal component along the boundary line of the rectangle. As a consequence the superconductor-vacuum boundary condition reduces to the Neumann boundary condition. By solving the linearized Ginzburg-Landau equation with this boundary condition we have determined the field-temperature superconducting phase boundary and the corresponding vortex patterns. The comparison of these patterns for different structures demonstrates that the critical parameters of a superconductor can be manipulated and fine-tuned through nanostructuring

  14. Correlations and transport in vortex liquids

    International Nuclear Information System (INIS)

    Nelson, D.R.

    1991-01-01

    The theory of the vortex line liquids which arise in the copper oxide high temperature superconductors is described. The author discusses correlations in the presence of weak disorder, and the viscous electricity which results when entangled flux liquids attempt to flow past a few strong pins. He shows, using an analogy with single particle quantum mechanics, that thermal fluctuations lead to a large renormalization of the binding energy of an isolated line to planar or linear pins. A related mapping of the statistical mechanics of many flux lines onto the physics of two-dimensional boson superfluids is reviewed, with an emphasis on the physical meaning of phase coherence. He argues that boson localization provides an appropriate description of flux lines when many planar or linear ping are present. A number of experimental tests of the theory are proposed

  15. Vortex core properties in iron pnictides

    Directory of Open Access Journals (Sweden)

    Zakharchuk I.

    2014-07-01

    Full Text Available The mechanism of unconventional superconductivity in recently discovered Fe-based superconductors has been intensively discussed. A plausible candidate is the superconducting (SC pairing mediated by antiferromagnetic (AFM interactions. There are two different approaches predicting the s± pairing state, in which the SC gap shows an s-wave symmetry that changes sign between different Fermi-surface (FS sheets. The first one is based on the itinerant spin fluctuations promoted by FS nesting, and the second is based on the local AFM exchange couplings. We apply quasiclassical Eilenberger approach to the vortex state to calculate the cutoff parameter, ξh, at different levels of impurity scattering rates and to compare results with experimental data for iron pnictides. The s±-wave pairing symmetry is considered as a presumable state for these materials. Magnetic field dependence of ξh/ξc2 is found to be nonuniversal for s± pairing: depending on the chosen parameter set it can reside both below and above analytical Ginzburg-Landau curve. It is also found that normalized ξ2/ξc2(B/Bc2 dependence is increasing with pair-breaking (interband impurity scattering, and the intraband scattering results in decreasing of the ξ2/ξc2 value. Here, ξ2 is the vortex core size and ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field. The ξ2/ξc2(B/Bc2 curve has a minimum at low temperatures and small scattering evolving into monotonously decreasing function at strong scattering and high temperatures.

  16. Streamwise Fluctuations of Vortex Breakdown at High Reynolds Numbers

    National Research Council Canada - National Science Library

    Connelly, Jonathan S

    2006-01-01

    This thesis deals with the characterization of the dependence on the flow geometry of the stream wise fluctuations of the stagnation point of vortex breakdown in axisymmetric tubes and over delta wing aircraft...

  17. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6

    2008-01-01

    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  18. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  19. Yaw-modelling using a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The cylindrical vortex wake model presented in Chap. 17 for the case of uniform inflow is extended in the current chapter to the case of yawed inflow. Generalities regarding yaw are presented in Sect. 6.1 and only the skewed cylindrical vortex model is presented in this chapter. The chapter starts...... with a literature review on the topic of yaw-models and vorticity-based methods. The description of the model follows. The novelty of the current model is that the assumption of infinite tip-speed ratio is relaxed. The bound vorticity is assumed to be identical to the case of uniform inflow but the vortex cylinder...... and the root vortex are skewed with respect to the normal of the rotor disk. Closed form formulae for the induced velocities are provided. They can only be evaluated analytically for a limited part of the domain. A numerical integration is required to obtain the velocity everywhere in the domain. The numerical...

  20. Resonant pinning spectroscopy with spin-vortex pairs

    Science.gov (United States)

    Holmgren, E.; Bondarenko, A.; Ivanov, B. A.; Korenivski, V.

    2018-03-01

    Vortex pairs in magnetic nanopillars with strongly coupled cores and pinning of one of the cores by a morphological defect, are used to perform resonant pinning spectroscopy, in which a microwave excitation applied to the nanopillar produces pinning or depinning of the cores only when the excitation is in resonance with the rotational or gyrational eigenmodes of the specific initial state of the core-core pair. The shift in the eigenmode frequencies between the pinned and depinned states is determined experimentally and explained theoretically, and illustrates the potential for multicore spin-vortex memory with resonant writing of information onto various stable vortex pair states. Further, it is shown how the same resonant spectroscopy techniques applied to a vortex pair can be used as a sensitive nanoscale probe for characterizing morphological defects in magnetic films.

  1. Formation of vortex chains in a nonuniform magnetized electron plasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Srinivas, J.; Murtaza, G.; Saleem, H.

    1994-01-01

    It is shown that the equations governing the dynamics of weakly interacting medium-frequency electrostatic waves in a nonuniform magnetoplasma with a fixed ion background can have localized vortex chain solutions

  2. Optical vortex patterns in a unidirectional ring oscillator

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1996-01-01

    We describe observation and analysis of optical vortex patterns in a unidirectional ring oscillator with photorefractive nonlinearity. Including field rotation in the resonator leads to novel structures, including counterrotating rings of optical vortices with opposite helicity. A modal analysis...

  3. Scalar and vector vortex beams from the source

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2016-10-01

    Full Text Available . Advanced Solid State Lasers 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), 30 October–3 November 2016, Boston, Massachusetts United States Scalar and vector vortex beams from the source Naidoo, Darryl Roux...

  4. OWC with vortex beams in data center networks

    Science.gov (United States)

    Kupferman, Judy; Arnon, Shlomi

    2017-10-01

    Data centers are a key building block in the rapidly growing area of internet technology. A typical data center has tens of thousands of servers, and communication between them must be flexible and robust. Vortex light beams have orbital angular momentum and can provide a useful and flexible method for optical wireless communication in data centers. Vortex beams can be generated with orbital angular momentum but independent of polarization, and used in a multiplexed system. We propose a multiplexing vortex system to increase the communication capacity using optical wireless communication for data center networks. We then evaluate performance. This paper is intended for use as an engineering guideline for design of vortex multiplexing in data center applications.

  5. Numerical investigation of heat transfer in flat vortex channels

    Directory of Open Access Journals (Sweden)

    N. V. Kukshinov

    2014-01-01

    Full Text Available The vortex channels is the method of heat transfer intensification which combines increase of surface area (finned wall and enhanced convective cooling. The vortex channels is a duct formed by combination of two plates with milled fins intersected at different angles. The investigation of heat transfer and hydraulic characteristics in vortex channels was carried out by means of CFD. Flow was simulated in wide range of Reynolds numbers, heat and hydraulic characteristics were obtained for this duct. It was shown that the sum intensification effect is comprised of convective component and the effect of surface area increase. It was shown that flat vortex channels provide to transfer the higher heat flux, than finned wall at the same conditions.

  6. Flow rate measurement in a pipe flow by vortex shedding

    Energy Technology Data Exchange (ETDEWEB)

    Reik, M.; Bruzzese, C.; Schenkel, T.; Oertel, H. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Fluid Mechanics; Hoecker, R.; Hollmach, M.; Koudal, O. [Endress und Hauser Flowtec AG, Reinach (Switzerland)

    2010-06-15

    The flow rate measurement of liquid, steam, and gas is one of the most important areas of application for today's field instrumentation. Vortex meters are used in numerous branches of industry to measure the volumetric flow by exploiting the unsteady vortex flow behind a blunt body. The classical Karman vortex street behind a cylinder shows a decrease in Strouhal number with decreasing Reynolds number. Considering the flow behind a vortex shedding device in a pipe the Strouhal-Reynolds number dependence shows a different behaviour for turbulent flows: a decrease in Reynolds number leads to an increase in Strouhal number. This phenomenon was found in the experimental investigations as well as in the numerical results and has been confirmed theoretically by a stability analysis. (orig.)

  7. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  8. Cockpit-based Wake Vortex Visualization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  9. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  10. Fuel injection of coal slurry using vortex nozzles and valves

    Science.gov (United States)

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  11. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  12. Communicating Certainty About Nuclear Winter

    Science.gov (United States)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  13. Study of three-dimensional effects on vortex breakdown

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  14. A computational study of the taxonomy of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  15. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  16. Effect of scalar nonlinearity on the dipole vortex solution

    International Nuclear Information System (INIS)

    Su, X; Horton, W.; Morrison, P.J.; Pavlenko, V.P.

    1988-07-01

    The dipole vortex solutions of the Hasegawa-Mima drift wave or equivalently, the quasi-geostrophic Rossby wave equation are shown to be split up into long-lived monopole vortices (cyclones and anticyclones) in the presence of a small scalar, i.e. KdV type, nonlinearity. The lifetime of the dipole vortex varies inversely with the strength of the scalar nonlinearity. 12 refs., 4 figs

  17. The analysis of flow stability in a vortex furance model

    Directory of Open Access Journals (Sweden)

    Anufriev Igor S.

    2017-01-01

    Full Text Available Results of experimental study of the pulsation characteristics of a flow in isothermal model of vortex furnace with vertically oriented nozzles of secondary blast are obtained. With use of laser Doppler measuring system and pressure pulsations analyzer the data about the pressure and velocity pulsations has been received. Spectra of pressure and velocity pulsations at various regime parameters are presented. Absence of non-stationary structures, such as precessing vortex core of a flow, is shown.

  18. Self-organized vortex multiplets in swirling flow

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Sørensen, Jens Nørkær

    2008-01-01

    The possibility of double vortex multiplet formation at the center of an intensively swirling cocurrent flow generated in a cylindrical container by its rotating lid is reported for the first time. The boundary of the transition to unsteady flow regimes, which arise as a result of the equilibrium...... rotation of self-organized vortex multiplets (triplet, double triplet, double doublet, and quadruplet), has been experimentally determined for cylinders with the aspect (height to radius) ratios in a wider interval than that studied previously....

  19. The Globe of Science and Innovation's central vortex

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    The central vortex of the Globe of Science and Innovation is a crown measuring 6.15 m in diameter and 4.5 m in height. Having been lifted by a crane to a height of over 22 m, the vortex is placed on a support structure which will be removed once the 36 arcs providing the building's structure have been secured in place.

  20. Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2005-01-01

    Full Text Available We present ozone measurements from the millimetre wave radiometer installed at the Swedish Institute of Space Physics (Institutet för rymdfysik, IRF in Kiruna (67.8° N, 20.4° E, 420 m asl. Nearly continuous operation in the winter of 2002/2003 allows us to give an overview of ozone evolution in the stratosphere between 15 and 55 km. In this study we present a detailed analysis of the Arctic winter 2002/2003. By means of a methodology using equivalent latitudes we investigate the meteorological processes in the stratosphere during the entire winter/spring period. During the course of the winter strong mixing into the vortex took place in the middle and upper stratosphere as a result of three minor and one major warming event, but no evidence was found for significant mixing in the lower stratosphere. Ozone depletion in the lower stratosphere during this winter was estimated by measurements on those days when Kiruna was well inside the Arctic polar vortex. The days were carefully chosen using a definition of the vortex edge based on equivalent latitudes. At the 475 K isentropic level a cumulative ozone loss of about 0.5 ppmv was found starting in January and lasting until mid-March. The early ozone loss is probably a result of the very cold temperatures in the lower stratosphere in December and the geographical extension of the vortex to lower latitudes where solar irradiation started photochemical ozone loss in the pre-processed air. In order to correct for dynamic effects of the ozone variation due to diabatic subsidence of air masses inside the vortex, we used N2O measurements from the Odin satellite for the same time period. The derived ozone loss in the lower stratosphere between mid-December and mid-March varies between 1.1±0.1 ppmv on the 150 ppbv N2O isopleth and 1.7±0.1 ppmv on the 50 ppbv N2O isopleth.