Sample records for winged re-entry configurations

  1. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.


    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  2. Project Analysis of Aerodynamics Configuration of Re-entry Сapsule-shaped Body Based on Numerical Methods for Newtonian Flow Theory

    Directory of Open Access Journals (Sweden)

    V. E. Minenko


    Full Text Available The article objective is to review the basic design parameters of space capsule (SC to select a rational shape at the early stages of design.The choice is based on the design parameters such as a volume filling factor (volumetric efficiency of shape, aerodynamic coefficients, margin of stability, and centering characteristics.The aerodynamic coefficients are calculated by a numerical method based on approximate Newton's theory. A proposed engineering technique uses this theory to calculate aerodynamic characteristics of the capsule shapes. The gist of the technique is in using a developed programme to generate capsule shapes and provide numerical calculation of aerodynamic characteristics. The accuracy of the calculation, performed according to proposed technique, tends to the results obtained by analytical integral dependencies according to the Newtonian technique.When considering the stability of the capsule shapes the paper gives a diagram of the aerodynamic forces acting on the SC in the descent phase, and using the aerodynamically-shaped SC "Soyuz" as an example analyses a dangerous moment of flow at adverse angles of attack.After determining a design center-of-mass position to meet the stability requirements it is necessary at the early stage, before starting the SC layout work, to evaluate the complexity of bringing the center-of-mass to the specified point. In this regard have been considered such design parameters of the shape as a volume-centering and surface-centering coefficients.Next, using the above engineering technique are calculated aerodynamic characteristics of capsule shapes similar to the well-known SC "Soyuz", "Zarya 2" and the command module "Apollo".All calculated design parameters are summarized in the table. Currently, among the works cited in foreign publications concerning the contours of winged configuration of the type "Space Shuttle" some papers are close to the proposed technique.Application of the proposed

  3. Preventing re-entry to foster care. (United States)

    Carnochan, Sarah; Rizik-Baer, Daniel; Austin, Michael J


    Re-entry to foster care generally refers to circumstances in which children who have been discharged from foster care to be reunified with their family of origin, adopted, or provided kinship guardianship are returned to foster care. In the context of the federal performance measurement system, re-entry refers specifically to a return to foster care following an unsuccessful reunification. The federal Children and Family Services Review measures re-entry to foster care with a single indicator, called the permanency of reunification indicator, one of four indicators comprising the reunification composite measure. This review focuses on research related to the re-entry indicator, including the characteristics of children, caregivers and families, as well as case and child welfare services that are associated with a higher or lower risk of re-entry to foster care. Promising post-reunification services designed to prevent re-entry to foster care are described.

  4. Computation of Lifting Wing-Flap Configurations (United States)

    Cantwell, Brian; Kwak, Dochan


    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  5. 14 CFR 23.302 - Canard or tandem wing configurations. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.302 Canard or tandem wing...

  6. The X-37 Demonstrator Re-Entry (United States)


    Pictured is an artist's concept of the X-37 Demonstrator re-entry. After being launched from the cargo bay of a Shuttle as a secondary payload, the X-37 remains on-orbit up to 21 days performing a variety of experiments before re-entering the Earth's atmosphere and landing. These vehicles supported the Agency's goal of dramatically reducing the cost of access to space in attempt to define the future of space transportation. The X-37 program was discontinued in 2003.

  7. Automated Re-Entry System using FNPEG (United States)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.


    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  8. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry (United States)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.


    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  9. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration


    Sasaki, Daisuke; Nakahashi, Kazuhiro


    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  10. Structural design studies of a supersonic cruise arrow wing configuration (United States)

    Sobieszczanski, J.; Mccullers, L. A.; Ricketts, R. H.; Santoro, N. J.; Beskenis, S. D.; Kurtze, W. L.


    Structural member cross sections were sized with a system of integrated computer programs to satisfy strength and flutter design requirements for several variants of the arrow wing supersonic cruise vehicle. The resulting structural weights provide a measure of the structural efficiency of the planform geometry, structural layout, type of construction, and type of material including composites. The material distribution was determined for a baseline metallic structure and the results indicate that an approximate fatigue constraint has an important effect on the structural weight required for strength but, in all cases, additional material had to be added to satisfy flutter requirements with lighter mass engines with minimum fuel onboard. The use of composite materials on the baseline configuration was explored and indicated increased structural efficiency. In the strength sizing, the all-composite construction provided a lower weight design than the hybrid construction which contained composites only in the wing cover skins. Subsequent flutter analyses indicated a corresponding lower flutter speed.

  11. Simulation of the ATV Re-Entry Obsrvations (United States)

    Bastida Virgili, B.; Krag, H.; Lips, T.; De Pasquale, E.


    The first ATV was launched on 9th March 2008 and, after a successful mission, the last phase was a controlled destructive re-entry on 29th September 2008, shortly after 13:30 UTC, in which the remains of the ATV and its load fell into the South Pacific Ocean. In order to better understand the re-entry processes, an insitu optical observation campaign was launched to record and analyze the ATV controlled re-entry with several instruments on board of two airplanes and also from the ISS. This observation campaign was successful and triggered several different still-ongoing studies on the extraction and analysis of data to draw conclusions on the adequacy of the re-entry break-up and explosion models used for the safety analysis of the ATV re-entry. This paper addresses the validation process for ESA’s model for re-entry survivability and on-ground risk assessment for explosive re-entry events using the observation data. The underlying rationale is to improve the models for the benefit of planning and execution of future controlled re-entries and in risk calculation in case of uncontrolled ones. The re-entry trajectory of the ATV, the explosive event and the trajectories of the fragments are simulated with the existing ESA tools and the EVOLVE explosion model. Additional software has been developed to simulate airborne sensor field of view(FOV) crossings based on the aircraft trajectories, attitude profile, sensor mounts and FOVs. Sensor performance and object radiation are modeled in order to generate synthetic images for the different sensors in the ISS and the two airplanes. These synthetic images and synthetic videos are compared with the available reentry observations of the ATV. This paper will present the software and techniques to generate synthetic imagery. It will give results of the comparison between the simulated and the real trajectories and fragmentation and explain the subsequent validation process of the ESA re-entry tools and the potential

  12. Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose (United States)

    Yadav, Rajesh; Velidi, Gurunadh; Guven, Ugur


    Re-entry of a blunt nosed vehicle is one of the most intriguing problems in any space programme. Especially in light of various space tourism possibilities, there are many works concerning re-entry of commercial blunt nosed space vehicles. In this paper, a generic blunt body re-entry model represented by a hemisphere-cylinder, fitted axisymmetrically with an aerodisk aerospike at the nose is investigated numerically with commercially available control volume based axisymmetric flow solver. The scaled down re-entry model has a base diameter of 40 mm and an overall length of 100 mm. A 6 mm diameter aerospike fitted axisymmetrically at the nose has a hemispherical cap from which another aerospike of 4 mm diameter protrudes which again has a hemispherical cap. Two dimensional compressible, axisymmetric Navier Stokes Equations are solved for a turbulent hypersonic flow of a 5 species, chemically reacting air in thermal equilibrium with free stream conditions of Mach no., static pressure and temperature of 10.1, 16,066 Pa and 216.65 K, respectively. The results are compared with that of re-entry model without any aerospike. Among the cases investigated, the spiked blunt body having two aerospikes in series with lengths l1 and l2 equal to 30 and 20 respectively and overall length-to-diameter ratio of 1.5 showed a favourable reduction in the peak reattachment heat flux along with high reduction in aerodynamic drag and thus stands as a prospective case for blunt body nose configuration for hypersonic flight.

  13. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki


    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  14. Workforce re-entry for Japanese unemployed dental hygienists. (United States)

    Usui, Y; Miura, H


    The aim of this study was to define the profile of unemployed dental hygienists who could be enticed to re-enter the workforce and the factors that could facilitate their re-entry into the dental field in Japan. The questionnaire was mailed with a postage-paid return envelope to a sample of 3095 licensed dental hygienists. A 50.4% response rate (S = 1477) was observed. The rate of working dental hygienists was 60.3% (n = 891), and of unemployed dental hygienists was 39.7% (n = 586). Of the latter, 31.9% (n = 187) stated intentions of returning to the workplace. The unemployed dental hygienists seeking employment were more often married and had more children, compared with working dental hygienists currently. This group also had significantly fewer total service years. Moreover, only 11.96% of them belonged to the Japan Dental Hygienists' Association, and 41.3% of those attended training workshops. According to their response, they perceived their top three major barriers to re-entry as 'lack sufficient dental hygiene skill', 'child rearing' and 'poor working atmosphere'. 'Flexibility in the work schedule' and 'location' were the most important factors for re-entry from their perspective. There were not many dental hygienists hoping to return to the dental field. The findings suggested that strategies to encourage non-practicing dental hygienists to re-entry should be emphasized in the areas of a flexible working atmosphere, easy access to information on how to return to practice and guidance on how to maintain professionalism during inactivity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. RITD - Re-entry: Inflatable Technology Development in Russian Collaboration (United States)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.; Siili, T.


    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses on the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

  16. Performance Comparison of the Optimized Inverted Joined Wing Airplane Concept and Classical Configuration Airplanes

    Directory of Open Access Journals (Sweden)

    Sieradzki Adam


    Full Text Available The joined wing concept is an unconventional airplane configuration, known since the mid-twenties of the last century. It has several possible advantages, like reduction of the induced drag and weight due to the closed wing concept. The inverted joined wing variant is its rarely considered version, with the front wing being situated above the aft wing. The following paper presents a performance prediction of the recently optimized configuration of this airplane. Flight characteristics obtained numerically were compared with the performance of two classical configuration airplanes of similar category. Their computational fluid dynamics (CFD models were created basing on available documentation, photographs and some inverse engineering methods. The analysis included simulations performed for a scale of 3-meter wingspan inverted joined wing demonstrator and also for real-scale manned airplanes. Therefore, the results of CFD calculations allowed us to assess the competitiveness of the presented concept, as compared to the most technologically advanced airplanes designed and manufactured to date. At the end of the paper, the areas where the inverted joined wing is better than conventional airplane were predicted and new research possibilities were described.

  17. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness (United States)

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun


    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  18. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations (United States)

    Townsend, J. C.


    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  19. Effect of canard position on the longitudinal aerodynamic characteristics of a close-coupled canard-wing-body configuration (United States)

    Tu, Eugene L.


    The thin-layer Navier-Stokes equations are solved numerically to investigate the effects of canard vertical position on a close-coupled canard-wing-body configuration at a transonic Mach number of 0.90 and angles of attack ranging from -2 to 12 degrees. Canard-wing interactions are investigated for high-, mid- and low-canard positions. The computational results show favorable canard-wing interactions for the high- and mid-canard configurations. The unfavorable lift and drag characteristics for the low-canard configuration are examined by analyses of the low-canard flowfield structure.

  20. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design (United States)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter


    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  1. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration (United States)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino


    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  2. Re-Thinking Re-Entry: New Approaches to Supporting Students after Study Abroad (United States)

    Brubaker, Cate


    While participation in study abroad continues to increase, and both pre-departure and in-country support and interventions have become more robust, the re-entry experience after a program ends still typically takes a back seat to other priorities. Consequently, most students are left to navigate the re-entry transition on their own. This article…

  3. Space Flight and Re-Entry Trajectories : International Symposium

    CERN Document Server

    Libby, Paul A


    In this and a following issue (Vol. VIII, 1962, Fasc. 2-3) of "Astronautica Acta" there will appear the papers presented at the first international symposium sponsored by the International Academy of Astronautics of the International Astronautical Federation. The theme of the meeting was "Space Flight and Re-Entry Trajectories." It was held at Louveciennes outside of Paris on June 19-21, 1961. Sixteen papers by authors from nine countries were presented; attendees numbered from 80 to 100. The organizing committee for the symposium was as follows: Prof. PAUL A. LIBBY, Polytechnic Institute of Brooklyn, U.S.A., Chairman; Prof. LuiGI BROGLIO, University of Rome, Italy; Prof. B. FRAEIJS DE VEUBEKE, University of Liege, Belgium; Dr. D. G. KING-HELE, Royal Aircraft Establishment, Farnborough, Rants, United Kingdom; Prof. J. M. J. KooY, Royal Military School, Breda, Netherlands; Prof. JEAN KovALEVSKY, Bureau des Longitudes, Paris, France; Prof. RuDOLF PESEK, Academy of Sciences, Prague, Czechoslovakia. The detailed ...

  4. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models (United States)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.


    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  5. Feasability Analysis And Preliminary Design Of An Atmospheric Re-Entry CubeSat Demonstrator (United States)

    Bailet, Billes; Asma, Cem O.; Muylaert, Jean; Magin, Thierry


    The feasibility analysis of the Re-entry CubeSat demonstrator developed by the von Karman Institute is presented in this paper. The launch of the demonstrator has been scheduled for June 2014. It represents an ideal cost-efficient platform for re-entry flight test and validation of thermal protection system (TPS) materials. The CubeSat comprises a standard double-unit platform with sensors for atmospheric research and the functional unit for essential satellite operations. A third unit accommodating an ablative heat shield is added to protect the vehicle against the extreme aerothermal conditions for the re-entry. The preliminary design of the vehicle results in a payload of minimum 300 g collecting data all along the re-entry trajectory including the maximal heat flux conditions. Finally, the tools developed have been used to carry a first analysis of the range of possible applications and flight conditions for different re-entry scenarios.

  6. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems (United States)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.


    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  7. A Flight Study of a Power-Off Landing Technique Applicable to Re-Entry Vehicles (United States)

    Bray, Richard S.; Drinkwater, Fred J.; White, Maurice D.


    A power-off landing technique, applicable to aircraft of configurations presently being considered for manned re-entry vehicles, has been developed and flight tested at Ames Research Center. The flight tests used two configurations of an airplane for which the values of maximum lift-drag ratios were 4.0 and 2.8. Twenty-four idle-power approaches were made to an 8000-foot runway with touchdown point and airspeed accuracies of +/-600 feet and +/-10 knots, respectively. The landing pattern used was designed to provide an explicitly defined flight path for the pilot and, yet, to require no external guidance other than the pilot's view from the cockpit. The initial phase of the approach pattern is a constant high-speed descent from altitude aimed at a ground reference point short of the runway threshold. At a specified altitude and speed, a constant g pull-out is made to a shallow flight path along which the air-plane decelerates to the touchdown point. Repeatability and safety are inherent because of the reduced number of variables requiring pilot judgment, and because of the fact that a missed approach is evident at speeds and altitudes suitable for safe ejection. The accuracy and repeatability of the pattern are indicated by the measured results. The proposed pattern appears to be particularly suitable for configurations having unusual drag variations with speed in the lower speed regime, since the pilot is not required to control speed in the latter portions of the pattern.

  8. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle (United States)

    Ro, Kapseong


    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  9. DEBRISK, a Tool for Re-Entry Risk Analysis (United States)

    Omaly, P.; Spel, M.


    An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the


    Directory of Open Access Journals (Sweden)


    Full Text Available The problem of fuselage shape optimization of the wing-body configuration is considered in the following three formulations. In the first one, the angle of attack is fixed and equal to zero, the wing has a symmetric airfoil, and the fuse- lage is based on circular cross sections. In the second one, the fuselage cross sections are elliptical. In the third one, the angle of attack is varied, the lifting force coefficient is fixed, the wing is preliminary optimized, the fuselage is designed by the cross sections that consist of upper and lower half-ellipses with a possibility of a shift along vertical axis. The configu- ration volume, fuselage length, shape and position of the wing are fixed. The drag coefficient is the objective function. The optimization is carried out by the Indirect Optimization based on Self-Organization (IOSO technology. Aerodynamic coef- ficients are obtained from the solution of the RANS equations with SST turbulence model by the ANSYS CFX software on the structured multiblock meshes. The results obtained by the optimization are compared with the configuration that is de- signed by traditional means. The fuselage of this configuration has a cylindrical part in the area of the wing-fuselage con- nection and nose part of the von Karman’s ogive shape. The solution of the optimization problem in the first formulation reduces drag coefficient at zero angle of attack by approximately 3 %. The use of the fuselage with elliptical cross sections makes it possible to reduce drag coefficient at zero angle of attack by 9 %. The solution of the optimization problem in first two formulations reduces drag coefficient at the wide range of angles of attack. When the lifting coefficient is selected for the third problem formulation as constraint the drag reduction is about 7 %. Additional drag reduction of about 2,5 % is obtained by the use of the fuselage asymmetric relative to the horizontal plane. The optimal fuselage design has a

  11. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach (United States)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song


    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  12. Effects of wing leading-edge radius and Reynolds number on longitudinal aerodynamic characteristics of highly swept wing-body configurations at subsonic speeds (United States)

    Henderson, W. P.


    An investigation was conducted in the Langley low turbulence pressure tunnel to determine the effects of wing leading edge radius and Reynolds number on the longitudinal aerodynamic characteristics of a series of highly swept wing-body configurations. The tests were conducted at Mach numbers below 0.30, angles of attack up to 16 deg, and Reynolds numbers per meter from 6.57 million to 43.27 million. The wings under study in this investigation had leading edge sweep angles of 61.7 deg, 64.61 deg, and 67.01 deg in combination with trailing edge sweep angles of 0 deg and 40.6 deg. The leading edge radii of each wing planform could be varied from sharp to nearly round.

  13. Hypersonic Cruise and Re-Entry Radio Frequency Blackout Mitigation: Alleviating the Communications Blackout Problem (United States)

    Manning, Robert M.


    The work presented here will be a review of a NASA effort to provide a method to transmit and receive RF communications and telemetry through a re-entry plasma thus alleviating the classical RF blackout phenomenon.

  14. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  15. Use of a Re-entry Device in Left Subclavian Occlusion: Case Series. (United States)

    Thomas, Wiliam Rhodri; Chick, Christopher; Goyal, Nimit


    To describe the use of a re-entry catheter in the endovascular treatment of left subclavian stenosis. We present three patients where initial attempts at re-vascularisation using standard techniques were unsuccessful. An OUTBACK catheter was employed to facilitate re-entry in these patients. True lumen re-entry was achieved in all patients, leading to successful treatment of all stenoses. There was a lack of filling of the left vertebral artery post-angioplasty in one patient; this was not clinically significant. The case series presented is encouraging for the use of a re-entry catheter in the treatment of subclavian occlusion. In our limited experience this has proved to be a safe technique for use in patients who fail re-vascularisation by standard methods; a larger study is required to confirm this.

  16. Re-entry Flight Experiments Lessons Learned - The Atmospheric Reentry Demonstrator ARD

    National Research Council Canada - National Science Library

    Paulat, J. C; Boukhobza, P


    .... This paper provides with a summary of the ARD flight data and presents some lessons learned that can be avantageously used for the development of future re-entry vehicles with precise landing capabilities...

  17. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.


    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  18. Limitations of the Outback LTD re-entry device in femoropopliteal chronic total occlusions. (United States)

    Shin, Susanna H; Baril, Donald; Chaer, Rabih; Rhee, Robert; Makaroun, Michel; Marone, Luke


    Subintimal recanalization for the treatment of femoropopliteal chronic total occlusions (CTO) occasionally requires re-entry devices to access the true lumen distally, but limited information is available on factors predicting the success or failure of these devices. We evaluated the Outback LTD re-entry device (LuMend, Redwood City, Calif; acquired by Cordis Corp, Miami Lakes, Fla). A retrospective review of patients with femoropopliteal CTO from August 2006 to August 2009 was performed. Age, gender, occlusion length, site of re-entry, and the angle of the aortic bifurcation were recorded. Procedural angiograms were used to assign a calcification score (none, mild, moderate, severe) at the re-entry site. Univariate and multivariate logistic regression analyses were used to identify factors predicting failure of re-entry into the true lumen. Of 249 CTOs treated, the re-entry device was used 52 times (20.9%): 47 superficial femoral artery (SFA) occlusions and 5 combined SFA and popliteal artery occlusions (33 TransAtlantic InterSociety Consensus II type C and 18 type D lesions). Of 48 procedures with available angiograms for review, the target re-entry site was at the adductor canal in 30 (62.5%), the above-knee popliteal artery in 13 (27.1%), behind the knee joint in 4 (8.3%), and the mid-SFA in 2 (4.2%). Patients (54% men) were a mean age of 73.1 years. Re-entry was successful in 34 attempts (64.5%). Causes of failure included inability to re-enter the true lumen in 11 (61.1%), difficulty tracking the device over a wire in 3 (16.7%), acute angle of aortic bifurcation in 2 (11.1%), mechanical failure of the device in 1 (5.6%), and difficulty tracking the device through the lesion in 1 (5.6%). Moderate or severe calcification at the site of re-entry was the only significant predictor of failure (odds ratio, 6.3; 95% confidence interval, 1.45-24.48; P = .01). An aortic bifurcation angle ≥40° did trend toward predicting success (odds ratio, 0.23; 95% confidence

  19. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry (United States)

    Fries, Marc D.


    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  20. A theoretical analysis of anatomical and functional intestinal slow wave re-entry. (United States)

    Du, Peng; O'Grady, Gregory; Cheng, Leo K


    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration (United States)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.


    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  2. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart


    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  3. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.


    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  4. Application of the FADS system on the Re-entry Module (United States)

    Zhen, Huang


    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  5. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena (United States)


    PRE-X EXPERIMENTAL RE-ENTRY LIFTING BODY: DESIGN OF FLIGHT TEST EXPERIMENTS FOR CRITICAL AEROTHERMAL PHENOMENA Paolo Baiocco * * CNES...ACRONYMS ACS Attitude Control System AEDB Aero Dynamic Data Base AoA Angle of Attack ARD Atmospheric Re-entry Demonstrator ATD Aero Termo ...1 Baiocco, P. (2007) Pre-X Experimental Re-entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena. In Flight

  6. Facilitation of school re-entry and peer acceptance of children with cancer

    DEFF Research Database (Denmark)

    Helms, A. S.; Schmiegelow, K.; Brok, J.


    reviewed using the PRISMA model for reporting reviews. Statistical calculations for the meta-analyses were done using Review Manager 5.2. The metaanalyses showed significant effects of school re-entry programmes in terms of enhancing academic achievement in children with cancer (P = 0.008) and lowering......Increased survival rates from childhood cancer call for efforts to reintegrate children with cancer back into their academic and social environments. The aims of this study were to: (1) review and analyse the existing literature on school re-entry interventions for children with cancer; and (2...

  7. On the Use of Atmosphere Models in Re-Entry Predictions (United States)

    Klinkrad, H.


    The catalog of the Space Surveillance Network (SSN) of US Space Command (USSpaceCom) contains more than 7600 objects larger than 10 cm. On the average, one of these objects re-enters the earth atmosphere every day, and every second day there is a re-entry of a decommissioned spacecraft or upper stage (which together account for more than 40% of the catalog population). The vast majority of these re-entries is entailing an extremely low risk potential, since most of the structures are disintegrated and burnt up during an extended heat flux and g-load exposure under shallow entry angles. In some instances, however, a non negligible risk from ground impact or ground/atmosphere pollution may arise in case of very massive objects (e.g. Skylab with 75t and Salyut-7 with 40t), objects which were designed to survive re-entry (e.g. China-40 capsule), or spacecraft with hazardous payloads (e.g. Kosmos-954 and 1402 which were equipped with reactors containing 50kg of radioactive material). In such cases, ESOC performs re-entry predictions which are communicated to international points of contact as input to their emergency plans (if necessary). The prediction of uncontrolled re-entries is based on a propagation of the perturbed orbital motion of a spacecraft up to the point of disintegration (at about 80km altitude). The drag coefficient is determined from a least squares retro-fit over a history of observations of the semi-major axis. Apart from the attitude dynamics and associated cross-section variations, the major uncertainty in re-entry predictions is due to inadequate modeling of the atmosphere, and in particular of the air density. At standard operating altitudes of LEO satellites atmosphere models can be assumed accurate to within 10% to 15% rms in density for well known atmospheric parameters. Due to the lack of underlying data, density models become less reliable below 200km altitude where the critical phase of a re-entry begins. Moreover, in case of prediction

  8. Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag (United States)

    Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott


    Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.

  9. A successful retrograde re-entry at aorta using the Outback LTD catheter for a bilateral common iliac artery occlusion. (United States)

    Kim, Tae-Hoon; Ahn, Ji-Hun; Kim, Do-Hoi


    The Outback LTD re-entry catheter system has become a valuable tool for peripheral intervention and it has been widely used for variable peripheral chronic total occlusion (CTO). However, its use in the setting of the aorta was restricted because of concerns of bleeding risks resulting from re-entry puncture or ballooning. This report presents a case of successful re-entry using the Outback LTD Re-Entry Catheter (Cordis, Bridgewater, New Jersy) at the aorta in a patient with bilateral common iliac artery occlusion. Copyright © 2012 Wiley Periodicals, Inc.

  10. Overview of Low-Speed Aerodynamic Tests on a 5.75% Scale Blended-Wing-Body Twin Jet Configuration (United States)

    Vicroy, Dan D.; Dickey, Eric; Princen, Norman; Beyar, Michael D.


    The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.

  11. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing


    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  12. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development (United States)

    Vallejos, Javier A.; Estay, Rodrigo A.


    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  13. Optimization of Observation Strategy to Improve Re-entry Prediction of Objects in HEO (United States)

    Rasotto, M.; Di Mauro, G.; Massari, M.; Di Lizia, P.; Armellin, R.; Funke, Q.; Flohrer, T.


    During the last decade the number of space debris moving on high elliptical orbit (HEO) has grown fast. Many of these resident space objects (RSO) consist of medium and large spent upper stages of launch vehicles, whose atmosphere re-entry might violate on-ground casualty risk constraints. Increasing the accuracy of re-entry predictions for this class of RSO is therefore a key issue to limit the hazards on the Earth assets. Traditional computational methods are mainly based on the exploitation of Two Line Elements (TLEs), provided by the United States Strategic Command (USSTRATCOM) and currently the only public data source available for these kind of analyses. TLE data however, are characterized by low accuracies, and in general come without any uncertainty information, thus limiting the achievable precision of the re-entry estimates. Better results on the other hand, can be obtained through the exploitation of observational data provided by one or more Earth sensors. Despite the benefits, this approach introduces a whole new set of complexities, mainly related with the design of proper observation campaigns. This paper presents a method based on evolutionary algorithms, for the optimization of observation strategies. The effectiveness of the proposed approach is demonstrated through dedicated examples, in which re-entry predictions, attainable with existing and ideal sensor architectures, are compared with corresponding results derived from TLE data.

  14. Socio-Economic status of parents as a correlate of re-entry of girls ...

    African Journals Online (AJOL)

    economic status (SES) and re-entry of girls into school in Edo State, Nigeria. One research question and one hypothesis were formulated for the study. Two research instruments, the “Socio-Economic Status of Parents” and the “Reentry into ...

  15. ENTRYSAT: A 3U Cubesat to Study the Re-Entry Atmospheric Environment (United States)

    Garcia, R. F.; Chaix, J.; Mimoun, D.; EntrySat student Team


    The EntrySat is a 3U CubeSat designed to study the uncontrolled atmospheric re-entry. The project, developed by ISAE in collaboration with ONERA, is funded by CNES and is intended to be launched in January 2016, in the context of the QB50 network. The scientific goal is to relate the kinematics of the satellite with the aerothermodynamic environment during re-entry. In particular, data will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. According to these requirements, the satellite will measure the temperature, pressure, heat flux, and drag force during re-entry, as well as the trajectory and attitude of the satellite. One of the major technological challenges is the retrieval of data during the re-entry phase, which will be based on the Iridium satellite network. The system design is based on the use of commercial COTS components, and is mostly developed by students from ISAE. As such, the EntrySat has an important educational value in the formation of young engineers.

  16. Flow Control and High-Lift Performance for Flying-Wing Unmanned Combat Air Vehicle Configurations by inserting slots

    Directory of Open Access Journals (Sweden)

    U Ali


    Full Text Available The objectives of the present study on Unmanned Combat Air Vehicles (UCAVs are two-fold: first to control the flow by inserting leading-edge and cross-flow slots and analysing the viscous flow development over the outer panels of a flying-wing configuration to maximise the performance of the elevons control surfaces; second to predict high-lift performance particularly the maximum-lift characteristics. This is demonstrated using a variety of inviscid Vortex Lattice Method (VLM and Euler, and viscous CFD Reynolds Averaged Navier-Stokes (RANS methods. The computational results are validated against experiment measured in a wind tunnel. Two flying-wing planforms are considered based around a generic 40˚ edge-aligned configuration. The VLM predicts a linear variation of lift and pitching moment with incidence angle, and substantially under-predicts the induced drag. Results obtained from RANS and Euler agree well with experiment.

  17. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Chu Haiyan


    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  18. Wind Tunnel Aero-Heating and Material Destruction Tests for Improved Debris Re-Entry Analysis (United States)

    Koppenwallner, G.; Lips, T.; Alwes, D.


    During the S/C re-entry destruction fragments of irregular geometry are released. One finds spheres, boxes and cylinders, which may be hollow and which are flying in tumbling motion. The experimental database on such bodies is limited. Therefore heat transfer test have been conducted in the hypersonic vacuum wind tunnel V2G of DLR Göttingen. With a special model support also rotating models could be tested.Another study objective was the thermal destruction of selected materials and CFRP components under simulated re-entry heat loads. In use are solid CFRP structures, honeycombs with CFRP facesheets, or thin walled titanium tanks with external CFRP reinforcements. The destruction of multilayer structures may be completely different to solid thick CFRP. Therefore samples of 12 CFRP and CFRP honeycombs have been tested in the LBK 2 arc jet facility of DLR.

  19. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration (United States)

    Gloss, B. B.


    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  20. Canal switch and re-entry phenomenon in benign paroxysmal positional vertigo: difference between immediate and delayed occurrence. (United States)

    Dispenza, F; DE Stefano, A; Costantino, C; Rando, D; Giglione, M; Stagno, R; Bennici, E


    This prospective study was designed to evaluate the differences between immediate and delayed canal re-entry of otoliths after therapeutic manoeuvres in patients with benign paroxysmal positional vertigo (BPPV). A total of 196 patients with BPPV were visited and 127 matched our inclusion criteria. The mean age was 54.74 years. The horizontal semicircular canal (HSC) was involved in 30 cases and the posterior semicircular canal (PSC) in 97 patients. Patients with hearing loss in the ear affected by BPPV have a more recurrent form, compared to those with normal hearing. An immediate canal re-entry was recorded in 3 patients with HSC BPPV, all with geotropic nystagmus. In 7 patients with PSC BPPV, the immediate canal re-entry was detected and the delayed form was noted in 5 patients. The patients with the delayed canal re-entry underwent more than 2 previous manoeuvres. The canal re-entry was not related to the manoeuvre performed. The timing of the Dix-Hallpike test to verify the resolution of the BPPV had a significant role in immediate canal re-entry. A recurrence in the follow-up at least one month after treatment was recorded in 20 patients and was more frequent in patients that had canal re-entry. The canal re-entry or canal switch is a clinical entity that should be kept in mind of the neurotologist when approaching BPPV patients. It is important to distinguish it from recurrence when delayed and from manoeuvre failure when immediate. The timing of manoeuvre performing, in particular the final verification test after therapeutic sessions, is important to prevent the immediate reflux of particles into canals.

  1. Pressure measurements on a forward-swept wing-canard configuration

    CSIR Research Space (South Africa)

    Lombardi, G


    Full Text Available In a previous analysis of the effect of a fore sweep in the subsonic and transonic regimes it was found that the flow on a forward-swept wing separates first in the root region, suggesting that the inclusion of an aerodynamic device such as a...

  2. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle (United States)

    Helms, V. T., III; Bradley, P. F.


    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  3. Re-entry devices in the treatment of peripheral chronic occlusions. (United States)

    Smith, Marcus; Pappy, Reji; Hennebry, Thomas A


    Chronic occlusions are present in up to 40% of patients who undergo treatment for symptomatic peripheral arterial disease. The primary difficulty encountered during the treatment of chronic occlusions is inability to re-enter the true lumen after subintimal crossing of the occlusion. Two devices have been designed to mitigate this limitation via controlled re-entry. Herein, we report our experience with the Outback LTD catheter and the Pioneer Plus Catheter PPlus 120 in re-entering the true arterial lumen during percutaneous intentional extraluminal revascularization for peripheral chronic occlusions involving the superficial femoral artery. In reviewing our peripheral interventions performed from February 2006 through February 2009, we evaluated angiograms, patients' characteristics, presentations, types of lesions, procedural successes, complications, and symptom-free intervals. The total study population consisted of 23 patients. The Outback catheter was used in 15 patients and the Pioneer catheter in 8 patients.The procedure was successful in all 8 Pioneer cases (100%) and in 13 of the 15 Outback cases (87%). All 8 (100%) of the patients in the Pioneer group and 12 of the 14 patients in the Outback group (86%) remained asymptomatic at an average of 12 months. Overall, there were no procedural complications, amputations, or deaths. This single-center experience demonstrates that the Outback and Pioneer re-entry catheters are safe and effective in managing peripheral chronic occlusions, with an average symptom-free interval of 12 months. This management strategy proves to be reasonable when standard techniques fail to achieve true lumen re-entry.

  4. Application of 1D Array FBG Configuration for Impact Localization on Composite Wing under Simulated Noise (United States)


    health monitoring (SHM) [5] of aircraft structure can be done so that low velocity impacts, such as due to tool drop, runway debris, bird strike etc...Experimental Set-Up Jabiru UL-D’s, shown in Fig. 2, (Jabiru Aircraft Pty Ltd, Australia ) composite wing was used for the impact localization test under...industry & Energy (MI, Korea) (10047457, Development of aircraft health monitoring integrated measurement system for composite), and by Leading Foreign

  5. Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor (United States)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; hide


    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness

  6. Effects of Canard Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration (United States)

    Spencer, Bernard, Jr.


    An investigation has been conducted at low subsonic speeds to study the effects of canard planform and wing-leading-edge modification on the longitudinal aerodynamic characteristics of a general research canard airplane configuration. The basic wing of the model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the wing included addition of full-span and partial-span leading-edge chord-extensions. Two canard planforms were employed in the study; one was a 60 deg sweptback delta planform and the other was a trapezoidal planform similar to that of the basic wing. Modifications to these canards included addition of a full-span leading-edge chord-extension to the trapezoidal planform and a fence to the delta planform. For the basic-wing-trapezoidal-canard configuration, rather abrupt increases in stability occurred at about 12 deg angle of attack. A slight pitch-up tendency occurred for the delta-canard configuration at approximately 8 deg angle of attack. A comparison of the longitudinal control effectiveness for the basic-wing-trapezoidal-canard combination and for the basic-wing-delta-canard combination indicates higher values of control effectiveness at law angles of attack for the trapezoidal canard. The control effectiveness for the delta-canard configuration, however, is seen to hold up for higher canard deflections and to higher angles of attack. Use of a full-span chord-extension deflected approximately 30 deg on the trapezoidal canard greatly improved the control characteristics of this configuration and enabled a sizeable increase in trim lift to be realized.

  7. Three-Dimensional Unsteady Flow Elicited by Finite Wings and Complex Configurations. (United States)


    flow. Anemometric measurements added quantitative magnitudes and spatial verification to the visualized flow structures. The experiments were designed... anemometric measurements were taken at each span location and chordwise at 0.00c(leading edge), 0.17c, 0.33c, 0.50c, 0.67c, 0.83c and 1.00c. " An X...The hot wire recorded the absolute velocity of the flow field during the cyclic motion history of the three wings. The anemometric measurements were

  8. Revascularization of an occluded brachiocephalic vein using Outback-LTD re-entry catheter. (United States)

    Anil, Gopinathan; Taneja, Manish


    A 78-year-old man with end-stage renal disease and a right brachial-cephalic upper arm direct hemodialysis access presented with symptomatic central venous occlusion. The right brachiocephalic vein occlusion in this patient was refractory to wire traversal. Sharp recanalization of the central venous occlusion was done with an Outback LTD re-entry catheter (Cordis Corporation, a Johnson & Johnson Company, Miami, Fla). The track was balloon dilated and stented. When the conventional management options fail, this technique may be used to salvage a precious dialysis access and to relieve the patient from symptoms of central venous hypertension. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  9. Characteristics of the GOCE Orbit in the Re-Entry Phase (United States)

    Hamm, Johann; Lengsfeld, Alexander; Kekce, Ugur; Pape, Werner; Shabanloui, Akbar; Naeimi, Majid; Flury, Jakob


    The GOCE de-orbiting phase was started as the Ion thruster was switched off on 21st October 2013. Beginning with this, the transition from the Drag-Free and Attitude Control System (DFACS) to Fine Pointing Mode (FPM) started, so the Gradiometer was no longer in the attitude control loop. On 11th of November 2013, the de-orbiting phase ended with the re-entry of GOCE in the Earth’s atmosphere, near to the Falkland Islands. As a part of a research project, we analyzed the 20 days of the GOCE data during de-orbiting phase. We investigate: Electrostatic Gravity Gradiometer (EGG), DFACS Accelerometer data, Magneto-Torques Currents (MTR) data, Precise Science Orbits (PSO) data, Satellite to Satellite Tracking (SST) data and Atmospheric Models (MSISE-90, NRMSISE-00).

  10. A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration (United States)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark


    The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.

  11. Psychophysiological assessment and correction of spatial disorientation during simulated Orion spacecraft re-entry. (United States)

    Cowings, Patricia S; Toscano, William B; Reschke, Millard F; Tsehay, Addis


    The National Aeronautics and Space Administration (NASA) has identified a potential risk of spatial disorientation, motion sickness, and degraded performance to astronauts during re-entry and landing of the proposed Orion crew vehicle. The purpose of this study was to determine if a physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these adverse effects. Fourteen men and six women were assigned to two groups (AFTE, no-treatment Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures in the rotating chair (Orion tests) simulating angular accelerations of the crew vehicle during re-entry. AFTE subjects received 2 h of training before Orion tests 2, 3, and 4. Motion sickness symptoms, task performance, and physiological measures were recorded on all subjects. Results showed that the AFTE group had significantly lower symptom scores when compared to Controls on test 2 (p = .05), test 3 (p = .03), and test 4 (p = .02). Although there were no significant group differences on task performance, trends showed that AFTE subjects were less impaired than Controls. Heart rate change scores (20 rpm minus baseline) of AFTE subjects indicated significantly less reactivity on Test 4 compared to Test 1 (10.09 versus 16.59, p = .02), while Controls did not change significantly across tests. Results of this study indicate that AFTE may be an effective countermeasure for mitigating spatial disorientation and motion sickness in astronauts. Copyright © 2018. Published by Elsevier B.V.

  12. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention (United States)

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.


    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  13. Vocational Interest as a Correlate of Re-Entry of Girls into School in Edo State, Nigeria: Implications for Counselling (United States)

    Alika, Ijeoma Henrietta; Egbochuku, Elizabeth Omotunde


    The study investigated the relationship between vocational interest socio-economic status and re-entry of girls into school in Edo State. The research design adopted was correlational because it sought to establish the relationship between the independent variable and the dependent variable. A sample size of 306 girls who re-enrolled in institutes…

  14. Does Offender Gambling on the inside Continue on the outside? Insights from Correctional Professionals on Gambling and Re-Entry (United States)

    Williams, D. J.; Walker, Gordon J.


    This study brings to light a neglected topic of particular importance--offender gambling issues within the context of re-entry into the community. Fifteen correctional professionals from Nevada (high gambling availability) and Utah (no legalized gambling) participated in semi-structured interviews to provide insights into how gambling may impact…

  15. A new unified approach for analyzing wing-body-tail configurations with control surfaces (United States)

    Tseng, K.; Morino, L.


    A general theory for steady and unsteady, subsonic and supersonic potential aerodynamics for complex configurations is presented. Special attention is given to the theoretical formulation and the corresponding numerical implementation for coplanar interfering surfaces. Applying the Green's function method to the equation of the velocity potential and discretizing the spatial problem by using the finite-element technique, yields a set of differential-delay equations in time relating the potential to the normal wash. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t less than or equal to 0 (steady state) and of small perturbations around the steady state for time t greater than 0; the solution is obtained in the Laplace domain. From the potential, the aerodynamic pressure and the generalized forces are evaluated. The program SOUSSA (Steady, Oscillatory and Unsteady Subsonic and Supersonic Aerodynamics) is briefly described. Numerical results obtained with SOUSSA are presented.

  16. Low-speed wind-tunnel investigation of a large-scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper-surface blowing (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.


    The Langley full scale tunnel was used to investigate the low speed stability and control of an advanced arrow wing supersonic transport with engines mounted above the wing for upper-surface blowing. Tests were made over an angle of attack range of -10 to 32 deg, slideslip angles of + or -5 deg and a Reynolds number ranging from 3.53 million to 7.33 million (referenced to mean aerodynamic chord of the wing). Configuration variables included trailing-edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing-edge BLC for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  17. Subintimal angioplasty with the aid of a re-entry device for TASC C and D lesions of the SFA. (United States)

    Setacci, C; Chisci, E; de Donato, G; Setacci, F; Iacoponi, F; Galzerano, G


    The aim of this prospective study was to assess the clinical effectiveness and related midterm patency of subintimal angioplasty (SAP) in patients suffering from critical limb ischaemia (CLI) in a single tertiary care university centre. The secondary aim was to evaluate the safety and clinical effectiveness of using a re-entry device when re-canalisation by SAP was unsuccessful. From January 2005 to December 2007, consecutive patients suffering from CLI (Rutherford clinical categories: 4-6) were treated with SAP. All patients included in the study had occluded SFA (TASC C and D) and underwent clinical and ultrasound follow-up examinations at day 30 and at 3, 6, 9 and 12 months, and then yearly. A re-entry device (Outback, Cordis Corporation, Miami Lakes, Florida, USA in all cases) was only used when re-canalisation by simple SAP was unsuccessful, and stenting was used when residual stenosis was >30% or there was a flow-limiting dissection. Factors that could modify the outcome were analysed. In this study, 145 patients were treated, with a technical success rate of 83.5% (121 of 145) for simple SAP. Stenting was performed in 43% (n=62) of successful SAP procedures. No death occurred in the perioperative period, while the 30-day mortality was 4.8% (7 of 145). The re-entry device (Outback) was used in 24 cases (16.5%). The technical success of the re-entry device was 79% (19 of 24), with a 90% success rate of stent placement at the site of re-entry. Complications occurred in 6.2% of all procedures (n=9) (three arterial perforations (2.1%), three distal embolisations (2.1%), two femoral artery pseudo-aneurysms (1.4%) and one arterio-venous fistula (0.7%)). Factors capable of independently affecting the patency were renal insufficiency (p=0.03), current smoking (p=0.01) and diabetes (p=0.04). The primary patency at 1 and 3 years was 70% and 34% and the secondary patency at 1 and 3 years was 77% and 43%, respectively. At the same time intervals, the limb-salvage rate

  18. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles (United States)

    Riedell, James A.; Easler, Timothy E.


    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  19. An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints (United States)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)


    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  20. Romance, recovery & community re-entry for criminal justice involved women: Conceptualizing and measuring intimate relationship factors and power. (United States)

    Walt, Lisa C; Hunter, Bronwyn; Salina, Doreen; Jason, Leonard

    Researchers have suggested that interpersonal relationships, particularly romantic relationships, may influence women's attempts at substance abuse recovery and community re-entry after criminal justice system involvement. The present paper evaluates relational and power theories to conceptualize the influence of romantic partner and romantic relationship qualities on pathways in and out of substance abuse and crime. The paper then combines these conceptualizations with a complementary empirical analysis to describe an ongoing research project that longitudinally investigates these relational and power driven factors on women's substance abuse recovery and community re-entry success among former substance abusing, recently criminally involved women. This paper is designed to encourage the integration of theory and empirical analysis by detailing how each of these concepts are operationalized and measured. Future research and clinical implications are also discussed.

  1. The outback catheter: a new device for true lumen re-entry after dissection during recanalization of arterial occlusions. (United States)

    Hausegger, Klaus A; Georgieva, Borjana; Portugaller, Horst; Tauss, Josef; Stark, Gerhard


    To report the initial experience with a new catheter system (The Outback catheter) designed to allow fluoroscopically controlled re-entry of the true arterial lumen after subintimal guidewire passage during recanalization procedures of arterial occlusions. The catheter was used in 10 patients with intermittent claudication caused by chronic segmental occlusions of the superficial femoral or popliteal arteries. In all patients, conventional guidewire recanalization had failed. In 8 patients, successful true lumen re-entry was achieved with the Outback catheter. Percutaneous transluminal angioplasty was successfully performed in these patients without complications. Two technical failures occurred in heavily calcified arteries. The Outback catheter was safe and effective when used in complicated recanalization procedures in the superficial femoral and popliteal artery and the tibial trunk.

  2. First-Order Simulation of Strewn Debris Fields Accompanying Exoatmospheric Re-entry Vehicle Fragmentation by Hypervelocity Impact (United States)


    available information from satellite on- orbit and laboratory collisions. Atmospheric fragment re-entry is modelled using an exponentially dense...interceptions se caracterisent par des etendues de debris mesurant des centaines de kilometres. Si I’ on suppose une distribution uniforme des fragments, on...tests and on- orbit collisions. Much of this work is necessarily speculative: the dynamics of hypervelocity collisions and material behaviour under

  3. Foster care re-entry: Exploring the role of foster care characteristics, in-home child welfare services and cross-sector services☆ (United States)

    Lee, Sangmoo; Jonson-Reid, Melissa; Drake, Brett


    This study seeks to advance our understanding of how modifiable and non-modifiable factors may impact the likelihood of re-entry into foster care. Children who entered foster care for the first time following at least one report of maltreatment and were then reunified were followed from exit to re-entry, age 18 or the end of the study period using longitudinal administrative data. Risk of re-entry was explored according to a range of modifiable and non-modifiable case and service characteristics. Children removed from homes with parents who had multiple risk factors (e.g., no high school diploma, mental health diagnosis, criminal record, or teen parents) or were receiving AFDC prior to entry were more likely to re-enter. The receipt of in-home child welfare services during or after foster care was associated with reduced risk of re-entry. Having the longest placement with a relative was associated with decreased risk of re-entry. In conclusion, both modifiable and non-modifiable factors are associated with re-entry into foster care. Among modifiable factors, services appear to have a particularly strong relationship to re-entry. Our data also suggest that in-home child welfare services provided during and after foster care may be associated with improved long-term permanency after return home. Given the continued import of caregiver risk factors even among reunified families, services provided to support reunification should include attention to caregiver needs outside parenting. PMID:23729947

  4. Potential Dermal Exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Laura M.; Querejeta, Giselle A.; Flores, Andrea P.; Hughes, Enrique A.; Zalts, Anita [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Montserrat, Javier M., E-mail: [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular (CONICET), Vuelta de Obligado 2490, 2o piso, Buenos Aires (Argentina)


    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38 {+-} 17) mL h{sup -1} with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  5. A case study of non-traditional students re-entry into college physics and engineering (United States)

    Langton, Stewart Gordon

    Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access

  6. Factors associated with a second deferral among donors eligible for re-entry after a false-positive screening test for syphilis, HCV, HBV and HIV. (United States)

    Grégoire, Y; Germain, M; Delage, G


    Since 25 May 2010, all donors at our blood centre who tested false-positive for HIV, HBV, HCV or syphilis are eligible for re-entry after further testing. Donors who have a second false-positive screening test, either during qualification for or after re-entry, are deferred for life. This study reports on factors associated with the occurrence of such deferrals. Rates of second false-positive results were compared by year of deferral, transmissible disease marker, gender, age, donor status (new or repeat) and testing platform (same or different) both at qualification for re-entry and afterwards. Chi-square tests were used to compare proportions. Cox regression was used for multivariate analyses. Participation rates in the re-entry programme were 42·1%: 25·6% failed to qualify for re-entry [different platform: 2·7%; same platform: 42·9% (P entry, rates of deferral for second false-positive results were 8·4% after 3 years [different platform: 1·8%; same platform: 21·4% (P entry, was lower for donors deferred on a different platform; this risk was higher for HIV, HCV and syphilis than for HBV and for new donors if tested on the same platform. Re-entry is more often successful when donors are tested on a testing platform different from the one on which they obtained their first false-positive result. © 2018 International Society of Blood Transfusion.

  7. Long-term outcomes after re-entry device use for recanalization of common iliac artery chronic total occlusions. (United States)

    Kokkinidis, Damianos G; Alvandi, Bejan; Cotter, Ryan; Hossain, Prio; Foley, T Raymond; Singh, Gagan D; Waldo, Stephen W; Laird, John R; Armstrong, Ehrin J


    To examine the impact of re-entry device (RED) use on 1- and 5-year outcomes after endovascular treatment of common iliac artery (CIA) chronic total Occlusions (CTOs). There are not enough data regarding the long-term safety and efficacy of RED. We performed a two-center retrospective study of 115 patients (140 lesions) undergoing CIA CTO endovascular intervention between 2006 and 2016. Baseline characteristics and long-term outcomes were described. A Cox proportional hazard model was developed to determine if REDs were associated with target lesion revascularization (TLR) or major adverse limb events (MALE) after 1 and 5 years. Among 140 lesions, 43 (31%) required use of a RED. The mean age was 63.9 years and the majority (n = 80) of patients were male. An antegrade crossing approach and treatment of restenotic lesions were less common in the RED group (10% vs. 29%, P < .05 and 0% vs. 21%, P < .05, respectively). There were no significant differences in Rutherford class, pre-procedure ABI, or patient presentation. The procedural complication rates were similar between the two groups. The 1- and 5-year TLR rates for lesions treated with re-entry device vs. standard approaches were 11% vs. 9%; P = 0.8 and 29% vs. 29%; P = 0.9 respectively. The 1 and 5-year MALE rates for lesions treated with re-entry device were 5% vs. 6%; P = 0.8 and 11% vs. 11%; P = 0.9 respectively. This retrospective analysis found that recanalization of CIA occlusions using a RED is safe and is associated with long-term clinical outcomes similar to that of standard crossing techniques. © 2018 Wiley Periodicals, Inc.

  8. Indirect pulp treatment without re-entry in a permanent tooth: 36 months of follow-up


    SIMONE, Giovanna Izola; STEINER-OLIVEIRA, Carolina; BRAGA, Mariana Minatel; IMPARATO, José Carlos Pettorossi


    An alternative approach in the management of deep caries lesions is the indirect pulp treatment, without re-entry in the cavity. It has been shown that the complete removal of the carious dentin became unnecessary after the total tooth sealing, because the remaining microorganisms of the affected dentin would stop proliferating and/or die. This case report describes the management of a deep caries lesion of an 11-year-old girl with great coronary destruction in the left mandibular permanent f...

  9. Low-cost development of the Algyoefield in Hungary by means of horizontal re-entry boreholes; Die kostenguenstige Entwicklung des Algyoe-West-Feldes in Ungarn durch horizontale Re-Entry-Bohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Kinzel, H. [Weatherford Oil Tool GmbH, Langenhagen (Germany); Osz, A. [Magyar Olaj (MOL), Budapest (Hungary); Kerk, T. [Becfield Drilling Services, Edemissen-Berkhoepen (Germany)


    Planning and implementation of a typical re-entry borehole in southern Hungary are described. The cost is about half that of a new borehole, and the available infrastructure can be used. The production index of a typical Algyoehorizontal borehole is higher by a factor of 12 than for a vertical borehole in the same field. (orig.) [Deutsch] Anhand einer Beispielbohrung (Algyoe488) wird die Planung und Durchfuehrung einer typischen Re-Entry Bohrung in Suedungarn beschrieben. Durch die weitgehende Verwendung von standardisierten Komponenten und Verfahren sowie durch die enge Zusammenarbeit zweier deutscher Service Unternehmen mit dem Auftraggeber wurde bei insgesamt 35 Horizontalbohrungen in Ungarn der Effekt der Lernkurve zur optimierten Erstellung der Bohrung und damit zur Kostensenkung effektiv eingesetzt. Die so aufgearbeiteten Bohrungen werden im Vergleich zu einer neuen Bohrung fuer etwa die Haelfte der Kosten erstellt. Die vorhandene Infrastruktur des Feldes kann weiter verwendet werden. Der Produktionsindex einer typischen AlgyoeHorizontalbohrung liegt um den Faktor 12 hoeher als eine Vertikalbohrung im gleichen Feld. (orig.)

  10. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration. (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M


    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie


    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  12. Recanalization of chronic occlusions of the superficial femoral artery using the Outback re-entry catheter: a single centre experience. (United States)

    Beschorner, Ulrich; Sixt, Sebastian; Schwarzwälder, Uwe; Rastan, Aljoscha; Mayer, Christian; Noory, Elias; Macharzina, Roland; Buergelin, Karlheinz; Bonvini, Robert; Zeller, Thomas


    To report our experience with a catheter system (The Outback catheter) designed to allow fluoroscopically controlled re-entry after subintimal guide wire passage during recanalization of chronically occluded femoro-popliteal arteries. Between March 2007 and August 2008, 65 legs in 61 patients (60% male, mean age 73 (49-98 years) with chronic occlusion of the SFA and proximal popliteal artery were treated. Clinical presentation was severe intermittent claudication (Rutherford category 3, 59%), rest pain (Rutherford category 4, 16%), and minor ulcerations (Rutherford category 5, 25%). In all cases, the true lumen could not be entered by using standard antegrade catheter and guide wire techniques. Median lesion length was 200 +/- 102 mm. Recanalization of the arterial occlusion was successful in 57 of 65 treated lesions (88%). One patient died of myocardial infarction after delayed femoral bleeding possibly due to extensive recanalization attempts. There were no further procedure-related complications. Use of the Outback re-entry catheter system is a valuable option for interventional therapy of chronically occluded femoro-popliteal arteries following failed standard antegrade recanalization attempt. Copyright 2009 Wiley-Liss, Inc.

  13. Evaluation of the Positive Re-Entry in Corrections Program: A Positive Psychology Intervention With Prison Inmates. (United States)

    Huynh, Kim H; Hall, Brittany; Hurst, Mark A; Bikos, Lynette H


    Two groups of male inmates (n = 31, n = 31) participated in the Positive Re-Entry in Corrections Program (PRCP). This positive psychology intervention focused on teaching offenders skills that facilitate re-entry into the community. Offenders participated in weekly lectures, discussions, and homework assignments focused on positive psychology principles. The two groups differed in duration of treatment (8 weeks and 12 weeks). Participants completed pre- and post-intervention measures of gratitude, hope, and life satisfaction. Using a 2 × 2 mixed design ANOVA, we hypothesized that the intervention (with two between-subjects levels of 8 and 12 weeks) and duration (with two repeated measures levels of pre and post) of treatment would moderate pre- to post-intervention change. Results indicated significant differences on pre- and post-intervention scores for both groups of offenders on all measures. The analysis did not yield statistically significant differences between groups, demonstrating no additive benefits from the inclusion of four additional sessions, thus saving time and money for correctional programming and funding. This research supports the use of positive psychology in prison interventions. © The Author(s) 2014.

  14. Targeted True Lumen Re-Entry With the Outback Catheter: Accuracy, Success, and Complications in 100 Peripheral Chronic Total Occlusions and Systematic Review of the Literature. (United States)

    Kitrou, Panagiotis; Parthipun, Aneeta; Diamantopoulos, Athanasios; Paraskevopoulos, Ioannis; Karunanithy, Narayan; Katsanos, Konstantinos


    To report a single-center experience with the Outback re-entry device for targeted distal true lumen re-entry during subintimal recanalization of chronic total occlusions (CTOs) and compare the results with a systematic review of the literature. Between February 2011 and July 2013, 104 Outback devices were employed in 91 patients (mean age 64±9 years; 57 men) for subintimal recanalization of 100 vessels with CTOs after initial failure of spontaneous reentry. Fifty-two cases involved a retrograde approach to aortoiliac occlusions and 48 were re-entry attempts in infrainguinal CTOs. Outcome measures included complications and technical success, defined as successful targeted re-entry at the preplanned site of the distal true lumen. To evaluate device accuracy, the re-entry distance (between the point of true vessel reconstitution and the eventual re-entry point) was measured. Outback success was 93% (93/100); only 7 cases failed owing to heavy calcification (5/52 aortoiliac vs 2/48 infrainguinal, p=0.44). Re-entry was highly accurate, with a re-entry distance of ~1 cm in both subgroups (1.2±0.1 cm in aortoiliac vs 1.3±0.1 cm in infrainguinal, p=0.40). There were no major and 17 minor complications (9/52 aortoiliac vs 8/48 infrainguinal, p=0.93). Results are in line with the systematic review that identified 11 studies (only 1 randomized trial) involving mostly the femoropopliteal segment (119 aortoiliac and 464 infrainguinal segments). The pooled Outback success rate was 90% (95% confidence interval 85% to 94%) and the pooled complication rate was 4.3% (95% confidence interval 1.6% to 8.3%). The Outback device is safe and has a very high rate of achieving targeted true lumen re-entry, which minimizes the sacrifice of healthy vessel in the aortoiliac and infrainguinal arteries. © The Author(s) 2015.

  15. Advanced Technology and Mitigation (ATDM) SPARC Re-Entry Code Fiscal Year 2017 Progress and Accomplishments for ECP.

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howard, Micah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freno, Brian Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bova, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional development and use of the code is being supported by the Department of Defense for conventional weapons programs.

  16. Static Stability and Control of Canard Configurations at Mach Numbers from 0.70 to 2.22 - Triangular Wing and Canard with Twin Vertical Tails (United States)

    Peterson, Victor L.


    The static aerodynamic characteristics of a canard airplane configuration having twin vertical stabilizing surfaces are presented. The model consisted of a wing and canard both of triangular plan form and aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and two swept and tapered wing-mounted vertical tails of aspect ratio 1.35. Data are presented for Mach numbers from 0.70 to 2.22 and for angles of attack from -6 to +18 deg. at 0 and 5 deg. sideslip. Tests were made with the canard off and with the canard on. Nominal canard deflection angles ranged from 0 to 10 deg. The Reynolds number was 3.68 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data obtained in this investigation are compared with previously published results for the same model having a single vertical tail instead of twin vertical tails. Without the canard, the directional stability at supersonic Mach numbers and high angles of attack was improved slightly by replacing the single tail with twin tails. However, at a Mach number of 0.70, the directional stability of the twin-tail model deteriorated rapidly with increasing angle of attack above 10 deg. and fell considerably below the level for the single-tail model. At subsonic speeds the directional stability of the twin-tail model with the canard was comparable to that for the single-tail model and at supersonic speed it was considerably greater at high angles of attack. Unlike the single-tail model, the twin-tail model at 50 sideslip exhibited an unstable break in the variation of pitching-moment coefficient with lift coefficient near 10 deg. angle of attack for 0.70 Mach number.

  17. Building Bridges to the Economic Mainstream for African American Male Ex-Offenders: A Preliminary Assessment of an Inmate Education Re-Entry Program. (United States)

    Johnson, James H., Jr.; Farrell, Walter C., Jr.; Braithwaite, Lawrence P.

    This paper describes a state-funded inmate education and re-entry program that provides soft skills training for soon-to-be released offenders. The paper presents preliminary evidence regarding the impact of this training on 14 young male participants. Data came from information prepared by inmates throughout the training program and ethnographic…

  18. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry (United States)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve


    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available

  19. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry (United States)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.


    observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples.

  20. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy (United States)

    Monogarov, K. A.; Pivkina, A. N.; Grishin, L. I.; Frolov, Yu. V.; Dilhan, D.


    Analytical and experimental studies conducted at Semenov Institute of Chemical Physics for investigating the use of pyrotechnic compositions, i.e., thermites, to reduce the risk of the fall of thermally stable parts of deorbiting end-of-life LEO satellites on the Earth are described. The main idea was the use of passive heating during uncontrolled re-entry to ignite thermite composition, fixed on the titanium surface, with the subsequent combustion energy release to be sufficient to perforate the titanium cover. It is supposed, that thus destructed satellite parts will lose their streamline shape, and will burn out being aerodynamically heated during further descending in atmosphere (patent FR2975080). On the base of thermodynamic calculations the most promising thermite compositions have been selected for the experimental phase. The unique test facilities have been developed for the testing of the efficiency of thermite charges to perforate the titanium TA6V cover of 0.8 mm thickness under temperature/pressure conditions duplicated the uncontrolled re-entry of titanium tank after its mission on LEO. Experiments with the programmed laser heating inside the vacuum chamber revealed the only efficient thermite composition among preliminary selected ones to be Al/Co3O4. Experimental searching of the optimal aluminum powder between spherical and flaked nano- and micron-sized ones revealed the possibility to adjust the necessary ignition delay time, according to the titanium cover temperature dependency on deorbiting time. For the titanium tank the maximum temperature is 1100 °C at altitude 68 km and pressure 60 Pa. Under these conditions Al/Co3O4 formulations with nano-Al spherical particles provide the ignition time to be 13.3 s, and ignition temperature as low as 592±5 °C, whereas compositions with the micron-sized spherical Al powder reveal these values to be much higher, i.e., 26.3 s and 869±5 °C, respectively. The analytical and experimental studies described

  1. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars) (United States)

    Davoodi, Faranak


    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  2. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.


    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  3. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    Energy Technology Data Exchange (ETDEWEB)

    De Sapio, Vincent


    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  4. Spectroscopic Observation of the Stardust Re-Entry in the Near UV with SLIT: Deduction of Surface Temperatures and Plasma Radiation (United States)

    Winter, Michael W.; Trumble, Kerry A.


    Thermal radiation of the heat-shield and the emission of the post-shock layer around the Stardust capsule, during its re-entry, were detected by a NASA-led observation campaign aboard NASA's DC-8 airborne observatory involving teams from several nations. The German SLIT experiment used a conventional spectrometer, in a Czerny-Turner configuration (300 mm focal length and a 600 lines/mm grating), fed by fiber optics, to cover a wavelength range from 324 nm to 456 nm with a pixel resolution of 0.08 nm. The reentering spacecraft was tracked m uansuinaglly a camera with a view angle of 20 degrees, and light from the capsule was collected using a small mirror telescope with a view angle of only 0.45 degrees. Data were gathered with a measurement frequency of 5 Hz in a 30-second time interval around the point of maximum heating until the capsule left the field of view. The emission of CN (as a major ablation product), N2(+) and different atoms were monitored successfully during that time. Due to the nature of the experimental set up, spatial resolution of the radiation field was not possible. Therefore, all measured values represent an integration of radiation from the visible part of the glowing heat shield, and from the plasma in the post-shock region. Further, due to challenges in tracking not every spectrum gathered contained data. The measured spectra can be split up into two parts: (i) continuum spectra which represent a superposition of the heat shield radiation and the continuum radiation of potential dust particles in the plasma, and (ii) line spectra from the plasma in the shock layer. Planck temperatures (interpreted as the surface temperatures of the Stardust heat shield) were determined assuming either a constant surface temperature, or a temperature distribution deduced from numerical simulation. The constant surface temperatures are in good agreement with numerical simulations, but the peak values at the stagnation point are significantly lower than those

  5. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment (United States)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin


    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  6. Retrograde transdorsal-to-plantar or transplantar-to-dorsal intraluminal re-entry following unsuccessful subintimal angioplasty for below-the-ankle arterial occlusion. (United States)

    Zhu, Yue-Qi; Zhao, Jun-Gong; Li, Ming-Hua; Liu, Fang; Wang, Jian-Bo; Cheng, Ying-Sheng; Wang, Jue; Li, Jie


    To assess the technical feasibility and efficacy of transdorsal-to-plantar (TDP) or transplantar-to-dorsal (TPD) intraluminal re-entry following unsuccessful subintimal angioplasty for arterial occlusion below the ankle. TDP or TPD retrograde intraluminal re-entry angioplasty was attempted in 8 limbs of 8 diabetic patients (5 men; mean age 74.5 ± 7.76 years, range 62-81) with chronic below-the-ankle arterial occlusive disease when standard transtibial subintimal angioplasty failed. The clinical symptoms, dorsal or plantar arterial pulse volume scores, and ankle-brachial indexes (ABI) were compared before and after the procedures. At follow-up, pain relief, wound healing, limb salvage, and the presence of any restenosis of the target vessels were evaluated. TDP or TPD retrograde intraluminal re-entry angioplasty was performed successfully in 5 (62.5%) patients; foot pain improved, with median pulse volume scores and ankle-brachial indexes increasing from 0.60 ± 0.55 and 0.32 ± 0.20 before to 2.40 ± 0.55 and 0.75 ± 0.12, respectively, after the procedure (pfoot ischemia in diabetic patients when standard below-the-ankle angioplasty has failed.

  7. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. (United States)

    Hansen, Brian J; Zhao, Jichao; Csepe, Thomas A; Moore, Brandon T; Li, Ning; Jayne, Laura A; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A; Simonetti, Orlando P; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Weiss, Raul; Hummel, John D; Fedorov, Vadim V


    The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. Published on

  8. Aeroelastic Wing Shaping Using Distributed Propulsion (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)


    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  9. The use of a Colapinto TIPS Needle under cone-beam computed tomography guidance for true lumen re-entry in subintimal recanalization of chronic iliac artery occlusion. (United States)

    Liang, Huei-Lung; Li, Ming-Feng; Chiang, Chia-Ling; Chen, Matt Chiung-Yu; Wu, Chieh-Jen; Pan, Huay-Ben


    To report the technique and clinical outcome of subintimal re-entry in chronic iliac artery occlusion by using a Colapinto transjugular intrahepatic portosystemic shunt (TIPS) needle under rotational angiography (cone-beam computed tomography; CT) imaging guidance. Patients with chronic iliac artery occlusion with earlier failed attempts at conventional percutaneous recanalization during the past 5 years were enrolled in our study. In these patients, an ipsilateral femoral access route was routinely utilized in a retrograde fashion. A Colapinto TIPS Needle was used to aid the true lumen re-entry after failed conventional intraluminal or subintimal guidewire and catheter-based techniques. The puncture was directed under rotational angiography cone-beam CT guidance to re-enter the abdominal aorta. Bare metallic stents 8-10 mm in diameter were deployed in the common iliac artery, and followed by balloon dilation. Ten patients (9 male; median age, 75 years) were included in our investigation. The average occlusion length was 10.2 cm (range, 4-15 cm). According to the Trans-Atlantic Inter-Society Consensus (TASC) II classification, there were five patients each with Class B and D lesions. Successful re-entry was achieved in all patients without procedure-related complications. The ankle-brachial index (ABI) values increased from 0.38-0.79 to 0.75-1.28 after the procedure. Imaging follow-up (> 6 months) was available in six patients with patency of all stented iliac artery. Thereafter, no complaints of recurrent clinical symptoms occurred during the follow-up period. The use of Colapinto TIPS needle, especially under cone-beam CT image guidance, appears to be safe and effective to re-enter the true lumen in a subintimal angioplasty for a difficult chronic total iliac occlusion. Copyright © 2017. Published by Elsevier Taiwan LLC.

  10. Retrograde transdorsal-to-plantar or transplantar-to-dorsal intraluminal re-entry treatment following unsuccessful subintimal angioplasty for below-the-ankle arterial occlusion

    International Nuclear Information System (INIS)

    Zhu Yueqi; Zhao Jungong; Li Minghua; Tan Huaqiao; Wang Jianbo; Liu Fang; Cheng Yingsheng; Wang Jue; Cheng Yongde


    Objective: To assess the technical feasibility and efficacy of transdorsal-to-plantar (TDP) or transplantar-to-dorsal (TPD) intraluminal re-entry procedure following unsuccessful subintimal angioplasty for the treatment of arterial occlusion below the ankle. Methods: TDP or TPD retrograde intraluminal re-entry angioplasty was carried out in 8 diseased limbs of 8 diabetic patients (5 males and 3 females, aged 62∼81 years with a mean age of 75±8 years), who were accompanied with chronic below-the-ankle arterial occlusive disease, after the standard transtibial subintimal angioplasty had failed. Both before and after the procedure the clinical symptoms, dorsal or plantar arterial pulse volume scores and ankle-brachial indexes (ABI) were determined in all patients, the results were compared and statistically analysed. During the follow-up period, the degree of pain relief, the healing of the wound, the salvage of the diseased limb and the restenosis occurrence of the target vessels were evaluated. Results: Of the total 8 patients, TDP or TPD retrograde intraluminal re-entry angioplasty was successfully performed in 5(62.5%). After the treatment the foot pain was markedly relieved, the median pulse volume scores and ankle-brachial indexes were increased from 0.60±0.55 and 0.32±0.20 before the procedure to 2.40±0.55 and 0.75±0.12 after the procedure, respectively (P<0.01 for both). At the end of the follow-up lasting for twelve months, the visual analogue scale was apparently improved, the scores decreased from preoperative 7.40±1.14 to 2.20±1.48 (P=0.002). Of two cases with intractable skin ulcer, the skin lesion was completely healed in one and was significantly decreased in size in another. No amputation surgery was needed in all successfully treated patients. Magnetic resonance angiography revealed that one target vessel developed re-stenosis. Conclusion: TDP and TDP retrograde intraluminal re-entry techniques are clinically feasible and effective for the

  11. [Use of the OUTBACK Re-entry Catheter for recanalization of a joint-transversing extensive occlusion of the femoral and popliteal arteries]. (United States)

    Lichtenberg, M; Hailer, B


    Application of modern techniques for recanalization can now serve to reopen extensive chronic occlusions of the femoral artery with good results. A guide catheter and stiff J Terumo wires are used to perform subintimal recanalization. Once the occlusion site has been traversed in the subintimal plane the challenge lies in the re-entry maneuver to restore the true vessel lumen. Use of the OUTBACK catheter has proven to be particularly well suited for this purpose during which a biopsy of the true vessel lumen is obtained by advancing a needle.

  12. Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

    Directory of Open Access Journals (Sweden)

    Kyung Rok Moon


    Full Text Available This paper studies the problem of tracking a re-entry vehicle (RV in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient β model-based interacting multiple model-extended Kalman filter (β-IMM-EKF for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed β-IMM-EKF for precise tracking of an RV.

  13. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Alba Galan

    Full Text Available Retinal ganglion cells (RGCs are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.

  14. Surgical re-entry evaluation of regenerative efficacy of bioactive Gengigel™ and platelet-rich fibrin in the treatment of grade II furcation: A novel approach

    Directory of Open Access Journals (Sweden)

    Gurkirat Kaur Sandhu


    Full Text Available The furcation area creates situations in which routine periodontal procedures are somewhat limited, and surgical procedures are generally required. The introduction of bioactive agents, such as platelet concentrates, enamel matrix derivatives, bone morphogenic proteins, and matrix macromolecules such as hyaluronic acid has expanded the scope for better outcomes in furcation treatment. Hyaluronic acid is a naturally occurring nonsulfated high molecular weight glycosaminoglycan that forms a critical component of the extracellular matrix and contributes significantly to tissue hydrodynamics, cell migration, and proliferation. Platelet-rich fibrin (PRF is an immune and platelet concentrate containing all the constituents of a blood sample, which are favorable for healing and immunity. The purpose of the present case report was to assess through surgical re-entry, the regenerative capacity of Gengigel™ in conjunction with PRF in a patient with grade II furcation defect. It was observed that the combined approach resulted in significant furcation defect fill on re-evaluation at 6 months.

  15. Rethinking Child Welfare to Keep Families Safe and Together: Effective Housing-Based Supports to Reduce Child Trauma, Maltreatment Recidivism, and Re-Entry to Foster Care. (United States)

    Rivera, Marny; Sullivan, Rita


    Large numbers of children who are placed in child protective custody have parents with a substance use disorder. This placement occurs despite evidence that the trauma of removal is associated with poor long-term child outcomes. This article describes a collaborative model of a continuum of housing-based clinical and support services for the whole family that has safely reduced foster care placement. An external evaluation of this pilot in Jackson County, Oregon, found significant differences in subsequent maltreatment, foster care re-entry, and family permanency outcomes favoring the treatment group. After initial external grant funds, this program is continuing and expanding across Oregon due to state legislation, and funding and can be a model for other states.

  16. Contrast between Spain and the Netherlands in the hidden obstacles to re-entry into the labour market due to a criminal record. (United States)

    Kurtovic, Elina; Rovira, Marti


    This article aims at analysing the differences between European countries in the obstacles ex-offenders face due to having a criminal record. First, a comparative analytical framework is introduced that takes into account all the different elements that can lead to exclusion from the labour market by the dissemination of criminal record information. This model brings together social norms (macro level), social actors (meso level) and individual choices (micro level) in the same framework. Secondly, this model is used to compare the different impact of having a criminal record in Spain and the Netherlands. This comparison highlights three important findings: (1) the difference between norms of transparency/privacy and inclusive/exclusive ideals, (2) the significant role of social control agents, such as probation agencies and the ex-offenders' social network, in shaping the opportunities that they have, and (3) self-exclusion seems to be a key mechanism for understanding unsuccessful re-entry into the labour market.

  17. Predictors of homeless services re-entry within a sample of adults receiving Homelessness Prevention and Rapid Re-Housing Program (HPRP) assistance. (United States)

    Brown, Molly; Vaclavik, Danielle; Watson, Dennis P; Wilka, Eric


    Local and national evaluations of the federal Homelessness Prevention and Rapid Re-Housing Program (HPRP) have demonstrated a high rate of placement of program participants in permanent housing. However, there is a paucity of research on the long-term outcomes of HPRP, and research on rehousing and prevention interventions for single adults experiencing homelessness is particularly limited. Using Homeless Management Information System data from 2009 to 2015, this study examined risk of return to homeless services among 370 permanently housed and 71 nonpermanently housed single adult HPRP participants in Indianapolis, Indiana. Kaplan-Meier survival curves were conducted to analyze time-to-service re-entry for the full sample, and the homelessness prevention and rapid rehousing participants separately. With an average follow-up of 4.5 years after HPRP exit, 9.5% of the permanently housed HPRP participants and 16.9% of those nonpermanently housed returned to homeless services. By assistance type, 5.4% of permanently housed and 15.8% of nonpermanently housed homelessness prevention recipients re-entered services, and 12.8% of permanently housed and 18.2% of nonpermanently housed rapid rehousing recipients re-entered during the follow-up period. Overall, veterans, individuals receiving rapid rehousing services, and those whose income did not increase during HPRP had significantly greater risk of returning to homeless services. Veterans were at significantly greater risk of re-entry when prevention and rehousing were examined separately. Findings suggest a need for future controlled studies of prevention and rehousing interventions for single adults, aiming to identify unique service needs among veterans and those currently experiencing homelessness in need of rehousing to inform program refinement. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Morphing Wing Design with an Innovative Three-Dimensional Warping Actuation Project (United States)

    National Aeronautics and Space Administration — Advanced wing configurations where traditional control surfaces are replaced by dynamically controlled distribution of wing twist and/or camber can provide...

  19. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft (United States)

    Rettie, I. H.


    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  20. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Petroleum geochemistry of the deepened Lopra-1/1A re-entry well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Nytoft, H. Peter


    Full Text Available The Lopra-1/1A re-entry well was drilled as a stratigraphic test with no immediate exploration objectives. Hence, petroleum geochemical studies were of limited extent, and restricted to non-destructive analyses. The presence of natural petroleum hydrocarbons could not be confirmed with certainty, but hydrocarbons extracted from the hydrochloric acid solute of a calcite vug present in RSWC #1 (3543 m, may represent indigenous petroleum since hydrocarbon-bearing fluid inclusions have been reported from the same sample. These hydrocarbons show some similarities to petroleum generatedfrom the Upper Jurassic – Lower Cretaceous Kimmeridge Clay type source rocks present in surrounding areas. Except for this sample, the results generally show the presence of a variety of contaminantsof different origins such as ‘naturally greasy fingers’ (squalene and cholesterol, cosmetics such as chap stick or hand lotion (e.g. esters such as butyl-stearate, stearyl-palmitate, vitamin A, plasticisers (phthalates, diesel oil and ‘pipe dope’.

  1. Das Re-entry von Kritik: Assemblageforschung nach der Kritik an der Kritik. Kommentar zu Alexa Färbers „Potenziale freisetzen“

    Directory of Open Access Journals (Sweden)

    Hanna Göbel


    Full Text Available Der Kommentar zum Beitrag von Alexa Färber diskutiert eine Vermengung von drei unterschiedlichen Kritikbegriffen sowie Orten von Kritik in der aktuellen Debatte um die Assemblageforschung im Feld der Urban Studies. Ich rekonstruiere und unterscheide zwischen einem Kritikbegriff als theoretischer Norm, wie er von der (neo-marxistischen Stadt- und Raumforschung vertreten wird, und der ontologischen Kritik dieser Norm seitens der Assemblageforscher_innen. Alexa Färbers Beitrag zeigt drittens exemplarisch eine sich einschleichende normative Ebene in der Assemblageforschung auf, die bislang als Kritikform unterbelichtet geblieben ist. Diese wird als Wiedereinführung (re-entry von empirisch vollzogener Kritik in die Assemblageforschung bezeichnet. Damit ist eine theoretische Neupositionierung von Kritik ‚innerhalb’ einer Assemblage gemeint, indem Kritik nicht mehr als theoretische Norm ‚außerhalb’ zu verorten ist. In diesem Kommentar plädiere ich dafür, in der Assemblageforschung eine differenzierte Auseinandersetzung mit unterschiedlichen Begriffen und Orten von Kritik zu pflegen, um innerhalb der Urban Studies und für interessierte städtische Akteure mit urbaner Expertise (u.a. Architekt_innen, Planer_innen, Künstler_innen, Aktivist_innen, Kultur- und Sozialarbeiter_innen, DIY-Gemeinschaften klarer adressierbar zu sein.

  2. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    Directory of Open Access Journals (Sweden)

    Abhijit Ningappa Gurav


    Full Text Available Periradicular (PR bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect.

  3. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.


    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  4. Analysis of bat wings for morphing (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim


    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  5. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir


    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  6. The Aerodynamic Performance of the Houck Configuration Flow Guides

    National Research Council Canada - National Science Library

    Killian, Dermot N


    In an effort to explore efficient wing designs for UAV's, the Air Force is investigating the patented Houck Aircraft Configuration, which is a joined-wing aircraft with curved flow guides of varying...

  7. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim


    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  8. Ames Optimized TCA Configuration (United States)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.


    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  9. Platelet-rich plasma and bi-phasic tri calcium phosphate in the management of periodontally compromised teeth with hopeless prognosis: A case report with six-year follow-up and surgical re-entry

    Directory of Open Access Journals (Sweden)

    Subramoniam Sundaram


    Full Text Available One of the main objectives of periodontal therapy is to prolong the lifespan of dentition as there is no ideal substitute for natural dentition even in the era of dental implants. Treatment of teeth with advanced periodontal disease with hopeless prognosis is always extraction. However in this case report, we discuss a novel regenerative strategy using a combination of platelet rich plasma and bi-phasic tri calcium phosphate for a lower central incisor that was considered for extraction. Clinical and radiographic examination during the six-year follow-up postoperatively revealed stable periodontal health in the lower right central incisor. The surgical re-entry done in the sixth year postoperatively revealed good periradicular healing and alloplastic bone graft incorporation within the host bone.

  10. A Modified Triples Algorithm for Flush Air Data Systems that Allows a Variety of Pressure Port Configurations (United States)

    Millman, Daniel R.


    Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.

  11. Generic Wing-Body Aerodynamics Data Base (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)


    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  12. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H


    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  13. Topology Synthesis of Distributed Actuation Systems for Morphing Wing Structures (Postprint)

    National Research Council Canada - National Science Library

    Inoyam, Daisaku; Sanders, Brian P; Joo, James J


    .... For demonstration purposes, the in-plane morphing wing model is presented. Topology optimization is performed on a semiground structure with design variables that control the system configuration...

  14. Novel Control Effectors for Truss Braced Wing (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv


    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  15. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.


    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept

  16. Viscous Design of TCA Configuration (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.


    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  17. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail


    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  18. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. (United States)

    Atwood, Craig S; Bowen, Richard L


    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  19. Flight dynamics investigation of compound helicopter configurations


    Ferguson, Kevin; Thomson, Douglas


    Compounding has often been proposed as a method to increase the maximum speed of the helicopter. There are\\ud two common types of compounding known as wing and thrust compounding. Wing compounding offloads the\\ud rotor at high speeds delaying the onset of retreating blade stall, hence increasing the maximum achievable speed,\\ud whereas with thrust compounding, axial thrust provides additional propulsive force. There has been a resurgence\\ud of interest in the configuration due to the emergenc...

  20. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+ (United States)

    Bui, Trong


    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  1. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)



    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  2. Effects of Canard on the Flowfield over a Wing (United States)

    Nayebzadeh, Arash


    Surface and flowfield pressure measurements have been done over delta wing/canard configuration in a variety of canard vertical and horizontal locations and angles of attack. The experimental model consisted of wing, canard and a body to accommodate pressure tubing and canard rotation mechanism. All the tests have been performed at subsonic velocities and the effect of canard were analyzed through comparison between surface and flowfield pressure distributions. It was found that vortex flow pattern over the wing is dominated mainly by canard vertical position and in some cases, by merging of canard and wing vortices. In addition, the pressure loss induced by canard vortex on the wing surface moves the wing vortex toward the leading edge. In the mid canard configuration, canard and wing vortices merge at x/c greater than 0.5 and as a result of this phenomenon, abrupt pressure loss induces more stable vortex flow over the wing. It is also shown that canard plays a vital role in vortex break down over the wing.

  3. Configuration Management

    International Nuclear Information System (INIS)

    Morcos, A.; Taylor, H. S.


    This paper will briefly discuss the reason for and content of configuration management both for new plants and, when adapted, for older plants. It will then address three types of activities a utility may undertake as part of a nuclear CAM program and with which Sargent and Leyden has been actively involved. The first activity is a methodology for preparing design-basis documentation. The second is the identification of essential data required to be kept by the utility in support of the operation of a nuclear plant. The third activity is a computerized classification system of plant components, allowing ready identification of plant functional and physical characteristics. Plant configuration documentation describes plant components, the ways they arranged to interact, and the ways they are enabled to interact. Configuration management, on the other hand, is more than the control of such documentation. It is a dynamic process for ensuring that a plant configuration meets all relevant requirements for safety and economy, even while the configuration changes and even while the requirements change. Configuration management for a nuclear plant is so complex that it must be implemented in phases and modules. It takes advantage of and integrates existing programs. Managing complexity and streamlining the change process become important additional objectives of configuration management. The example activities fulfill essential goals of an overall CAM program: definition of design baseline, definition of essential plant data, and classification of plant components

  4. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG


    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  5. Complex configuration analysis at transonic speeds (United States)

    Boppe, C. W.; Aidala, P. V.


    Advanced performance requirements of new combat and transport aircraft together with design time constraints intensify the development and application of three dimensional computational analyses. A computational method which was developed for the specific purpose of providing an engineering analysis of complex aircraft configurations at transonic speeds. Particular attention is given to the recently incorporated wing viscous interaction and canard capabilities. The treatment of fuselage fairings, nacelles, and pylons is reviewed. The means for keeping computing resources at reasonable levels are identified. Three configurations were selected for correlations with experimental data. Taken together, the comparisons illustrate the full extent of current analysis capabilities. The configurations include: (1) a wing fuselage canard fighter; (2) a transport with fuselage fairings, four nacelles, four pylons; and (3) a space vehicle which includes an external fuel tank and rocket boosters (transonic launch configuration).

  6. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T


    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  7. Hypertext Configurations

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole


    , links, interactive processes, and time scalings, and that the hypertext configuration is a major but not sole source of the messiness of big data. The notion of hypertext will be revalidated, placed at the center of the interpretation of networked digital media, and used in the analysis of the fast...

  8. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa


    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  9. Experimental investigation of a wing-in-ground effect craft. (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin


    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  10. Experimental Investigation of a Wing-in-Ground Effect Craft (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin


    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  11. Aeroelasticity of morphing wings using neural networks (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  12. Supercritical Wing Technology: A Progress Report on Flight Evaluations (United States)


    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  13. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val


    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  14. Wing design for light transport aircraft with improved fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, D.; Birrenbach, R.; Haberland, W.

    An advanced technology wing has been designed for a light utility and commuter service aircraft with the requirements for economy, safety and flexibility. Trade-off studies give optimum area and aspect-ratio of the wing. A new airfoil was developed to fulfill the performance requirements. Wing planform and twist were chosen to give high maximum lift, low drag and good stall characteristics. Preset ailerons were optimized for wheel forces and lateral control. The applied aerodynamic methods, including two- and three-dimensional wind tunnel tests are shown. Various structural configurations of the wing and various flap systems are evaluated. The cantilever tapered wing and a Fowler-flap with a two-lever mechanism were found to be the most economic ones. The wing was constructed and flight-tested with a modified Dornier Do 28 Skyservant as a test bed. The new wing is being applied to a family of light transport aircraft. Finally, aircraft with the new wing are compared performancewise with contemporary aircraft.

  15. Effects of boundary layer forcing on wing-tip vortices (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  16. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore


    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...... re-compress the upstream flow and the gas Mach number decreases correspondingly. However, the Mach number does not vary significantly from the small, medium and large delta wing configurations. The small delta wing generates a swirl near its surface, but has minor influences on the flow above it....... On the contrary, the use of the large delta wing produces a strong swirling flow in the whole downstream region. For the large delta wing, the collection efficiency reaches 70% with 2 μm particles, indicating a good separation performance of the proposed supersonic separator....

  17. Gust response and cross wind performance of a hovercraft with vertical wings (United States)

    Kawahata, Nagakatu; Miura, Yosihiro

    The configurations of a radio-controlled hovercraft model with vertical wings are presented. The flight performance in cross wind is evaluated, and the difference between the target point and visual angular error is addressed.

  18. Design and wind tunnel tests of winglets on a DC-10 wing (United States)

    Gilkey, R. D.


    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  19. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds (United States)

    Gloss, B. B.


    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  20. Experiment Configurations for the DAST (United States)


    This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic

  1. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.


    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  2. Bioinspired morphing wings for extended flight envelope and roll control of small drones. (United States)

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D


    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  3. Bioinspired morphing wings for extended flight envelope and roll control of small drones (United States)

    Heitz, G.; Noca, F.; Floreano, D.


    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  4. Aerodynamic analysis of complex configurations using unstructured grids (United States)

    Frink, Neal T.; Parikh, Paresh; Pirzadeh, Shahyar


    The purpose of this paper is to assess the accuracy and utility of a new unstructured, inviscid, upwind flow solver for the aerodynamic analysis of two aircraft configurations. The two configurations consist of a low-wing transport with nacelle/pylon on and off, and a generic high-speed civil transport. Computations are made at subsonic and transonic Mach numbers for the low-wing transport and at transonic and low-supersonic speeds for the high-speed civil transport. The results include an assessment of grid sensitivity and provide comparisons with experimental data.

  5. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat


    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  6. Design and flight performance of hybrid underwater glider with controllable wings

    Directory of Open Access Journals (Sweden)

    Yanhui Wang


    Full Text Available Hybrid underwater glider combines motion modes of traditional autonomous underwater glider and those of autonomous underwater vehicles. Different motion modes need different flight performance, including flight efficiency, static stability, and maneuverability. Conventional hybrid underwater glider with fixed wings can’t achieve optimal flight performance in one flight mission demanding various motion modes. In this article, controllable wings for hybrid underwater glider Petrel II are designed. Angle of attack, sweep angle, and aspect ratio of controllable wings can be changed to adapt to different motion modes. Kinematics and dynamics models of Petrel II are established based on multibody theory. Motion simulations of Petrel II with different wing configurations are conducted in three motion modes, including glide motion, spiral motion, and horizontal turning motion. The simulation results show the impact of wing parameters on flight performance. Field trials demonstrate that the controllable wings can improve the flight performance.


    African Journals Online (AJOL)


    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  8. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Results of design studies and wind tunnel tests of high-aspect-ratio supercritical wings for an energy efficient transport (United States)

    Steckel, D. K.; Dahlin, J. A.; Henne, P. A.


    These basic characteristics of critical wings included wing area, aspect ratio, average thickness, and sweep as well as practical constraints on the planform and thickness near the wing root to allow for the landing gear. Within these constraints, a large matrix of wing designs was studied with spanwise variations in the types of airfoils and distribution of lift as well as some small planform changes. The criteria by which the five candidate wings were chosen for testing were the cruise and buffet characteristics in the transonic regime and the compatibility of the design with low speed (high-lift) requirements. Five wing-wide-body configurations were tested in the NASA Ames 11-foot transonic wind tunnel. Nacelles and pylons, flap support fairings, tail surfaces, and an outboard aileron were also tested on selected configurations.

  10. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration (United States)

    Glynn, J. L.; Poucher, D. E.


    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  11. Design optimization of deployable wings (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  12. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.


    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  13. Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration (United States)

    Hahne, David E.


    Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.

  14. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)


    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  15. Dynamics and control of robotic aircraft with articulated wings (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  16. Software configuration management

    International Nuclear Information System (INIS)

    Arribas Peces, E.; Martin Faraldo, P.


    Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper

  17. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández


    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  18. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.


    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  19. Design and construction of a remote piloted flying wing. B.S. Thesis (United States)

    Costa, Alfred J.; Koopman, Fritz; Soboleski, Craig; Trieu, Thai-Ba; Duquette, Jaime; Krause, Scott; Susko, David; Trieu, Thuyba


    Currently, there is a need for a high-speed, high-lift civilian transport. Although unconventional, a flying wing could fly at speeds in excess of Mach 2 and still retain the capacity of a 747. The design of the flying wing is inherently unstable since it lacks a fuselage and a horizontal tail. The project goal was to design, construct, fly, and test a remote-piloted scale model flying wing. The project was completed as part of the NASA/USRA Advanced Aeronautics Design Program. These unique restrictions required us to implement several fundamental design changes from last year's Elang configuration including wing sweepback and wingtip endplates. Unique features such as a single ducted fan engine, composite structural materials, and an electrostatic stability system were incorporated. The result is the Banshee '94. Our efforts will aid future projects in design and construction techniques so that a viable flying wing can become an integral part of the aviation industry.

  20. Butterflies regulate wing temperatures using radiative cooling (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi


    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  1. Investigation of asymmetry of vortex flow over slender delta wings (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  2. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)


    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)


    Directory of Open Access Journals (Sweden)



    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  4. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.


    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  5. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations (United States)

    Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien


    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.

  6. Aerodynamic configuration design using response surface methodology analysis (United States)

    Engelund, Walter C.; Stanley, Douglas O.; Lepsch, Roger A.; Mcmillin, Mark M.; Unal, Resit


    An investigation has been conducted to determine a set of optimal design parameters for a single-stage-to-orbit reentry vehicle. Several configuration geometry parameters which had a large impact on the entry vehicle flying characteristics were selected as design variables: the fuselage fineness ratio, the nose to body length ratio, the nose camber value, the wing planform area scale factor, and the wing location. The optimal geometry parameter values were chosen using a response surface methodology (RSM) technique which allowed for a minimum dry weight configuration design that met a set of aerodynamic performance constraints on the landing speed, and on the subsonic, supersonic, and hypersonic trim and stability levels. The RSM technique utilized, specifically the central composite design method, is presented, along with the general vehicle conceptual design process. Results are presented for an optimized configuration along with several design trade cases.

  7. A unix configuration engine

    International Nuclear Information System (INIS)

    Burgess, M.


    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  8. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds (United States)

    Erickson, Gary E.


    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  9. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*


    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  10. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.


    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  11. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol


    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  12. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing (United States)


    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz ( A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  13. Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations (United States)

    Lomax, Harvard; Byrd, Paul F


    The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.

  14. Design of a hybrid rocket / inflatable wing UAV (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  15. Cabin-fuselage-wing structural design concept with engine installation (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.


    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  16. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey


    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  17. HLT configuration management system

    CERN Document Server

    Daponte, Vincenzo


    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  18. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole


    Installing and servicing complex electromechanical systems is more tedious than is necessary. By putting the product knowledge into the product itself, which then would allow automation in constructing the product from modules, could solve that. It would support personnel in aftersales installation...... and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  19. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery


    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  20. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration (United States)

    Glynn, J. L.; Poucher, D. E.


    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquiredin the Phase B development have been compiled into a database and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide, and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configration types include booster and orbiter components in various stacked and tandom combinations. The digital database consists of 220 files of data containing basic tunnel recorded data.

  1. Video change detection for fixed wing UAVs (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa


    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  2. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.


    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  3. Effect of external jet-flow deflector geometry on OTW aero-acoustic characteristics. [Over-The-Wing (United States)

    Von Glahn, U.; Groesbeck, D.


    The effect of geometry variations in the design of external deflectors for use with OTW configurations was studied at model scale and subsonic jet velocities. Included in the variations were deflector size and angle as well as wing size and flap setting. A conical nozzle (5.2-cm diameter) mounted at 0.1 chord above and downstream of the wing leading edges was used. The data indicate that external deflectors provide satisfactory take-off and approach aerodynamic performance and acoustic characteristics for OTW configurations. These characteristics together with expected good cruise aerodynamics, since external deflectors are storable, may provide optimum OTW design configurations.

  4. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds (United States)

    Gloss, B. B.


    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  5. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae


    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  6. Electric Propulsion Concepts for an Inverted Joined Wing Airplane Demonstrator

    Directory of Open Access Journals (Sweden)

    Cezary Galinski


    Full Text Available One of the airplane design concepts that potentially allows for significantly increased efficiency, but has not yet been investigated thoroughly, is the inverted joined wing configuration, where the upper wing is positioned in front of the lower one. We performed wind tunnel and flight testing of a demonstrator of this concept, first by applying electrical propulsion to simplify wind tunnel testing, and then the same electrical-propulsion demonstrator performed several flights. As the chosen propulsion method proved to be too cumbersome for an intensive flight campaign and significant loss of battery performance was also observed, the electrical propulsion was then replaced by internal combustion propulsion in the second phase, involving longer-duration flight testing. Next we identified and analyzed two potentially beneficial modifications to the design tested: one involved shifting the center of gravity towards the aft, the other involved modifying the thrust vector position, both with the assumption that electric motors can be applied for propulsion. On this basis, the paper finishes with some conclusions concerning a new concept of electrical propulsion for an inverted joined wing design, combining two ideas: hybridization and distribution along the aft wing leading edge.

  7. Software configuration management

    CERN Document Server

    Keyes, Jessica


    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  8. Chinese Multinationals’ Entry, Exit and Re-Entry Patterns

    DEFF Research Database (Denmark)

    Vissak, Tiia; Zhang, Xiaotian


    of foreign and emerging issues when they expand their activities in various contexts, enter, exit, and re-enter overseas markets; they have to overcome institutional barriers, adapt the cultural challenges in foreign markets, undergo the impact of large multinational firms from developed economies...

  9. Efficient Numerical Methods for Nonequilibrium Re-Entry Flows (United States)


    numerical fluxes is to use a modified form of Steger -Warming flux-vector splitting.16 It should be noted that although we focus on this particular...numerical flux function, the approach is extensible to other upwind-biased flux methods. The modified Steger -Warming flux is based on the fact that the...1ΛX (8) where Λ is the diagonal eigenvalue matrix. The modified Steger -Warming flux-vector splitting method obtains the direction of the fluxes by

  10. Artist's Concept of X-37 Re-entry (United States)


    Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth`s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  11. Aerodynamics and Aerothermodynamics of undulated re-entry vehicles (United States)

    Kaushikh, K.; Arunvinthan, S.; Pillai, S. Nadaraja


    Aerodynamic and aerothermodynamic analysis is a fundamental basis for the design of a hypersonic vehicle. In this work, aerodynamic and aerothermodynamic analyses of a blunt body vehicle with undulations on its after-body are studied with the help of numerical simulations. A crew exploration vehicle (CEV) is taken for initial analysis and undulations with varying amplitude and wavelength are introduced on CEV's after-body. Numerical simulations were carried out for CEV and for CEV with undulations at Mach 3.0 and 7.0 for angles of attack ranging from -20° to +20° with increments of +5°. The results show that introduction of undulations did not have a significant impact on mono stability and lift-drag characteristics of the vehicle. It was also observed that introduction of undulations improved the aerothermodynamic characteristics of CEV. A reduction of about 36% in maximum heat flux at Mach 3.0 and about 21% at Mach 7.0 compared to the maximum heat flux for CEV was observed.


    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed


    ''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k{sub eff} regression analysis associated with the methodology. However, the use of a k{sub eff} regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed.

  13. Configuration management at NEK

    International Nuclear Information System (INIS)

    Podhraski, M.


    Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)

  14. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings (United States)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang


    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  15. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap (United States)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong


    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  16. Effect of canard deflection on close-coupled canard-wing-body aerodynamics (United States)

    Tu, Eugene L.


    The thin-layer Navier-Stokes equations are solved for the flow about a canard-wing-body configuration at transonic Mach numbers of 0.85 and 0.90, angles of attack from -4 to 10 degrees and canard deflection angles from -10 to +10 degrees. Effects of canard deflection on aerodynamic performance, including canard-wing vortex interaction, are investigated. Comparisons with experimental measurements of surface pressures, lift, drag and pitching moments are made to verify the accuracy of the computations. The results of the study show that the deflected canard downwash not only influences the formation of the wing leading-edge vortex, but can cause the formation of an unfavorable vortex on the wing lower surface as well.

  17. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard


    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  18. Effect of canard vertical location, size, and deflection on canard-wing interference at subsonic speeds (United States)

    Gloss, B. B.; Ray, E. J.; Washburn, K. E.


    A generalized close-coupled canard-wing configuration was tested in a high speed 7 by 10 foot tunnel at Mach numbers of 0.40, 0.70, and 0.85 over an angle-of-attack range from -4 deg to 24 deg. Studies were made to determine the effects of canard vertical location, size, and deflection and wing leading-edge sweep on the longitudinal characteristics of the basic configuration. The two wings tested had thin symmetrical circular-arc airfoil sections with characteristically sharp leading edges swept at 60 deg and 44 deg. Two balances which allow separation of the canard-forebody contribution from the total forces and moments were used in this study.

  19. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  20. Global Value Chain Configuration

    DEFF Research Database (Denmark)

    Hernandez, Virginia; Pedersen, Torben


    This paper reviews the literature on global value chain configuration, providing an overview of this topic. Specifically, we review the literature focusing on the concept of the global value chain and its activities, the decisions involved in its configuration, such as location, the governance mo...

  1. Simulator configuration maintenance

    International Nuclear Information System (INIS)


    Requirements and recommendations of this section defines NPP personnel activity aimed to the provision of the simulator configuration compliance with the current configuration of the power-generating unit-prototype, standard and technical requirements and describe a monitoring procedure for a set of simulator software and hardware, training, organizational and technical documents

  2. Risk-based configuration control

    International Nuclear Information System (INIS)

    Szikszai, T.


    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  3. Can Social Capital Networks Assist Re-entry Felons to Overcome Barriers to Re-entry and Reduce Recidivism?

    Directory of Open Access Journals (Sweden)

    Earl Smith


    Full Text Available Based on interviews with 25 reentry felons, this article examines the impact that social capital plays in successful reentry; specifically with securing stable housing and employment. We found that access to social capital allowed those with the lowest probability for success—African American men with felony convictions—to secure both stable employment and housing and thus avoid engaging in illegitimate behavior that leads to recidivism. The findings suggest that even for those individuals reentering society with the most strikes against them (as noted by researchers such as Pager and Travis, access to the resource rich social capital networks provided by reentry programs can allow these individuals to overcome the barriers to reentry and find stable jobs and secure housing. Our findings suggest that more research be done on the impact of social capital embedded in reentry programs and that referrals be made to these types of programs and funding be provided for those that demonstrate the ability to significantly reduce recidivism. As Putman has noted, "Just as a screwdriver (physical capital or a college education (human capital can increase productivity (both individual and collective, so do social contacts affect the productivity of individuals and groups."

  4. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter


    strategic preference, as part of their business model innovation activity planned. Practical implications – This paper aimed at strengthening researchers and, particularly, practitioner’s perspectives into the field of business model process configurations. By insuring an [abstracted] alignment between......Purpose – The paper aims: 1) To develop systematically a structural list of various business model process configuration and to group (deductively) these selected configurations in a structured typological categorization list. 2) To facilitate companies in the process of BM innovation......, by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...

  5. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D


    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  6. Aerodynamic control with passively pitching wings (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  7. Waving Wing Aerodynamics at Low Reynolds Numbers (United States)


    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  8. Configuration by Modularisation

    DEFF Research Database (Denmark)

    Riitahuhta, Asko; Andreasen, Mogens Myrup


    Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... Management and i Configuration Management the most important means is Modularisation.The goal of this paper is to show Configuration Management as a contribution to the Mass Customisation and Modularisation as a contribution to the industrialisation of the design area [Andreasen 1997]. A basic model...

  9. Global Value Chain Configuration

    DEFF Research Database (Denmark)

    Hernandez, Virginia; Pedersen, Torben


    This paper reviews the literature on global value chain configuration, providing an overview of this topic. Specifically, we review the literature focusing on the concept of the global value chain and its activities, the decisions involved in its configuration, such as location, the governance...... modes chosen and the different ways of coordinating them. We also examine the outcomes of a global value chain configuration in terms of performance and upgrading. Our aim is to review the state of the art of these issues, identify research gaps and suggest new lines for future research that would...

  10. Drupal 8 configuration management

    CERN Document Server

    Borchert, Stefan


    Drupal 8 Configuration Management is intended for people who use Drupal 8 to build websites, whether you are a hobbyist using Drupal for the first time, a long-time Drupal site builder, or a professional web developer.

  11. Configuration Management Automation (CMA) - (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  12. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos


    Yalden, Derek; Yalden, D. W.


    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  13. Computer software configuration management

    International Nuclear Information System (INIS)

    Pelletier, G.


    This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada

  14. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  15. Werner helicase wings DNA binding


    Hoadley, Kelly A.; Keck, James L.


    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  16. On Wings: Aerodynamics of Eagles. (United States)

    Millson, David


    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  17. Investigation of carbon rod stiffeners for wing flutter mitigation on a supersonic business jet (United States)

    Simmons, Frank, III

    Aeroelastic issues are a primary design consideration for any supersonic aircraft wing design. Previous design configurations have determined that flutter is a phenomenon that must be considered early in the design process due to the significant impact it can have on wing and empennage structure. This is due in part to the extremely thin airfoil cross sections required. Flutter mitigation can be achieved by adding additional structural weight for increased stiffness to an airfoil section. However, in the case of supersonic aircraft, airframe weight not only directly impacts aircraft performance such as fuel consumption and payload capacity, but also has a direct impact on the strength of the sonic boom that is created and propagated to the ground. The ultimate goal of any supersonic aircraft wing design is a wing section that is extremely lightweight but with the stiffness required to delay the onset of flutter. To increase the stiffness of a supersonic wing, special materials and design configurations will be required. It was theorized that carbon rod technology could be utilized to increase the bending and torsional stiffness of a wing section with a significant weight savings over conventional design techniques. This was achieved by incorporating several carbon rods into a bundle that were bonded together with an adhesive. These carbon rod bundles were then bonded to the upper and lower surface of a full-scale outer wing section of a conceptual supersonic wing to simulate stiffeners or stringers. Two wing test articles were built incorporating the carbon rod stringer concept. The first test article oriented the carbon rod stringers parallel to the rear spar. This was similar to conventional design maximizing the wing section bending stiffness. The second test article placed the carbon rod stringers at an angle of 30° to the rear spar with the upper surface stringers opposite in direction to the lower surface stringers. By angling the carbon rod stringers, the

  18. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh


    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  19. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  20. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James


    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  1. The LHCb configuration database

    CERN Document Server

    Abadie, L; Van Herwijnen, Eric; Jacobsson, R; Jost, B; Neufeld, N


    The aim of the LHCb configuration database is to store information about all the controllable devices of the detector. The experiment's control system (that uses PVSS ) will configure, start up and monitor the detector from the information in the configuration database. The database will contain devices with their properties, connectivity and hierarchy. The ability to store and rapidly retrieve huge amounts of data, and the navigability between devices are important requirements. We have collected use cases to ensure the completeness of the design. Using the entity relationship modelling technique we describe the use cases as classes with attributes and links. We designed the schema for the tables using relational diagrams. This methodology has been applied to the TFC (switches) and DAQ system. Other parts of the detector will follow later. The database has been implemented using Oracle to benefit from central CERN database support. The project also foresees the creation of tools to populate, maintain, and co...

  2. Configuration Control Office

    CERN Multimedia

    Beltramello, O

    In order to enable Technical Coordination to manage the detector configuration and to be aware of all changes in this configuration, a baseline of the envelopes has been created in April 2001. Fifteen system and multi-system envelope drawings have been approved and baselined. An EDMS file is associated with each approved envelope, which provides a list of the current known unsolved conflicts related to the envelope and a list of remaining drawing inconsistencies to be corrected. The envelope status with the associated drawings and EDMS file can be found on the web at this adress: Any modification in the baseline has to be requested via the Engineering Change Requests. The procedure can be found under: TC will review all the systems envelopes in the near future and manage conflict resolution with the collaboration of the systems.

  3. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio


    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  4. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.


    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  5. Aerodynamic effects of flexibility in flapping wings (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.


    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  6. Aerodynamic effects of flexibility in flapping wings. (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P


    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  7. Submersible Unmanned Aerial Vehicle: Configuration Design and Analysis Based on Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Wang Qinyang


    Full Text Available Submersible aerial vehicle is capable of both flying in the air and submerging in the water. Advanced Research Project Agency (DARPA outlined a challenging set of requirements for a submersible aircraft and solicited innovative research proposals on submersible aircraft since 2008. In this paper, a conceptual configuration design scheme of submersible unmanned aerial vehicle is proposed. This submersible UAV lands on the surface of water, then adjusts its own density to entry water. On the contrary, it emerges from water by adjusting its own density and then takes off from the surface of water. Wing of the UAV is whirling wing. It is set along aircraft’s fuselage while submerging for lift reduction. We analysis aerodynamic and hydrodynamic performance of this UAV by CFD method, especially compare the hydrodynamic performance of the whirling wing configuration and normal configuration. It turns out that whirling wing is beneficial for submerging. This result proves that the configuration design scheme proposed in this paper is feasible and suitable for a submersible unmanned aerial vehicle.

  8. Spanwise morphing trailing edge on a finite wing (United States)

    Pankonien, Alexander M.; Inman, Daniel J.


    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  9. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics (United States)

    Bushnell, Dennis M.


    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  10. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng


    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  11. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A


    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  12. DNS BIND Server Configuration

    Directory of Open Access Journals (Sweden)

    Radu MARSANU


    Full Text Available After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  13. DNS BIND Server Configuration


    Radu MARSANU


    After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  14. Configuration of bioreactors

    NARCIS (Netherlands)

    Martens, D.E.; End, van den E.J.; Streefland, M.


    Lab-scale stirred-tank bioreactors (0.2–20 l) are used for fundamental research on animal cells and in process development and troubleshooting for large-scale production. In this chapter, different configurations of bioreactor systems are shortly discussed and setting up these different

  15. Ansible configuration management

    CERN Document Server

    Hall, Daniel


    This book is intended for anyone who wants to learn Ansible starting from the basics. Some experience of how to set up and configure Linux machines and a working knowledge of BIND, MySQL, and other Linux daemons is expected.

  16. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  17. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem


    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  18. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide


    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  19. Aerodynamic and aeroelastic characteristics of the DARPA Smart Wing Phase II wind tunnel model (United States)

    Sanders, Brian P.; Martin, Christopher A.; Cowan, David L.


    A wind tunnel demonstration was conducted on a scale model of an unmanned combat air vehicle (UCAV). The model was configured with traditional hinged control surfaces and control surfaces manufactured with embedded shape memory alloys. Control surfaces constructed with SMA wires enable a smooth and continuous deformation in both the spanwise and cordwise directions. This continuous shape results in some unique aerodynamic effects. Additionally, the stiffness distribution of the model was selected to understand the aeroelastic behavior of a wing designed with these control surfaces. The wind tunnel experiments showed that the aerodynamic performance of a wing constructed with these control surfaces is significantly improved. However, care must be taken when aeroelastic effects are considered since the wing will show a more rapid reduction in the roll moment due to increased moment arm about the elastic axis. It is shown, experimentally, that this adverse effect is easily counteracted using leading edge control surfaces.

  20. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  1. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.


    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  2. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval


    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  3. Mechanical configuration and maintenance

    International Nuclear Information System (INIS)

    Brown, T.G.; Casini, G.; Churakov, G.F.


    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings

  4. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.


    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  5. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory (United States)

    Kuhlman, J. M.


    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  6. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing (United States)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.


    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  7. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.


    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  8. Configuration Management Program Plan

    International Nuclear Information System (INIS)


    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  9. The Realization and Study of Optical Wings (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  10. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  11. Veins Improve Fracture Toughness of Insect Wings (United States)

    Dirks, Jan-Henning; Taylor, David


    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  12. Effect of leading edge roundness on a delta wing in wing-rock motion (United States)

    Ng, T. Terry; Malcolm, Gerald N.


    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  13. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program (United States)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.


    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  14. Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results (United States)

    Vicroy, Dan D.


    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented.

  15. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team


    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  16. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena (United States)

    Kegerise, Michael A.; Neuhart, Dan H.


    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  17. On (v,k)-configurations

    International Nuclear Information System (INIS)

    Malyshev, F M; Tarakanov, V E


    New combinatorial objects, which we call (v,k)-configurations, are introduced and studied. They occur as a result of weakening the conditions defining well-known combinatorial objects, the (v,k,λ)-configurations. Existence results for (v,k)-configurations are proved and methods for constructing them are indicated, based, in particular, upon group-theoretic constructions and quadratic residues modulo a prime. An extended list of examples of (v,k)-configurations, including several infinite series, is presented

  18. Low-speed wind tunnel test results of the Canard Rotor/Wing concept (United States)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen


    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  19. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle (United States)

    Jegley, Dawn C.; Velicki, Alexander


    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  20. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult (United States)

    Sapir, Nir; Elimelech, Yossef


    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  1. Configuring the autism epidemic

    DEFF Research Database (Denmark)

    Seeberg, Jens; Christensen, Fie Lund Lindegaard


    is skewed in favour of boys, and girls with autism tend to be diagnosed much later than boys. Building and further developing the notion of ‘configuration’ of epidemics, this article explores the configuration of autism in Denmark, with a particular focus on the health system and social support to families...... with children diagnosed with autism, seen from a parental perspective. The article points to diagnostic dynamics that contribute to explaining why girls with autism are not diagnosed as easily as boys. We unfold these dynamics through the analysis of a case of a Danish family with autism.......Autism has been described as an epidemic, but this claim is contested and may point to an awareness epidemic, i.e. changes in the definition of what autism is and more attention being invested in diagnosis leading to a rise in registered cases. The sex ratio of children diagnosed with autism...

  2. Software Configurable Multichannel Transceiver (United States)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter


    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  3. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.


    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  4. Flow field analysis for a class of waverider configurations (United States)

    Moitra, Anutosh


    A package of computer codes for analysis of flow fields for waverider configurations is described. The package consists of a surface/volume grid generator and a finite-volume flow solver. The grid generator defines body geometries and computational grids by an algebraic homotopy procedure. The algebraic procedure is versatile in its application and can readily generate configurations in the class of blended wing-body geometries. This code has the ability to produce a wide variety of geometries in the given class with varying geometrical attributes. The flow solver employs a finite-volume formation and solves the explicit, Runge-Kutta integration technique. The method or flow simulation incorporates several techniques for acceleration of the convergence of the interaction process and an entropy corrected enthalpy damping procedure for efficient computation of high Mach number flows.

  5. Semi-automated quantitative Drosophila wings measurements. (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan


    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  6. Application of Configurators in Networks

    DEFF Research Database (Denmark)

    Malis, Martin; Hvam, Lars


    Shorter lead-time, improved quality of product specifications and better communication with customers and suppliers are benefits derived from the application of configurators. Configurators are knowledge-based IT-systems that can be applied to deal with product knowledge and to support different...... processes in a company. Traditionally, configurators have been used as an internal tool. In this paper focus will be on the application of configurators in a network of companies, and a procedure for developing product configurators in a network of companies will be presented. The aim is to present...... a structured guideline, tools and methods on how to successfully develop configurators in a network perspective. Findings presented in this paper are supported by research in a case company. The results from the empirical work show a huge potential for the application of configurators in networks of companies....

  7. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs (United States)


    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  8. Unemployment and Right-Wing Extremist Crime


    Falk, Armin; Zweimüller, Josef


    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  9. Aerodynamic Characteristics of Two Rotary Wing UAV Designs (United States)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.


    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  10. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings. (United States)

    Dobens, Alexander C; Dobens, Leonard L


    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  11. Simulator configuration management system

    International Nuclear Information System (INIS)

    Faulent, J.; Brooks, J.G.


    The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database

  12. Total equipment parts configuration

    International Nuclear Information System (INIS)

    Ferrare, J.


    Florida Power ampersand Lights's (FP ampersand L's) Turkey Point units were built prior to the establishment of American Society of Mechanical Engineers' Sec. III requirements. Since that time, FP ampersand L has voluntarily committed to procuring some spare and replacement parts in compliance with the ordering requirements of ASME Sec. III. New subsystems were designed according to ASME Sec. III requirements. In 1978, 10CFR21 of the Code of Federal Regulations was federally mandated. Environmental qualification concerns and the Three Mile Island incident further complicated the stocking and ordering of spare and replacement parts. Turkey Point assembled a team of quality assurance, quality control, and engineering people and obtained permission to directly access the store department computer so that catalog descriptions could be quickly made available for use by the plant. The total equipment parts configuration (TEPC) system was designed and developed under the direction of the procurement document review team at the Turkey Point nuclear plant. The system is a network of related computer data bases that identifies the equipment at the plant. The equipment (or components that make up a piece of equipment) is identified by a tag/component code system. Each component is further broken down by the manufacturer's parts list or bill of material. A description of the data available to the user, the ways these data can be accessed and displayed, and a description of the data bases and their relation to each other are summarized in this paper

  13. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Ployzou, W.N.


    The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research

  14. Low-Reynolds Number Aerodynamics of an 8.9 Percent Scale Semispan Swept Wing for Assessment of Icing Effects (United States)

    Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic


    Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future

  15. The leading-edge vortex of swift-wing shaped delta wings (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria


    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  16. Fruit fly scale robots can hover longer with flapping wings than with spinning wings. (United States)

    Hawkes, Elliot W; Lentink, David


    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  17. Flow Modulation and Force Control of Flapping Wings (United States)


    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  18. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger


    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  19. A galactic microquasar mimicking winged radio galaxies. (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M


    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  20. Flow structure of vortex-wing interaction (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  1. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization


    Deng, Shuanghou; Percin, Mustafa; van Oudheusden, Bas


    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake. Six components of forces and moments were captured simultaneously by use of a miniature force sensor.

  2. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    NARCIS (Netherlands)

    Deng, S.; Percin, M.; Van Oudheusden, B.


    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake.

  3. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing (United States)

    Wissa, Aimy A.

    compliant spine design insert. A research ornithopter platform was tested in air and in vacuum as well as in free and constrained flight with various compliant spine designs inserted in its wings. Results from the constrained flight tests indicated that the ornithopter with a compliant spine inserted in its wings consumed 45% less electrical power and produced 16% of its weight in additional lift, without incurring any thrust penalties. Results from, the vacuum constrained tests attributed these benefits to aerodynamic effects rather than inertial effects. Free flight tests were performed at Wright Patterson Air Force Base, which houses the largest indoor flight laboratory in the country. The wing kinematics along with the vehicle dynamics were captured during this testing using ViconRTM motion tracking cameras. These flight tests proved to be successful in producing consistent and repeatable flight data over more than eight free flight flapping cycles of free flight and validated a new and novel testing technique. The ornithopter body dynamics were shown to be significant, i.e. +/-4gs. Inserting the compliant spine into the leading edge spar of the ornithopter during free flight reduced the baseline configuration body vertical center of mass positive acceleration by 69%, which translates into overall lift gains. It also increased the horizontal propulsive force by 300%, which translates into thrust gains.

  4. The leading-edge vortex of swift wing-shaped delta wings. (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria


    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  5. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.


    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  6. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan. (United States)

    Otaki, Joji M


    To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.

  7. Aeroelastic Optimization Design for High-Aspect-Ratio Wings with Large Deformation

    Directory of Open Access Journals (Sweden)

    Changchuan Xie


    Full Text Available This paper presents a framework of aeroelastic optimization design for high-aspect-ratio wing with large deformation. A highly flexible wing model for wind tunnel test is optimized subjected to multiple aeroelastic constraints. Static aeroelastic analysis is carried out for the beamlike wing model, using a geometrically nonlinear beam formulation coupled with the nonplanar vortex lattice method. The flutter solutions are obtained using the P-K method based on the static equilibrium configuration. The corresponding unsteady aerodynamic forces are calculated by nonplanar doublet-lattice method. This paper obtains linear and nonlinear aeroelastic optimum results, respectively, by the ISIGHT optimization platform. In this optimization problem, parameters of beam cross section are chosen as the design variables to satisfy the displacement, flutter, and strength requirements, while minimizing wing weight. The results indicate that it is necessary to consider geometrical nonlinearity in aeroelastic optimization design. In addition, optimization strategies are explored to simplify the complex optimization process and reduce the computing time. Different criterion values are selected and studied for judging the effects of the simplified method on the computing time and the accuracy of results. In this way, the computing time is reduced by more than 30% on the premise of ensuring the accuracy.

  8. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing. (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef


    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  9. Development of an integrated configuration management/flight director system for piloted STOL approaches (United States)

    Hoh, R. H.; Klein, R. H.; Johnson, W. A.


    A system analysis method for the development of an integrated configuration management/flight director system for IFR STOL approaches is presented. Curved descending decelerating approach trajectories are considered. Considerable emphasis is placed on satisfying the pilot centered requirements (acceptable workload) as well as the usual guidance and control requirements (acceptable performance). The Augmentor Wing Jet STOL Research Aircraft was utilized to allow illustration by example, and to validate the analysis procedure via manned simulation.

  10. Design of a flight director/configuration management system for piloted STOL approaches (United States)

    Hoh, R. H.; Klein, R. H.; Johnson, W. A.


    The design and characteristics of a flight director for V/STOL aircraft are discussed. A configuration management system for piloted STOL approaches is described. The individual components of the overall system designed to reduce pilot workload to an acceptable level during curved, decelerating, and descending STOL approaches are defined. The application of the system to augmentor wing aircraft is analyzed. System performance checks and piloted evaluations were conducted on a flight simulator and the results are summarized.

  11. Reference frame for Product Configuration

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur


    This paper presents a reference frame for configuration. The reference frame is established by review of existing literature, and consequently it is a theoretical frame of reference. The review of literature shows a deterioration of the understanding of configuration. Most recent literature reports...

  12. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt


    conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  13. Experimental study of the vortex flow behavior on a generic fighter wing at subsonic and transonic speeds (United States)

    Erickson, Gary E.; Rogers, Lawrence W.


    A subsonic and transonic investigation of the vortex flow behavior of a generic fighter configuration with 55-deg cropped delta wing has been conducted in order to improve current understanding of vortical motions on a wing with deflected leading edge flap at moderate and high angles-of-attack. The leading edge vortex strength was reduced, and the vortex was flatter and closer to the wing surface, as the Mach number increased. Transonically, at high angles-of-attack, the test data suggested the development of a cross-flow shock wave above the vortex sheet which coexisted with a rear shock wave. Subsonically, a deflected leading edge flap was able to sustain a concentrated vortex on the forward-facing surface.

  14. Scaling of Hybrid Wing-Body-Type Aircraft: Exploration Through High-Fidelity Aerodynamic Shape Optimization (United States)

    Reist, Thomas A.

    Unconventional aircraft configurations have the potential to reduce aviation's contribution to climate change through substantial reductions in fuel burn. One promising configuration which has received much attention is the hybrid wing-body (HWB). Due to the lack of design experience for unconventional configurations, high-fidelity design and optimization methods will be critical in their development. This thesis presents the application of a gradient-based aerodynamic shape optimization algorithm based on the Reynolds-averaged Navier-Stokes equations to the aerodynamic design of conventional tube-and-wing (CTW) and HWB aircraft. The optimal aerodynamic shapes and performance for a range of aircraft sizes including regional, narrow-body, midsize, and wide-body classes are found so as to characterize the aerodynamic efficiency benefits of the HWB configuration with respect to equivalent CTW designs. Trim-constrained drag minimization is performed at cruise, with a large design space of over 400 design variables. The smaller optimized HWBs, including the regional and narrow-body classes, while more aerodynamically efficient, burn at least as much fuel as to the equivalently optimized CTWs due to their increased weight, while the larger wide-body-class HWB has almost 11% lower cruise fuel burn. To investigate alternative configurations which may yield improved efficiency, exploratory optimizations with significant geometric freedom are then performed, resulting in a set of novel shapes with a more slender lifting fuselage and distinct wings. Based on these exploratory results, new lifting-fuselage configurations (LFCs) are designed. The slenderness of the LFC fuselage decreases with aircraft size, such that, for the largest class, the LFC reverts to a classical HWB shape. This new configuration offers higher aerodynamic efficiency than the HWBs, with the smaller classes seeing the largest benefit from the new configuration. This new lifting-fuselage concept offers 6

  15. Low-Speed Wind-Tunnel Test of an Unpowered High-Speed Stoppable Rotor Concept in Fixed-Wing Mode (United States)

    Lance, Michael B.; Sung, Daniel Y.; Stroub, Robert H.


    An experimental investigation of the M85, a High Speed Rotor Concept, was conducted at the NASA Langley 14 x 22 foot Subsonic Tunnel, assisted by NASA-Ames. An unpowered 1/5 scale model of the XH-59A helicopter fuselage with a large circular hub fairing, two rotor blades, and a shaft fairing was used as a baseline configuration. The M85 is a rotor wing hybrid aircraft design, and the model was tested with the rotor blade in the fixed wing mode. Assessments were made of the aerodynamic characteristics of various model rotor configurations. Variation in configurations were produced by changing the rotor blade sweep angle and the blade chord length. The most favorable M85 configuration tested included wide chord blades at 0 deg sweep, and it attained a system lift to drag ratio of 8.4.

  16. Integration effects of underwing forward- and rearward-mounted separate-flow, flow-through nacelles on a high-wing transport (United States)

    Lamb, M.; Abeyounis, W. K.


    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 to 4.0 degrees to determine the integration effects of pylon-mounted underwing forward and rearward separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the installed drag of the nacelle/pylon in the rearward location was slightly less than that of the nacelle/pylon in the forward location. This reduction was due to the reduction in calculated skin friction of the nacelle/pylon configuration. In all cases the combined value of form, wave, and interference drag was excessively high. However, the configuration with the nacelle/pylon in a rearward location produced an increase in lift over that of the basic wing-body configuration.

  17. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-Foot Wind Tunnel (United States)

    Felker, Fort F.


    A test of a 0.658-scale V-22 rotor and wing was conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The principal objectives of the test were to measure the wing download in hover for a variety of test configurations, and rotor performance in forward flight. Also, a limited amount of data on rotor performance in vertical climb were acquired. This paper presents the results from the test with predictions from appropriate analytical methods. A new method for presenting and interpreting wing surface pressure data in hover is described, and this method shows that the wing flap can produce substantial lift loads in hover. The rotor performance in vertical climb was underpredicted by CAMRAD/JA and by the free wake analysis EHPIC. A simple momentum theory is presented which provides good predictions of rotor performance in forward flight.

  18. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  19. Blended Wing Body Concept Development with Open Rotor Engine Intergration (United States)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.


    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  20. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.


    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  1. Flapping wing aerodynamics: from insects to vertebrates. (United States)

    Chin, Diana D; Lentink, David


    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  2. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.


    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  3. Bat-inspired integrally actuated membrane wings with leading-edge sensing. (United States)

    Buoso, Stefano; Dickinson, Benjamin T; Palacios, Rafael


    This paper presents a numerical investigation on the closed-loop performance of a two-dimensional actuated membrane wing with fixed supports. The proposed concept mimics aerodynamic sensing and actuation mechanisms found in bat wings to achieve robust outdoor flight: firstly, variable membrane tension, which is obtained in bats through skeleton articulation, is introduced through a dielectric-elastomer construction; secondly, leading-edge airflow sensing is achieved with bioinspired hair-like sensors. Numerical results from a coupled aero-electromechanical model show that this configuration can allow for the tracking of prescribed lift coefficient signals in the presence of disturbances from atmospheric gusts. In particular, disturbance measurements through the hair sensor (a feedforward control strategy) are seen to provide substantial advantage with respect to a reactive (feedback) control strategy determining a reduction of the oscillations of the lift coefficient.

  4. Principle of bio-inspired insect wing rotational hinge design (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  5. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  6. Effect of winglets on a first-generation jet transport wing. 5: Stability characteristics of a full-span wing with a generalized fuselage at high subsonic speeds (United States)

    Jacobs, P. F.


    The effects of winglets on the static aerodynamic stability characteristics of a KC-135A jet transport model at high subsonic speeds are presented. The investigation was conducted in the Langley 8 foot transonic pressure tunnel using 0.035-scale wing panels mounted on a generalized research fuselage. Data were taken over a Mach number range from 0.50 to 0.95 at angles of attack ranging from -12 deg to 20 deg and sideslip angles of 0 deg, 5 deg, and -5 deg. The model was tested at two Reynolds number ranges to achieve a wide angle of attack range and to determine the effect of Reynolds number on stability. Results indicate that adding the winglets to the basic wing configuration produces small increases in both lateral and longitudinal aerodynamic stability and that the model stability increases slightly with Reynolds number. The winglets do increase the wing bending moments slightly, but the buffet onset characteristics of the model are not affected by the winglets.

  7. A Software Configuration Management Course

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred


    curriculum. It is either not taught at all or is just a minor part of a general course in software engineering. In this paper, we report on our experience with giving a full course entirely dedicated to Software Configuration Management topics and start a discussion of what ideally should be the goal......Software Configuration Management has been a big success in research and creation of tools. There are also many vendors in the market of selling courses to companies. However, in the education sector Software Configuration Management has still not quite made it - at least not into the university...

  8. A Software Configuration Management Course

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred


    Software Configuration Management has been a big success in research and creation of tools. There are also many vendors in the market of selling courses to companies. However, in the education sector Software Configuration Management has still not quite made it - at least not into the university...... curriculum. It is either not taught at all or is just a minor part of a general course in software engineering. In this paper, we report on our experience with giving a full course entirely dedicated to Software Configuration Management topics and start a discussion of what ideally should be the goal...

  9. Low Reynolds Number Aerodynamic Characteristics of Several Airplane Configurations Designed to Fly in the Mars Atmosphere at Subsonic Speeds (United States)

    Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.


    A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.

  10. The role of wing kinematics of freely flying birds downstream the wake of flapping wings (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi


    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  11. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith


    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  12. Aeroelastic Analysis of Modern Complex Wings (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.


    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  13. Wind-tunnel investigation of aerodynamic performance, steady amd vibratory loads, surface temperatures, and acoustic characteristics of a large-scale twin-engine upper-surface blown jet-flap configuration (United States)


    Static and wind-on tests were conducted to determine the aerodynamic characteristics of and the effects of jet impingement on the wing of a large scale upper surface blown configuration powered with an actual turbine engine. The wing and flaps were instrumented with experimental dual-sensing transducer units consisting of a fluctuating pressure gage, a vibratory accelerometer, and a surface mounted alumel thermocouple. Noise directivity and spectral content measurements were obtained for various flap configurations and various engine thrust settings to provide baseline noise data for other upper surface blown configurations.

  14. Active Twist Control for a Compliant Wing Structure, Phase I (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  15. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc


    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  16. Design and Optimisation of Fuel Tanks for BWB Configurations

    Directory of Open Access Journals (Sweden)

    Goraj Zdobyslaw


    Full Text Available This paper describes assumptions, goals, methods, results and conclusions related to fuel tank arrangement of a flying wing passenger airplane configuration. A short overview of various fuel tank systems in use today of different types of aircraft is treated as a starting point for designing a fuel tank system to be used on very large passenger airplanes. These systems may be used to move fuel around the aircraft to keep the centre of gravity within acceptable limits, to maintain pitch and lateral balance and stability. With increasing aircraft speed, the centre of lift moves aft, and for trimming the elevator or trimmer must be used thereby increasing aircraft drag. To avoid this, the centre of gravity can be shifted by pumping fuel from forward to aft tanks. The lesson learnt from this is applied to minimise trim drag by moving the fuel along the airplane. Such a task can be done within coming days if we know the minimum drag versus CG position and weight value. The main part of the paper is devoted to wing bending moment distribution. A number of arrangements of fuel in airplane tanks are investigated and a scenario of refuelling - minimising the root bending moments - is presented. These results were obtained under the assumption that aircraft is in long range flight (14 hours, CL is constant and equal to 0.279, Specific Fuel Consumption is also constant and that overall fuel consumption is equal to 20 tons per 1 hour. It was found that the average stress level in wing structure is lower if refuelling starts from fuel tanks located closer to longitudinal plane of symmetry. It can influence the rate of fatigue.

  17. An analysis of the takeoff and landing performance of a jet-powered STOL augmentor wing design (United States)

    Post, S. E.; Gambucci, B. J.; Holzhauser, C. A.


    A preliminary study of the takeoff and landing performance characteristics of a swept wing airplane with augmented jet flap, designed for STOL operation and low noise is presented. The study is based on aerodynamic data from wind tunnel tests of a large-scale swept augmentor wing model, scaled up to a 48,000 pound airplane. Engine characteristics are based on a turbo fan with a fan pressure ratio of 2.5 delivering the major portion of the thrust to the augmentor flap. A description of the overall airplane configuration, the propulsion system, and the use of the aerodynamics is presented. To assess the STOL performance of the airplane, takeoff and landing distances and flight path capabilities were computed at various flap deflections and thrust levels. After evaluating these results in terms of desired STOL performance with required margins, basic takeoff and landing configurations were chosen.

  18. Airport Configuration Prediction, Phase I (United States)

    National Aeronautics and Space Administration — There is presently poor knowledge throughout the National Airspace System (NAS) of the airport configurations currently in use at each airport. There is even less...

  19. Belene NPP project configuration management

    International Nuclear Information System (INIS)

    Matveev, A.


    The configuration management includes: change identification; change assessment; change coordination; change approval or rejection; Change introduction. One of the main tasks while implementing the above processes is the analysis of the effect of one change upon all the related elements

  20. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  1. Stability and transition on swept wings (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid


    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  2. Bayesian image restoration, using configurations


    Thorarinsdottir, Thordis


    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...

  3. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L


    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  4. Integrated multi-disciplinary design of a sailplane wing


    Strauch, Gregory J.


    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  5. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering


    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  6. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia


    , the lift prediction for the rigid wing is in good agreement with the estimated lift coefficients derived from the wind tunnel test data. Due to the movement of the VCCTEF during the wind tunnel test, uncertainty in the lift prediction due to the indicated variations of the VCCTEF deflection is studied. The results show a significant spread in the lift prediction which contradicts the consistency in the aerodynamic measurements, thus suggesting that the indicated variations as measured by the VICON system may not be reliable. The lift prediction of the flexible wing agrees very well with the measured lift curve for the baseline configuration. The computed bending deflection and wash-out twist of the flexible wing also match reasonably well with the aeroelastic deflection measurements. The results demonstrate the validity of the aerodynamic-structural tool for use to analyze aerodynamic performance of flexible wings.

  7. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.


    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  8. Coandă configured aircraft: A preliminary analytical assessment (United States)

    Hamid, M. F. Abdul; Gires, E.; Harithuddin, A. S. M.; Abu Talib, A. R.; Rafie, A. S. M.; Romli, F. I.; Harmin, M. Y.


    The interest in the use of flow control for enhanced aerodynamic performance has grown, particularly in the use of jets (continuous, synthetic, pulsed, etc.), compliant surface, vortex-cell, and others. It has been widely documented that these active control concepts can dramatically alter the behaviour of aerodynamic components like airfoils, wings and bodies. In this conjunction, with the present demands of low-cost and efficient flights, the use of Coandă effect as a lift enhancer has attracted a lot of interest. Tangential jets that take advantage of the Coandă effect to closely follow the contours of the body have been considered to be simple and particularly effective. For this case, a large mass of surrounding air can be entrained, hence amplifying the circulation. In an effort to optimize the aerodynamic performance of an aircraft, such effect will be critically reviewed by taking advantage of recent progress. For this purpose, in this study, the design of a Coandă-configured aircraft wing will be mathematically idealized and modelled as a two-dimensional flow problem.

  9. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)



    Dec 14, 2011 ... Figure 12. Thin spline plate graphics for the species belonging to the genus Cerceris. Figure 13. Fore wing landmarks of the significant wing characteristics in the honeybee Apis mellifera. Linnaeus. stated as the traditional wing morphometry that enables the practical discrimination of the honeybee (Apis sp ...

  10. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.


    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  11. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.


    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  12. Low Reynolds Number Wing Transients in Rotation and Translation (United States)

    Jones, Anya; Schlueter, Kristy


    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  13. Air Base Wing and Air Mobility Wing Consolidating on AMC-LED Joint Bases: A Delphi Study (United States)



  14. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering


    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  15. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis = (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  16. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.


    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  17. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi


    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  18. Oblique-Flying-Wing Supersonic Transport Airplane (United States)

    Van Der Velden, Alexander J. M.


    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  19. Chemical evaluation of winged beans ( Psophocarpus ...

    African Journals Online (AJOL)

    Chemical evaluation of winged beans ( Psophocarpus Tetragonolobus ), Pitanga cherries ( Eugenia uniflora) and orchid fruit ( Orchid fruit myristic a) ... The acid value ranged between 0.71 and 2.82 mg/KOH/g while iodine value ranged between 91.15 and 144.57. The refractive index ranged between 1.465 and 1.474 in all ...

  20. ``Schooling'' of wing pairs in flapping flight (United States)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration


    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  1. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model (United States)

    Suzuki, Kosuke; Yoshino, Masato


    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  2. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins. (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S


    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Compressibility and Leading-Edge Bluntness Effects for a 65 Deg Delta Wing (United States)

    Luckring, J. M.


    A 65 deg. delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the compressibility and bluntness effects primarily at a Reynolds number of 6 million from this data set. Emphasis is placed upon on the onset and progression of leading-edge vortex separation, and compressibility is shown to promote this separation. Comparisons with recent publications show that compressibility and Reynolds number have opposite effects on blunt leading edge vortex separation

  4. Reynolds Number and Leading-Edge Bluntness Effects on a 65 Deg Delta Wing (United States)

    Luckring, J. M.


    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  5. Insights on the thermal impacts of wing colorization of migrating birds on their skin friction drag and the choice of their flight route. (United States)

    Hassanalian, M; Ayed, S Ben; Ali, M; Houde, P; Hocut, C; Abdelkefi, A


    The thermal effects of wing color in flight is investigated in four species of birds with respect to their flight routes, migration time, and geometric and behavioral characteristics. Considering the marine and atmospheric characteristics of these flight routes, a thermal analysis of the birds' wings is performed during their migration. The surrounding fluxes including the ocean flux and the solar irradiance are considered in an energy balance in order to determine the skin temperature of both sides of the wing. Applying the Blasius solution for heated boundary layers, it is shown that the color configuration of these migrating birds, namely black on the top side of the wings and white on the bottom side of the wings ("countershading"), results in a skin drag reduction, if compared to some other configurations, when both day and night are taken into consideration. This drag reduction can be considered as one of the effective factors for long endurance of these migrating birds. This research can provide the evolutionary perspective behind the colorization of these migrating birds. Copyright © 2018 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Thordis Linda Thorarinsdottir


    Full Text Available In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3 X 3 and 5 X 5 configurations and examples of the performance of the procedure are given.

  7. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  8. Projective configurations in projectivegeometrical drawings

    Directory of Open Access Journals (Sweden)

    Ivashchenko Andrey Viktorovich


    Full Text Available The article focuses on the optimization of the earlier discussed computer method of obtaining new forms of polyhedra based on projective geometry drawings (trace Diagrams.While working on getting new multifaceted forms by projective geometry methods based on the well-known models of polyhedra on the first stage of the work it is required to calculate the parameters of projective geometry drawings, and then to build them. This is an often used apparatus of analytical geometry. According to it, at first the parameters of the polyhedron (core system of planes are calculated, then we obtain the equation of the plane of the face of the polyhedron, and finally we obtain the equations of lines the next plane faces on the selected curve plane. At each stage of application such a method requires the use of the algorithms of floating point arithmetic, on the one hand, leads to some loss of accuracy of the results and, on the other hand, the large amount of computer time to perform these operations in comparison with integer arithmetic operations.The proposed method is based on the laws existing between the lines that make up the drawing - the known configurations of projective geometry (complete quadrilaterals, configuration of Desargues, Pappus et al..The authors discussed in detail the analysis procedure of projective geometry drawing and the presence of full quadrilaterals, Desargues and Pappus configurations in it.Since the composition of these configurations is invariant with respect to projective change of the original nucleus, knowing them, you can avoid the calculations when solving the equations for finding direct projective geometry drawing analytically, getting them on the basis of belonging to a particular configuration. So you can get a definite advantage in accuracy of the results, and in the cost of computer time. Finding these basic configurations significantly enriches the set of methods and the use of projective geometry drawings.

  9. The biomechanical origin of extreme wing allometry in hummingbirds. (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L


    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  10. Knowledge Engineering for Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur


    usability of the installation. In our case, we have rationalized that this should be done with embedded configuration, and the expected result is enhanced usability. The suggested method is deeply rooted in system theory. It draws on the emergent properties expected from the system, and tries to embed...... step can be said to be two-fold: first, to construct a system based on this philosophy and to show that it actually leads to the expected results. And second, to further develop the modelling tools and methods for supporting the making of embedded configuration systems, or in essence, a distributed...

  11. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis Linda


    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary...... configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for the salt and pepper noise. The inference in the model is discussed...

  12. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis

    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary...... configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed...

  13. Instance-specific algorithm configuration

    CERN Document Server

    Malitsky, Yuri


    This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization.    The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014,

  14. On Noise Assessment for Blended Wing Body Aircraft (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.


    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  15. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle (United States)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.


    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  16. Computational methods for stellerator configurations

    International Nuclear Information System (INIS)

    Betancourt, O.


    This project consists of two parallel objectives. On the one hand, computational techniques for three dimensional magnetic confinement configurations were developed or refined and on the other hand, this new techniques were applied to the solution of practical fusion energy problems or the techniques themselves were transferred to other fusion researcher for practical use in the field

  17. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)



    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  18. Environmental restoration project configuration control

    International Nuclear Information System (INIS)

    Hutterman, L.L.


    This paper provides an overview of the approach that Westinghouse Idaho Nuclear Company, Inc. (WINCO) is using for the implementation of the configuration control requirements for a major system acquisition under the guidance of US Department of Energy (DOE) Order 4700.1, open-quotes Project Management System,close quotes for environmental restoration. The two major features of the WINCO environmental restoration approach relate to (1) the product and (2) the maintenance of the baseline for many sites in different phases at the same time. Historically, a project has typically produced a product. Environmental restoration in some ways produces no typical project product. Essentially, what is produced and what configuration control management is exercised on is one of the following: (1) the development of clean dirt, (2) the documentation to support clean dirt, or (3) the track record of each of the sites. It is the latter approach that this paper deals with. This approach is unique in that there are four baselines [cost, schedule, scope, and technical (the track record product)] rather than the typical three. This is essential in configuration management due to the lack of a uniquely identifiable product for each site. Essentially, the philosophy behind the four-part configuration controls allows the technical baseline to fulfill the function typically met by the identifiable product

  19. Product Configuration Systems and Productivity

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Edwards, Kasper


    Twelve companies have been interviewed with the purpose to get information about technical, economic and organisational matters in respect of Product Configuration Systems (PCS).Combinations of qualitative interviews and quantitative scoring have been used in ranking expected and realized results...


    NARCIS (Netherlands)



    The ground-state energy of a system consisting of four identical bosons or fermions is calculated using the Yakubovsky differential equations which are formulated in configuration space. The solution is restricted to include s waves only. Spline approximation and orthogonal collocation reduce the

  1. NCCDS configuration management process improvement (United States)

    Shay, Kathy


    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  2. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil


    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total...

  3. Typology of Product Configuration Systems

    DEFF Research Database (Denmark)

    Jensen, Klaes Ladeby; Edwards, Kasper; Haug, Anders


    Many organisations are moving from mass production to mass customization. Product configuration systems (PCS) are increasingly seen as an interesting option for firms who wish to pursue a strategy with a high degree of product variance while retaining a low cost of specifying the product. To become...

  4. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane (United States)


    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  5. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings (United States)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.


    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  6. Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data (United States)

    Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael


    Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.

  7. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.


    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  8. The optimal design of UAV wing structure (United States)

    Długosz, Adam; Klimek, Wiktor


    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  9. Adjoint-based optimization for flapping wings (United States)

    Xu, Min; Wei, Mingjun


    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  10. Dynamic recurrent neural networks for stable adaptive control of wing rock motion (United States)

    Kooi, Steven Boon-Lam

    suppress the wing rock motion in AFTI/F-16 testbed aircraft having the delta wing configuration. The potential implementation as well as the practicality of the control methodology are also discussed.

  11. Quantifying the dynamic wing morphing of hovering hummingbird. (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao


    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  12. Logistics Supply of the Distributed Air Wing (United States)


    Event Graph The Consumption Process first instantiates the variables . The model follows a conveyor belt pattern, whereby after processing an any part of the world. A capstone project, conducted by the system engineering curriculum, proposed to distribute the air assets from the aircraft...SUBJECT TERMS distributed air wing, logistics, supply, unmanned air systems , cargo UAS, unmanned systems , discrete event simulation, vehicle routing

  13. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)



    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  14. Topology Optimization of an Aircraft Wing (United States)


    can combine the advantages of a variable stiffness design with- out the use of actuators. Curved beams, which couple torsion and bending , counteract... torsional deflection, control natural frequency, exploit coupling of bending and tor- sion to control flutter, reduce thickness to chord ratios due to...disregarded any bending or torsional effects caused by displacement of the wing, and was thus not considered. Therefore, the initial design analysis

  15. Tracing the evolution of avian wing digits. (United States)

    Xu, Xing; Mackem, Susan


    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Unsteady fluid dynamics around a hovering wing (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen


    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  17. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps (United States)

    Grantz, A. C.


    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  18. A viscous/potential flow interaction analysis method for multi-element infinite swept wings, volume 1 (United States)

    Dvorak, F. A.; Woodward, F. A.


    An analysis method and computer program have been developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element infinite swept wings in incompressible flow. The wing configuration consisting at the most of a slat, a main element and double slotted flap is represented in the method by a large number of panels. The inviscid pressure distribution about a given configuration in the normal chord direction is determined using a two dimensional potential flow program employing a vortex lattice technique. The boundary layer development over each individual element of the high lift configuration is determined using either integral or finite difference boundary layer techniques. A source distribution is then determined as a function of the calculated boundary layer displacement thickness and pressure distributions. This source distribution is included in the second calculation of the potential flow about the configuration. Once the solution has converged (usually after 2-5 iterations between the potential flow and boundary layer calculations) lift, drag, and pitching moments can be determined as functions of Reynolds number.

  19. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface (United States)

    Boyd, D. Douglas, Jr.


    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  20. Configuring Symantec AntiVirus

    CERN Document Server

    Shimonski, Robert


    This is the only book that will teach system administrators how to configure, deploy, and troubleshoot Symantec Enterprise Edition in an enterprise network. The book will reflect Symantec''s philosophy of "Centralized Antivirus Management." For the same reasons that Symantec bundled together these previously separate products, the book will provide system administrators with a holistic approach to defending their networks from malicious viruses. This book will also serve as a Study Guide for those pursuing Symantec Product Specialist Certifications.Configuring Symantec AntiVirus Enterprise Edition contains step-by-step instructions on how to Design, implement and leverage the Symantec Suite of products in the enterprise.ØFirst book published on market leading product and fast-growing certification. Despite the popularity of Symantec''s products and Symantec Product Specialist certifications, there are no other books published or announced.ØLess expensive substitute for costly on-sight training. Symantec off...

  1. Automatic creation of simulation configuration

    International Nuclear Information System (INIS)

    Oudot, G.; Poizat, F.


    SIPA, which stands for 'Simulator for Post Accident', includes: 1) a sophisticated software oriented workshop SWORD (which stands for 'Software Workshop Oriented towards Research and Development') designed in the ADA language including integrated CAD system and software tools for automatic generation of simulation software and man-machine interface in order to operate run-time simulation; 2) a 'simulator structure' based on hardware equipment and software for supervision and communications; 3) simulation configuration generated by SWORD, operated under the control of the 'simulator structure' and run on a target computer. SWORD has already been used to generate two simulation configurations (French 900 MW and 1300 MW nuclear power plants), which are now fully operational on the SIPA training simulator. (Z.S.) 1 ref

  2. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model (United States)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.


    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  3. Microsoft System Center Configuration Manager

    CERN Document Server

    Sandbu, Marius


    This book is a step-by-step tutorial that guides you through the key steps in implementing best solutions for high availability and performance tuning. It is split into two distinct approaches: client and site side HA and optimization.Microsoft SCCM High Availability and Performance Tuning is for IT professionals and consultants working with Configuration Manager who wish to learn the skills to deploy a redundant and scalable solution.

  4. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.


    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  5. Drupal 7 Multi Sites Configuration

    CERN Document Server

    Butcher, Matt


    Follow the creation of a multi-site instance with Drupal. The practical examples and accompanying screenshots will help you to get multiple Drupal sites set up in no time. This book is for Drupal site builders. It is assumed that readers are familiar with Drupal already, with a basic grasp of its concepts and components. System administration concepts, such as configuring Apache, MySQL, and Vagrant are covered but no previous knowledge of these tools is required.

  6. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets

    Directory of Open Access Journals (Sweden)

    Jifei WANG


    Full Text Available In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition (CST and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.

  7. Configuration Management Process Assessment Strategy (United States)

    Henry, Thad


    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  8. Dynamic configuring of the metastructure

    Directory of Open Access Journals (Sweden)

    Katarzyna Grzybowska


    Full Text Available Background: A trend to create groups of enterprises can be observed; whose model of operation makes use of assets of large, small and medium sized companies. It is a higher level of organisational changes. This trend is described as network organisation. It is based on the so called supply chain. The Authors of this paper proposed authors' analysis dynamic configuration of the supply chain and presents an example. The supply chain is a metastructure. It is an intermediate form between a single enterprise (microstructure/microsystem and the global economy (macrostructure/macrosystem. The metastructure is characterized by a dynamic holarchy of mutually cooperating holons (enterprises. Methods: After a brief discussion of the nature of supply chain (metrastructure and configuration of metastructures, authors present variable supply chains in the light of morphological analysis and presents an example.   Results: The key benefits of this approach are: identifying the characteristics of a supply network and modeling the flow in the entire own supply chain metastructure and possible quick adaptations to new situations. Conclusions: Configuration of a supply chain with the use of a morphological analysis is a basic action, if its goal is to optimally model the flow of goods and implementation of quick adaptation to new situations.     

  9. Wing geometry of Triatoma sordida (Hemiptera: Reduviidae) populations from Brazil. (United States)

    Vendrami, Daniel Pagotto; Obara, Marcos Takashi; Gurgel-Gonçalves, Rodrigo; Ceretti-Junior, Walter; Marrelli, Mauro Toledo


    Triatoma sordida has a widespread distribution in Argentina, Bolivia, Brazil, Paraguay, and Uruguay and is frequently found in peridomestic environments. We investigated size and shape variability of T. sordida wings across Brazil. Field-collected adults from twelve populations were studied. For each individual female, seven landmarks on the right wing were digitalized. Shape variables derived from Procrustes superimposition were used in Principal Component Analysis (PCA). Wing size and shape variations among populations was explored by means of ANOVA. Wing centroid size was significantly different among T. sordida populations; specimens from Bahia (East) were larger than those of Mato Grosso do Sul (West). PCA based on wing shape variables showed low wing shape variability. These results reinforce previous data showing low genetic variability among T. sordida populations from Brazil. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Measurement of shape and deformation of insect wing (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu


    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  11. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers (United States)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)


    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  12. Free vibration analysis of dragonfly wings using finite element method


    M Darvizeh; A Darvizeh; H Rajabi; A Rezaei


    In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...

  13. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight (United States)

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung


    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  14. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers (United States)

    Shields, Matt

    variation in the Cl ,beta derivative. These are purely aerodynamic modes which are demonstrated to be inherently present in LAR wings. To compare the impact of the roll stability derivative at high and low aspect ratios, a model for roll stall is developed which represents the tip vortices as infinite line vortices and estimates their influence on the surface pressure distribution of the wing; results for the roll moment coefficient are favorably compared with experimental data, and are used to compute Cl ,beta. By estimating the induced spanwise lift acting on a rolling wing, the roll damping derivative may also be computed and, along with the roll stability derivative, used to populate a simplified stability matrix for LAR wings. Solving for the eigenvalues of this system of equations at aspect ratios ranging from the near-unity values applicable to MAVs to high aspect ratio configurations reveals fundamentally different stability regimes. At cruise conditions, aspect ratios below 3.3 do not experience significant roll damping and the large magnitudes of roll stall instigate the divergent Dutch roll mode described by an unstable, complex eigenvalue. At higher aspect ratios above AR = 4.6, the eigenvalues cross into the left side of the complex plane and the lateral mode becomes stable, causing the wing to behave in a conventional, high aspect ratio manner. The disparity in lateral stability regimes between high and low aspect ratios at this Reynolds number suggests a potential explanation for why MAVs are prone to lateral instabilities, as their wings are inherently affected by unique flow physics which are not experienced by more conventional aircraft with a longer span.

  15. Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results (United States)

    Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra


    The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.

  16. Folding wings like a cockroach: a review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania.

    Directory of Open Access Journals (Sweden)

    István Mikó

    Full Text Available We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea. It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves.

  17. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  18. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness (United States)

    Stieger, H J


    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  19. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model (United States)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.


    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  20. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.


    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  1. Stopped nucleons in configuration space

    Energy Technology Data Exchange (ETDEWEB)

    Bialas, Andrzej [Jagellonian Univ., Krakow (Poland); Bzdak, Adam [AGH - Univ. of Science and Technology, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    In this note, using the colour string model, we study the configuration space distribution of stopped nucleons in heavy-ion collisions. We find that the stopped nucleons from the target and the projectile end up separated from each other by the distance increasing with the collision energy. In consequence, for the center of mass energies larger than 6 or 10 GeV (depending on the details of the model) it appears that the system created is not in thermal and chemical equilibrium, and the net baryon density reached is likely not much higher than that already present in the colliding nuclei.

  2. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.


    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  3. Example of software configuration management model

    International Nuclear Information System (INIS)

    Roth, P.


    Software configuration management is the mechanism used to track and control software changes and may include the following actions: A tracking system should be established for any changes made to the existing software configuration. Requirement of the configuration management system are the following: - Backup the different software configuration; - Record the details (the date, the subject, the filenames, the supporting documents, the tests, ...) of the changes introduced in the new configuration; - Document all the differences between the different versions. Configuration management allows simultaneous exploitation of one specific version and development of the next version. Minor correction can be perform in the current exploitation version

  4. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1 (United States)

    Mcgehee, C. R.


    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  5. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.


    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  6. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S


    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  7. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S


    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  8. A parametric wing design study for a modern laminar flow wing (United States)

    Koegler, J. A., Jr.


    The results of a parametric wing design study using a modern laminar flow airfoil designed to exhibit desirable stall characteristics while maintaining high cruise performance are presented. It was found that little is sacrificed in cruise performance when satisfying the stall margin requirements if a taper ratio of 0.65 or greater is used.


    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.


    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  10. Folding in and out: passive morphing in flapping wings. (United States)

    Stowers, Amanda K; Lentink, David


    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  11. How the pterosaur got its wings. (United States)

    Tokita, Masayoshi


    Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now

  12. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.


    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  13. Computational methods for stellerator configurations

    International Nuclear Information System (INIS)

    Betancourt, O.


    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings

  14. Vertical and horizontal access configurations

    International Nuclear Information System (INIS)

    Spampinato, P.T.


    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs

  15. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds (United States)

    Erickson, Gary E.


    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  16. Intergration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transport (United States)

    Lamb, Milton; Carlson, John R.; Pendergraft, Odis C., Jr.


    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at freestream Mach numbers from 0.70 to 0.82 and angles of attack from -3.0 to 4.0 deg to determine the integration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the aft-mounted nacelle/pylon produced an increase in lift over that of the wing-body configuration by pressurizing much of the wing lower surface in front of the pylon. For the D-shaped nacelle, a substantial region of supersonic flow over the wing, aft of the lip of the nacelle, cancelled the reduction in drag caused by the increase in pressures ahead of the lip, to increase interference and form drag compared with a similar circular-shaped nacelle. The installed drag of the D=shaped nacelle was essentially the same as that of an aft-mounted circular nacelle from a previous investigation.

  17. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S


    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  18. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim


    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  19. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)


    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  20. Configurations and level structure of 219Rn

    International Nuclear Information System (INIS)

    Sheline, R.K.; Liang, C.F.; Paris, P.


    The level structure of 219 Rn has been studied using the alpha decay of 223 Ra and coincident gamma rays. While only modest changes are required in the level structure, and only above 342.8 keV, severe changes are required throughout the level scheme in the spin assigments. These changes allow the assignment of two sets of anomalous bands with K=5/2 ± and K=3/2 ± . The K=5/2 ± bands have configurations intermediate between the reflection asymmetric configuration and the g 9/2 shell model configuration, while the K=3/2 ± bands have configurations intermediate between the mixed reflection asymmetric configuration and the i 11/2 shell model configuration. Comparison of the systematics of 219 Rn with neighboring isotones, isobars, and isotopes shows clearly the collapse of the quadrupole-octupole-type configurations into the less degenerate shell model configurations. copyright 1998 The American Physical Society

  1. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)


    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  2. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings (United States)

    Dhruv, Akash V.

    over the upper and lower surfaces of a standard airfoil, proves to be an effective alternative to standard control surfaces by increasing the flight capability of bird-scale UAVs. The results obtained for this wing design under various flight and flap configurations provide insight into its aerodynamic behavior, which enhance the maneuverability and controllability. The overall method acts as an important tool to create an aerodynamic database to develop a distributed control system for autonomous operation of the multi-flap morphing wing, supporting the use of viscous-inviscid methods as a tool in rapid aerodynamic analysis.

  3. Design and Testing of Aeroelastically Tailored Wings Under Maneuver Loading

    NARCIS (Netherlands)

    Werter, N.P.M.; Sodja, J.; De Breuker, R.


    The goal of the present paper is to provide experimental validation data for the aeroelastic analysis of composite aeroelastically tailored wings with a closed-cell cross-sectional structure. Several rectangular wings with differ- ent skin thicknesses and composite layups are designed in order to

  4. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA


    Full Text Available A variable stability, blended-wing-body research mini-UAV was developed at the CSIR in South Africa. The purpose of the UAV was to study some of the aerodynamic design and control issues associated with flying wing geometries and to develop a...

  5. Flapping-wing mechanical butterfly on a wheel (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel


    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  6. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  7. COLIBRI : A hovering flapping twin-wing robot

    NARCIS (Netherlands)

    Roshanbin, A.; Altartouri, H.; Karasek, M.; Preumont, André


    This paper describes the results of a six-year project aiming at designing and constructing a flapping twin-wing robot of the size of hummingbird (Colibri in French) capable of hovering. Our prototype has a total mass of 22 g, a wing span of 21 cm and a flapping frequency of 22 Hz; it is actively

  8. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian


    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  9. Temporal variation of wing geometry in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Paloma Oliveira Vidal


    Full Text Available Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010 in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  10. Temporal variation of wing geometry in Aedes albopictus. (United States)

    Vidal, Paloma Oliveira; Carvalho, Eneas; Suesdek, Lincoln


    Although native to the tropical and subtropical areas of Southeast Asia, Aedes albopictus is now found on five continents, primarily due to its great capacity to adapt to different environments. This species is considered a secondary vector of dengue virus in several countries. Wing geometric morphometrics is widely used to furnish morphological markers for the characterisation and identification of species of medical importance and for the assessment of population dynamics. In this work, we investigated the metric differentiation of the wings of Ae. albopictus samples collected over a four-year period (2007-2010) in São Paulo, Brazil. Wing size significantly decreased during this period for both sexes and the wing shape also changed over time, with the wing shapes of males showing greater differences after 2008 and those of females differing more after 2009. Given that the wings play sex-specific roles, these findings suggest that the males and females could be affected by differential evolutionary pressures. Consistent with this hypothesis, a sexually dimorphic pattern was detected and quantified: the females were larger than the males (with respect to the mean) and had a distinct wing shape, regardless of allometric effects. In conclusion, wing alterations, particularly those involving shape, are a sensitive indicator of microevolutionary processes in this species.

  11. Stable structural color patterns displayed on transparent insect wings. (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein


    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  12. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scal...

  13. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi


    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  14. Vortex coupling in trailing vortex-wing interactions (United States)

    Chen, C.; Wang, Z.; Gursul, I.


    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  15. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin


    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.


    Directory of Open Access Journals (Sweden)

    V. I. Shevyakov


    Full Text Available The article deals with the task of determination of wing shape for sub-sonic commercial aircraft by photogrammetric method. It provides the procedure for measurements taken on ground and in flight. It also provides the outcome of wing twist for commercial aircraft at cruise.

  17. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.


    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite

  18. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.


    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  19. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)


    Overall wing size was analysed here using centroid size. (defined as the square root of the sum .... For those isochromosomal lines that were common to both experimental temperatures .... subobscura reared at 18ºC. CS refers to centroid size (values in pixels2; 1 mm = 144 pixels), and WS to wing shape (all values ×. 104).

  20. An experimental investigation of supersonic flow past a wedge-cylinder configuration (United States)

    Barnette, D. W.


    An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested, it was found that, while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions), the weaker, Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge. Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the "bow" shock wave). A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e., near the wing root). Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations.

  1. Mixed ice accretion on aircraft wings (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So


    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  2. Offshore Vendors’ Software Development Team Configurations

    DEFF Research Database (Denmark)

    Chakraborty, Suranjan; Sarker, Saonee; Rai, Sudhanshu


    This research uses configuration theory and data collected from a major IT vendor organization to examine primary configurations of distributed teams in a global off-shoring context. The study indicates that off-shoring vendor organizations typically deploy three different types of configurations...

  3. Offshore Vendors' Software Development Team Configuration

    DEFF Research Database (Denmark)

    Chakraborty, Suranjan; Sarker, Saonee; Rai, Sudhanshu


    This research uses configuration theory and data collected from a major IT vendor organization to examine primary configurations of distributed teams in a global off-shoring context. The study indicates that off-shoring vendor organizations typically deploy three different types of configurations...

  4. Multi level configuration of ETO products

    DEFF Research Database (Denmark)

    Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn; Hvolby, Hans-Henrik


    The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed...... in certain business processes if a multi level configuration system is realized....

  5. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    Directory of Open Access Journals (Sweden)

    Meftah S.M.A


    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  6. Computational wing design studies relating to natural laminar flow (United States)

    Waggoner, Edgar G.


    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  7. Code organization and configuration management

    International Nuclear Information System (INIS)

    Wellisch, J.P.; Ashby, S.; Williams, C.; Osborne, I.


    Industry experts are increasingly focusing on team productivity as the key to success. The base of the team effort is the four-fold structure of software in terms of logical organisation, physical organisation, managerial organisation, and dynamical structure. The authors describe the ideas put into action within the CMS software for organising software into sub-systems and packages, and to establish configuration management in a multi-project environment. The authors use a structure that allows to maximise the independence of software development in individual areas, and at the same time emphasises the overwhelming importance of the interdependencies between the packages and components in the system. The authors comment on release procedures, and describe the inter-relationship between release, development, integration, and testing

  8. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH


    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  9. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.


    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  10. Preliminary development of a wing in ground effect vehicle (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat


    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  11. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling (United States)

    Baker, Myles; Lenkey, Peter


    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an

  12. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.


    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  13. Multi level configuration of ETO products

    DEFF Research Database (Denmark)

    Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn; Hvolby, Hans-Henrik


    The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed i...... in certain business processes if a multi level configuration system is realized.......The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed...

  14. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. (United States)

    Nakata, Toshiyuki; Liu, Hao


    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  15. Supply chain configuration concepts, solutions, and applications

    CERN Document Server

    Chandra, Charu


    This book discusses the models and tools available for solving configuration problems, emphasizes the value of model integration to obtain comprehensive and robust configuration decisions, proposes solutions for supply chain configuration in the presence of stochastic and dynamic factors, and illustrates application of the techniques discussed in applied studies. It is divided into four parts, which are devoted to defining the supply chain configuration problem and identifying key issues, describing solutions to various problems identified, proposing technologies for enabling supply chain confirmations, and discussing applied supply chain configuration problems. Its distinguishing features are: an explicit focus on the configuration problem an in-depth coverage of configuration models an emphasis on model integration and application of information modeling techniques in decision-making New to this edition is Part II: Technologies, which introduces readers to various technologies being utilized for supply chai...

  16. Coupling Existing Software Paradigms for Thermal Control System Analysis of Re-Entry Vehicles, Phase I (United States)

    National Aeronautics and Space Administration — The innovation proposed is the unification of existing and operational high fidelity simulation software tools into an integrated framework with which to predict...

  17. Coming Home: Continuing Intercultural Learning during the Re-Entry Semester Following a Study Abroad Experience (United States)

    Marx, Helen A.; Moss, David M.


    International experiences through structured study abroad programs are proposed as a powerful way to impact pre-service teachers' intercultural understandings and competence. In recent years attention has been placed on the nature of such study abroad programs, seeking to illuminate design elements that might enhance intercultural learning prior…

  18. Re-entry: online virtual worlds as a healing space for veterans (United States)

    Morie, Jacquelyn Ford


    We describe a project designed to use the power of online virtual worlds as a place of camaraderie and healing for returning United States military veterans-a virtual space that can help them deal with problems related to their time of service and also assist in their reintegration into society. This veterans' space is being built in Second Life®, a popular immersive world, under consultation with medical experts and psychologists, with several types of both social and healing activities planned. In addition, we address several barrier issues with virtual worlds, including lack of guides or helpers to ensure the participants have a quality experience. To solve some of these issues, we are porting the advanced intelligence of the ICT's virtual human characters to avatars in Second Life®, so they will be able to greet the veterans, converse with them, guide them to relevant activities, and serve as informational agents for healing options. In this way such "avatar agents" will serve as autonomous intelligent characters that bring maximum engagement and functionality to the veterans' space. This part of the effort expands online worlds beyond their existing capabilities, as currently a human being must operate each avatar in the virtual world; few autonomous characters exist. As this project progresses we will engage in an iterative design process with veteran participants who will be able to advise us, along with the medical community, on what efforts are well suited to, and most effective within, the virtual world.

  19. Re-entry Flight Experiments Lessons Learned - The Atmospheric Reentry Demonstrator ARD (United States)


    and internal radiative heat transfer , conductive heat transfer in the complete calorimeter, and non-linear thermal properties of the materials... transfer coefficient hr is the recovery enthalpy β is the cold face heat loss coefficient Preliminary assessment of elementary uncertainties has...26-29, 2001. [R7] Vincent P., “Ariane 5: Ambiance thermique – procédure d’exploitation des fluxmètres vol”, EADS-ST Technical Note A5-NT-A-1-2093

  20. Emergency planning and preparedness for re-entry of a nuclear powered satellite

    International Nuclear Information System (INIS)


    This safety practice report provides a general overview of the management of incidents or emergencies that may be created when nuclear power sources employed in space systems accidentally re-enter the earth's atmosphere and impact on its surface. 8 refs, 4 figs, 7 tabs

  1. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons (United States)

    National Aeronautics and Space Administration — The project objective is to develop and test a sub-scale version of the Maraia Entry Capsule on a high altitude balloon. The capsule is released at 100,000 ft. The...

  2. Catheter perforation of distal oesophagus with duodenal re-entry of catheter. Report of a case

    Energy Technology Data Exchange (ETDEWEB)

    Bundgaard, T.; Kristensen, H.; Lesak, F.

    An unusual case of perforation of the oesophagus is presented. A nasogastric tube had perforated the oesophagus and re-penetrated into the duodenum, and thereby re-entered the gastrointestinal tract without perforating the peritoneum and without causing the classical clinical signs of oesophageal perforation. Treatment was started 31 days after the perforation.

  3. Detour from Nowhere: The Remarkable Journey of a Re-Entry College Woman. (United States)

    Rodriguez, Sandria


    Reentry women generally face formidable barriers to educational success: they have primary responsibility for family matters; they suffer a disproportionate amount of stress, guilt, and anxiety; and their success is often dependent on family support. The article chronicles the empowerment that one woman found through her experience at a community…

  4. The RN-BSN Bridge Course: Transitioning the Re-Entry Learner. (United States)

    Huston, Carol; Shovein, Julia; Damazo, Becky; Fox, Sherry


    A 6-week bridge course designed to ease the transition of registered nurses into baccalaureate degree programs focused on critical thinking, learning styles, professional roles, values clarification, time management, and career planning. It also oriented students to Web Course Tools, used for distance learning. Outcomes included role and campus…

  5. Short-radius horizontal well re-entry learning curve: prize, cost and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Boote, K. [Ocelot Energy Inc., Calgary, AB (Canada); MacDonald, R. [Lauron Engineering Ltd, Calgary, AB (Canada)


    Six mature vertical wells in Alberta belonging to Ocelot Energy Inc., were reentered and drilled horizontally. Experiences gained, the modifications made to the drilling program and the rewards in the form of incremental oil, were discussed. Details of pre- and post-performance, operational experiences with exiting the casing, building the curve, overbalance versus underbalanced drilling, motors, directional equipment, setting liners, remedial workovers and the cost of the operation were part of the discussion.

  6. A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows (United States)


    The graphite is 12 Figure 3. SEM image of the ISO -63 grade graphite surface at a magnication of 100 µm. isostatically pressed to produce a very ne... ISO 100, 1/4000 exposure, f/10 aperture and a focal length of 300 mm. An example TCRP analysis is shown in Figure 5 illustrating a fairly uniform...mass uxes 115 Wall Normal Distance (mm) T em pe ra tu re (K ) 0 0.5 1 1.5 2 0 5000 10000 15000 20000 25000 4.6M Cells 5.5M Cells 6.4M Cells (a

  7. Coming home - understanding the corporate re-entry of international employees

    NARCIS (Netherlands)

    B.A. Szkudlarek (Betina)


    textabstractThe cross-border mobility of staff is an everyday reality readily taken for granted by internationally minded employers and employees. Cross-border resettlement in business, education, leisure and political spheres has increased over the last few decades as the fingers of

  8. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Walid Barake, MD MBBCh


    Full Text Available This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT. Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided.

  9. Re-Entry Women: Special Programs for Special Populations. Field Evaluation Draft. (United States)

    Hall, Roberta M.; Gleaves, Francelia D.

    This pamphlet provides information on what higher education institutions can do to accomodate women over 25 who have interrupted their education for several years and are now entering or re-entering postsecondary institutions. Topics discussed include institutional attitudes, double discrimination, institutional invisibility, and barriers to…

  10. A Re-Entry Program for Peacekeeping Soldiers: Promoting Personal and Career Transition. (United States)

    Westwood, Marvin J.; Black, Timothy G.; McLean, Holly B.


    Describes a program developed to assist with military personnel's transition back into Canadian society by aiding with their personal and career readjustment. Group-based life review and therapeutic enactment counseling interventions are used to identify critical incidents and facilitate the resolution of stress-related reactions soldiers have…

  11. POPSCAN: A CNES Geo-Information Study for Re-Entry Risk Assessment (United States)

    Fuentes, N.; Tholey, N.; Battiston, S.; Montabord, M.; Studer, M.


    Within the framework of the FSOA, French Space Operations Act (referred to as the "Loi relative aux Opérations Spatiales" or LOS in French), including in particular the monitoring of safety requirements for people and property, one major parameter to consider is Geographic Information (GI) on population distribution, human activity, and land occupation.This article gives an overview of the set of geographic and demographic data examined for CNES control offices, outlining the advantages and limits of each one : coverage, precision, update frequency, availability, distribution, ...It focuses on the two major available global population databases: GPW-GRUMP from CIESIN of COLUMBIA University and LandScan from ORNL. The work engaged on POPSCAN integrates digital analysis about these two world population grids and also comparisons on other databases such as GLOBAL- INSIGHT, VMAP0, ESRI, DMSP-ISA, GLOBCOVER, OpenFlights, ... for urban areas, communication networks, sensitive human activities and land use.

  12. Normativity's Re-entry. Niklas Luhmann's Social Systems Theory: Society and Law

    NARCIS (Netherlands)

    Francot-Timmermans, L.M.A.


    Modern Western society is perceived as increasingly complex and contingent and in an era wherein our own identity is a matter of construction, the macro level of a description of societal unity constitutes a no less demanding task. Despite social complexity and contingency, societies are still in

  13. Palaeomagnetic Results from the Lopra-1/1A re-entry well, Faroe Islands

    DEFF Research Database (Denmark)

    Abrahamsen, N.


      The palaeomagnetic dating and evolution of the Faroe Islands are discussed in the context of new density and rock magnetic results from the deepened Lopra-1/1A well. The reversal chronology of the c. 6½ km thick basalt succession is also described. The polarity record of the Faroe Islands may n...

  14. Re-Entry Trauma: Asian Re-Integration after Study in the West (United States)

    Pritchard, Rosalind


    Many students who re-locate from host to home country are said to undergo a process of reverse culture shock akin to bereavement, involving stages of a grieving process. This has been likened to a "W-curve" in which feelings fluctuate before reaching a more balanced state. The present study examined the re-acculturation of Taiwanese and…

  15. Palaeomagnetic Results from the Lopra-1/1A re-entry well, Faroe Islands

    DEFF Research Database (Denmark)

    Abrahamsen, N.


    and upper basalt formations correlate with Chron C24n.3r (Ypresian). Inclinations indicate a far-sided position of the palaeomagnetic poles, which is characteristic of results from most Palaeogene volcanics from the northern North Atlantic region. The density, magnetic susceptibility and magnetic remanence...... are typically log-normally distributed and the carriers of remanence are Ti-poor Ti-magnetites with Curie temperatures close to 580°C. The inclination of the 1½ m core at -2380 m b.s.l. is dominantly negative (two plugs at the very top of the core do show normal polarity, but they are likely to be misoriented...

  16. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.


    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  17. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures. (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C


    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  18. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques (United States)


    life span, and must be cared for and used expeditiously. Once a hawkmoth hatches from its cocoon, its wing is liberated, taking care to cut the...more controlled fashion than the butterfly, but is not sufficiently so for a Micro- MAV (courtesy of life /specimens/la460...50. Michelson, Robert C. and Naqvi, Messam A. Extraterrestrial Flight. s.l. : RTO- AVT von Karman Institute for Fluid Dynamics Lecture Series, 2003

  19. Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft


    Adegbindin, Moustaine Kolawole Agnide


    Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response. Distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and a Genetic Algorithm were used here for the control a...

  20. Heating and flow-field studies on a straight-wing hypersonic reentry vehicle at angles of attack from 20 to 80 deg with simulation of real-gas trends (United States)

    Hunt, J. L.


    Data are presented from a series of phase-change heat transfer and flow visualization tests at Mach 7.4, 8, and 10.3 in air, Mach 19.5 in nitrogen, Mach 20.3 in helium, and Mach 6 in tetrafluoromethane (CF4) on the windward surface of a straight wing hypersonic reentry configuration for angles of attack from 20 deg to 80 deg. The results indicate that: (1) for hypersonic stream Mach numbers, the flow field over the straight-wing configuration is essentially independent of Mach number, (2) transition Reynolds number decreases with increasing angle of attack, (3) at some critical angle of attack, the wing-shock standoff distance is greatly increased and the stagnation line moves downstream from the wing leading edge, (4) value of the critical angle of attack is very sensitive to the flow shock density ratio or effective gamma, and (5) at angles of attack above the critical value for all gases, the nondimensional level of heat transfer to the wing is higher for the higher shock density ratio flows.